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ABSTRACT: Design activities rely on external representations to offload cognitive effort and communicate ideas.
These representations, ranging from sketches to virtual reality (VR), influence cognitive processes and perceptual
outcomes. This study investigates the impact of different media representations on brain activity by comparing
neural responses to design representations in VR and desktop monitor conditions. Utilizing brain network analyses
derived from EEG signals in alpha, beta, gamma, and theta bands, results demonstrate that VR elicits greater
cognitive integration and sensory engagement. These patterns suggest that VR facilitates holistic evaluations, while
desktop representations support precision-focused tasks. These findings provide actionable guidance for optimizing
design media selection based on cognitive objectives and contribute to the emerging design neurocognition field.
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1. Motivation

Designing is a mental (cognitive) activity whose output is in the form of some representation. Representations
are a means of externalizing thought and serve multiple purposes. They can be a way to offload cognition, or
they can be a way to communicate ideas. Offloading cognition occurs when we intentionally represent our
thoughts with the aim of reducing the mental workload in maintaining them in our mind (Morrison etal., 2020;
Shealy & Gero, 2024; Wahn et. al., 2023). A common example of offloading cognition is a shopping list of
items to be purchased. These items no longer need to be remembered, thus reducing their cognitive load.
Designers sketch and draw to both offload cognition and to communicate. A common form of external
representation used by designers is drawings. They are not the only form. Textual descriptions are used
extensively in planning, and mathematical representations are used extensively in engineering design.
However, visual images transcend any particular design domain as a form of externalization of thought.
Often, design ideas are represented in multiple media. In engineering, architectural, and product design,
ideas may be represented as sketches, rapid prototyped physical objects, and mathematical models.
Representing ideas from one medium in another medium is a form of ekphrasis (Gero, 2017). Ekphrasis
is the expression of a concept that is represented in the medium of one domain in the medium of another
domain. Different representations allow or facilitate different cognitive actions (Scaife & Rogers, 1996;
Zhang, 1997). This is representational affordance (Gero & Kannengiesser, 2012). Thus, representations
play an important and significant role in the design process.

The introduction of technology has produced a variety of media in which sketches and drawings can be
displayed. It is known that different media can produce different interpretations of the same idea in
different representations. This has been studied qualitatively and to a lesser extent using eye-tracking
methods (Gero et al., 2016; Park et al., 2019; Yu & Gero, 2017). Much of the studies on representation
have been qualitative. This has resulted in a gap in our quantitative knowledge of the effect that different
representations of the same idea have on the designer’s brain. In this paper, we present quantitative
results from a study of brain responses to the representation of the same design using two different media
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2. Aim and significance

The research reported in this paper aims to determine whether brain responses differ for different
representation media for the same design.

Different representations afford different interpretations and different forms of measurement. Brain
activations and their resulting brain-derived neural networks provide a grounded, commensurable,
objective response to a representation that can be used to compare differences in representations. This
brain behavior is a consequence of visual perception. In the past, visual perception of scenes has been
described subjectively. Here, we present an approach that allows for objective measurements of the
response. Once we have these objective measurements, we are in the position of using them to distinguish
the effects of different representations.

3. Background

External representations can be categorized as: iconic (they appear visually similar to the object being
modelled); symbolic, including mathematical (symbols represent features of what is being modelled);
and sub-symbolic (units connected as networks that represent symbols or features).

Recent studies have explored the neural mechanisms activated by different media using EEG analyses.
Virtual Reality (VR) offers distinct advantages in experimental research by immersing participants in
realistic 3D environments, enhancing both engagement and ecological validity. VR has also been widely
used to assess design effectiveness through evidence-based approaches (Jung et al., 2023).
Slobounov et al. (2015) demonstrated that immersive 3D environments demand greater allocation of
brain and sensory resources for cognitive and motor control tasks compared to 2D presentations,
emphasizing the cognitive intensity of VR experiences. Similarly, Kakkos et al. (2019) revealed that
increased alpha band efficiencies and beta band local efficiency correlated with higher mental workload
levels. Moreover, the beta band global efficiency exhibited distinct developmental trends between 2D
and 3D interfaces, highlighting key differences in cognitive processing across these media.

Kim & Gero (2022) examined neurophysiological responses in virtual classrooms, comparing monitor
displays and immersive VR. They reported significant effects of media type and brain hemisphere on
alpha power, as well as complex interactions between classroom design conditions, participant design
backgrounds, and beta power.

What is missing from these studies is the recognition that brain networks are the underlying mechanism
of brain activity rather than region activations. It is this gap in our knowledge that is addressed in this
paper. Accordingly, brain network examines functional connectivity by correlating electrode-measured
activity, treating electrodes as nodes and significant correlations as edges (Rubinov & Sporns, 2010).
This method is increasingly used because it captures how brain regions collectively respond to stimuli,
offering a model beyond strict localization (Craddock et al., 2015). Moreover, it mitigates signal-to-noise
issues by analyzing data dynamically rather than averaging responses, which often compromises the
large amount of data collected. This is particularly relevant for design neurocognition, where tasks’
periods are extended (sometimes to hours). This may detect subtle activity changes that traditional
activation methods may miss, providing a more detailed view of brain function (Chiarion et al., 2023).

4. Research design

In this within-subjects study, we compared EEG-based neural networks from two different media
representations of the same classroom: (1) monitor and (2) VR. Participants explored the architectural
prototypes of both 3D-rendered images and VR stimuli in a random order. The experimental procedure
was pre-tested to ensure reliability.

4.1. Participants

The study recruited 23 healthy, right-handed male undergraduate students from various majors via an
online system in Seoul, South Korea. During the screening process, we selected only participants with
prior VR experience. All participants had normal or corrected-to-normal vision, no neurological
impairments, and voluntarily participated in the study for a $20 compensation.

Ethical approval was obtained from the Institutional Review Board of Yonsei University, and all
participants provided written consent before the experiment. Due to motion sickness, two participants could
not complete the VR experience. Additionally, due to technical issues with recording EEG signals, data
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from four participants were excluded. In the end, data from 13 participants were used for EEG analysis after
excluding incomplete or noisy data. The final cohort had a mean age of 21.34 years (SD = 1.44).

4.2. Architectural prototype

The experiment utilized a 3D model of a university lecture room with dimensions of 7.6m (W) x 11.5m
(D) x 2.7m (H), as shown in Figure 1.

The virtual classroom incorporated a biomorphic design, which drew inspiration from natural forms and
structures. This design approach emphasizes the use of organic shapes, such as curves and wavy patterns,
to evoke the aesthetics and functionality found in nature. In this specific prototype, the ceiling featured a
wavy, undulating form, mimicking the flow of natural elements like waves or clouds.

The stimuli were pre-modelled in Rhino (version 6.0) and rendered in real time using Twinmotion
(version 2021.1). While the monitor provided a static representation, the VR experience allowed
participants to freely explore the virtual classroom, offering a higher level of immersion. They could
navigate the space using a controller, moving from the entrance to the back of the classroom. This
classroom was represented in two formats: 3D-rendered image and a VR environment, Figure 2.

g%

kL

SN [ S [ S [ S, S—

o

Figure 1. Classroom layout and 3D model

Figure 2. 3D rendering images (top) and VR representation (bottom)

4.3. Media as experimental conditions: monitor vs VR

The equipment details for the two different representation media were associated with two distinct
experimental conditions, as follows:

» Experimental condition 1 - Monitor (as desktop) display:

* The monitor condition used an iMac with a 27-inch screen and a resolution of 5120 x 2880 pixels.
In this setting, two static, perspective-rendered images of the classroom were sequentially
displayed to the participants.

ICED25 753



» Experimental condition 2 - VR display:

* The VR condition utilized the Oculus Quest 2 head-mounted display (HMD), which features an
LCD screen resolution of 1832 x 1920 pixels per eye. Participants were immersed in a real time
VR representation of the classroom environment using this device. The VR content was rendered
and displayed using Twinmotion (version 2021.1, Epic Games, USA) and streamed to the headset.

Figure 3 shows the two experimental conditions related to the two media

Figure 3. Experiment procedure (left: monitor, right: VR HMD condition)

4.4. Experiment procedure

Each session lasted approximately 30 minutes and was conducted individually in a controlled laboratory
setting. Prior to the experiment, participants provided informed consent as approved by the IRB and were
briefed on the experimental procedure. Detailed instructions were given to ensure participants understood
the protocol. Participants were fitted with an EEG headset, and initial setup procedures included
calibrating the device and verifying signal quality. To minimize artifacts and ensure accurate data
collection, participants were instructed to relax and remain seated comfortably while the researcher
monitored the EEG signal.

The experiment consisted of two conditions (monitor vs. VR) presented in the same order. First,
participants viewed the monitor condition for 30 seconds while seated, followed by a 10-second blackout
period. They then wore the VR headset and proceeded with the VR condition for 30 seconds while
standing to reduce arousal. Upon completing both conditions, participants were compensated and
debriefed regarding the experiment’s purpose and procedure.

4.5. Data collection and EEG preprocessing

EEG data were collected and recorded using a research-grade, wireless, dry-electrode EEG headset (DSI-
24, Wearable Sensing, USA). The electrodes were positioned according to the 10-20 International
System, ensuring standardized sensor placement for data acquisition. The 19 electrode locations were
Fpl, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, TS, T6, P3, P4, Pz, O1, and O2. The disposition of the
electrodes and the different brain areas are depicted in Figure 4.

@ Frontal
@ Temporal
@ Parietal
@ Occipital

Figure 4. Electrodes disposition and brain regions
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EEG data were processed using EEGLAB, an open-source MATLAB toolbox (Delorme & Makeig,
2004). Signals were band-pass filtered (4-50 Hz) and divided into 1-second epochs. Epochs with
significant noise were manually excluded, and Independent Component Analysis (ICA) was used to
remove artifacts (e.g., eye blinks, muscle activity). Conditions with fewer than 18 usable epochs were
excluded from the statistical analyses.

EEG frequency power analysis was conducted using Fast Fourier Transform (FFT). Power values for the
theta (4-8 Hz), alpha (9-12 Hz), beta (13-30 Hz), and gamma (31-50 Hz) bands were calculated by
averaging across epochs. Relative power, representing the proportion of power in a specific band relative
to total power, was computed and standardized using Z-scores. A Gaussian distribution with a 95%
confidence level (Z = -1.96 to 1.96) was applied, following established methods (Thatcher et al., 2003).

4.6. Data analysis method using brain network

We analyzed group data from each trial using graph theory to study how brain networks change over
time. For each frequency band, we calculated the correlation between each pair of electrodes using
Pearson correlation. The resulting correlation matrix was the basis for selecting significant correlations,
identified with values higher than 0.675, as a standard trade-off between sensitivity (true positive) and
significance (false positive) (Adamovich et al., 2022). This generates a binary correlation matrix with 1
for significant correlations and O for no significant correlation. Only significant correlations were used to
develop the brain networks. In these networks, each electrode was represented as a node, and the
connections between electrodes were represented as edges.

We then calculated several key network metrics, including network density, global efficiency, average
clustering coefficient (average clustering), maximum number of connected nodes (max path), number of
disconnected parts (disjoint path), and Jaccard similarity (similarity). Table 1 describes these metrics.

Table 1. Brain network metrics (Rubinov & Sporns, 2010; Duda et al., 2014; Chung et al., 2019)

Metric Description

Density Reflects the efficiency of information processing within the brain, and it is often associated
with the cost of functional networks. A higher density value indicates a more interconnected
network, suggesting that many nodes are directly linked to each other. Conversely, a lower
density indicates a sparser network with fewer connections relative to the potential maximum

Global Represents the average of the inverses of the shortest path lengths across the network and is
efficiency less affected by more isolated nodes. This measure reflects the overall connectedness of the
network and serves as an indicator of how efficiently information can be integrated
throughout.
Average Is the fraction of a node’s neighbors that are neighbors of each other. The clustering
Clustering coefficient of a graph is calculated as the average clustering coefficient across all nodes

within the network. Networks with a high clustering coefficient are regarded as being locally
efficient. A high average clustering coefficient indicates a modular structure, suggesting
functional specialization in the brain. Variations in this measure can provide insights into the
neural processes through which restorative environments, such as those featuring natural
elements, influence cognitive and emotional responses.

Max path Used to identify the node with the highest number of direct connections in the network (i.e.,
a hub). This metric is used to pinpoint critical nodes that facilitate communication and play
central roles in maintaining network structure. A significant hub indicates a central
processing region in the brain.

Disjoint paths  Indicate the presence of subnetworks that do not share connections. A disjoint path can
represent an isolated processing area or a disruption in the brain’s communication. A high
number of disjoint networks can represent separate functional processes.

Similarity This coefficient measures similarity between different networks, ranging between O (absence
of similarity) to 1 (overlapping of networks). This metric can be measured only for the
comparison of different networks.

Two-sample t-tests were performed on network parameters (density, efficiency, clustering, connectivity) to identify condition-specific
differences. Data processing and analysis were performed in Python using Numpy, Pandas, and NetworkX.
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5. Results

Brain network analysis showed distinct brain activity patterns when participants were exposed to design
representations on a monitor or in a VR setting. Differences in these networks were observed across the
alpha, beta, gamma, and theta brainwave frequencies. The brain network structures identified for each
setup and frequency band are shown in Figure 5, where higher intensity of red represents nodes with
higher correlations.

In the Monitor setting, brain networks exhibited limited connectivity. Specifically, no significant
interactions were observed in the gamma and theta bands. However, in the alpha band, the correlations
revealed a high connectivity pathway in the parietal and occipital regions, bridging the two hemispheres.
Additionally, the alpha band displayed smaller and weaker connections in the left central and frontal
regions of the brain. For the beta band, correlations were primarily concentrated in the occipital-
central area.

In contrast, the VR setting showed significantly enhanced network activity across all frequency bands,
indicating that VR promotes more extensive and intense brain engagement. In both the alpha and gamma
bands, the correlations demonstrated a wide range of interactions, forming complex networks with
multiple arcs connecting the right and left hemispheres. For the alpha band, these activations were
distributed across almost the entire scalp, except for the frontal left area. In the gamma band, however,
interactions were largely absent in the frontal regions. Similar to the monitor condition, beta band
correlations in the VR setting remained concentrated in the occipital area, with a slight lateralization
toward the right hemisphere. The theta band, on the other hand, exhibited strong connectivity in the
posterior regions of the brain, with a broad distribution spanning from the left to the right hemisphere.

Theta Alpha Beta Gamma

MONITOR

Figure 5. Brain network analysis of Monitor vs VR settings for theta, alpha, beta, and gamma
bands

VR

The brain network metrics for each of the two settings are shown in Table 2. The findings derived from
visual analysis, discussed above, are supported by the metric values. Except for the disjoint path measure,
all metrics indicate higher values in the VR setting compared to the Monitor setting across the alpha,
gamma, and theta bands. Notably, the beta band exhibited very similar values in the two settings.

In the VR condition, the alpha and gamma bands demonstrate significant interconnectivity, with the
alpha band showing the highest density value (0.2749). Specific electrodes, such as Fz and P4 in the
alpha band and C3 in the gamma band, reveal multiple connections (e.g., eight arcs), indicating larger
scale network activity. In contrast, the Monitor condition shows much lower density across all frequency
bands, with alpha again recording the highest density value (0.0526). Both the beta and theta bands
display low interconnectivity in both settings, consistent with their minimal density values.

Global efficiency is notably higher in the VR setting. The alpha band shows the highest value (0.4961),
followed by the gamma band (0.3635), reflecting strong communication and integration within these
networks. The monitor condition, however, demonstrates significantly lower global efficiency, with the
alpha band achieving the highest value (0.0741). Once again, the beta and theta bands exhibit limited
efficiency in both conditions, aligning with their low-density values.
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The VR condition also yields substantially higher average clustering coefficients in the alpha (0.6470)
and gamma (0.4441) bands, indicative of modular network structures and localized efficiency. The theta
band under VR has a moderate clustering coefficient (0.1667), while the beta band shows the lowest
value (0.0877). By comparison, the monitor condition exhibits much lower clustering coefficients across
all frequency bands, with the alpha band again showing the highest value (0.1228). This suggests limited
local efficiency and modularity in the monitor environment.

The VR setting results in the presence of a number of hubs, particularly in the alpha and gamma bands,
with maximum connected nodes of 17 and 14, respectively. These hubs encompass nearly all electrodes.
The monitor condition, on the other hand, shows far fewer connected nodes, with a maximum of six in
the alpha band, highlighting reduced connectivity compared to VR.

Disjoint paths, which indicate subnetworks without shared connections, reveal some differences between
the two settings. In the VR condition, the gamma band shows two disjoint paths, and the theta band
exhibits one, suggesting isolated functional processes that may arise in response to immersive
environments. In contrast, disjoint paths are absent in these bands under the monitor condition. Both
alpha and beta bands consistently have one disjoint path across both settings, representing a single
isolated subnetwork in these frequencies.

Overall, the differences between VR and Monitor settings are substantial across most metrics,
particularly in the alpha and gamma bands. These findings underscore the VR setting’s production of
connectivity compared to the monitor environment.

Table 2. Brain network metrics of Monitor and VR settings for theta, alpha, beta, and gamma

bands

Metric Setting Theta Alpha Beta Gamma
Density Monitor 0 0.0526 0.0292 0

VR 0.0643 0.2749 0.0351 0.2105
Global efficiency Monitor 0 0.0741 0.0439 0

VR 0.1091 0.4961 0.0570 0.3635
Average clustering Monitor 0 0.1228 0.1140 0

VR 0.1667 0.6470 0.0877 0.4441
Max Path Monitor 0 6 5 0

VR 8 17 6 14
Disjoint path Monitor 0 1 1 0

VR 1 1 1 2

Table 3 illustrates the results of statistical analysis, confirming significant differences between the
VR and monitor settings, particularly in the alpha and beta frequency bands. The gamma and theta
bands were excluded due to their limited activity in the monitor condition. The overall findings
reveal that the VR environment consistently induces higher values across brain network metrics.
For key metrics like density, global efficiency, and average clustering coefficients, the VR setting
produces networks with higher valued metrics than the Monitor condition across all frequency bands. For
example, in the alpha band, the VR condition exhibits substantially higher values for density (T =23.029,
p < 0.001), global efficiency (T =26.703, p < 0.001), and clustering coefficient (T =26.703, p < 0.001)
compared to the monitor setting. A similar pattern emerges for the beta band, where VR consistently
shows higher values, although with smaller effect sizes (e.g., density T = 6.254, p < 0.001).
Additionally, the Jaccard similarity coefficient further highlights the enhanced connectivity in the
VR setting, with higher values observed for both alpha (0.1667) and beta (0.5714) bands. This
reflects a greater overlap and integration of functional brain networks in the immersive VR
environment.

Overall, compared to the sparse and less interconnected networks observed under the monitor setting, the
VR environment fosters more neural connected engagement.
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Table 3. Brain network metrics comparisons between Monitor and VR settings

Alpha Beta

Density T 23.029 6.254

p-value <0.001 <0.001
Global efficiency T 26,703 3.992

p-value <0.001 <0.001
Average clustering T 26.703 7.368

p-value <0.001 <0.001
Similarity 0.1667 0.5714

6. Discussion and conclusions

The findings of this study provide significant insights into how different media representations (e.g.,
Monitor and immersive VR) of the same design influence brain activity, specifically through neural
network analyses.

6.1. Differences in neural networks by media type

In the beta band, the settings show similar activations in the occipital area, more lateralized on the right
for the VR condition. This band in the occipital areas is frequently associated with the dorsal visual
stream, considered the vision-to-action area, generally active in tasks requiring spatial reorganization of
visual inputs (Di Dona and Ronconi, 2023). This confirms the general engagement of participants
elaborating the visual inputs as space where actions are possible.

The higher density, global efficiency, and clustering coefficient in VR suggest higher information
processing and integration (Rubinov and Sporns, 2010). This indicates that immersive environments
demand greater cognitive integration, consistent with findings by Slobounov et al. (2015). In contrast,
monitor display elicited less cognitively intense but more targeted neural patterns, aligning with their
utility for detail-focused tasks.

Generally, VR networks had longer maximum path lengths and fewer isolated components, suggesting a
more interconnected neural structure. In the VR setting, the higher average clustering coefficient in the
alpha and gamma bands suggests functional specialization and the potential influence of immersive
environments on cognitive and emotional processing (Ricci, 2023). This can be an indicator of higher
cognitive load. This could be linked to the immersive nature of VR, where participants engage more
holistically with the design.

Alpha and beta band differences further illustrate the cognitive implications of media type. Increased
alpha connectivity in VR reflects heightened sensory engagement, while beta activity patterns
correspond to mental workload and attention allocation. The higher levels in the alpha and beta bands can
be correlated with their involvement in cognitive activities related to attention, sensory processing, and
executive function. These results highlight how immersive VR promotes holistic evaluations, while
monitor representations streamline analytical tasks, consistent with prior studies (Kakkos et al., 2019).
The no significant interaction detected in gamma and theta bands suggests that these frequencies are not
involved in monitor settings, which could indicate that their role in brain activity may be affected by the
monitor representation, developed on a 2D space. The exclusive presence of gamma and theta band
significant correlation in the VR condition suggests that these neural oscillations may be specifically
associated with immersive environments. This aligns with previous research indicating that VR,
compared to traditional media, has shown increased theta and gamma activity, reflecting heightened
cognitive processing and sensory integration unique to these environments (Malinowska et al., 2024).

6.2. Implications for design practice

From a practical perspective, these findings underscore the importance of selecting media representations
aligned with cognitive objectives. VR’s immersive nature fosters experiential engagement, enhancing
holistic design evaluations, while monitor displays support efficiency in precision-driven tasks.

In classroom design, prior studies (Kim and Gero, 2025) demonstrated increased visual engagement with
biomorphic ceiling designs, evidenced by longer dwell times and more saccades when tracking eye gaze.
This suggests that biophilic elements in virtual classrooms are more effective at capturing attention than
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non-biophilic settings. Combined with the present findings on neural activation, these results provide
actionable insights for incorporating biophilic elements into indoor learning spaces.

6.3. Contributions

Methodologically, this study advances design cognition research by applying graph theory to analyze
brain networks. This quantitative approach moves beyond regional brain activations, providing a deeper
understanding of the neural interactions underlying design cognition. These insights enrich the growing
field of neuroarchitecture by linking media types to distinct cognitive processes.

6.4. Limitations and future research

Despite its contributions, this study has limitations. The small sample size and focus on male participants
and the order of stimuli limit the generalizability of the findings, warranting future studies with larger,
more diverse samples. Additionally, the analysis was confined to two media types; exploring augmented
reality or haptic interfaces could yield further insights.

While short-term exposure to media representations allows for controlled measurement, it may not fully
capture sustained cognitive effects. Temporal variations in brain activity, such as those influenced by
circadian rhythms, remain unexplored. Future studies could address these gaps with longer exposure and
incorporate other measures, such as fNIRS, eye-tracking, or galvanic skin response, to provide a more
comprehensive understanding of design cognition.

Moreover, the study did not account for task complexity or individual differences in design expertise,
factors that likely influence cognitive outcomes. Future research should investigate these dimensions to
refine our understanding of the effects of media representation.

Finally, our findings imply that certain neural processes, such as gamma and theta oscillations, are
uniquely triggered by immersive VR environments, highlighting the need for further investigation into
how these different activations contribute to the perception and processing of design representations.

6.5. Conclusion

This study demonstrates that media representations significantly shape brain network activity, reflecting
distinct cognitive and perceptual processes. By employing brain network analysis, this research deepens
our understanding of neural mechanisms in design cognition and offers insights for evidence-based
design practices. These findings suggest that VR can increase brain activity, particularly in the beta
bands, promoting higher cognitive integration and sensory engagement.

These findings offer guidance for designing more effective VR experiences, especially in the context of
architectural and design evaluations. Furthermore, the use of immersive VR in design practice can be
optimized for tasks requiring holistic engagement, while monitor displays remain for precision-focused
tasks. This study contributes to the growing body of evidence on design neurocognition, offering
architects and designers actionable insights into representation media and methodologies that can
improve cognitive outcomes.
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