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Abstract. An original family of labelled sequent calculi G3IL� for classical interpretability
logics is presented, modularly designed on the basis of Verbrugge semantics (a.k.a. generalised
Veltman semantics) for those logics. We prove that each of our calculi enjoys excellent
structural properties, namely, admissibility of weakening, contraction and, more relevantly,
cut. A complexity measure of the cut is defined by extending the notion of range previously
introduced by Negri w.r.t. a labelled sequent calculus for Gödel–Löb provability logic, and a
cut-elimination algorithm is discussed in detail. To our knowledge, this is the most extensive
and structurally well-behaving class of analytic proof systems for modal logics of interpretability
currently available in the literature.

§1. Introduction.

1.1. Background. Interpretations arise in several (meta)mathematics areas, and
many variations exist.1 For instance, it is possible to interpret propositional
intuitionistic logic into classical Gödel–Löb logic GL by establishing an equivalence
between the axiomatisation GL and the axiomatic calculus IPC; from that, one could
also interpret IPC into an arithmetical theory T that is adequate to GL.

An even simpler example is given by Gödel’s numbering, which, according to
Tarski [47], interprets (a model for) meta-mathematical reasoning into the standard
model for arithmetic by defining an injective function that maps finite strings of
arithmetical symbols into N, and a further function mapping each meta-predicate
into its arithmetical counterpart.
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1 A methodological treatment of the notion was presented first in [48], where the basic

properties of this concept are introduced.
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2 COSIMO PERINI BROGI, SARA NEGRI AND NICOLA OLIVETTI

In the present work, we will assume a very general version of that concept: An
interpretation of a theory T into a theory T′ is just a structure-preserving translation
t such that if T � A then T′ � t(A). More precisely, we will consider interpretability
between arithmetical theories of the formT +A, whereT is some base theory satisfying
the standard Hilbert–Bernays–Löb provability conditions as discussed in e.g., [5, 42,
43], and A is a schema in the language of T.2

Modal logics for interpretability arise as an extension of the language of provability
logic through a binary modal operator � capturing the relation of (relative)
interpretability between two arithmetical theories.

Recall first that, in provability logic, we denote by ∗ a standard arithmetical
realisation of the modal language, as described in e.g., [51]: In particular, ∗ commutes
with the classical operators and maps �A into Bew(�A∗�), where Bew(x) is the
standard provability predicate for the given arithmetical theory T.

In interpretability logics, the propositional formula A� B is then intended as the
modal counterpart of the arithmetical formula IntT(�A∗�, �B∗�)—where IntT(x, y) is
the formal predicate in the language of T for relative interpretability over T itself—
expressing the fact that the arithmetical theory T extended by A∗ interprets the
arithmetical theory T extended by B∗.

The origins of interpretability logics date back to [54], which axiomatised the basic
modal framework by extending the language of GL with some minimal axioms for the
core logic for interpretability IL, on top of which several systems can be constructed.

Completeness results w.r.t. a Kripke-style relational semantics, based on so-called
Veltman frames, were presented first in [7] for IL and some extensions by using a
canonical model construction. More complex proofs were developed by the same
authors in 1999, and further techniques were introduced to achieve subsequent
completeness results since the beginning of the 2000s starting with [12]. Recent results
have been obtained also for subsystems of IL in [16, 19, 34].

On the arithmetical side, by tweaking the proof strategy in [45] forGL, it is possible to
prove also the arithmetical completeness of some extensions of IL. The interpretability
logic for T is, as expected,

IL(T) := {A | for any realisation ∗,T � A∗}.

In [41], it is proven that this notion is Σ0
3-complete. It is also known, that IL is not the

interpretability logic for any arithmetical theory T. However, if we assume that T is
Σ1-sound and proves full induction, by adding the schema

M := A� B → A ∧ �C � B ∧ �C, 3

we have that

IL(T) = ILM := IL + M.

2 This is usually called relative interpretability. Notice that, according to the definition,
provability is a special case of relative interpretability: T � A if and only if T + ⊥ is
interpretable in T + ¬A.

3 In parsing formulas, we assume that � binds stronger than →, but weaker than the other
connectives.
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MODULAR SEQUENT CALCULI FOR INTERPRETABILITY LOGICS 3

Similarly if we add to IL the schema

P := A� B → �(A� B),

then

IL + P =: ILP = IL(T)

for any T that is Σ1-sound, finitely axiomatised, and such that it proves the totality of
supexp.4

The most intriguing aspect of interpretability logics is this sensitivity to the base
arithmetical theory. The main open question in the field is indeed establishing the
interpretability logic of all reasonable arithmetical theories, i.e.,5

IL(All) := {A | ∀T ⊇ IΔ0 + exp, for any realisation ∗,T � A∗}.
What we know, after [55], is that IL ⊂ IL(All) ⊂ ILM ∩ ILP, but a modal

characterisation of IL(All) is still unknown.

1.2. This article. There are many further open questions in the field of interpretabil-
ity logics. In our setting, it is worth noticing that very little is known about the
structural proof theory for interpretability logics: Sasaki [39] gives a Gentzen-style
sequent calculus for IL only, while Hakoniemi and Joosten [15] presents a labelled
tableaux system for some extensions of IL based on standard Veltman semantics.6

In the present paper, we extend the proof-theoretic analysis of interpretability logics
by introducing a family G3IL� of labelled sequent calculi which cover a wide range of
modal systems for interpretability naturally. Their design is based on the methodology
of Negri [28, 31] but, instead of working with formal relational semantics or formal
neighbourhood semantics, these original calculi internalise the hybrid models by
Rineke Verbrugge, also called generalised Veltman structures in [50].

One of the main advantages of reasoning on interpretability logics by using
Verbrugge semantics instead of standard Veltman semantics is that the former
subsumes the latter, but it is also capable of distinguishing interpretability principles
that are equivalent in a model theory based on Veltman frames. Moreover, some
interpretability logics can be characterised in terms of semantic properties that are more
simple when dealing with Verbrugge frames than in the standard relational setting.
Furthermore, some modal logics for interpretability are known to be incomplete w.r.t.
Veltman semantics, while being complete w.r.t. Verbrugge semantics.

At the same time, the results collected by Joosten et al. [17] after sever years of
active research show that the interactions between Veltman and Verbrugge semantics
are subtle: When it comes to models, the two semantics are equally powerful, but when
reasoning on frames, the situation is quite different, and variations on the definition
of Verbrugge frames lead to different results.

The main contribution of the work presented here consists of designing modular
sequent systems satisfying the main structural desiderata, namely, admissibility

4 supexp is the function �x.2xx with 2n0 := n and 2nm+1 := 2(2nm).
5 As explained by Joosten and Visser [18], there is no simple formal definition of “reasonable”

theory; in particular, reasonable theories do not have to use the language of arithmetic, so
that in the following expression we slightly overload the notation for the sake of conciseness,
following similar examples in the literature on this topic.

6 See §3.1 below for a definition of the latter.
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4 COSIMO PERINI BROGI, SARA NEGRI AND NICOLA OLIVETTI

of contraction and weakening, invertibility of logical rules, and a cut-elimination
algorithm.

More precisely, we build on Verbrugge semantics to define labelled sequent calculi
for IL and the most relevant of its extensions, including ILM, ILP, and, more
interestingly, ILW, which was not covered before in proof-theoretic literature. These
calculi utilise world and neighbourhood labels to incorporate relevant semantic features
into the syntax. At the same time, each proof system adheres to standard proof-
theoretic principles, ensuring that each connective is addressed by dual left and right
rules, supporting a clear syntactic explanation of its meaning. With the intent to
stick to principled design philosophy, we also defined a non-normal operator 〈]x
for neighbourhoods indexed on world labels, introduced for translating naturally the
meaning of the � modality into sequent rules. Moreover, we adapted the methodology
used by Negri [28] for dealing with Noetherianity of GL-frames, with the intent
of capturing within our proof systems the same notion, modulo the necessary
generalisation to consider Verbrugge frames for interpretability logics. In short, as
Verbrugge semantics is not per se expressible as a geometric theory—i.e., cannot be
reduced to a finite set of axiom schemas in the language of first-order logic of shape
A→ B , where A and B do not contain ∀ and →—defining sequent rules based on
the geometric rule schemas by Negri and von Plato [33] was a not-so-easy task, and
required a careful approach to the design of the calculi, in order to obtain precise
structural properties of the systems for these logics.

By adopting such a principled set of design choices, our calculi markedly exhibit a
modular nature, where logical rules remain consistent across all systems. In contrast,
relational rules for neighbourhood and world labels are introduced to define specific
calculi for each considered extension.

In addition to their simplicity and modularity, the calculi boast robust structural
properties. These include the invertibility of all rules and the admissibility of contraction
and cut, proven in a once-for-all way for the base system and its extensions. From the
technical viewpoint, we remark that the definition of the cut-elimination algorithm
required the use of a ternary measure of the cut complexity, which is borrowed from
the proof of cut admissibility for G3GL in [28], modulo some tweaks to deal with the
more general setting of Verbrugge semantics.

As of the current literature, the comprehensive proof-theoretic analyses of inter-
pretability logics presented here are unparalleled in scope. The only relevant limitation
of the current version of our sequent calculi is that it can be interpreted as a
framework “for Veltman frames in disguise” because of the correspondence established
by Verbrugge [50] between Veltman models and the version of Verbrugge models we
adopted.7 Still, our findings collected here suggest a promising avenue for the canonical
extension of the results presented in the following pages to cover other variants of
Verbrugge semantics and more intricate logical frameworks dealing with modal logic
for meta-mathematics.

1.3. Paper structure. The paper is organised as follows: In §2, we recall the
axiomatic calculi for the main interpretability logics under investigations; in §3,
the basic definitions and results in the model theory for interpretability logics are
recalled, and the Verbrugge semantics (a.k.a. Generalised Veltman Semantics) (GVS)

7 We are grateful to an anonymous reviewer for noticing this aspect of our labelled systems.
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MODULAR SEQUENT CALCULI FOR INTERPRETABILITY LOGICS 5

is discussed according to the most recent literature on the topic. Our family of sequent
calculi G3IL� is then presented in §4; §5 is committed to the structural analysis of those
calculi, and includes a constructive proof of admissibility of the cut rule for all the
extensions. Finally, in §6, we prove the soundness and completeness of our systems w.r.t.
the semantic and axiomatic presentations, respectively. A section discussing related and
future work closes the article.

§2. Axiomatic calculi. Let us start by recalling the formal definitions of a
propositional modal language for interpretability logics.

Definition 2.1. The set of formulas in a standard formal languageL�,� for interpretabil-
ity logics is given by the following grammar:

p | A ∧ B | A ∨ B | A→ B | ⊥ | �A | A� B,
where p belongs to a denumerable set Atm of atomic propositions. Truth, negation
and coimplication are defined in the standard way: 
 := ⊥ → ⊥, ¬A := A→ ⊥, and
A↔ B := (A→ B) ∧ (B → A), respectively. When reasoning in a classical setting, we
can also consider a further modal operator �, which we define as �A := ¬�¬A.

The basic axiomatic calculus for interpretability logics is given by the following
definition.

Definition 2.2. Let IL denote the axiomatic system determined by

• the axiom schemas of any classical propositional calculus CPC;
• schema K: �(A→ B) → (�A→ �B);
• schema GL: �(�A→ A) → �A;
• interpretability schemas8

– IL1: �(A→ B) → A� B ;
– IL2: A� B → (B � C → A� C )
– IL3: A� C → (B � C → A ∨ B � C )
– IL4: A� B → (�A→ �B)
– IL5: �A� A

• MP (Modus Ponens) rule A→ B A
B

• Necessitation rule A
�A

As usual, we write Γ �IL A when A is derivable in IL assuming the set of hypotheses Γ,
with the proviso that the rule of necessitation is applied only to theorems, otherwise the
rule is not sound and the deduction theorem fails, as discussed by [14]. We write IL � A
when Γ = ∅.

For this calculus, some interesting lemmas are provable.

Lemma 2.3. The following hold

(i) IL � �¬A→ (A� B);
(ii) IL � A ∨ �A� A;
(iii) IL � A� A ∧ �¬A;

8 As stated in the §1, here and in the rest of the paper, we assume that � binds stronger than
→, but weaker than the other connectives.
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6 COSIMO PERINI BROGI, SARA NEGRI AND NICOLA OLIVETTI

(iv) A� B , A ∧ �¬A� B and A� B ∧ �¬B are inter derivable over IL;
(v) A� ⊥ and �¬A are inter derivable over IL;
(vi) IL � �A� ¬(A� �A).

Proof. Refer to e.g., [54].

Item (v) of the previous lemma shows that we could dismiss the � modality since
we could define �A as ¬A� ⊥. This definition would simplify our base language.
However, we will see in §3.1, §3.2, and, more poignantly, §4.1, that it is possible to
define � via � as well as � via � by semantics considerations. Those will lead to the
design of our family of sequent calculi in §4.9

2.1. Axiomatic extensions. On top of IL, it is possible to add further modal
principles that have specific relevance for arithmetical realisations. Here, we will
consider the following calculi.

Definition 2.4. Let us define as proper extensions of IL

• ILM := IL + M, where

M := A� B → A ∧ �C � B ∧ �C

is called the Montagna schema;
• ILP := IL + P, where

P := A� B → �(A� B)

is called the persistence schema;
• ILW := IL + W, where

W := A� B → A� B ∧ �¬A;

• ILKM1 := IL + KM1, where

KM1 := A� �B → �(A→ �B);

• ILM0 := IL + M0, where

M0 := A� B → �A ∧ �C � B ∧ �C.

§3. Semantics for interpretability logics. As stated in the introduction, we know—
after [2, 40], and [54, 57], respectively—that ILM is the interpretability logic for
arithmetical theories proving full induction, and ILP captures the properties of
formal interpretability over finitely axiomatised theories proving the totality of the
superexponential function.10

Their proofs are based on Solovay’s strategy for arithmetical completeness of Gödel–
Löb logic as exposed in [5, 43]; therefore, they effectively use the characterisation of

9 Similar considerations underlie the definition of the tableaux systems in [15] .
10 Since ILM and ILP are not contained in and do not contain each other, those completeness

results entail, for instance, that Montagna’s principle holds for Peano arithmetic but does
not hold for Gödel–Bernays set theory; on the contrary, the persistence principle holds for
Gödel–Bernays set theory, but does not hold for Peano arithmetic. Nevertheless, they share
the same provability logic, namely, GL.
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MODULAR SEQUENT CALCULI FOR INTERPRETABILITY LOGICS 7

those axiomatic systems in terms of relational models. We now turn our presentation
to these semantic aspects of interpretability logics.

3.1. Veltman semantics. To obtain a standard relational semantics for interpretabil-
ity logics from possible world semantics one usually proceeds by “decorating” frames
with additional indexed accessibility relations.

Definition 3.1. A Veltman frame F consists of:

• a nonempty set W of possible worlds;
• a binary relation R on W which is transitive and Noetherian11 ;
• a collection {Sx |x ∈W } of binary relations which are reflexive, transitive and

such that
– if ySxz, then y ∈ R[x] and z ∈ R[x], whereR[x] := {y ∈W |xRy}; and
– if xRyRz, then ySxz.

A Veltman model M is obtained by adding an evaluation function v : Atm×W →
{0, 1} to a given Veltman frame, as usual. A forcing relation � is then obtained by a
standard definition for propositional connectives and �-modality

x �M �B iff for all y ∈W, ifxRy then y �M B

while for �-modality we stipulate that

x �M A� B iff for all y ∈W, if xRy and y �M A, then
there exists a z ∈W such that ySxz and z �M B.

We write �M A when A is forced by any world in M; similarly, we write �F A when
�M A for any model M based on F .

For extensions, some frame conditions are needed. A frame condition for a modal
schema A is a (first or higher order) formula (A) in the language {W,R, {Sx}} such
that the structure F satisfies the property (A) if and only if �F A.

In [53, 54], many principles for interpretability were proposed first, together with
their semantic characterisations. We then know that

(W) = (KW1) = (F) = “R ◦ Sx is Noetherian” for allx ∈W,
where

KW1 := A� �
 → 
 � ¬A
F := A� �A→ �¬A.

Moreover we have that

(M) = (KM1) = (KM2) = if ySxzRu, then yRu,

where

KM2 := A� B → (�(B → �C ) → �(A→ �C )),

and we know, after Visser [53], that KM1 and KM2 are interderivable over IL.
By using Veltman semantics, Švejdar [46] proved that

IL{F,KW1} �� KW1◦,

11 We say that a relation R is Noetherian on W when for anyX ⊆W there exists aw ∈ X such
that, for no x ∈ X , wRx.
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where

KW1◦ := A ∧ B � �A→ A� (A ∧ ¬B).

After the work on those systems by Švejdar [46], we furthermore know that
ILF,ILKW1, ILKW1◦ are incomplete w.r.t. the standard relational semantics.

3.2. Verbrugge semantics. Verbrugge semantics (also called GVS) rescues the
situation. Rineke Verbrugge has developed it in [50] by considering interpretations
reminiscent of neighbourhood semantics for non-classical logics.

To be more precise, each Sx is now a relation between worlds and sets of worlds,
satisfying specific properties identified by the schemas for �.

Definition 3.2. A Verbrugge frame F consists of

• a finite setW �= ∅;
• a binary relation R ⊆W ×W which is irreflexive and transitive;
• a W-indexed set of relations Sx ⊆ R[x] × (℘(R[x]) \ {∅});

satisfying the following conditions:

• Quasi-reflexivity: if xRy then ySx{y};
• Definiteness: if xRyRz then ySx{z};
• Monotonicity: if ySxa and a ⊆ b ⊆ R[x] then ySxb;
• Quasi-transitivity: if ySxa and vSxbv for all v ∈ a, then ySx(

⋃
v∈a bv).

Remark 1. The frames used in Verbrugge semantics are, in a sense, relational frames
for Gödel–Löb logic enriched with indexed relations between worlds and nonempty sets
of worlds.12 Those frames for Gödel–Löb logic are conventionally those that are endowed
with an accessibility relation that is transitive and Noetherian. However, we know that
a semantics based on irreflexive, transitive and finite frames (ITF ) is also adequate for
Gödel–Löb logic. Therefore, we adopt here this second semantic characterization of the
system for provability, noting that this has no impact on the “neighbourhood aspects”
of Verbrugge semantics for the logics we investigate here, since they all satisfy the finite
model property for GVS—and the same could have been done for standard Veltman
semantics.13

A Verbrugge model is obtained by considering a usual evaluation function, which can be
extended to a forcing relation defined as for standard semantics, with only one difference:

x � A� B iff for all y if xRy and y � A, then there exists an a such that

ySxa and a �∀ B,

where a �∀ B abbreviates the expression “for any z ∈ a, z � B”.

As for relational semantics, extensions for IL need generalised frame conditions: We
denote by (A)gen the frame condition w.r.t. Verbrugge semantics corresponding to the
modal schema A.

12 We choose to refer to the latter as neighbourhoods, following the standard terminology in
neighbourhood semantics for non-classical logics.

13 As the reviewers pointed out, our current methodology could not be implemented on
extensions of IL that do not satisfy the finite model property.
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We know that the following hold14

(M)gen = ySxa ⇒ ∃b ⊆ a, ySxb&R[b] ⊆ R[y]
(KM1)gen = ySxa ⇒ ∃i ∈ a,∀z(iRz ⇒ yRz)
(P)gen = xRx′RySxa ⇒ ∃b ⊆ a, ySx′b
(M0)gen = wRuRxSwa ⇒ ∃b ⊆ a, uSwb&R[b] ⊆ R[u]
(P0)gen = wRxRuSwa &∀v ∈ a(R[v] ∩ b �= ∅) ⇒ ∃c ⊆ b, uSxc
(W)gen = ySxa ⇒ ∃b ⊆ a, ySxb&R[b] ∩ S–1

x b = ∅

(R)gen = wRxRuSwa ⇒ ∀c ∈ C(x, u),∃b ⊆ a, xSW b&R[b] ⊆ c
(W∗)gen = (M0)gen & (W)gen,

where

• i ∈ R[b] iff there is an x ∈ b such that xRi ;
• i ∈ S–1

x b iff iSxb;
• C(x, u) := {c ⊆ R[x] | ∀d, uSxd ⇒ d ∩ c �= ∅};
• P0 := A� �B → �(A� B);
• R := A� B → ¬(A� ¬C ) � B ∧ �C );
• W∗ := A� B → B ∧ �C � B ∧ �C ∧ �¬A.

For the basic system IL, completeness results are known w.r.t. both standard Veltman
semantics and GVS. Moreover, the techniques used to prove the completeness theorem
for that system w.r.t. GVS can be easily extended to consider analogous results for
ILM, ILP, and ILW proven by de Jongh and Veltman [7, 8] w.r.t. ordinary Veltman
semantics.

However, for the other extensions, the proof of modal completeness can be quite
convoluted and very sensitive to the logic under consideration, so proving that an
extension of a given system is complete may need a very different proof strategy
w.r.t. the one used for the completeness of the original subsystem. Some promising
advances have been made recently by Joost Joosten and collaborators in a series of
works aiming at developing a modular and uniform methodology to deal with GVS
for interpretability logics: The most recent literature on the topic includes Mikec and
Vukovic [27], who leverage techniques from Bilkova et al. [3] and Goris et al. [11],
subsequently surveyed by Joosten et al. [17] and Rovira et al. [38].15

In any case, investigations on GVS suffice to establish that, for the interpretability
logics, we have mentioned the interdependencies rendered in Figure 1 hold.

Finally, we can summarise the current model-theoretic knowledge on interpretability
logic by the glossary in Figure 2

§4. Design of the labelled sequent calculi. We have seen that the language L�,�
is somehow redundant: After Lemma 2.3(v), we know that �A is equivalent to
¬A� ⊥. This equivalence invites to minimise the formal language for interpretability
by considering the �-modality as primitive. The resulting language will be denoted
by L�.

We need now to rephrase the inductive definition of well-formed formulas of IL—
and its extensions—as follows.

14 We need to use symbolic connectives for the meta-level to enhance readability.
15 It is worth noticing that there exists flourishing research in finding even more general

interpretability principles, whose semantics is still under investigation (see, e.g., [23, 24].
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10 COSIMO PERINI BROGI, SARA NEGRI AND NICOLA OLIVETTI

Figure 1. Interdependencies among interpretability logics, after Vuković [56]. An arrow from
S to S′ is interpreted as IL + S′ � IL + S.

Figure 2. This information is collected from the results in [50], [7, 8], [12], [26, 27], [37]. Here
FMP abbreviates “finite model property”.

Definition 4.1. The set of well-formed formulas of IL and its extensions w.r.t. L� is
given by the following grammar

Form� ::= p | A ∧ B | A ∨ B | A→ B | ⊥ | A� B ,
where p ∈ Atm and A,B ∈ Form�.

As the reader might expect, we define¬A := A→⊥,A↔ B := (A→ B)∧ (B → A),
�A := ¬A� ⊥, and �A := ¬�¬A.

On the axiomatic side, such a minimalist choice about the basic modal language
(only � is used as modal operator) is reflected by a minimalist axiomatisation of the
basic modal system for interpretability.

Definition 4.2. Let IL� denote the axiomatic calculus defined in [55] by16

• Axiom schemas of CPC;
• schema IL2: A� B → (B � C → A� C );
• schema IL3: A� C → (B � C → A ∨ B � C );
• schema IL-Löb: A� (A ∧ (A� ⊥));

• MP Rule A→ B A
B

;

• �Rule A→ B
A� B .

16 Recall from the footnote 8 that we assume that � binds stronger than →, but weaker than
the other connectives.
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MODULAR SEQUENT CALCULI FOR INTERPRETABILITY LOGICS 11

The extensions of IL� are obtained by adding the axiom schemas that we discussed in
§2.1 and §3; they will be denoted analogously to the systems based on multimodal IL.

The calculi we will present are obtained by labelling the formulas in Form�. The
classes of models we are using for the definition of these calculi are based on Verbrugge
semantics: This is in line with the procedure initiated by Negri [28] for relational
semantics and generalised further to neighbourhood semantics in e.g., [9, 10, 31].17

4.1. Core system. By G3IL we denote the labelled sequent calculus for IL�. The
design of G3IL is based on an explicit internalisation of GVS employing labels, which
formalises the semantic information into a proof system.

According to Definition 3.2, the forcing condition for the �-modality is

(�) x � A� B iff for all y, if xRy and y � A,
then there exists an a such that ySxa and a �∀ B.

As it comes, that forcing condition cannot be directly translated into a single sequent
calculus geometric rule because of the presence of alternating nested quantifiers on the
right-hand side of (�).18

To circumvent that issue, it is convenient to introduce an intermediate indexed
modality, which obeys the following forcing condition

(�) y � 〈]xB iff there exists an a such that ySxa and a �∀ B,

where a �∀ B abbreviates the expression “for any z ∈ a, z � B”, as in (�).
The forcing condition for � can then be rephrased as

(��) x � A� B iff for all y, if xRy and y � A,
then y � 〈]xB.

Unfortunately, this is not enough yet. Models for IL are based on frames for Gödel–
Löb logic, that is: irreflexive, transitive and finite—or, alternatively, transitive and
Noetherian. Neither finiteness nor Noetherianity can be expressed by a semantic
rule in line with the methodology of explicit internalisation available so far in the
literature.

However, the treatment of Gödel–Löb logic described in [30] gives the right hint
for proceeding with the design. Notice first that condition (��) establishes the logical
equivalence

x � A� B iff x � �(A→ 〈]xB). (1)

Moreover, we know that in any model based on ITF19

x � �A iff for any y, if xRy and y � �A, then y � A. (2)

17 Such a move is possible in virtue of the adequacy results for the systems under investigations
w.r.t. GVS that we briefly recalled in the glossary at the end of §3.2.

18 Recall from e.g., [52], that a geometric formula is a formula in the language of first-order
logic of shape A→ B , where A and B do not contain ∀ and →. Geometric rules for sequent
calculi are discussed in details by Negri and von Plato [32].

19 By ITF, it is common to denote the class of relational frames that are irreflexive, transitive,
and finite. Refer also to Remark 1 above. Notice, however, that the same equivalence holds
in frames that are only Noetherian and transitive.
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12 COSIMO PERINI BROGI, SARA NEGRI AND NICOLA OLIVETTI

This suggests to index with worlds the �-modality and, by chaining the equivalences
(1) and (2), we can safely take the following forcing condition for that indexed
�-modality whenever we are reasoning in models based on GVS:

(�) x � A�i B iff for all y, if xRy and y � A�i B,
then, if y � A, y � 〈]iB.

Let Formi� denote the formulas allowing indexed �-modalities as well as the
intermediate indexed modalities 〈]x .

We are now ready to define the labelled sequent calculus G3IL.

Definition 4.3. Let i, j, k, ... , x, y, z, ... be variables for worlds in a Verbrugge model,
and s, t, u, ... variables for neighbourhoods. By neighbourhood term a, b, c, ... we refer
to a neighbourhood variable or an expression of shape {x} orR[x] for x a world variable.

Relational atoms are formulas of the following form and meaning:

• y ∈ R[x], “world y is accessible to world x”;
• ySxa, “neighbourhood a is Sx-accessible to world y”;
• y ∈ a, “world y is a member of neighbourhood a”;
• a ⊆ b, “neighbourhood a is included into neighbourhood b”.

We will use {x} to denote the singleton neighbourhood of exactly the world x.
Labelled formulas are defined as follows, for A ∈ Formi�:

• Relational atoms are labelled formulas;
• x : A, “world x forces formula A”;
• a �∀ A, “formula A is forced by any world belonging to neighbourhood a”.

Definition 4.4. Sequents of G3IL are expressions Γ ⇒ Δ, where Γ and Δ are multisets
of labelled formulas, and relational atoms may occur only in Γ.

The rules defining G3IL are given in Figure 3.

Remark 2. Some of those rules might deserve a little explanation:

• Side condition (x! ) in R �∀ expresses the fact that x is a ‘fresh varibale’, i.e., it
does not occur in the conclusion of the rule; similarly for (y! ) in R�i ; the meaning
of (a! ) in L〈] is analogous; the meaning of (z! ) in the rule NE is analogous.

• The rules for 〈]x are defined according to the forcing condition (�), following the
standard practice for labelled sequent calculi based on neighbourhood semantics.20

• The rules for �i are defined according to the forcing condition (�).
• The rules for GVS are defined as geometric rules of Negri and von Plato [33]; in

particular, we opted for an alternative definition of quasi-transitivity of the indexed
S-relation. The condition imposed by Definition 3.2 is

if ySxa and vSxbv for all v ∈ a, then ySx(
⋃
v∈a bv).

This condition cannot be directly translated as a geometric rule with the language
at hand: recall from e.g., [33] that every geometric formula can be shown to be
equivalent to a formula of shape

∀�x(P1 ∧ ··· ∧ Pm → ∃ �y1Q1 ∨ ··· ∨ ∃ �ynQn),

20 Refer to e.g., [9, 31].
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Figure 3. Rules for G3IL.
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14 COSIMO PERINI BROGI, SARA NEGRI AND NICOLA OLIVETTI

where Pi and Qj are atomic formulas and finite conjunctions of atomic formulas,
respectively.Every geometric formula can then be converted into an n-ary geometric
rule:

Q11[y1/x1], ... , Q1k1
[y1/x1], �P,Γ ⇒ Δ ··· Qn1[yn/xn ], ... , Qnkm [yn/xn ], �P,Γ ⇒ Δ

Geom,�P,Γ ⇒ Δ

where �P corresponds to P1, ... , Pm and [yi/xi ] denotes the replacement of the
variable xi with a fresh variable yi which does not occur in the conclusion of the
rule.Nevertheless, in the literature, it is possible to find several different conditions
for quasi-transitivity:21

Condition 2 is the most natural: the monotone closure of any Sx that satisfies any
of conditions 1–8 also satisfies condition 2, allowing us to define an equivalent
model. For conditions 3–6, obtaining a related standard model from a GVS model
is always possible, as demonstrated in [17, 50]. The rule Qtrans6 represents the
natural formalization of condition 6 from the previous table, which is the simplest
one according to the methodology outlined in [33] that we have briefly summarised.
However, the correspondence between GVS models satisfying condition 6 and
standard Veltman models limits the expressive power of our current systems. To
achieve full adequacy of the interpretability logics under investigation with respect
to the notion of Verbrugge frames standard in the literature—i.e., based on condition
2—we need to revise this semantic rule, as issue that we intend to tackle in future
work.22

• Rule Sing assures that the singleton contains at least one element; rules Repl1 and
Repl2 that it contains at most one element, for indiscernibility of identicals.

• From Figure 3 the rules obtained by the closure condition of the system, discussed
in [28], are omitted. For some rules dealing with GVS—for instance, Trans—
there might be a duplication of a relational atom in the conclusion. Structural
considerations—namely, the desideratum of admissibility of contraction—require
then that a new rule is added to the system, in which the duplicated formulas are
contracted into one.23 However, the rules added to a system in order to satisfy such

21 The table is taken from [17].
22 See our Remark 5 and §7 below for further discussion of this source of limitations.
23 It is relevant to notice here that for each semantic characterisation, there is only a bounded

number of additional rules generated by the closure condition. Moreover, that number is
generally made smaller since many cases of contracted rules are shown to be admissible in the
base calculus. Refer to [33, chaps. 6 and 11] for an exhaustive description of the procedure
and its relevance for labelled calculi for modal logics. Similar considerations hold for the
rules in Figure 4.
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MODULAR SEQUENT CALCULI FOR INTERPRETABILITY LOGICS 15

Figure 4. Rules for G3IL�.

a closure condition play no role in the proof of semantic completeness of the calculi
we are considering here, and they can be shown to be admissible. This justifies our
omission in favour of a better readability of the figure.

Here, we see that the version of Verbrugge semantics for IL adopted here can be
considered a geometric theory, and thus, it can be formalised by a sequent calculus based
on purely geometric rules.

4.2. Extensions. Calculi for extensions of IL are denoted by adding to G3IL the
name of a modal schema as apex. Thus, for instance, G3ILM is the labelled calculus for
ILM, and G3ILP is the labelled calculus for ILP. We denote by G3IL� the whole family
of calculi for the interpretability logics considered in Definition 2.4.

Figure 4 shows the rules for the IL extensions in which we are interested.
As the reader sees, these rules are obtained by considering the generalised frame

conditions characterising each IL extension. Moreover, we need to consider an
extension of the language of labelled formulas.

Definition 4.5. Extend Definition 4.3 by considering among neighbourhood labels
expressions of shape ∅, a ∩ b, R[a], and S–1

x a with a, b neighbourhood labels and x a
world label. Relational atoms are accordingly defined as follows:

• y ∈ a ∩ b, “world y if a member of both neighbourhood a and neighbourhood b”;
• y ∈ R[a], “world y is accessible to a world x belonging to a”;
• y ∈ S–1

x a, “neighbourhood a is Sx-accessible to a world y”;
• x ∈ ∅, “world x is a member of the neighbourhood ∅” – we take the latter as the

only constant for neighbourhoods of our language.

Labelled formulas are defined as in Definition 4.3 w.r.t. this extended set of relational
atoms.
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16 COSIMO PERINI BROGI, SARA NEGRI AND NICOLA OLIVETTI

§5. Structural properties. We now want to study the structural properties of G3IL�.
In order to proceed, we need first some preliminary definitions.

By the height of a derivation, we mean the number of nodes occurring in the longest
derivation branch minus one. In particular, the height of a derivation consisting only of

an initial sequent is 0. We write
n

� Γ ⇒ Δ whenever there is a derivation of the sequent
Γ ⇒ Δ in G3IL� with height bounded by n.

Next, we need the notion of weight of labelled formulas.

Definition 5.1. The weight of relational atoms is 0. As for the other labelled formulas,
let us say that the label of x : A is x, and the label of a �∀ A is a. The label of a formula
ϕ is denoted by l(ϕ), and p(ϕ) denotes the pure part of the formula, i.e., the part of the
formula without the label and the forcing condition.

The weight w(ϕ) of a labelled formula ϕ which is not a relational atom is given by the
ordered pair 〈w(p(ϕ)),w(l(ϕ)〉, where

• For all world labels x and all neighbourhood labels a, w(x) = 0 and
w(a) = 1 + n(∩), where n(∩) denotes the number of formal intersections in
a;

• w(p) = w(⊥) = 1;
• w(A ◦ B) = w(A) + w(B) + 1, for ◦ conjunction, disjunction or implication;
• w(〈]iA) = w(A) + 1;
• w(A�i B) = w(A) + w(B) + 2.

In the following, when reasoning by induction on the weight of a labelled formula we
do so by considering the lexicographic order on 〈w(p(ϕ)),w(l(ϕ)〉:

〈w(p(ϕ)),w(l(ϕ)〉 ≤ 〈w(p(ϕ′)),w(l(ϕ′)〉 if and only if
w(p(ϕ)) < w(p(ϕ′)) or
w(p(ϕ)) = w(p(ϕ′)) and w(l(ϕ) < w(l(ϕ′)

For substitution of labels, we can rely on the definitions given in [31, 33]. We
borrow notation from those works and write, e.g., (a �∀ A)[b/a] to mean the result
of simultaneously substituting b for a, this way obtaining b �∀ A; similarly for world
label substitution.

It is now routine to show that G3IL� enjoys height preserving substitution for world
and neighbourhood labels.

Proposition 5.2. The following hold:

(i) If
n

� Γ ⇒ Δ, then
n

� Γ[y/x] ⇒ Δ[y/x];

(ii) If
n

� Γ ⇒ Δ, then
n

� Γ[b/a] ⇒ Δ[b/a].

Proof. Straightforward induction on n. If n = 0, then Γ ⇒ Δ is an initial sequent,
or a conclusion of L⊥, L∅, or Irrefl. The same is true for Γ[y/x] ⇒ Δ[y/x] and for
Γ[b/a] ⇒ Δ[b/a].24 If n > 0, we consider the last rule applied. If the latter has no
variable conditions, we apply the inductive hypothesis to the premise(s), followed by
that very rule. Otherwise, the rule needs some care in case the substituted variable
coincides with the fresh variable of the premise. In that case, we need to apply twice
the inductive hypothesis to the premise, first to replace the fresh variable with another

24 It is important to notice that ∅ is a constant of our language, and therefore it cannot be
subject to substitution.
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MODULAR SEQUENT CALCULI FOR INTERPRETABILITY LOGICS 17

fresh variable—different from the one we wish to substitute—and secondly, to perform
the desired substitution.

5.1. General initial sequents, weakening, contraction, invertibility. Let ϕ denote
either a relational atom or a (proper) labelled formula for the remaining sections.

We start with a relatively simple result.

Lemma 5.3. The following sequents are derivable in G3IL�:

1. a �∀ A,Γ ⇒ Δ, a �∀ A;
2. x : A,Γ ⇒ Δ, x : A.

Proof. The two cases are proven by mutual induction on the weight of the labelled
formulas. The general strategy is to apply the left and right rule to treat the two formula
occurrences until two formula occurrences of smaller weight are reached.

By means of example, we prove case 2, subcase x : 〈]iA:

IH

xSia, a �∀ A,Γ ⇒ Δ, x : 〈]iA, a �∀ A
R〈],

xSia, a �∀ A,Γ ⇒ Δ, x : 〈]iA L〈]
x : 〈]iA,Γ ⇒ Δ, x : 〈]iA

where we can apply the inductive hypothesis to the top sequent since
w(a �∀ A) < w(x : 〈]iA).

Notice that the subcase x : A�i B is easily managed since sequents
x : A�i B,Γ ⇒ Δ, x : A�i B are initial, and hence derivable by design.

We want now to establish the admissibility of weakening in G3IL�.

Lemma 5.4. The rules of weakening

Γ ⇒ Δ LWk
ϕ,Γ ⇒ Δ

Γ ⇒ Δ RWk
Γ ⇒ Δ, ϕ

are height-preserving admissible in G3IL�.

Proof. We need to show that if
n

� Γ ⇒ Δ, then
n

� ϕ,Γ ⇒ Δ and
n

� Γ ⇒ Δ, ϕ. The
proof consists of a straightforward induction on n, following the lines of the analogous
results in [31, 33], which the reader is referred to for the details.

Next, we can prove that all the rules of G3IL� are invertible.25

Lemma 5.5. All the rules of G3IL� are invertible.

Proof. We proceed by induction on the height of the derivation, distinguishing
cases based on the rule under consideration. Notice first that the rules for extensions

25 Recall from, e.g., [29], that a rule is invertible when, if its conclusion is derivable, so are
its premise(s). This is a key feature of G3-style sequent calculi, whose main consequence
is the dismissal of backtracking in a root-first proof search, as discussed by Troelstra and
Schwichtenberg [49].
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18 COSIMO PERINI BROGI, SARA NEGRI AND NICOLA OLIVETTI

are clearly (height-preserving) invertible by (height-preserving) admissibility of
weakening; the same remark applies to the rules for GVS, as well as to L�, L �∀,
and R〈]. Propositional cases are dealt with as in [28]. The cases L〈] and R �∀ are
the same as in [31]. We can thus focus our proof on the invertibility of R�. Assume

then that
n

� Γ ⇒ Δ, x : A�i B . If n = 0 and x : A�i B is not principal, then also
0
� y ∈ R[x], y : A, y : A�i B,Γ ⇒ Δ, y : 〈]iB . If it is principal, then Γ = Γ′, x : A�i
B and we need to prove that

y ∈ R[x], y : A, y : A�i B,Γ′, x : A�i B ⇒ Δ, y : 〈]iB
is derivable. But this is provable by application of L� to the initial sequent

y ∈ R[x], y : A, y : A�i B,Γ′, x : A�i B ⇒ Δ, y : 〈]iB, y : A�i B
with the sequents

y ∈ R[x], y : A, y : A�i B,Γ′, x : A�i B ⇒ Δ, y : 〈]iB, y : A

and

y : 〈]iB, y ∈ R[x], y : A, y : A�i B,Γ′, x : A�i B ⇒ Δ, y : 〈]iB,

which are both derivable in virtue of the highlighted labelled formulas occurring on
both sides of each sequent (Lemma 5.3.(1))

If n > 0 and x : A�i B is principal in the last rule, then we have the desired result.
Otherwise, applying the inductive hypothesis to the premise(s) suffices.

Remark 3. Notice that Lemma 5.5 cannot be strengthened into a height-preserving
invertibility of the rules just because of the case we discussed in its proof: This is analogous
to what happens for G3GL in [28], which we used as a model for the design of G3IL�.

We now want to prove the admissibility of contraction. Before we proceed with the
proof, it is appropriate to introduce a notion that will also be used in the proof of cut
elimination.

Definition 5.6 (After Negri and von Plato [33]). The range r(x) of a world label x in
a derivation D in G3IL∗ is the set of world labels y such that either y ∈ R[x] or for some
n ≥ 1 and for some x1, ... , xn the relational atoms x1 ∈ R[x], x2 ∈ R[x1],... , y ∈ R[xn]
appear in the antecedent of sequents of D. The range r(a) of a neighbourhood label a
in D is defined as r(a) := max{r(x) |x ∈ a} ∪ {∗} ordered w.r.t. set inclusion. We set
r({x}) = r(x) and r(∅) = ∅.

Finally, we say that a rule is range-preserving admissible if the rule’s elimination does
not increase the ranges of labels in the derivation.

Theorem 5.7. The rules of contraction

ϕ,ϕ,Γ ⇒ Δ
LCtr

ϕ,Γ ⇒ Δ
Γ ⇒ Δ, ϕ, ϕ

RCtr
Γ ⇒ Δ, ϕ

are range-preserving admissible in G3IL�.

Proof. By simultaneous induction for left and right contraction, with primary
induction on the weight of the contracted formula and secondary induction on the
height of the derivation. The only case requiring some care is when the contracted
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MODULAR SEQUENT CALCULI FOR INTERPRETABILITY LOGICS 19

formula is x : A�i B in the consequent, of weight n. If the contracted formula is not
principal for the last rule in the derivation—i.e. the latter is not R� on x : A�i B—
then we apply the secondary inductive hypothesis to the premise(s), followed by the
rule. Otherwise, we invert the premise of R� to obtain

y ∈ R[x], y : A, y : A�i B, y ∈ R[x], y : A, y : A�i B,Γ ⇒ Δ, y : 〈]iB, y : 〈]iB.

By applying the main inductive hypothesis once for y ∈ R[x], once for y : A, and
once for y : 〈]iB to get

y : A�i B, y ∈ R[x], y : A, y : A�i B,Γ ⇒ Δ, y : 〈]iB.

Now, we claim that the following rule is height- and range-preserving admissible:

w : A�i B, w : A�i B,Γ ⇒ Δ
w : A�i B,Γ ⇒ Δ

and we prove it by primary induction on the weight of the contracted formula and
secondary induction on the height of the derivation: If none instance of w : A�i B is
the main formula in the last rule of the derivation, then the height of the derivation is
0 and we can contract any formulas without increasing the height, as initial sequents
are arbitrary weakened by design; if, on the contrary, one instance of w : A�i B is the
main formula of the last rule, then the derivation is as follows:

v ∈ R[w], w : A�i B, w : A�i B,Γ ⇒ Δ, v : A v : 〈]i B, v ∈ R[w], w : A�i B, w : A�i B,Γ ⇒ Δ S
L�i

v ∈ R[w], w : A�i B, w : A�i B,Γ ⇒ Δ

where S is the sequent v ∈ R[w], w : A�i B, w : A�i B,Γ ⇒ Δ, v : A�i B .
We can apply the secondary induction hypothesis to each premise and then apply

the L�i rule to get the desired conclusion.
Thus, we can use the just proven claim on

y ∈ R[x], y : A�i B, y ∈ R[x], y : A, y : A�i B,Γ ⇒ Δ, y : 〈]iB.

to derive then the conclusion of RCtr by application of R�i .
The range is preserved since, in inverting R� and in the proof of the intermediate

claim, we use labels already present in the derivation tree.
For the other cases, refer to e.g., [31, 33].

5.2. Cut elimination theorem. We have finally collected all the material required to
prove the paper’s main result, namely, cut elimination for G3IL�.

Theorem 5.8 (Cut admissibility). The rule of cut

Γ ⇒ Δ, ϕ ϕ,Γ′ ⇒ Δ′
Cut

Γ,Γ′ ⇒ Δ,Δ′

is admissible in G3IL�.
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Proof. The proof proceeds by primary induction on the weight of the cut formula,
secondary induction on the range of the label of the cut formula,26 and tertiary
induction on the sum of heights of the cut premises.

Notice first that if y is in the range of x, then r(y) � r(x) because of the proof system
design.

Following [32, 33], we start by distinguishing cases according to the rules applied to
derive the premises of cut:

1. At least one of the premises of Cut is an initial sequent;
2. The cut formula is not principal in the derivation of at least one premise;
3. The cut formula is the principal formula of both derivations of the premises.

Case 1. Assume the leftmost premise of Cut is an initial sequent. If the cut formula
is x : p or x : A�i B , then by weakening the rightmost premise, we obtain
the cut conclusion. If the sequent is initial in virtue of some labelled formula
	 occurring in both Γ and Δ, then the conclusion of Cut is an initial sequent
too.

A similar argument works if we assume that the rightmost premise of
Cut is an initial sequent.

If x : ⊥ is the cut formula ϕ and the leftmost premise of Cut is not
initial, we have derived it by some rule R. If R is L⊥, then x : ⊥ occurs in
the conclusion of the cut, and therefore we can obtain that sequent from
L⊥. Similarly if R is L∅ or Irrefl. Otherwise, if R is different from L⊥, L∅
and Irrefl, we can permute the cut up on the left premise and eliminate it
by inductive hypotheses.

Case 2. Assume the cut formula is not principal in the last rule leading to the
leftmost premise of Cut. The general situation is the following:

D1

Γ∗ ⇒ Δ∗, ϕ
R

Γ ⇒ Δ, ϕ

D2

ϕ,Γ′ ⇒ Δ′
Cut.

Γ,Γ′ ⇒ Δ,Δ′

Then, we perform the following lifting of the cut and rely on the inductive
hypotheses:

D1

Γ∗ ⇒ Δ∗, ϕ

D2

ϕ,Γ′ ⇒ Δ′
Cut

Γ∗,Γ′ ⇒ Δ∗,Δ′
R

Γ,Γ′ ⇒ Δ,Δ′

26 Recall, from Definition 5.6, that the range of a label is a set of labels occurring in atoms
in the derivations. It is possible to reason by induction on the range w.r.t. set inclusion.
Equivalently, we might consider the cardinality of the set identified by the range of a label
and reason by induction w.r.t. the ≤-relation on natural numbers.
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Next, we have the subcases of Repl1 and Repl2. We describe the situation
with the right premise of Cut obtained by Repl1 since the general setting
follows the same line of reasoning. Assume then we have

D1

Γ ⇒ Δ, x : p

D2

y ∈ {x}, x : p, y : p,Γ′ ⇒ Δ′
Repl1

y ∈ {x}, x : p,Γ′ ⇒ Δ′
Cut

y ∈ {x},Γ,Γ′ ⇒ Δ,Δ′

Now, if D1 is an initial sequent, or if x : ⊥, x ∈ ∅, or x ∈ R[x] occurs
in Γ we can weaken the right premise of Cut, or recur to the appropriate
0-ary L-rule. Otherwise, we must have derived the left premise of the cut
by some rule, and x : p cannot be its principal formula. Lifting the cut
does the job.

Case 3. We omit the propositional (sub)cases, referring to [33, theorem 11.9].
Notice first that we do not need to consider the rules for GVS nor the

rules for extensions of IL since, by design, relational atoms only occur in
the antecedent of sequents.

For the local forcing rules, we have

D1

y ∈ a,Γ ⇒ Δ, y : A
R�∀

Γ ⇒ Δ, a �∀ A

D2

x : A, x ∈ a, a �∀ A,Γ′ ⇒ Δ′
L�∀

x ∈ a, a �∀ A,Γ′ ⇒ Δ′
Cut

Γ, x ∈ a,Γ′ ⇒ Δ,Δ′

which is solved by

D1[x/y]

x ∈ a,Γ ⇒ Δ, x : A
Γ ⇒ Δ, a �∀ A

D2

x : A, x ∈ a, a �∀ A,Γ′ ⇒ Δ′
Cut,

x ∈ a, x : A,Γ,Γ′ ⇒ Δ,Δ′
Cut

x ∈ a, x ∈ a,Γ,Γ,Γ′ ⇒ Δ,Δ′,Δ

where the upper cut is on derivations of smaller height and on a label of the
same range; the lower one is on formulas of smaller weight. Application(s)
of contraction to the conclusion gives the cut conclusion.

For the intermediate modality, we have

D1

ySxa,Γ ⇒ Δ, y : 〈]xA, a �∀ A
R〈]

ySxa,Γ ⇒ Δ, y : 〈]xA

D2

ySxb, b �∀ A,Γ′ ⇒ Δ′
L〈]

y : 〈]xA,Γ′ ⇒ Δ′
Cut

ySxa,Γ,Γ′ ⇒ Δ,Δ′
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which is solved by

D1

ySxa,Γ ⇒ Δ, y : 〈]xA, a �∀ A y : 〈]xA,Γ′ ⇒ Δ′
Cut

ySxa,Γ,Γ′ ⇒ Δ,Δ′, a �∀ A

D2[a/b]

ySxa, a �∀ A,Γ′ ⇒ Δ′
Cut,

ySxa, ySxa,Γ,Γ′,Γ′ ⇒ Δ,Δ′,Δ′

where the upper cut is on derivations of smaller height, and the lower
one is on formulas of smaller weight. Application(s) of contraction to the
conclusion gives the cut conclusion.

Finally, we consider the case of rules for �. The general setting is

D1

z ∈ R[x], z : A, z : A�i B, Γ ⇒ Δ, z : 〈]i B R�
Γ ⇒ Δ, x : A�i B

D2 D3 D4 L�
y ∈ R[x], x : A�i B, Γ′ ⇒ Δ′

Cut,
y ∈ R[x], Γ, Γ′ ⇒ Δ, Δ′

where

D2 is a derivation of y ∈ R[x], x : A�i B,Γ′ ⇒ Δ′, y : A;
D3 is a derivation of y : 〈]iB, y ∈ R[x], x : A�i B,Γ′ ⇒ Δ′; and
D4 is a derivation of y ∈ R[x], x : A�i B,Γ′ ⇒ Δ′, y : A�i B .

Perform the following steps:

a.
Γ ⇒ Δ, x : A�i B

D2

y ∈ R[x], x : A�i B,Γ′ ⇒ Δ′, y : A
Cut,

y ∈ R[x],Γ,Γ′ ⇒ Δ,Δ′, y : A

where the cut is on derivations of smaller height.

b.
Γ ⇒ Δ, x : A�i B

D3

y ∈ R[x], y : 〈]iB, x : A�i B,Γ′ ⇒ Δ′
Cut,

y ∈ R[x], y : 〈]iB,Γ,Γ′ ⇒ Δ,Δ′

where the cut is on derivations of smaller height.

c.
Γ ⇒ Δ, x : A�i B

D3

y ∈ R[x], x : A�i B,Γ′ ⇒ Δ′, y : A�i B
Cut,

y ∈ R[x],Γ,Γ′ ⇒ Δ,Δ′, y : A�i B

where the cut is on derivations of smaller height.
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d. Finally proceed as follows:

a.

··· ⇒ ··· , y : A

c.

··· ⇒ ··· , y : A �i B

D1[y/z]

y ∈ R[x], y : A, y : A �i B, Γ ⇒ Δ, y : 〈]i B
Cut

y ∈ R[x]2 , Γ2 , Γ′ , y : A⇒ Δ2 , Δ′ , y : 〈]i B

b.

y : 〈]i B, ··· ⇒, ···
Cut

y ∈ R[x]3 , Γ3 , Γ′2 , y : A⇒ Δ3 , Δ′2
Cut,

y ∈ R[x]4 , Γ4 , Γ′3 ⇒ Δ4 , Δ′3

where the first cut from the top is on a label of a smaller range, and the second
and the third are on formulas of smaller weight.27 We obtain the conclusion
of the original cut by applying steps of contraction to the conclusion of the
derivation described at point d.

Now that we know that the cut rule is admissible in G3IL�, we can prove the
admissibility of generalised replacement rules.

Lemma 5.9. The rules Repl1 and Repl2 generalised to all formulas of the language are
admissible in G3IL�.

Proof. By simultaneous induction on the weight of formulas. Since contraction
and cut are admissible for our calculi, it is enough to prove that the sequent
y ∈ {x}, ϕ(x) ⇒ ϕ(y) is derivable for any labelled formula ϕ, and then apply a Cut,
followed by contraction steps, to the premise of generalised Repl1. For Repl2, we reason
symmetrically.

The proof then proceeds by a straightforward induction on the weight of ϕ(x) on
the lines of [32, lemma 6.5.2].

Remark 4. Raymond Smullyan famously wrote in [44]:

“The real importance of cut-free proofs is not the elimination of cuts
per se, but rather that such proofs obey the subformula principle.”

For classical propositional logic, cut admissibility guarantees that the subformula
principle holds in G3cp, as documented in [49]. For labelled calculi, that principle needs
to be relaxed. In its original version, the subformula property holds whenever any sequent
occurring in a derivation of a given sequent Γ ⇒ Δ contains only subformulas of the
formulas composing the latter. In our systems, the rules for � introduce the intermediate
modality 〈]i by decomposing A�i B into A and 〈]iB , and the latter is not, in strict
terms, a subformula of A�i B . However, its weight is defined to be smaller than that
of interpretability formulas: Therefore, we might say that it is less complex and, in that
flexible sense, loosely generated by a �-formula. Moreover, it is not hard to prove a
pureness condition on labels: In G3IL�, any derivation contains either eigenvariables in
rules with freshness condition or labels already present in the conclusion. In this sense,
the family of calculi we have designed can be considered analytic, in line with the standard
G3 paradigm.

27 For reasons of space, we had to replace some unessential formulas in sequents with dots.
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§6. Completeness. In this section, we prove that our family of labelled sequent
calculi is sound and complete w.r.t. the semantic and axiomatic presentations of
interpretability logics under investigation.

We give syntactic proofs of those results and then discuss some aspects concerning
a direct proof of semantic completeness for G3IL�.

6.1. Syntactic completeness. For a start, we need to interpret the underlying
language of the labelled formulas into L�, in which the modality is not indexed.
Therefore, we agree to read x : A� B as x : A�x B , unless otherwise stated.

We immediately have the following theorem.

Theorem 6.1 (Completeness). If a formula A is derivable in IL or any of its extensions
from Definition 2.4, then there is a derivation of the sequent ⇒ x : A in the calculus G3IL�

for the corresponding logic.

Proof. We rely on the equivalence between IL and IL� and prove that all the axiom
schemas and inference rules of the latter are derivable or proven to be admissible in
G3IL. For the extensions, we only need to prove the axiom schema corresponding to
the specific semantic rule of the family of labelled systems.

We recall the axiomatisation of IL� and its extensions from Definition 4.2 and §2.1:

IL� standard axiomatisation of CPC

schema IL2 : A� B → B � C → A� C

schema IL3 : A� C → B � C → A ∨ B � C

schema IL-Löb: A� (A ∧ (A� ⊥))

�Rule A→ B
A� B

Extensions schema M : A� B → A ∧ (¬C � ⊥) � B ∧ (¬C � ⊥)

schema P : A� B → ¬(A� B) � ⊥

schema W : A� B → A� B ∧ (A� ⊥)

schema KM1 : A� ¬(
 � ⊥) → 
 � ¬A

schema M0 A� B → ¬(A� ⊥) ∧ (¬C � ⊥) � B ∧ (¬C � ⊥).

For propositional logic, the derivability of axiom schemas is straightforward; the
admissibility of cut assures the admissibility of modus ponens.

Next notice that the simpler L-rule for �

y ∈ R[x], x : A�i B,Γ ⇒ Δ, y : A y : 〈]iB, y ∈ R[x], x : A�i B,Γ ⇒ Δ
L�S

y ∈ R[x], x : A�i B,Γ ⇒ Δ
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is admissible in our systems, for any sequent of the form

y ∈ R[x], x : A�i B,Γ ⇒ Δ, y : A�i B

is derivable in G3IL∗.
The same holds for the rule

y ∈ R[x], y : A,Γ ⇒ Δ, y : 〈]iB R�S (y!)Γ ⇒ Δ, x : A�i B

Now, we proceed with the basic calculus:

IL2: The derivation is rendered in Figure 5.
IL3: The derivation is rendered in Figure 6.
IL-Löb: The derivation is rendered in Figure 7.
� Rule: The derivation is as follows:

By assumption [i/x]

⇒ i : A→ B
Inversion R→

i : A⇒ i : B LWk
ySx{y}, y ∈ R[x], y : A�x B, y : A, i ∈ {y}, i : A⇒ i : B

Repl1
ySx{y}, y ∈ R[x], y : A�x B, y : A, i ∈ {y} ⇒ i : B

RWk
ySx{y}, y ∈ R[x], y : A�x B, y : A, i ∈ {y} ⇒ i : B, y : 〈]xB

R�∀
ySx{y}, y ∈ R[x], y : A�x B, y : A⇒ y : 〈]xB, {y} �∀ B

R〈]
ySx{y}, y ∈ R[x], y : A�x B, y : A⇒ y : 〈]xB

Qrefl
y ∈ R[x], y : A�x B, y : A⇒ y : 〈]xB

R�.⇒ x : A�x B
The derivations of each principle in the corresponding extension of G3IL are given

in Appendix A.

6.2. Soundness. We must interpret relational atoms and labelled formulas in
Verbrugge models to prove the converse direction. The calculi per se do not have a direct
formula interpretation in the language of Form(i)

� but we can define an interpretation
for them in GVS: We need a function that interprets the labels in Verbrugge frames,
thus connecting the syntactic elements of the calculus with the semantic notions of
§3.2.

Definition 6.2. Let M = 〈W,R, {Sx}x∈W , v〉 be a Verbrugge model for IL or its
extensions, W a set of world labels, and A a set of neighbourhood labels. A WA-
interpretation over M consists of a pair of functions (
, �) such that:

• 
 : W →W maps each i ∈ W into a world 
(i) ∈W ;
• � : A → ℘(W ) maps each a ∈ A into a nonempty set of worlds �(a) ∈ ℘(R[x]),

for x ∈W , and ∅ into ∅.

The notion of satisfiability of a labelled formula under a WA-interpretation is defined
by cases on the form of that formula:
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Figure 5. Derivation of IL2.
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Figure 6. Derivation of IL3.
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Figure 7. Derivation of IL-Löb.
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• 
, � �M y ∈ R[x] if 
(x)R
(y);
• 
, � �M y ∈ a if 
(y) ∈ �(a);
• 
, � �M ySxa iff y ∈ S–1

x a: if 
(y)S
(x)�(a);
• 
, � �M y ∈ R[a] if, for some x ∈ �(a), xR
(y);
• 
, � �M a ⊆ b if �(a) ⊆ �(b);
• 
, � �M y ∈ {x} if 
(y) ∈ {
(x)};
• 
, � �M ySi{x} if 
(y)S
(i){
(x)};
• 
, � �M x : p if 
(x) �M p, and similarly for formulas obtained by classical

propositional connectives;
• 
, � �M a �∀ A if 
(a) �∀ A;
• 
, � �M x : 〈]iA if, for some a ∈ (℘(R[
(i)]) \ {∅}), 
(x)S
(i)a and a �∀ A;
• 
, � �M x : A�i B if, for all y ∈ R[
(x)], if y �M A, then y �M 〈]
(i)B .

Given a sequent Γ ⇒ Δ, let W ,A be the sets of world and neighbourhood labels
occurring in Γ ∪ Δ, and let (
, �) be a WA-interpretation.

Define 
, � �M Γ ⇒ Δ if either 
, � ��M ϕ for some ϕ ∈ Γ or 
, � �M 	 for some
	 ∈ Δ. Define then validity under all interpretations by �M Γ ⇒ Δ if and only
if 
, � �M Γ ⇒ Δ for all (
, �). Finally, let us say that a sequent is valid in all
Verbrugge models if �M Γ ⇒ Δ for all models based on GVS appropriate to a specific
interpretability logic.

Theorem 6.3 (Soundness). If a sequent⇒ x : A is derivable inG3IL�, then A is a theorem
of IL or of the corresponding extension.

Proof. We prove something stronger, namely:

(♠) If a sequent Γ ⇒ Δ is derivable in G3IL�, then it is valid in the corresponding
class of Verbrugge models.

The main theorem follows by modal completeness of the axiomatic calculi for
interpretability we are dealing with.

Now, the proof of (♠) is by straightforward induction on the height of the derivation,
by recurring to the notion of interpretation defined before. By means of example, we
show the soundness of the left and right rule for the �-operator.

L� By inductive hypothesis we have


, � �M y ∈ R[x], x : A�i B,Γ ⇒ Δ, y : A;


, � �M y : 〈]iB, y ∈ R[x], x : A�i B,Γ ⇒ Δ;


, � �M y ∈ R[x], x : A�i B,Γ ⇒ Δ, y : A�i B.

There are two relevant cases to consider.
One has 
, � �M y : A, 
, � �M y ∈ R[x] and 
, � ��M 〈]iB . From

the former we have that 
(y) � A; from the latter that 
(y) �� 〈]iB .
By definition, this means that 
, � ��M x : A�i B , so that

, � �M y ∈ R[x], x : A�i B,Γ ⇒ Δ.

The second one is 
, � �M y ∈ R[x] and 
, � ��M y : A�i B . From the latter
we have that 
(y) �� A�i B , from which we know that there exists a z ∈ R[y]
such that z � A and z �� 〈]iB . By transitivity, we can reduce the situation to the
first one.
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R� Assume by inductive hypothesis that �M y ∈ R[x], y : A�i B, y : A,Γ ⇒
Δ, y : 〈]iB . We reason by contradiction. If none of Δ and x : A�i B is valid
under this interpretation, then there exists a w ∈ R[
(x)] such that w � A and
w �� 〈]iB . Then we can define a new 
′ which is identical to 
 except possibly
on y, for which we set 
′(y) = w. However, by assumption on validity of the
premise of the rule, since w � A and w �� 〈]iB , we have w �� A�i B . It is now
straightforward to see that an ascending R-chain can be built on the model,
contrary to the assumption that M is finite—or, alternatively, Noetherian.

Remark 5. The literature confirms that IL is sound and complete with respect to the
version of Verbrugge semantics based on the quasi-transitivity condition 6 that we have
adopted. Consequently, our system G3IL is sound with respect to IL. However, we cannot
extend this claim to the other axiomatic extensions considered here, as the existing proofs
of completeness for those logics specifically address the version of Verbrugge semantics
based on condition 2 for quasi-transitivity. Notably, a margin note in [50] indicates that
for ILKM1, GVS based on condition 6 cannot distinguish this logic from ILM.28 Thus,
a key focus of our future work will be to incorporate the more expressive condition for
quasi-transitivity within our framework.

6.3. On termination. Labelled sequent calculi have a peculiar characteristic: From
a failed proof search, extracting a countermodel to the sequent at the root of the
derivation tree is generally possible. This way, a direct and constructive proof of modal
completeness is obtained.29

For our family G3IL�, we could claim that the same holds: It is possible to define a
Tait–Schütte–Takeuti procedure to construct a refutation of a sequent from a failed
proof-search; however, in the present setting, it is essential to define that saturation
process along with a terminating strategy for performing a proof search in G3IL�.

The reader familiar with this kind of task will see at once that our systems are rather
complex to handle from a combinatorial perspective, and this imposes several cases to
check when proving that root-first proof search in G3IL� does terminate.30

It is essential to present an equivalent basic proof system for IL, that—following
[28, sec. 5]—one might call G3KIL. By replacing L� with the simplified rule L�S that
we used in the proof of Theorem 6.1, we get the basic calculus; extensions are built on
top of it, according to the rules in Figure 4.

We are confident that G3KIL—as well as its extensions G3KILM and G3KILP—can be
shown to satisfy terminating proof search by adapting the proof strategy of Girlando
et al. [10] to our much more intricate setting. A complete proof of termination for those
systems should be easily extended to the other interpretability logic constituting our
uniform family. A further step in difficulty would probably materialise when dealing
with the labelled sequent calculus for ILP0, since—in order to define the generalised
frame condition corresponding to the schema P0 utilising a geometric rule—we would

28 We thank the reviewers for highlighting this explicit example.
29 Refer [30] for an extensive discussion.
30 In particular, it is rather difficult to handle the interaction of labels because of the presence

of the indexed relation S, as well as the need to label the interpretability modality to express
Noetherian induction by the R� rule.
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need further rules for set-theoretic operations on world sets, and thus further cases of
interaction between world and neighbourhood labels.

Since, at present, we can only provide an informal argument supporting our claims,
in complete earnestness, we prefer to propose the termination of proof search in our
family of labelled sequent calculi as the following.

Conjecture 6.4 (Termination). There exists a strategy making proof search in G3KIL�

for a sequent of the form⇒ x : A always terminate in a finite number of steps. Moreover, it
is possible to extract a countermodel to A belonging to the appropriate class of Verbrugge
frames from a failed proof search.

§7. Conclusions. In the present work, we have introduced a familyG3IL� of labelled
sequent calculi for interpretability logics based on Verbrugge semantics of [50], which
subsumes the standard relational semantics for those modal logics discussed in [7].

Our systems are modularly obtained from a basic calculus G3IL according to the
methodology of [32, chap. 6] for formalising geometric theories in the G3 paradigm
for sequent calculi. We have proved that all these calculi do satisfy the main desiderata
for good G3-sequent systems; in particular, we have given a detailed, syntactic proof
of the cut-admissibility G3IL� (Theorem 5.8), for which we used a ternary measure
of complexity of the cut instance. Our proof is constructive and it thus provides a
cut-elimination algorithm for equivalent formulations of these labelled sequent calculi
including a cut rule: We have an effective procedure for removing any instance of the
cut rule from formal derivations in these (apparently richer) systems which can be, in
principle, be implemented in as a proper computer algorithm.31

To our knowledge, there are no proof-theoretic treatments of interpretability logics
as extensive as the one we have presented here.

What we have discussed in this paper can also be viewed as a case study for exploring
the potential of explicit internalization of semantics in sequent calculi. Indeed, it is not
immediately clear how to design a sequent system for the logics we have considered
using the methodology of implicit internalization. To the best of our knowledge, no
attempt has yet been made in the literature to achieve this.

7.1. Related work. The preprint [15] defines a labelled system for IL and some
extensions as prefixed tableaux that internalise standard Veltman semantics. Our
approach can be viewed as its direct dual—due to the duality between labelled tableaux
and labelled sequent calculi—but it differs in its focus on the structural properties of
the calculi and is based on GVS. With the adjustments discussed below, this approach
allows us to cover a broader range of interpretability principles, notably the system ILW

based on the de Jongh–Visser schema, which cannot be characterised by a first-order
formula in the language of standard Veltman semantics.

On a more traditional note, Sasaki [39] presents a Gentzen-style sequent calculus
for the basic interpretability logic IL. This work does not consider any extensions, and,
as is typical for standard sequent calculi, it is not straightforward to modularly extend
the calculus discussed in that paper to encompass additional interpretability logics.32

31 Refer to the standard treatment of the relation between cut-elimination and cut-admissibility
given by Troelstra and Schwichtenberg [49, chap. 4].

32 The paper [1] discusses Craig interpolation and fixed-point properties for some interpretabil-
ity logics; similarly, the recent work [16] addresses the same properties for subsystems of
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7.2. Future work. In the near future, we would be pleased to resolve Conjecture 6.4
by providing a comprehensive proof of the termination of proof search in our sequent
calculi. Settling this conjecture would not merely be a technical achievement; although
the decidability of all the interpretability logics under consideration is known, their
analysis from the perspective of complexity theory remains a work in progress, as
demonstrated by the work of Bou and Joosten [6], Mikec et al. [22] and Mikec [25].

Nevertheless, as we noted above, even prior to resolving the termination conjecture,
it is more crucial to extend our proof systems for interpretability logics to formalise,
through labelled sequent calculi, the most expressive version of Verbrugge semantics,
based on the quasi-transitivity condition 2 discussed in §4.1. This semantics is
undoubtedly capable of distinguishing the interpretability principles explored in the
most advanced literature on the topic.33

Furthermore, it may be pertinent to apply the labelling technique we have adopted
here to provide a constructive proof of modal completeness for interpretability logics.
This area is indeed a flourishing research field, and several model-theoretic techniques
have been developed in recent years, as summarised by Joosten et al. [17]. Despite
progressively achieving a modular character, parts of these proofs remain somewhat
obscure and sensitive to the logic under investigation, as they rely on (variations
of) Henkin’s method.34 A “reverse engineering” approach, relying on the design
methodology employed in this work, may prove beneficial in developing alternative
modular proofs of completeness and even in addressing some open problems related to
model-theoretic matters for specific interpretability principles. In particular, it would
be intriguing to test the capabilities of our methodology for proof system design
concerning more exotic interpretability principles, such as those in the so-called broad
series by Goris and Joosten [13], or the subsystems of IL discussed by [19].

Finally, from a more applicative perspective, it would be interesting to consider
implementations of automated theorem provers for interpretability logics based on the
mechanisation of our calculi, following the lines of previous work by [4, 20, 21] within
a general-purpose proof assistant.

§A. Appendix: Proofs of syntactic completeness for extensions. We present here the
formal derivations of the interpretability principles for the extensions considered in
Definition 2.4. For space reasons, we have to omit some components of some sequents
in order to make the derivations fit the page layout. Notice thus that the best way to
read the following proof trees is root-first, in a bottom-up construction. We highlighted
in boldface the formulas in wide sequents closing derivation branches.

A.1. G3ILM. The derivation in G3ILM of the schema M is given in Figure A1.

A.2. G3ILP. The derivation in G3ILP of the schema P is given in Figure A2.

IL. Both papers employ model-theoretic arguments and techniques to achieve these proof-
theoretic results.

33 We do not exclude the possibility of refining our systems to capture the more expressive quasi-
transitivity condition (Qtrans2) by adapting (variants of) the more sophisticated sequent
enrichment explored by Perini Brogi et al. [36].

34 Joosten and collaborators based their proofs on a ‘labelling technique’ that bears no relation
to labelled sequent calculi; it is merely coincidental that both their approach and ours involve
labels for interpretability logics.
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Figure A1. Derivation of M.

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S1755020325100701

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 216.73.216.47, on 12 Sep 2025 at 14:07:21, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020325100701
https://www.cambridge.org/core


Figure A2. Derivation of P.
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Figure A3. Derivation of M0.
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Figure A4. Derivation of KM1.
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A.3. G3ILM0. The derivation in G3ILM0 of the schema M0 is given in Figure A3.
The derivable sequent S occuring in the derivation has shape

z ∈ R[x], z ∈ R[y], z:A, y ∈ R[x], ...⇒ ... , z:A.

A.4. G3ILKM1. The derivation in G3ILKM1 of the schema KM1 is given in
Figure A4.

A.5. G3ILW. For space reasons, we must omit the derivation of the schema W in
G3ILW since it could not be readable in its rendering on screen. In any case, we invite
the reader to check by pencil and paper that the principle characterising that extensions
is indeed derivable in the calculus we designed.
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