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ABSTRACT: Substantial engineering efforts are dedicated to reducing injury risks in crash scenarios during the
development of new vehicles. This is achieved by performing crash simulations to optimize the nonlinear behavior
of systems. However, the complexity makes their behavior difficult and time-consuming for engineers to
understand. To reduce the analysis time, this study introduces a modular framework combining Explainable
Artificial Intelligence and Large Language Models (LLM). Shapley Additive Explanation values allow for
simulation-wise feature importance attribution and generate a data-driven understanding. An LLM assists by
making result data interactively accessible and supports technical report generation. Validated through a real-world
vehicle side crash optimization use case, the framework demonstrates enhanced and accessible insights into system
behavior within virtual engineering.
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1. Introduction
Road traffic injuries cause more than one million deaths worldwide every year. As a result, substantial
engineering efforts are dedicated to reducing injury risks for both occupants and pedestrians in crash
scenarios during the development of new vehicles (Gonter et al., 2021). Protection mechanisms include
mechanical energy absorption structures, like side sills and longitudinal members, as well as restraint
systems such as seats, seatbelts, and airbags. These systems undergo dynamic loads resulting in large
deformations within a short period of time. The behavior is nonlinear due to large deformations, material
fracture, as well as contact interactions (Beyer et al., 2021). By using virtual investigations based on
numerical Finite Element (FE) crash simulations, flexibility during development is increased compared
to purely physical crash-testing-based development processes. Nowadays, physical crash tests are used
primarily for final system approval and validation of virtual models during development.
However, the design process remains complex and poses significant challenges to the engineers involved,
especially due to growing demands from legal regulations and customer expectations, which are leading to
increased system complexity. The design can thus be described as a substantial multi-objective optimization
problem.Tosystematicallyhandleoptimizationprocedures, approaches include theuseof less complexdata-
driven surrogate models, which are trained using data from high-fidelity FE simulationmodels (Horii, 2017;
Büttner et al., 2023), Reinforcement Learning (RL)-agents (Mathieu et al., 2024; Trilling et al.; 2024) or
specifically defined heuristics (Beyer et al., 2021). The results generated with these methods are often
complex and a considerable proportion of development time is spent on analyzing and understanding these
systems. Approaches that use global sensitivity metrics, such as Sobol Indices (Büttner et al., 2023), or
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comprehensible heuristics for layout definition (Beyer et al., 2021) canprovide a superficial understandingof
why a certain system configuration appears optimal. Frameworks for the Artificial Intelligence (AI)-based
analysis of numerical simulation results in general show great potential in increasing development process
quality and efficiency aswell as improving systemunderstanding. Proposedmethods include rulemining for
bumper deformations (Diez et al., 2018), anomaly detection in crash-loaded structures (Kracker et al., 2023)
and in crash sensor signals (Mathieu et al., 2023), as well as deep-learning plausibility checks (Bickel et al.,
2023) and modelling cause-and-effect relationships (Conti and Kaijima, 2020).
However, all these approaches lack detailed datapoint-specific insights, the possibility for intuitive user-
interaction and a direct link to generate technical documentation. Subsequently, this work centers on the
aspect of gaining global and local insights with the use of eXplainable AI (xAI) as well as the interactive
result representation and documentation with Large-Language-Models (LLM). This will be discussed in
the context of mechanical system optimization and validated within an industry use case.

2. State of the art – optimizing and understanding system behavior
The related work for the proposed framework involves optimization of crash-loaded mechanical systems
(Section 2.1.), AI-driven analysis of FE simulation results (Section 2.2.), and utilization of xAI
methodologies and LLMs to generally explain and understand complex behavior (Section 2.3.).

2.1. Optimization of crash-loaded systems
During the development process of new vehicle generations, simultaneous optimization of the vehicle
structure and the restraint system is performed (Gonter et al., 2021). This ensures structural integrity and the
lowest possible loads on occupants represented by Anthropomorphic Test Devices (ATD) in crash tests,
commonly known as crash test dummies. Occupant safety as discussed in Horii (2017), or Mathieu et al.
(2024) typically focuses on the design of airbags and seatbelts with the aim of reducing loads on the ATD.
Structural safety as discussed in Beyer et al. (2021), Büttner et al. (2023) or Borse et al. (2024) focuses on
optimizingenergy absorption,maximum force or intrusiondepths.Approaches are similar for both fields and
include the use of global optimization algorithms either with surrogate models or computationally efficient
simulationmodels.Especially for the topologyoptimizationof the 3D layoutof structural componentsgraph-
heuristic approaches have shown great potential (Beyer et al. (2021). The latter approach within two
dimensions can be extended by aRL-based heuristic (Trilling et al., 2024).Mathieu et al. (2024) also include
the use ofRL techniques tominimize occupant loads by design adjustments in the restraint system, andBorse
et al. (2024) increase the structural performance of a crash box structure by adjusting the wall thicknesses.

2.2. AI-based analysis of numerical simulations
Aiming for increased quality and faster understanding of mechanical systems, a variety of approaches
have been proposed in the literature to support engineers in analyzing simulation results. These focus
either on the analysis of time-variant crash-loaded systems (Diez et al., 2018; Iza Teran et al., 2019;
Kracker et al., 2023) or statically loaded systems (Conti and Kaijima, 2020; Bickel et al., 2023). The
purposes of these investigations are diverse, including the detection of outliers (Kracker et al., 2023), the
identification of cause-and-effect relationships (Conti and Kaijima, 2020), as well as finding rules of how
outcomes compile (Diez et al., 2018). Kracker et al. (2023) propose an approach to automatically specify
outliers in structural behavior of vehicle components subjected to crash load. Outlier scores are calculated
using the kth-nearest-neighbor method within a dimensionally reduced representation of each
component. Thole et al. (2010) analyze multiple crash simulations, identifying the components that
contribute most significantly to the dominant differences in the results. Global understanding is gained by
applying Principal Component Analysis (PCA) to detect deformation modes, similar to Kracker et al.
(2023). Additionally, to identify potential origins of scatter for a given state of interest, correlation
clustering is applied, and each component at each time step is analyzed with the so-called difference
PCA. Both approaches have been validated on large-scale crash simulation models. An alternative for
representing numerical crash simulations in a low-dimensional space is proposed by Iza Teran and
Garcke (2019), who use the Laplace-Beltrami and Fokker-Planck operator on FE mesh data. Diez et al.
(2018) utilize instead a supervised learning technique, specifically decision trees, to extract rules in an IF-
THEN format for deformation modes of a bumper in a frontal crash scenario. Hence, information from
the simulation input and output is used for processing. In the work of Hahner et al. (2020), the temporal
behavior of crash-loaded vehicle structures represented as oriented bounding boxes is learned using Long
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Short-Term Memory Networks. Two decoders are incorporated: one for reconstruction and one for
predicting future time steps of the analyzed sequence. In addition to analysis of the latent space,
predictions can also be performed. In the above-mentioned approaches, no direct classification is made
regarding the plausibility of obtained simulation results. This aspect, however, is covered in the work of
Bickel et al. (2023), who use a multilabel classification technique incorporating Convolutional Neural
Networks. The multilabel classifier, trained on 60,000 simulations including different models, allows for
defining the plausibility of the mesh, geometrical shape, or load values. To increase the interpretability of
static numerical FE simulations and define what may have caused a certain simulation result, Conti and
Kaijima (2020) trained a Bayesian Network on design parameters and corresponding deflections of a
beam under static load. The resulting probabilities can thus help to estimate an outcome and improve
understanding of relationships within the design space.

2.3. Explanation and understanding of systems with artificial intelligence
For gaining insights, why machine learning (ML) models make certain predictions given specific input
data, xAI techniques, such as counterfactuals or model-agnostic techniques, including SHapley Additive
exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), can be used
(Molnar et al., 2022). These techniques provide valuable insights into the rationale of complex AI
systems and improve trustworthiness. However, xAI techniques serve to gain transparency of the trained
ML model, whereby explainability is only achieved by including domain knowledge (Roscher et al.,
2020). In the field of production engineering, Feldkamp and Strassburger (2023) apply different model-
agnostic techniques (SHAP, LIME, Anchor) to investigate the robustness in control factors of a plant
simulation. Multiple relationships are modeled, including those between control factors and a robustness
measure, revealing what factors contribute to potential robustness issues. Other promising results include
the work of Lin et al. (2023), who propose a robust optimization framework that integrates a MLmodel to
forecast tunnel-induced damage. The model is trained on static structural FE simulation data and is used
to solve multi-objective optimization problems. Global importances based on SHAP values provide
transparency, enhancing understanding and trust in the recommendations. It is important to highlight that
what constitutes an interpretable model can vary based on the situation and target user group, making it
challenging to determine the level of interpretability required (Molnar et al., 2022).
Apart from the xAI field, large language models (LLM) have demonstrated substantial capabilities in
reasoning over data and explaining certain behaviors in a human-relatable manner. Extensive pre-training
equips these models with a large knowledge base, enabling the contextualization of data and generation of
insightful interpretations. By presenting recommendations in natural language, accessibility and
interpretability of information, especially for non-technical users, is increased. Hegselmann et al. (2024)
analyze few-shot classification of tabular datawithLLMs, highlighting their ability bybenchmarking against
classical approaches, including gradient-boosted trees. Their so-called TabLLM outperforms baseline
models in the very-few-shot setting. However, when many training samples are available, classical ML
models remain competitive, emphasizing the effective utilization of prior knowledge in the LLM.The actual
use of the feature names and their relationships by the LLM is demonstrated by the observed performance
dropswhencolumnnames are removed.Bordt et al. (2024) confirm these findings, revealing thatLLMshave
memorized many popular tabular datasets verbatim. This aspect is particularly promising as data
understanding forms the basis of reasoning and explanation. Roy et al. (2024) explore the use of LLMs to
reduce the efforts of on-call engineers by automatically investigating the causes of incidents. The proposed
ReAct agent is equipped with retrieval tools and evaluated on an out-of-distribution dataset of production
incidents collected at Microsoft. Results show good retrieval and reasoning performances, with increased
factual accuracy. Notably, the LLMagent is not fine-tuned as outlined inAhmed et al. (2023) due to cost and
time constraints. Hsu et al. (2024) combine xAI and LLM,where global importances based on SHAP values
are explained in textual format to be understood by non-experts. This approach successfully transforms
complex SHAP plots into short and easy-to-understand text outputs. In the field of mechanical engineering,
Jadhavet al. (2024) propose theuseof anLLMformechanical design.The systemspecification isprovided in
natural language, and the LLM designer tests new designs by executing FE simulations to evaluate the
performance. A success rate of up to 90 % for optimizing simple truss structures highlights future potential.
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2.4. Derivation of research objectives
Based on the previously discussed literature, relevant gaps addressed in the present work are highlighted.
Global optimization approaches focus on directly providing the best possible design but often lack insights of
why this design is optimal. Currently, this can be achieved bymanual comparison of the optimal design and
initialdesign,which iscomplex,especially ifmanyparameters, suchas the38wall thicknesses inBüttneret al.
(2023), are considered simultaneously.Global design space analysis as realized basedonSHAPvalues inLin
et al. (2023) or Sobol indices, as in Büttner et al. (2023), improve understanding but lack datapoint-specific
information. Unsupervised learning approaches are utilized by analysis methods for crash simulations to
detectoutliers (Tholeet al., 2010; IzaTeranandGarcke,2019;Kracker et al.,2023).Thequestionofwhatmay
cause the outlier is partially covered byDiez et al. (2018) andThole et al. (2010).However, the latter does not
allow intuitive traceback to design parameters, which are relevant for understanding system behavior. The
decision trees used inDiez et al. (2018) do not allow for an attribution to certain features, and the approach is
marginally feasible for simultaneous analysis of many parameters. Additionally, none of the approaches
named offers the possibility of providing results in textual format for interaction and technical report
generation.WhileHsuetal. (2024)propose the ideaofexplainingSHAPvalueswithaLLM,theencoding into
themodel is only in tabular format. Furthermore, the local representation for analyzing individual data points
is not discussed, despite SHAP enabling this. Additionally, there is no integration of the trained predictive
models that can provide on-demand predictions and contribute to system understanding. Subsequently, the
proposed framework will cover three main objectives:

1) Generating global importance and local design parameter contributions of crash-loaded systems
through SHAP analysis of a data-driven surrogate model for system behavior understanding.

2) Providing the obtained data and trained model executables of the SHAP analysis to an LLM
enabling interactive exploration for engineers or automated technical report generation.

3) Validating the usefulness of the framework using the example of an optimization for a crash-
loaded side sill.

These objectives aim to increase the interpretability of crash simulation results. Therefore, the engineers
involved understand the system better and in less time. As this builds the foundation for developing
innovative products and improving efficiency in the long term by automated documentation processes,
the present work has high relevance to the field of AI-enhanced engineering.

3. Explanation of FE crash simulation results through xAI and LLMs

3.1. Framework
The foundation of the framework, depicted in Figure 1, is given by engineering domain knowledge. This
includes the situational deployment of the framework in general, the definition of input and output data,
as well as simulation data generation. The model input consists of design parameters, such as wall
thicknesses or restraint force levels. The ML model is then trained to represent relations to so-called
target values. A target value can be a single value such as a certain load on an ATD but can also be an
objective function weighing multiple values such as maximum force and energy absorption. Due to the
high performance on tabular data of medium sized datasets and the efficient computation of SHAP values
with TreeSHAP (Lundberg et al., 2020) a gradient-boosting tree ML model according to Chen and
Guestrin (2016) is used. The ML model is trained to serve as a surrogate model for the FE simulation
model and can optionally be passed to a differential evolution (DE) optimizer for optimization of the
target value, which is known as metamodel-based optimization (Büttner et al., 2023). As a next step, the
trained prediction model is analyzed using TreeSHAP to obtain the SHAP values as contributions of each
design parameter to the target value for all simulation results. A background dataset, i.e., the training
data, is used for SHAP value calculation to allow dependencies between features to be handled according
to the rules dictated by causal inference (Lundberg et al., 2020; Janzing et al., 2020). The input and output
data, SHAP values and the executables for the prediction and agnostic model are stored in a database.
Input and output data as well as the SHAP values are serialized for each simulation and transformed into
a natural-language string (Hegselmann et al., 2024), as the LLM understands natural language text input
best. This is also done for the results obtained by the DE optimizer and statistical measures for the input
and output data, e.g., mean and standard deviation. If too many text units (tokens) are required to fit the
whole input at once, information is provided simulation-wise depending on user demand. The LLM
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functionality within the framework is realized with an Application Programming Interface (API)
provided by OpenAI. The user can give the instructions, “Please predict the results for the target value for
the input data XYZ!”, to locally call the trained prediction and agnostic model executables. The concepts
of system and difference SHAP later introduced in Section 3.2 can also be executed to improve design
comparisons and further analyze subsystem importance.

The LLM used is a company custom OpenAI Chat-GPT-4o version. This aspect is important, as
simulation data for new products is confidential and data security issues must be considered. Aside from
data and models, a context statement describing the general task is provided to the LLM. Within the
context statement predefined tasks such as making a standard technical report of comparing the optimal
with the initial variant are specified. In contrast to existing approaches, where the obtained results must
be explained and documented manually, a substantial amount of time is saved. As previously highlighted
by Hegselmann et al. (2024), LLMs indeed rely on the given data, which allows the engineer to
collaborate with the AI and interactively chat with the data and models exploiting advanced reasoning
capabilities. The capabilities have been shown in other fields such as production error explanation as in
Roy et al. (2024), mechanical design in Jadhav et al. (2024), as well as explanation of global feature
importances based on SHAP values in Hsu et al. (2024). The obtained engineering explanation can be
documented in a knowledge storage system and help to set up further analysis.

Engineering explanation

Engineering domain knowledge

Large language model chatbot

Hello! Here are some prompts you can use to analyze the data: ...

Great! Thank you. Please provide insights about globally important parameters. ...

Text data

• Context

• Input/Output data + metrics

• SHAP values

• Optimization results

Executables

ML-model OutputInput

Prediction

Agnostic

Design parameters Target values

Model explanation

true/predicted/allowed

Global

Local

reference

Global optimizer

Differential evolution

Gradient-boosting tree

SHAP

Population1

Populationn

LLM
User

• Prediction model

• Agnostic model

• System SHAP

• Difference SHAP

Figure 1. Framework for explaining results from numerical finite element simulations
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3.2. Exploiting SHAP value additivity for improved result comparison
For an improved system understanding and comparison of simulation configurations the additivity of SHAP
values (Lundberg et al., 2020) is exploited. On one side, this property allows for the aggregation of features
describing certain subsystems according to the paradigm of systems engineering. The contributions specified
by SHAP value φi for each feature belonging to the subsystem S can be summed up to an overall subsystem
attributionφS (Eq. 1). From an engineering perspective, these importances can be traced back to subsystems
that may be manufactured by a particular supplier. Subsequently, changes can be implemented to improve
overall system behavior. On the other, it permits the subtraction of features contributions for gaining insights
into why results from two simulations differ (Eq. 2). In the context of optimization, this may involve
comparing the optimized system design with the initial system design. Note that N is the overall number of
input features. These functionalities are also integrated in the above framework. System SHAP and difference
SHAP values can be calculated on demand by calling the corresponding executable.

φs �
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i2S φi (1)
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X

N
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i � φB

i � (2)

4. Validation – sill optimization in pole side crash
The validation of the framework is demonstrated using an industrial use case, an optimization of a side
sill in a vehicle pole side crash as per the FMVSS-214 regulation. In the crash, the vehicle, initially
moving sideways at a constant velocity, impacts a fixed pole at location of the driver’s head center-of-
gravity. This results in significant intrusions of the lateral structure of the vehicle. The side sill absorbs
much of the vehicle’s kinetic energy through plastic deformation. Due to the high computing time
required for full vehicle crash simulations, which can take up to several days on high-performance
clusters, and the associated costs, a submodel setup is generated as depicted on top of Figure 2.
This model contains only the side sill and connected point masses and inertias representing the vehicle

and its movement. The computing time of the submodel is approximately 400 times faster than the full
vehicle crash simulation, allowing for efficient data generation. Such submodel structures are regularly
used in optimization, where a feasible correspondence to the original model must be maintained (Büttner
et al., 2023). As depicted in the lower left side of Figure 2, 14 wall thicknesses of this side sill profile are
included as design parameters with defined boundaries for the optimization. A Latin Hypercube
Sampling scheme is used to generate 556 to be computed design variants, ensuring comprehensive
coverage of the permissible design range for each parameter. The target value to be optimized in this
example is the mass-specific energy absorption at 80 mm of intrusion EM_rel.
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Figure 2. Sill optimization in pole side crash using a submodel with point-masses
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4.1. Learning and optimizing system behavior
A gradient-boosting tree ML model is trained to predict EM_rel based on the simulation results of 556
variants, using the 14 wall thickness values as input features. The model accuracy, measured by the
coefficient of determination (R2), for the unseen test data is 0.80, as shown on the left side of Figure 3. If
necessary, further evaluation of the model can be conducted using k-fold cross-validation. The slight
overfitting of the prediction model may primarily be attributed to the high nonlinearity inherent in the
crash event, evidenced by buckling of the walls. For the present case, accuracy is considered sufficient.
Figure 3 also shows on the right side the optimization results of EM_rel. It increased by about 20 %, from
13.4 J/kg in the initial variant to 16.5 J/kg, and approximately doubled compared to the worst variant,
which shows only 8.0 J/kg

4.2. Explaining the system behavior using SHAP and an LLM
At the top of Figure 4, the global importance analysis, derived from SHAP values, helps to identify
significant design parameters (right) and subsystems (left) influencing the optimized target value
EM_rel. Furthermore, it enables the verification of the learned relationships within the prediction model
for reasonableness. The analysis reveals a higher importance of the outer sill wall thicknesses compared
to the those of the inner sill. This is reasonable, as the specific energy absorption EM_rel is evaluated at
an intrusion of 80 mm. Globally important wall thicknesses are R1, R13, and R2, indicated by the large
range of SHAP values for each design parameter. In the center of Figure 4, the SHAP values for a single
simulation result are presented, illustrating the local contribution and, consequently, the importance of
the parameters for that specific outcome. These waterfall plots depict the cumulative summation of each
design parameter’s SHAP value, starting from the expected value at the bottom and progressing upwards,
resulting in the predicted value at the top. This enables a detailed understanding of the prediction model’s
reasoning behind its output for the given design parameter values. For clarity, only the five most
influential design parameters are displayed in the plots, along with the aggregated influence of the
remaining nine. For an arbitrarily selected reference variant RUN_429, counteracting contributions of
R13/R1 and R2/R14 become evident. Relative to this reference variant, difference SHAP values are
calculated in relation to the optimal configuration RUN_202 and are shown on the right plot. The main
differences can be attributed to R1 and R2. As no counteracting influences are visible, the optimal
solution seems plausible as all design parameters contribute positively regarding EM_rel. Combining
general engineering judgment with these analyses, which reveal the global importance and the local
contributions of design parameters on the target value, allow for the rapid development of a
comprehensive system understanding. However, engineers may find these plots and analyses unintuitive,
or they may lack the necessary expertise for their proper interpretation. These concerns are addressed by
using the LLM, as this interface allows engineers to analyze results in the form of text in a collaborative
and interactive manner. An excerpt of a response comparing two simulation runs is visualized at the
lower end of Figure 4. Text and figures similarly as displayed can directly be placed on slides providing
the engineer with the basis for a technical report of the optimization campaign. Aside from the analysis
itself, synthesis in the form of recommendations for actions to perform certain changes, similarly to the
work of Jadhav et al. (2024) may be realized but is discussed as part of future work. The total execution
time of the framework, encompassing the training of the ML model to the point where the LLM is ready
for interaction with text data and executables, is 85 seconds on a workstation computer for this example.
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Figure 3. Scatter plot for true vs. predicted values and optimization results
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The LLM is interfaced on the workstation but resides and executes on a separate machine. This execution
time allows easy integration of the framework into the development process.

4.3. Discussion of results
The discussion of the results is based on the main objectives formulated in Section 2.4. Regarding the
first objective, both local and global feature importances have been successfully extracted with the
proposed framework using a gradient-boosting tree ML model and SHAP values within the validation
example. This allows the rapid identification of important design parameters. Furthermore, the SHAP
value for a design parameter represents the influence its parameter value has on the target variable in the
simulation of interest. Such an importance measure is very intuitive to engineers. Consequently, this
highlights the potential of data-driven prediction models and SHAP values for improving the analysis of
numerical simulation in general, as this aspect also has not been comprehensively covered in literature

Local contributions in RUN_429 Optimal relative to base variant (RUN_202/RUN_429)

Importances at subsystem and feature level

(sorting based on absolute mean)

Please compare "RUN_202" and "RUN_429". Focus on the insights and systematically explain why results differ to

generate a technical report!

LLM

User

[…]

Detailed analysis
• High contributions in RUN_202: […]

• Moderate/mixed contributions in RUN_429:
• OuterSill_R1: Thickness of 2.8 mm with a moderate positive contribution (+0.33 mm). Thick enough to enhance energy

absorption but not as significantly as in RUN_202.

• OuterSill_R2: Thickness of 2.1 mm with a negative contribution (–0.39 mm). This negatively affects the overall energy absorption

in RUN_429. […]

Physical reasoning
• Higher energy absorption in RUN_202:
• The thicker OuterSill components in RUN_202 (such as " OuterSill_R1" with 4.0 mm and "OuterSill_R13" with 3.0 mm)

significantly enhance the energy absorption capabilities, resulting in a much higher mass scaled energy absorption.

• The positive SHAP values indicate these parameters' crucial role in improving crashworthiness by absorbing more energy during

the crash simulation.

• Moderate energy absorption in RUN_429: […]

Technical conclusion:
• RUN_202 achieves a significantly higher energy absorption (16.5 J/kg) due to the optimal configuration and positive contributions

from thicker OuterSill components. These components efficiently absorb energy during the crash.

• RUN_429 has a moderate energy absorption value (10.9 J/kg) because of a mix of positive and negative contributions, causing it to

be closer to the average but not as optimized as RUN_202. […]

+8 other features

Global importance (within the whole design space)

Local importance (within a simulation)

Excerpt of a chatbot response

Figure 4. Results of explaining and documenting the system behavior in the validation use case
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yet. The second objective, namely, to pass data from the SHAP analysis, the prediction and agnostic
model executables to an LLM, for enabling an intuitive and interactive analysis for the engineer with the
LLM, is also achieved. This confirms the findings of Hegselmann et al. (2024), who observed that
additionally provided data can be used as a basis for text generation with an LLM. The added value of
incorporating the LLM in this context is the improved result accessibility either as a collaborative chat or
automated generation of technical reports, which the latter has not been further explored in this research.
Furthermore, the proposed framework was successfully applied in an industry-relevant example of the
side sill wall thickness optimization.
However, the proposed framework also has its limitations. First, the prediction model is unaware of
physical relationships such as energy conservation. Although the training data is physically
meaningful, this cannot be guaranteed for the rationale of the prediction model. Tracking accuracy and
reasonableness, as well as preventing overfitting and bias in the training of the model through careful
evaluation of the results, is crucial. Uncertainty measures like those used in Büttner et al. (2023) for
predictions may further improve trustworthiness. Additionally, literature highlights pitfalls, e.g.,
feature dependence or unjustified causal interpretation, when using SHAP (Molnar et al., 2022). These
need to be considered to ensure proper application of the framework also from an AI-perspective
making the use potentially more complex than it might initially appear. Although the LLM reasons
correctly about the system in the validation example without additional training in analogy to Roy et al.
(2023), which was spot-checked, hallucinations cannot be excluded for other applications or unchecked
regions. This should be comprehensively evaluated in the next step, which can only be achieved by
including domain knowledge for ensuring correct context and consistency as emphasized in Roscher
et al. (2020).

5. Summary and future work
Modern passive vehicle safety systems are primarily developed virtually, resulting in a high number of
simulations due to system complexity and nonlinearity. Hence, analyzing simulation results in multiple
crash scenarios is time-consuming and requires experienced engineers. To reduce development time and
increase system understanding, this work proposes a new approach incorporating xAI and LLMs to
enhance the analysis of numerical simulations. Determined SHAP values based on a trained prediction
model serve as feature importance measures, indicating the contribution of design parameters to the
model’s outcome. To further enhance result comparison, the additivity of SHAP values is exploited to
introduce system and difference SHAP values. Available data of this analysis is transformed into a
natural language string and provided along with executable functions to an LLM, which generates
human-relatable textual explanations. This enables interactive analysis or can support technical report
generation and thus makes complex results more accessible. The proposed framework was validated
using a side sill optimization scenario in a vehicle pole side crash. The approach is modular and may be
applied to similar problems in other domains such as thermal system development.
Future work can cover incorporating physical laws, such as energy conservation, directly into the
prediction models to enhance the accuracy and trustworthiness of the results. To improve user interaction
and trust, a systematic analysis of the limitations, the correctness and the usefulness of the LLM
explanations need to be conducted. An exploration of different validation examples, such as the analysis
of static structural simulations, can further demonstrate generalizability.
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