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The effects of Reynolds number across Re = 1000, 2500, 5000 and 10 000 on separated
flow over a two-dimensional NACAQO12 airfoil at an angle of attack of o =14°
are investigated through biglobal resolvent analysis. We identify modal structures and
energy amplifications over a range of frequencies, spanwise wavenumbers, and values
of the discount parameter, providing insights across various time scales. Using temporal
discounting, we find that the shear-layer dynamics dominates over short time horizons,
while the wake dynamics becomes the primary amplification mechanism over long
time horizons. Spanwise effects also appear over long time horizons, sustained by
low frequencies. The low-frequency and high-wavenumber structures are found to be
dominated by elliptic mechanisms within the recirculation region. At a fixed angle of
attack and across the Reynolds numbers, the response modes shift from wake-dominated
structures at low frequencies to shear-layer-dominated structures at higher frequencies.
The frequency at which the dominant mechanism changes is independent of the Reynolds
number. Comparisons at a different angle of attack (« = 9°) show that the transition from
wake to shear-layer dynamics with increasing frequency only occurs if the unsteady flow
is three-dimensional. We also study the dominant frequencies associated with wake and
shear-layer dynamics across the angles of attack and Reynolds numbers, and confirm
characteristic scaling laws from the literature.
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1. Introduction

Understanding and controlling separated flows is important for improving performance
of a range of fluid-based systems. Flow separation over a wing can significantly reduce
lift and increase drag, leading to diminished aerodynamic efficiency and higher fuel
consumption. This issue impacts not only aerodynamic performance but also affects
stability and control of the air vehicle, which can compromise its overall safety and the
operational effectiveness.

A helpful tool for the design of flow separation control strategies is resolvent analysis
(Trefethen et al. 1993; Jovanovi¢ & Bamieh 2005), which helps us to understand the flow
characteristics by linearizing the governing equations around a base flow, modelling the
nonlinear terms as an external forcing (McKeon & Sharma 2010) and transforming the
dynamics into an input—output problem (Jovanovi¢ 2021). The use of the time-averaged
flow as the base flow, with the assumption of statistical stationarity, allows for the extension
of resolvent analysis to turbulent flows (McKeon & Sharma 2010; Towne, Schmidt &
Colonius 2018; Yeh & Taira 2019; Martini et al. 2020).

With resolvent analysis, complex flow fields are decomposed into coherent modal
structures at all frequencies. These modal structures are the optimal pair of forcing
and response modes, with corresponding gain quantifying the energy amplification. By
studying this decomposition, is possible to identify the dominant mechanisms that drive
the dynamics of the flow.

Resolvent analysis thus provides valuable insights for understanding flow unsteadiness
and informs flow control strategies. It helps predict effective actuation frequencies and
highlights the corresponding forcing and response structures ideal for localized actuation
(Yeh & Taira 2019; Ribeiro & Taira 2024). The strength of resolvent analysis also lies in
its ability to capture non-normal effects, which appear when the eigenmodes of the linear
operator are non-orthogonal. Non-normality can cause transient disturbance growth, even
in flows that are linearly stable. By focusing on the most amplified dynamics driven by
non-normal interactions, resolvent analysis exposes mechanisms that might not be detected
through conventional stability analysis alone.

Resolvent analysis has been used for various flow problems, such as boundary layers
(Dawson & McKeon 2020; Nogueira et al. 2020), turbulent channel flows (Moarref et al.
2013; Nakashima, Fukagata & Luhar 2017; Zhu, Chen & Fu 2024), jets (Schmidt ef al.
2018; Pickering et al. 2021b) and airfoil wakes (Thomareis & Papadakis 2018; Symon,
Sipp & McKeon 2019; Yeh & Taira 2019; Yeh er al. 2020). Among the latter, Yeh & Taira
(2019) investigated the flow over a two-dimensional NACAOO12 airfoil at a chord-based
Reynolds number Re = 23 000 and two different angles of attack (o« = 6° and 9°), revealing
a shear-layer dominated mechanism for energy amplification. Moreover, they used the
findings from resolvent analysis to explore the capability of a thermal actuator, which
introduces time-periodic heat injection, in suppressing stall and enhancing aerodynamic
performance.

A higher Reynolds number (Re = 500 000) flow around a two-dimensional NACA0012
airfoil has also been investigated by Yeh er al. (2020). In this study, a windowed resolvent
analysis was used to localize the forcing and response modes in the laminar separation
bubble forming on the suction side of the airfoil. Windowed resolvent analysis has also
been applied to identify amplification mechanisms driving the two-dimensional transonic
buffet at Re = 2000 (Kojima et al. 2020). Resolvent-based control strategies have also been
employed for three-dimensional separated flows (Ribeiro & Taira 2024), where the use of
the optimal forcing modes has shown a reduction in the size of the separation region and
the attenuation of the wing tip vortex.
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Recently, there have been extensions to the original resolvent analysis to enable the
use of unstable base flows. The incorporation of the eddy viscosity term in the resolvent
analysis (Pickering et al. 2021a; Symon et al. 2023; von Saldern et al. 2024) models
the nonlinear transfer of energy from large scales to small scales. The introduction of
the eddy viscosity acts as a dampening and has shown leading modal structures to be
in good agreement with modal structures uncovered from spectral proper orthogonal
decomposition. Alternatively, discounted resolvent analysis (Jovanovic 2004; Jovanovi¢ &
Bamieh 2005; Rolandi et al. 2024) allows examinations of the dynamics over a finite-
time horizon, rather than the asymptotic behaviour. The latter approach, which is the one
adopted in the present study, enables us to study unstable base flows. Both approaches
modify the linear operator by shifting the eigenvalues in the stable part of the complex
plane: the eddy resolvent does so by adding a dissipative term that mimics turbulent
diffusion, while the discounted resolvent temporally windows the dynamics.

In this work, we use discounted resolvent analysis to investigate the effects of Reynolds
numbers Re = 1000, 2500, 5000 and 10 000 on separated flow over a NACAOQ012 airfoil.
While previous investigations on separated flows around airfoils using biglobal linear
analysis have predominantly focused on lower Reynolds numbers (He ef al. 2017; Ribeiro
et al. 2022; Tamilselvam, Asztalos & Dawson 2022; Nastro et al. 2023), or lower angles of
attack when increasing the Reynolds number (Gupta et al. 2023), our work aims to address
the transitional regime. Specifically, we analyse the linear amplification mechanisms over
a range of Reynolds numbers, in a regime where the flow around the airfoil loses its
periodicity and becomes highly unsteady. This change is associated with the transition
from an oscillator-type behaviour, characterized by self-sustained, coherent unsteadiness,
to an amplifier-type regime, where external perturbations are convected and selectively
amplified by shear-layer instabilities. Our analysis centres on identifying dominant flow
structures and characterizing their spatial and temporal behaviour, with particular attention
to how these features evolve with increasing Reynolds numbers. Finding similarities and
physics-based scalings is particularly beneficial in the moderate Reynolds number regime,
with the potential to uncover underlying physics also present at higher Reynolds numbers
commonly encountered in engineering applications.

The effects of Reynolds numbers are examined in relation to key parameters such as the
temporal frequency, the spanwise wavenumber and the discount parameter, as summarized
in figure 1, providing a comprehensive understanding of flow dynamics. Investigating
the effect of spanwise wavenumber on the dominant flow structures reveals insights into
the formation of three-dimensional structures, while analysing the effects of the discount
parameter helps determine whether the dynamics evolve over different temporal scales.
After introducing the theoretical background and numerical approach in § 2, § 3 examines
how the Reynolds number affects the separated flow over the airfoil. Section 4 presents
the resolvent mode structures and energy amplifications in relation to frequency, spanwise
wavenumber and time scales. Finally, § 5 investigates the impact of a different angle of
attack and discusses the scaling behaviour of dominant amplification mechanisms with
respect to their characteristic frequencies.

2. Theoretical background and numerical implementation

We analyse the spanwise periodic flow around a NACAOQ0O12 airfoil across various
Reynolds numbers. Below, we present the biglobal resolvent analysis theoretical
framework and outline the computational set-up employed in this study.
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Figure 1. Overview of the present resolvent analysis.

2.1. Biglobal resolvent analysis
We consider the spatially discretized nonlinear governing equation,

dg
o =N @. @D
where ¢ = (p, pu, pe) € R" represents the state vector, p is the density, u = (uy, uy, u;)
is the velocity vector with components along the streamwise (x), cross-stream (y) and
spanwise (z) directions, and e is the energy. Here, N' € R"*" is the nonlinear Navier—
Stokes evolution operator, and n = N x 5, where N is the number of cells in the spatial
discretization and the number of state variables is five. We now consider the flow field
q =¢q, +q’ to be composed of the sum of a stationary base flow ¢, and a fluctuating
component ¢’ of small amplitude. The base flow is considered to be the time- and
spanwise-averaged flow. By substituting the decomposition in (2.1), and performing a
Taylor expansion, we obtain the spatially discretized linearized governing equation for
the fluctuating perturbation component, g’:
dg’ g

” =Lqg + [ 2.2)
Here, £ = Vq/\/ lg, € R"*" is the linearized Navier—Stokes operator about the base flow,
q’ € R" is the perturbation and f’ € R" collects the nonlinear terms (McKeon & Sharma
2010; Rolandi et al. 2024). Due to the temporal and spanwise homogeneity of the base flow,
the response (¢g’) and forcing (f’) can be decomposed through a spatiotemporal Fourier
transform as follows:

o0 (0,0) . .
q'(x,y,z,1) 2/ / 4o p(x, Ve [ ePrdwdp,
—00 J —00 ’

flxy.z,0= / / Fo g, y)eT @ ePidwdp. (2.3)
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Here, 8 and w indicate the spanwise wavenumber and temporal frequency, respectively. By
substituting these expressions into (2.2), we find the following input—output relationship:

G0 px) = (—iwl — L) f,, 5(x) = Hy p f,, (%), (2.4)

where H,, g € C"*" is the resolvent operator that acts as the transfer function between the

forcing fw’ p and the response g, g at frequency w and spanwise wavenumber S.
Among all the possible forcing and response pairs that satisfy (2.4), resolvent analysis
finds the optimal pair, i.e. those that maximize the energy at given values of w and 8,

~ ~ A 2
0% = max <qf“”3’ Go.ply _ max Go.pl; (2.5)

Jop (fa),ﬂv jw,ﬁ)E - wasﬂ Hj‘wﬂHzE’

where || - || g is a suitable energy norm. In this work we consider the Chu norm (Chu 1965;
George & Sujith 2011), which is expressed as

1 _ a?p? oc, T2
Ecm,=—/ (p|u|2+—’i pev )dv, (2.6)
2Jv Yp T

where the variables with () represent the base flow quantities. To take into account the
energy norm, a similarity transform is applied to the resolvent operator. Therefore, we
consider instead H CZV p=WH, g W1, Here, W is a volume-weighted matrix that allows us
to express the energy norm in terms of the L, norm for the singular value decomposition.

A singular value decomposition can now be performed on the weighted matrix. By
retaining only the first m << n singular values and right/left singular vectors, we find a
low-rank approximation of H g’ PE

HY ,~UZV* 2.7)
The columns of U =[uy, us, ..., u,, ] € C">*™ and V =[vy, vo, ..., v,,] € C"*™ hold
the response and forcing modes, respectively, while X =diag(oy, 02, ..., 0p,) € R™

retains the gains of the corresponding forcing—response pairs.

In the present work, some cases are characterized by a linear dynamics that present
eigenvalues with positive growth rate. For this reason, we use discounted resolvent analysis
(Jovanovic 2004; Jovanovi¢ & Bamieh 2005), that considers a Laplace transform instead
of a Fourier transform. This modification is equivalent to temporally damping the forcing
and response by e~7!, which translates to considering the dynamic over finite time
scales. A zero temporal damping y = 0, when there are no unstable poles, corresponds to
investigating the asymptotic (infinite-time) dynamics. Introducing y # 0, we consider the
dynamics over a finite-time horizon t, = 1/y. To apply discounting, the integration line
of the inverse Laplace transform is taken above all positive real parts of the eigenvalues
of the linear operator. The discounted parameter y is thus introduced, which must satisfy
y > Re{4}, with A being the eigenvalue of the linear operator with the largest real part.
With discounting, the resolvent operator now reads

H,p=I[(y —io)] — Lg]™". (2.8)

The singular value decomposition of the resolvent operator is approximated using the
Krylov subspace projection method, with a subspace dimension for the reduced-order
problem set to m = 24. Both the simulation of the base flow and resolvent analysis are
performed within the compressible flow solver CharLES (Khalighi et al. 2011), coupled
with the PETSc and SLEPc libraries (Roman et al. 2016; Balay et al. 2020) for the
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Figure 2. Computational set-up used for the base flow computation and resolvent analysis.

computation of the singular value decomposition. Further details on the formulation and
implementation of resolvent analysis used herein can be found in Rolandi et al. (2024).

2.2. Computational set-up

We simulate the spanwise periodic flow around a two-dimensional NACAOO12 airfoil at
angles of attack 14° and 9° for a Reynolds number of Re = U,c/v = 1000, 2500, 5000
and 10 000 and a Mach number of M, = 0.1. Here, U, indicates the free stream velocity,
¢ the chord of the airfoil and v the kinematic viscosity. At these Reynolds numbers, the
flow is three-dimensional, so a spanwise domain length L, of one chord is considered
for the computational domain. This choice is based on observations indicating that the
flow transitions to a three-dimensional state with a spanwise wavelength of approximately
A;~c/3 (Gupta et al. 2023). The base flows are simulated with direct numerical
simulations (DNS) for Re = 1000 and 2500 and wall-resolved large eddy simulations
(LES) for Re =5000 and 10 000. For the wall-resolved large eddy simulation, we use the
Vreman subgrid-scale model (Vreman 2004). The boundary conditions are comprised of
a no-slip adiabatic condition on the airfoil surface, uniform constant velocity, pressure,
and temperature at the inlet and on far-field boundaries, a zero-pressure gradient at the
outlet and periodic boundary conditions on the lateral sides. For each case, the time step
is selected such that the local Courant—Friedrichs—Lewy number is less than unity.

The base flow is computed by time- and spanwise-averaging the instantaneous flow field
over ~100 convective times (7. = tUso/c) after the transient is flushed out. Convergence
of the base flow is checked by ensuring that the relative variation on the velocity flow field
over the last five convective times satisfies

Hl_‘(tend) - l_l(tend - 5tc)| |2
”l_‘(tend)HZ

where u is the time- and spanwise-averaged velocity flow field.

Details of the mesh used in this study are shown in figure 2. The red-framed domain
indicates the computational domain used for computing the base flow and is extended
to x/c €[-20,25], y/c €[-20,20] and z/c €[0, 1]. The origin is positioned at the
leading edge of the airfoil. For the biglobal resolvent analysis, the time- and spanwise-
averaged base flow is interpolated onto a smaller two-dimensional grid, the yellow-framed
grid, whose extent is (x/c, y/c) € [—14, 14] x [—4.5, 4.5]. This reduction is possible
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Case 1 Case 2 Case 3
Cellsgr Nyy 3.8 x 10° 6.5 x 10° 9.9 x 10°
Cellsgr N, 80 40 52
L. 1.0 0.4 0.4
Cp 0.2277 0.2180 0.2197
Cr 0.6879 0.6430 0.6474
Cellsg Nyy 1.3 x 10° 1.3 x 10° 2.3 x 10°
St* = arg max o 2.81 2.72 2.83

St

Table 1. Mesh convergence check for the Re = 10 000 case. Values of time-averaged drag (Cp) and lift (Cp)
coefficients from the unsteady simulation together with frequency of maximum amplification from resolvent
analysis at § =0 and y = 1.25 for the different meshes tested.

because the domain and grid resolution requirements for computing resolvent modes differ
significantly from those used in unsteady simulations (Rolandi er al. 2024). Specifically,
the modal structures are concentrated near the airfoil, eliminating the necessity for an
extended domain, which is instead essential for the base flow simulations. Additionally,
the grid refinement near the airfoil focuses on both the downstream and upstream regions,
as the forcing modes develop upstream due to the convective nature of the amplification
mechanisms.

We performed a grid convergence study using three meshes for the unsteady simulation
to compute the base flow. In addition to these meshes, two meshes were tested for the
resolvent analysis. In table 1, we report the results of the grid convergence study performed
on the highest Reynolds number, Re = 10 000. The combinations of the meshes used
for the base flow computation and resolvent analysis are summarized in Case 1, Case 2
and Case 3. Cellsgr and Cellsg refer to the number of cells of the base flow mesh and
resolvent analysis mesh, respectively. Number of cells on the xy-plane (Nyy) and along
the z-direction (N;) are reported. The computational domain of Case 2 and Case 3 for
the unsteady simulation of this Reynolds number extends over x/c € [-20, 25], y/c €
[—20, 20] and z/c € [0, 0.4], given that the spanwise structures are smaller compared with
the lower Reynolds number cases. The values of mean drag and lift coefficients from the
unsteady simulation are shown, together with the frequency St* of maximum gain from the
resolvent analysis. Resolvent analysis for the grid study was performed considering 8 =0
and y = 1.25. Overall, we can see convergence in the mean drag and lift coefficients and
a relative difference between the results of St* within 5 %. In figure 3, we present the
0-contour of the streamwise velocity for the time- and spanwise-averaged base flow for
the three different cases. Additionally, we display the streamwise velocity contours of the
response mode at w /27w = 2.7. The results of both the base flow and resolvent analysis with
the different meshes are in good agreement. The meshes of Case 2 for both the unsteady
simulation and resolvent analysis were used in this work.

In table 2, we provide details on the computational set-up in terms of number of grid
points on the xy-plane Ny, the number of grid points along the suction side of the airfoil
section Ngjpfpir (Symmetric with respect to the pressure side), the number of grid points in
the spanwise direction N, and its spanwise extent L, initial cell spacing on the wake Ax
and vertical off-wall spacing Ay. The discretization details are reported for the unsteady
simulation at the different Reynolds numbers, and for the mesh used for the resolvent
analysis.
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Figure 3. Mesh convergence check for the Re = 10000 case. (a) Contour of time- and spanwise-averaged
streamwise velocity i, = 0. (b) Contours of the streamwise velocity of the first response mode at frequency
w/2r =2.7,=0and y =1.25.

Re Ny Nairfoit N, L, Ax/c Ay/c
1000 2.1 x 10° 100 40 1 0.005 0.005
2500 3.8 x 10° 160 50 1 0.001 0.001
5000 3.8 x 10° 160 50 1 0.001 0.001
10000 6.5 x 10° 200 40 0.4 0.001 0.0005
Resolvent 1.3 x 10° 100 1 — 0.005 0.003

Table 2. Mesh details for the unsteady simulation of the different Reynolds numbers and resolvent analysis.

Re =1000 Z Re =2500

Re =5000

Figure 4. Instantaneous flow fields around a NACAOQ012 airfoil at o = 14° and different Reynolds numbers.
Visualization of isosurfaces of Q-criterion Q =0.05, coloured by streamwise velocity, and Q =0.005 in
translucent.
3. Reynolds number effects on the unsteady and base flows

3.1. Unsteady flows

The flow fields around a NACAO0O12 airfoil at an angle of attack of 14° for the considered
Reynolds numbers are shown in figure 4(a—d). At these Reynolds numbers, the flow is
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Figure 5. Lift coefficient Cy,, drag coefficient Cp and lift spectra ¢ 1, at the different Reynolds numbers.

unsteady and exhibits the characteristic von Karman vortex shedding in the wake region.
The flow around the airfoil at & = 14° undergoes a transition from steady state to periodic
at approximately Re =~ 380 through a Hopf bifurcation (Rolandi et al. 2022). As the
Reynolds number increases further, the periodic flow transitions to three-dimensional
dynamics through a period-doubling bifurcation, also known as the Mode C instability
(Sheard et al. 2005a; Meneghini et al. 2011; Rolandi 2021). The Reynolds number at
which the flow becomes three-dimensional at this angle of attack is between Re = 750
and 1000 (Gupta et al. 2023). This transition is characterized by the emergence of a
subharmonic component of the vortex shedding, effectively doubling the flow periodicity.
Notably, period-doubling bifurcations are also associated with the onset of chaos in fluid
flows (Pulliam & Vastano 1993), through the so-called period-doubling cascade.

The three-dimensional flow resulting from this transition features spanwise structures
that develop across the airfoil. The Mode C instability develops in the stretched region
between two consecutive vortices, called the braid region, and results in the formation
of elongated streamwise vortices. At Re = 1000, the spanwise wavelength of the three-
dimensional structures is approximately A, =~ c¢/3, consistent with previous studies (Gupta
et al. 2023), where the stability of the periodic solution was examined through Floquet
analysis. As the Reynolds number increases further, the shear layer separating from
the leading edge becomes unstable. The shear layer rolls up closer to the leading
edge, forming two-dimensional spanwise vortical structures, that are related to the
Kelvin—Helmbholtz instability. The characteristic length of the vortical spanwise elongated
structures decreases with the Reynolds numbers (see figure 4c—d). Finally, these structures
are convected downstream, where they break down into smaller, three-dimensional
structures, contributing to the increasing level of turbulence in the flow.

We report the time evolution of the drag and lift coefficients in figure 5, together with
the frequency spectra of the lift coefficients in terms of Strouhal number St =cf/Uxo,
where f indicates the frequency. For the case of Re = 1000, we observe a clear peak at
St =0.72 and its harmonics, due to the periodicity of the flow at this Reynolds number. A
clear peak and its harmonics are also visible at Re = 2500, with the low-frequency contents
becoming increasingly energetic. At this Reynolds number, the oscillations have higher
amplitude compared with Re = 1000 and the peak is at a lower frequency corresponding
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to St =0.67. Increasing the Reynolds number further, the frequency peak of the wake
oscillation for both Re = 5000 and 10 000 occurs at St ~ 0.67, as for the Re = 2500 case.
However, the amplitudes of the spectral peak reduce with the Reynolds number, consistent
with the decreasing oscillatory type behaviour. At these Reynolds numbers, we also
observe a broader frequency spectrum and the emergence of slower dynamics, visible in
the Cr and Cp variations, which are associated with the interaction between the separated
shear-layer roll-up and the airfoil (Zaman, McKinzie & Rumsey 1989; Mukai, Enomoto &
Aoyama 2006). For Re = 5000, these slower dynamics occur at St 2 0.05 and St ~ (.28,
while for Re = 10 000, they appear at St = 0.04 and St ~ 0.24.

To further investigate the slower dynamics observed in the lift spectra at Re = 5000
and 10 000, we focus on the Re = 5000 case. Figure 6 presents the frequency-filtered time
evolution of the lift coefficient for the Re = 5000 case. Specifically, we examine the low-
frequency range 0 < St < 0.1 and the midfrequency range 0.2 < St < 0.4, targeting the
spectral peaks at St~ 0.05 and St~ (.28, respectively, as reported in the lift spectra in
figure 5 for the Re = 5000 case. Instantaneous spanwise vorticity fields corresponding to
the crests and troughs of the filtered signals are also shown. The vorticity fields at the
troughs of the low-frequency signal, at t =¢ i ti and tz in figure 6(a), have similar flow
characteristics. The separated shear layer is elongated and rolls up farther downstream
from the leading edge, with vortex cores forming at streamwise locations x > 0.7. This
positioning keeps the vorticity detached from the airfoil’s suction surface, thereby limiting
the development of induced vorticity of opposite-sign near the surface. As a result, the flow
is massively separated from the airfoil.

In contrast, at the crests of the low-frequency signal, at ¢ = t%, t‘Lt and tg, the shear
layer rolls up much closer to the suction surface x < 0.7, leading to the generation
of strong opposite-sign vorticity. This causes the flow to locally form a secondary
recirculation region with higher and positive streamwise velocity on the airfoil surface,
generating local low-pressure zones, which enhance the lift force. This suggest that the
low-frequency behaviour is associated with the formation of the secondary recirculation
region (Zaman et al. 1989; Broeren & Bragg 1998; Mukai et al. 2006). Therefore,
the flow alternates between two states: (i) a massive separated flow with a negligible
secondary recirculation region (¢ =t£, ti and ti) and (ii) a separated flow coexisting
with a secondary recirculation region (¢ :tf, [2 and tg). The two states depend on
the roll-up location of the separated shear layer. We also note that the low frequency
dynamics (St & 0.05) are an order of magnitude lower than the vortex shedding (St ~ 0.67),
which is in agreement with previous studies (Zaman ef al. 1989; Broeren & Bragg
1998), which associate this mechanism with the breathing of the laminar separation
bubble.

We now consider the midfrequency signal, bandpass-filtered over 0.2 < St < 0.4. In
figure 6(b), we observe that at the crests of the signal, at t = t]lw, t]%/[ and t]?,[, the shear-layer
vortex has not fully rolled-up. On the contrary, at the through of the signal, tl%,l, tﬁ,[ and [1?/1’
the leading-edge vortex is rolled-up, forming a defined single vortical structure detached
from the downstream same sign negative vorticity. Some works link these dynamics to
vortex pairing (Tang et al. 2021).

The lift coefficient signal effectively captures the dynamics of large vortex shedding in
the wake, and the slow dynamics of the separation region. However, our interest also lies in
the dynamics of the separated shear layer, which manifests as the leading-edge vortex roll-
up. To investigate the shear-layer dynamics, we compute the energy spectra from the shear
layer at various streamwise positions: x /¢ =0.25, 0.5, 0.75 and 1, along 0 < y/c < 0.25,
as shown in figure 7.
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Figure 6. Instantaneous lift coefficient at Re = 5000: (a) low-pass-filtered over St < 0.1; (b) bandpass-filtered
over 0.2 < St < 0.4. Instantaneous spanwise vorticity fields are shown at instants indicated by the red dots.

At Re = 1000, the flow is periodic, with the energy spectra at each position showing a
dominant peak corresponding to vortex shedding. At x/c = 1, the subharmonic becomes
significant, indicating a period-doubling instability of the NACA0012 periodic shedding
that leads the transition to three-dimensional flow (Sheard et al. 2005h; Meneghini
et al. 2011; Rolandi 2021; Gupta et al. 2023). At Re = 2500, the harmonic components
become more prominent, and at even higher Reynolds numbers, the spectrum broadens
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Figure 7. Contours of energy spectra at Re = 1000, 2500, 5000 and 10 000. Contours are shown at different
streamwise locations x/c along y/c € [0, 0.25]. Black dashed lines indicate the dominant frequency peaks
associated with the lift coefficient, see figure 5. Red horizontal lines indicate the vertical locations considered
in figure 8.

significantly, especially as the streamwise position approaches the wake. Also for the
higher Reynolds number cases, we observe the presence of subharmonics, which, in this
case, correspond to vortex pairing within the shear layer. For Re > 2500, the highest energy
amplitudes at x/c =0.25 and 0.5 are concentrated at a specific cross-stream location,
approximately y/c ~ 0.1. This identifies a broad region of high-frequency, high-amplitude
unsteadiness associated with the shear-layer dynamics at the subsequent streamwise
positions.

For the specific locations indicated by the red dashed lines in figure 7, we also present
the spectra of the vertical velocity in figure 8. As the Reynolds number increases, we
observe a gradual intensification of the harmonic peaks, reflecting enhanced nonlinear
interactions (Deissler 1969). This is particularly evident at Re = 2500, where higher-order
harmonics becomes clearly distinguishable, and at Re = 5000 where the first harmonic is
highly energetic. At the highest Reynolds number, Re = 10 000, the spectrum becomes
noticeably broader. The dominant energy shifts towards higher frequencies, with the
maximum peak occurring at St &~ 2.6, which indicates the shear-layer roll-up, as will be
discussed later.
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Figure 8. Vertical velocity spectra i1, at locations indicated by the the red dashed lines in figure 7 at the
different Reynolds numbers.

3.2. Oscillator and amplifier dynamics

The spectral change observed in figures 7 and 8 reflects the transition between oscillator-
to amplifier-type behaviour (Towne et al. 2015; Rosenberg, Symon & McKeon 2019;
Symon et al. 2019). Oscillator flows exhibit intrinsic global instabilities that give rise to
self-sustained unsteadiness. In contrast, amplifiers are convectively unstable and amplify
external disturbances.

At low Reynolds number, Re < 2500, the flow exhibits narrow-band spectral peaks with
clear harmonics, characteristic of an oscillator-type dynamics. As the Reynolds number
increases, Re > 2500, the frequency spectrum broadens significantly and energy shifts
towards higher frequencies. This broadening reflects the transition to an amplifier-type
regime dominated by shear-layer instabilities.

3.3. Time-averaged base flows

The unsteady flow field is averaged in time and along the spanwise direction to obtain the
base flow for the resolvent analysis. The resulting streamwise velocity fields are shown
in figure 9 for the considered Reynolds numbers. As the Reynolds number increases, the
shear layer separating from the leading edge becomes progressively thinner and curves
due to stronger reverse flow in the recirculation region.

The corresponding zero streamwise velocity contours of the time- and span-averaged
base flows are visualized in figure 9(e). At Re = 1000, the base flow features a single
recirculation region, which is elongated compared with those at higher Reynolds numbers.
When the Reynolds number is increased to Re = 2500, the recirculation region shortens
before being stretched again at higher Reynolds numbers. For Re > 2500, the base
flow exhibits a secondary recirculation region on the airfoil’s suction side, which shifts
upstream and becomes thinner as the Reynolds number increases.

The secondary recirculation region is caused by the induced vorticity generated in the
separated region on the suction side, as previously discussed. Additionally, the separation
point of the primary recirculation region shifts upstream with increasing Reynolds number
(Counsil & Goni Boulama 2013; Brunner et al. 2021). This behaviour is due to a higher
adverse pressure gradient near the leading edge of the airfoil due to the thinning of the
boundary layer over the airfoil upstream of the separation point with increasing Reynolds
number.

4. Resolvent analysis

In this section, we present the results of the resolvent analysis, organized into three
parts. First, we examine the eigenvalues of the linear operators to establish an appropriate
range for the discount parameter y. Second, we investigate the influence of the spanwise
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Figure 9. Time- and spanwise-averaged (base flow) streamwise velocity around a NACA0012 wing at o = 14°
and (a) Re = 1000, (b) 2500, (¢) 5000 and (<) 10 000. (¢) Contour of time- and spanwise-averaged streamwise
velocity i, =0.

wavenumber § on the system. Last, we examine how modal structures and energy gain
vary with the Reynolds number across a range of frequencies.

4.1. Eigenvalue decomposition of the linear operator

Let us examine the eigenvalues of the linearized Navier—Stokes operator at the different
Reynolds numbers by solving the eigenvalue problem

Lo=—ild, @.1)

where —id= —i(4d, +id;) is the complex eigenvalue and ¢ is the corresponding
eigenvector. Here, we consider £ = £g—, while the effect of spanwise wavenumber 8 # 0
will be explored in § 4.3. This allows us to consider appropriate ranges for the discount
parameter depending on whether we consider two-dimensional 8 = 0 or three-dimensional
B # 0 perturbations.

In figure 10(a), the eigenvalue with the largest real part for each Re is shown
in the complex plane. Both the growth rate and frequency increase with increasing
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Figure 10. (@) The eigenvalues with the largest real component Re{—id}=A1; and (b) corresponding
eigenvectors shown by contours of real part streamwise velocity. Dashed circles mark the region of maximum
modal structure amplitude.

Reynolds number. The linear dynamics has an eigenvalue with a positive real part
Re{—il} = A; only at Re =10000, with 4; =0.0963. For the lower Reynolds number
cases, all the eigenvalues have negative real parts, despite the unsteady nature of the
nonlinear dynamics. In this regard, it should be considered that the eigenvalue analysis
depends on the choice of the base flow and that there are conditions for the validity of
mean flow stability analysis (Beneddine et al. 2016).

In fact, it is important to consider that stability analysis based on the time-averaged
flow (not an exact solution of the Navier—Stokes equations) needs to be performed
with care. Moreover, it has been shown that flows exhibiting quasimonochromatic
oscillations can yield different linear responses when analysed about the time-averaged
flow versus the underlying unstable fixed point (Barkley 2006; Turton, Tuckerman &
Barkley 2015; Rolandi 2021). The results of Re{—i1} < 0 even at Re = 1000 are somewhat
counterintuitive, as oscillator-type flows are expected to exhibit a global instability at
the vortex shedding frequency. However, for this type of flow, this expectation applies
to stability analysis about the fixed point, not the time-averaged flow. In fact, previous
studies have shown that the stability analysis about the fixed-point solution at Re = 1000
and o = 14° exhibits a positive growth rate (Rolandi ez al. 2022). Nevertheless, we present
here the eigenvalue analysis of the linear operator linearized around the time-averaged
flow, as this constitutes a necessary step for the subsequent discounted resolvent analysis.

From the result shown in figure 10(a), we observe a monotonic increase of A; with
respect to the Reynolds number, with a linear increase for Re >2500. We can then
infer that the eigenvalue based on the time-averaged base flow crosses the imaginary
axis at Re ~ 5900. The corresponding eigenvectors are shown in figure 10(b). At Re =
1000 the modal structure is mainly concentrated in the wake region, while at higher
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Figure 11. Variation of the first singular value o1 with respect to frequency for different finite-time horizon
t, €[0.8; 6.67] at Re = 1000, 2500, 5000 and 10 000. Dashed grey lines indicate the frequencies of maximum
gain at short and long time scales.

Reynolds numbers they also exhibit structures in the shear-layer region. As the Reynolds
number increases, the position of maximum modal structure amplitude, indicated by the
dashed circle, shifts from the far wake (at Re = 1000) to the near wake (at Re = 10 000).
Furthermore, for Re > 2500, the modal structure appears not only in the wake but also in
the shear layer. This reflects the fact that for these Reynolds numbers the shear layer rolls
up and interacts with the wake dynamic.

4.2. Temporal discounting

Once the eigenvalues are found, the discount parameter for the resolvent analysis is chosen
such that y > max{Re{—iA}, 0}. This allows us to consider the overall forced dynamics
over a time scale shorter than the time scale associated with Re{—iA}. Longer time
scales should not be considered, because the implication of having a positive real part
Re{—iA} > 0 would make the response seemingly unbounded as ¢t — oo, masking the
effect of forcing.

Here, a value of y > 0.0963 for Re = 10000 corresponds to dynamics within a finite
time horizon 7, < 10.4. The effect of discounting on the energy amplification is shown
in figure 11. The variations of the first singular value as a function of the frequency
are plotted for y = {0.15, 0.20, 0.25, 0.30, 0.40, 0.625, 1.25} corresponding t0 0.8 < t,, =
1/y < 6.67. The frequency is considered in terms of Strouhal number St = cw/(Uxo27).
Considering this range of 7, in what follows we will refer to 7, = 0.8 as the short time
scale and 7, = 6.67 as the long time scale.

At Re = 1000, only one peak emerges as f, varies, while for Re > 2500 two distinct
peaks are observed, as indicated by the dashed lines in figure 11. The first peak appears at
a high frequency on the short time scale, while on the long time scale, another peak at a
lower frequency dominates. For all Reynolds numbers, the long time scale peak occurs at
a frequency corresponding to the eigenvalue with the maximum real part. This is because,
with lower y (higher 7,,), the inverse Laplace integration is closer to such an eigenvalue,
and the norm of the resolvent operator increases at that frequency.

By comparing figure 11 with figure 8, we observe a clear correspondence between the
gain peaks and the spectral content of the vertical velocity. In addition to the low-frequency
peaks Sty associated with vortex shedding, the gain shifts towards higher frequencies as
the Reynolds number increases. At Re = 2500, the second peak 5%500 aligns with the first
harmonic observed in figure 8, while at higher Reynolds numbers, the influence of higher-
order harmonics remains evident in the gain distribution over longer time scales. Notably,
at Re = 10 000, the high-frequency peak in the gain St}qo 900 matches the highest frequency
observed in the vertical velocity spectra in figure 8.

In figure 12, we show the streamwise velocity components of the first response mode
at short and long time scale and at the frequencies St and Stg, indicated in figure 11.
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Figure 12. Contours of streamwise velocity component of the first response mode at the frequencies of
maximum gain at short and long time scales. Here ( ) line frame indicates the mode at the lower frequency
peak, Stw, and (- - - -) line frame indicates the mode at the higher frequency peak, Sts.

Frequencies Sty and Stg correspond to the short and long time scale peaks, respectively.
At the lower frequencies, Sty, we observe that the structures emerge in the wake and
highlight the coupling between the leading and trailing edge, we will therefore refer to this
mode as the wake mode. We also note that the modal structures at the lowest Reynolds
number are similar to the structures revealed from non-modal stability analysis of low-
Reynolds number flow (He ef al. 2017) when increasing the time horizon. On the other
hand, at the higher frequency peak, Stg, the structures are present in the shear-layer region
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Figure 13. The eigenvalues with the largest real components for different 8 at Re = 10 000.

detaching from the leading edge. We therefore refer to this mode as the shear-layer mode.
For both the wake and shear-layer modes, we observe that the structures at f, g0/, are
closer to the airfoil, while they develop downstream when increasing #,,. This corresponds
to the fact that the perturbation has more time to grow, and translates into the higher energy
gain shown in figure 11. Further discussion on the effects of discounting can be found in
Appendix A.

4.3. Spanwise wavenumber effects

In this subsection, we consider the effects of the spanwise wavenumber . Firstly, we
need to compute the eigenvalues of the linear operator Lg at varying 8, as we performed
for the B =0 case. In figure 13 the unstable eigenvalues are shown in the complex
plane for g € [0, 8m]. The eigenvalue with the largest real part corresponds to f = 4w
at St = A,/(2m) = 0.36, and the real part decreases at the same frequency for increasing
wavenumber. In this case, the value of the largest real part 4; = 0.358 suggests that we
should consider dynamics within a time scale of 7, ~ 2.8, shorter compared with the 8 =0
investigated in the previous subsection. The effects of spanwise wavenumber 8 at short
(t, = 0.8) and medium (7, = 2.5) time scales are shown in figures 14 and 15, respectively.
The gain distributions for the first three singular values (o, 07 and 03) are shown over the
B — St plane for the different Reynolds numbers. The peaks of the spectral content of the
lift coefficient, shown in figure 5, are also reported for comparison.

For the short time scale, 7, =0.8, we observe that the overall distributions of o7, 07
and o3 show some similarities across different Reynolds numbers. For o1, the maximum
gain is achieved at 8 = 0. The singular values o, and o3 are instead more sensitive to the
spanwise variation. In particular, the variation of o2 and o3 across 8 and St are similar,
with maximum values achieved at low frequency and spanwise wavenumbers that increase
with the Reynolds number. Overall, the second and third singular modes, even at short time
scales, seem to reflect the development of smaller structures in the flow when increasing
the Reynolds number, while the first singular value mostly reflects the two-dimensional
dynamics.

The matter changes when we consider longer time scales, as shown in figure 15.
Increasing 1, several mode switchings are observed. These appear at low frequencies,
particularly close to the characteristic frequencies at the highest Reynolds numbers and
evident from a change in the gain variation. This indicates that higher-order modes, which

1021 A53-18


https://doi.org/10.1017/jfm.2025.10728

https://doi.org/10.1017/jfm.2025.10728 Published online by Cambridge University Press

Journal of Fluid Mechanics

Re =1000 5 Re = 2500 Re = 5000 Re=10000

103

10

Figure 14. Gain distributions of the first three singular values over the g — St plane at Re = 1000, 2500,
5000 and 10000 at t, =0.8. Black dashed lines indicate the dominant frequency peaks associated with lift
coefficients (see figure 5).
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Figure 15. Gain distributions of the first three singular values over the § — St plane at Re = 1000, 2500,
5000 and 10000 at t, =2.5. Black dashed lines indicate the dominant frequency peaks associated with lift
coefficients, see figure 5.

at short time scale reflect the relevance of finer spanwise structures, need more time to
grow and overcome the energy of two-dimensional mechanisms that prevail at short time
scale. At Re =10000, we show a zoomed-in view of the low-S¢ and high-8 parametric
space, showing the emergence of a local maximum at S ~ 0.36 and  ~ 47, which reflects
the large real part eigenvalue presented in figure 13.
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Figure 16. Response modal structures in the frequency—wavenumber space for the Re =10000 case at
ty, =2.5, shown alongside the corresponding primary gain o7 contour map. Shown are the vertical velocity
components of selected response modes marked by the red dots, superimposed on base flow streamlines within
the recirculation region.

Spanwise effects are thus seen to affect the low-frequency dynamics over long time
scale. At the highest Reynolds number, we observe that the modal structures at low
frequencies and high spanwise wavenumber (8) predominantly affect the recirculation
region, which presents elliptical streamlines. At lower g, the dynamics are concentrated
in the wake, which was also observed for the 8 =0 case in the previous section. In
our analysis, elliptic instabilities emerge clearly over long time horizons, suggesting that
while their growth is weak, they represent persistent, spatially localized structures in the
recirculation zone. This is in contrast to higher-frequency modes, which show maximum
gain near § = 0 and remain largely unaffected by the time scale. These modes are linked
to shear-layer dynamics and correspond to the quasi-two-dimensional roll-up of the shear
layer separating from the leading edge, as seen in figure 4(c,d).

The different frequency—wavenumber responses are summarized in figure 16. An
analogous division of mechanisms was proposed by Pickering et al. (2020) for jet
flows, associating low-frequency/low-wavenumber modes with the Orr mechanism,
high-frequency modes with the Kelvin—Helmholtz instability, as in our case, and low-
frequency/high-wavenumber modes with streak-like features.

High-8, low-frequency phenomena might also be linked to bursting. Indeed, numerical
simulations have shown that bursting occurs when three-dimensional disturbances in the
aft part of the recirculation region grow to levels sufficient to break up the shear-layer roll-
up vortices, reducing their spanwise coherence (Marxen & Henningson 2011; Toppings &
Yarusevych 2024).

Previous studies at lower Reynolds numbers also report that the two-dimensional vortex
shedding mechanism is predominant (He ef al. 2017; Nastro et al. 2023), in agreement with
the present results at Re = 1000. By increasing the Reynolds number, this is true for the
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Figure 17. Lift spectra €y shown together with the eigenvalues for (@) « = 9° and (b) 14° at Re = 10 000.

shear layer, which present structures with high energy gains at 8 = 0, while less energetic
three-dimensional mechanisms appear at lower frequencies.

5. Scaling of wake and shear-layer dynamics

Up to this point, we have focused on a specific angle of attack for analysing the forcing
modes, response modes and gain distributions. Let us generalize how the shear and wake
dynamics relate and shift from one another across the angles of attack and Reynolds
numbers. To do so, we analyse the separated flow around a NACAOQ012 airfoil at an angle
of attack of o« = 9°, and compare the results with those obtained for « = 14°. We consider
the case of spanwise wavenumber 8 = 0.

The eigenvalues with the largest real component, together with the lift spectra at Re =
10 000 for the two angles of attack are shown in figure 17. At o =9°, three eigenvalues
have positive real component and reflect the peaks of the lift spectra. The largest real part
of the positive eigenvalues at o = 9° is Re{—iA} = 0.46, which suggests that we consider
dynamics over a time scale shorter than 7, =2.18. This allows us to use the discount
parameter, corresponding to ¢, = 0.8, as in the previous section.

The streamwise velocity components of the first response and forcing modes are shown
together with the resolvent wavemaker in figure 18, for Re = 1000 and 10 000 and the two
angles of attack. The resolvent wavemaker is defined as the Hadamard, componentwise,
product between forcing and response modes (Qadri & Schmid 2017; Skene et al. 2022):

A

W=fog. (5.1

The resolvent wavemaker reveals regions that likely exhibit self-sustained mechanisms,
thus regions where the response itself acts as a forcing. Let us first consider o = 14°, shown
in figure 18(a). At the lowest frequency, we observe differences between the two Reynolds
numbers in the response, forcing and resolvent wavemaker structures. In particular, at
St =0.5, we observe a thinning of the mode structures on the shear layer for the highest
Reynolds number, which remains noticeable in the response mode structure up to St~ 1.
Despite this difference in the shear layer, the response modes for both cases present
similarities in the wake region for Strouhal numbers St < 1. For higher St, the response
mode structures at both the Reynolds number shift towards the shear-layer region.
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Figure 18. Streamwise velocity component of the response modes g, , streamwise velocity component of the

forcing modes fux and magnitude of the wavemakers |w| shown for (@) @ = 14° and (b) @ =9° at Reynolds
numbers Re = 1000 and 10 000 for St =0.5, 1 and 1.75.

For the considered range of Strouhal numbers, we in contrast observe a strong difference
in the forcing modes. At the highest Reynolds number the forcing mode develops upstream,
as opposed to the lower Reynolds number case for which the forcing mode structures are
predominant in the shear-layer region. This is also observed in the wavemaker field, which
visualizes the overlap between the response and forcing modes.

For Re =10 000, we can observe again the thin elongated predominant structure over
the shear layer, which weakens for higher Sz, as opposed to the Re = 1000 case for
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which the wavemaker intensifies in the shear layer. For both Re = 1000 and 10 000, we
observe that the response and forcing modes for St < 1 present structures on the wake,
thus indicating wake dynamics, while for St > 1 the modes shift towards the shear-layer
region, thus indicating shear-layer dynamics. The broader and more intense wavemaker
region observed at Re = 1000, which reflects a stronger and wider overlap between forcing
and response, highlights the region where self-sustained mechanisms are likely to be
active. This is consistent with the oscillator-type behaviour, which is characterized by
self-sustained vortex shedding.

The streamwise velocity component of the response and forcing modes, along with
the wavemaker of the first singular mode for o« =9° at Re =1000 and 10000, are
shown in figure 18(b). At Re = 1000, both the response and forcing modes are similar
between o = 9° and 14° at low frequencies, see structures at St = 0.5, which persist up to
St~ 0.75. The structure of both cases is mainly concentrated in the downstream part of the
recirculation region, with a dominating wake structure (oscillator-type). However, some
differences can be seen in the wavemaker. For the @« = 9°, the wavemaker vanishes close
to the suction side, while this is not the case for the 14° case, for which a high magnitude
of the wavemaker is present at the separation point. For higher frequencies, St > 0.75,
the response and forcing modes of the two angles of attack are different. For o = 9°,
the structures persist downstream far from the wing in the wake region but with reduced
intensity. In contrast, for o = 14°, the modal structures gradually concentrate in the shear
layer above the wing. The main difference between the two cases is that the unsteady flow
around the airfoil is two-dimensional at o« = 9° and Re = 1000, while the flow is three-
dimensional at o« = 14° and Re = 1000. The three-dimensionality substantially modifies
the shear layer above the wing, which likely causes the differences in the evolution of the
modal structures, observed for the two angles of attack when increasing the frequency.
Although the shear layer at « = 14° and Re = 1000 supports the modal structures, these
structures are not amplified, as seen in the gain variation for ¢ = 14° at Re = 1000.

The comparison between the resolvent modes across o =9° and 14° at the higher
Reynolds number, Re = 10 000, also reveals similarities between the two angles of attack,
but again only at the lower frequencies, up to St 1. For the 9° case, the shift of the
response from the wake to the shear-layer region is not as clear as for the 14° case. At
o =9° and St > 1, the modes present structures in both the wake and the shear layer.
In particular, wake structures persist for higher frequencies compared with the 14° case.
This is because wake dynamics are governed by the angle of attack. In fact, the wake
characteristic frequency depends on the width of the wake (Roshko 1954), which becomes
thinner as the angle of attack decreases and can thus support higher frequencies compared
with higher angles of attack.

The gain variation of the first mode with respect to St and St,, where

Sty = 220 _ St sina, (5.2)

27U

is shown in figure 19. The figure annotates the regions of the gain distribution that
correspond to wake or shear-layer dynamics. The energy amplification at « = 9° is higher
compared with o = 14°, and exhibits pronounced local maximum. This is due to the
eigenvalues presented in figure 17. The higher A; and multiple eigenvalues for o = 9°
translate in a higher gain and multiple ‘bumps’ compared with the o = 14° case, due
to the proximity of the integration path to the eigenvalues. In figure 19(a), we observe
that the most pronounced relative peak for & =9°, at St~ 1.3, corresponds to the largest
eigenvalues and highlights wake dynamics. This occurs at a higher frequency compared
with the o = 14° local peak, around St & 0.7. On the contrary, for the two angles of attack,
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Figure 19. Gain distributions of the first mode for « = 9° and 14° at Re = 10 000 and #,, = 0.8 over (a) Strouhal
number St based on the chord and (b) Strouhal number S7,, based on the front facing area. Dotted lines indicate
the frequency associated with the positive eigenvalues (figure 17).

the maximum at higher frequencies, corresponding to the shear-layer dynamics, occurs at
about the same frequency, St~ 2.7.

When looking at the gain variation with respect to Sz, figure 19(b), we observe that
the wake dynamics is predominant at the same frequency for the two angles of attack. In
particular, the most pronounced low-frequency peaks occur at St, ~ 0.2 (Fage & Johansen
1927), indicating phenomena induced by the frontal wing height. However, we can see that
the most energetic shear-layer dynamics at the two angles of attack does not occur at the
same frequencies when considering frequencies based on the angle of attack. Moreover,
in the previous section, we observed that the separated shear-layer frequency increases
with the Reynolds number. These two observations highlight dynamics within the shear
layer which depend on the Reynolds number but not on the angle of attack. This can
be also observed in the results presented by Yeh & Taira (2019), where the flows at
Reynolds number Re =23 000 and angles of attack o = 6° and 9° are investigated. The
shear dynamics was observed not to be influenced by the angle of attack, with maximum
peak at St~ 4.8 for both « for their cases.

When the boundary layer separates without reattaching to the airfoil, it exhibits a
characteristic frequency that scales like that of a free shear layer (Ho & Huerre 1984;
Kotapati et al. 2010). The frequency depends on the boundary layer thickness at the
separation point (Bloor 1964). We show the gain variation over the normalized frequency
based on the laminar boundary layer thickness 8 & 1/+/Re (Bloor 1964),

wcd _ St
27'[Uo<>_\/R€’

in figure 20(a). We observe that the maximum gains occur at a similar normalized
frequency. In fact, we find that the frequency of maximum gain and the corresponding
streamwise characteristic length of the shear-layer dynamics occur at

St~ 0.027vRe, A ~37/vRe. 5.4)

Stre = (5.3)

The value of the normalized Strouhal number is in agreement with the range of St/v/Re €
[0.02, 0.03] proposed by Zaman & McKinzie (1991) as the range of effective excitation
frequencies in acoustic control of flow over airfoils (Yarusevych, Kawall & Sullivan 2003;
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Figure 20. Gain and frequency normalization for various angles of attack and Reynolds number.

Geng et al. 2016). Ho & Huerre (1984) also report a similar value of the normalized shear-
layer frequency, close to 0.03, for a laminar flow, when normalized by the momentum
thickness and the average velocity across the shear layer (Ho & Huerre 1984; Kotapati
et al. 2010). Results from Yeh & Taira (2019) are also in agreement with the most
amplified frequency related to shear-layer dynamics (St/+/Re =~ 4.8/+/23 000 ~ 0.032).
Experimental results from Klewicki et al. (2024) at higher Reynolds numbers also fall
in the same range (St/\/R_k 0.021 for Re =2 x 10* and St/\/R_ ~ 0.027 for Re =
4 — 8 x 10*). Their study examines the flow around a wing of aspect-ratio of 3 with
mounted walls, and the lower value of St/+/Re at Re =2 x 10* is likely due to the effects
of the wall that at the lower Reynolds number cause a higher three-dimensionality of the
flow and a stabilization of the shear layer at the extremes.

It is worth noticing that the Re = 1000 case does not align with the normalization. This
is due to the fact that, at this Reynolds number, the dynamics (and the peak) are associated
with wake dynamics rather than shear-layer ones, as discussed in § 4.2.

The energy amplification is scaled by Re® in figure 20(b), showing an almost
quadratic variation of the amplification energy with respect to the Reynolds number. The
distributions of o7 are also scaled by constant C that scales the peaks to be close to 1. In
this case, we have used C = 107>, Previous works show the maximum gain to quadratically
depend on the Reynolds number in planar flows such as plane Poiseulle, Couette flow and
Blasius boundary layer (Schmid, Henningson & Jankowski 2002), but also in accelerating—
decelerating flows (Linot, Schmid & Taira 2024), and oscillatory flows (Xu, Song & Avila
2021).

6. Conclusions

We provided a comprehensive analysis of the behaviour of separated flows over an
airfoil under spanwise homogeneous conditions. The study explored Reynolds numbers
spanning one to two orders of magnitude higher than earlier work, highlighting two distinct
dynamics at play and documenting their characteristic frequencies.

To do so, we employed biglobal resolvent analysis and investigated the effects of
the Reynolds number Re = 1000, 2500, 5000 and 10000 on separated flow around a
NACAO0012 airfoil at 14° angle of attack. To compute the base flows, we performed direct
numerical simulations for Re = 1000 and 2500, and wall-resolved large eddy simulations
for Re =5000 and 10 000. At these Reynolds numbers, the flow is three-dimensional,
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presenting spanwise periodic structures at Re = 1000 and 2500 whose wavelengths
decrease as the Reynolds increases. The two-dimensional base flows were obtained by
performing a time- and spanwise-average of the unsteady flow.

We observed that the recirculation region shortened from Re = 1000 to Re = 2500,
before elongating again as the Reynolds number increases further. Additionally, for
Re > 2500, a secondary recirculation region emerges on the suction side of the airfoil
and remains present at higher Reynolds numbers. The energy spectra evaluated at four
streamwise locations along the shear layer, showed high-frequency contents at specific
cross-stream locations, and at higher frequencies when increasing the Reynolds number.

Our results were organized in two parts. In the first part, the results of the resolvent
analysis were examined with respect to the different parameters: discount parameter,
spanwise wavenumber and frequency. Varying the discount parameter allowed us to
consider the dynamics over different time scales. The results showed that, at short
time scales, shear-layer dynamics were the most energetic, while at longer time scales
wake dynamics prevailed. Three-dimensionality, investigated by varying the spanwise
wavenumber, also seemed to be effective at long time scales and to be sustained by low
frequencies. At the highest Reynolds number, low-frequency and high-wavenumber modal
structures were observed within the recirculation region, suggesting the presence of elliptic
instability mechanisms. In contrast, the shear-layer dynamics, which occurred at higher
frequencies, remained predominantly two-dimensional.

In the second part, we compared the results with a different angle of attack, still focusing
on the shear-layer and wake dynamics. While wake dynamics were influenced by the
angle of attack, shear-layer dynamics depended solely on the Reynolds number. The
main frequencies that characterized the two different dynamics approached each other
when decreasing the angle of attack at a constant Reynolds number, while they separated
when increasing the Reynolds number at a constant angle of attack. Normalizing the
Strouhal number by the Reynolds number (S7/+/Re) highlighted the shear-layer scaling,
with maximum energy amplification occurring at St~ 0.027+/Re, consistent with prior
studies. Moreover, the energy amplification scales quadratically with Re.

This study revealed the dominant wake and shear-layer dynamics, emphasizing their
dependence on the Reynolds number and angle of attack. The identified scalings and
trends bridge gaps in understanding transitional flow regimes. These insights are useful for
improving predictions and control strategies for flows at even higher Reynolds numbers.
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Appendix A. Effects of the discount parameter

In this appendix, we report further analysis on the effect of the discount parameter y. In
§ 4.2, it has been shown that the dominance of the wake and shear-layer modes changes
with t,, = 1/y. In particular, at short time scales, higher energy amplifications occur at
high frequency, in the shear layer, while at long time scales, wake dynamics arising at
low frequency show higher energy amplification. Figure 21 shows the energy gain of the
wake and shear-layer modes, at Sty and Stg, respectively, over #,,. The energy gain of the
two modes increases over time with different slopes. In particular, we can observe that
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Figure 21. Variation of the first singular value oy over time ¢, at the frequencies of the maximum gain over
short and long time scales. Here ( ) indicates the wake mode frequency (lower frequency peak) and (- - - -)
indicates the shear-layer mode frequency (higher frequency peak).
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Figure 22. Streamwise and cross-stream position of the maximum kinetic energy of the shear response mode
(- - - -) and wake response mode ( ) Over time ?,,.

the wake mode energy increase is steeper compared with the shear-layer mode, while the
shear-layer mode seems to tend towards an asymptotic plateau. From this plot, we can see
that the time at which the wake mode prevails over the shear-layer mode increases with
the Reynolds number.

The variation in time of the response modes can be investigated also by tracking the
streamwise and cross-stream position of the maximum kinetic energy of the response
mode. This is shown in figure 22, considering

{x, } = arg max||q,|l2(x, y), (AD)
x,y

where ¢, = (qu,, éuy, Gu,)- From these plots, we observe that for the cases in which the
shear layer supports energetic modal structures (Re > 2500), the location of the shear-
layer mode’s maximum intensity remains almost unchanged. Interestingly, in these cases,
the wake mode is most intense in the shear-layer region over short times before eventually
shifting towards the wake region. The streamwise and cross-stream location of the shear
mode and wake mode over a short time scale show good agreement with the region of
high amplitude in the energy spectra contour shown in figure 7. At Re = 1000, the location
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Figure 23. Streamwise velocity response contours at St=0.75,2 and B=0,47 and 87 for Re=
1000, 10000 and t, =0.8 and 6.67, superposed to base flow velocity streamlines within the recirculation
region.

of the wake mode’s maximum intensity remains almost constant over time. Additionally,
the streamwise position of the wake mode at long time scales is correlated to the length
of the base flow recirculation region (see figure 9¢). The response mode at Re = 1000 is
most intense farther downstream compared with the higher Reynolds number cases, as its
recirculation region is the most elongated. Moreover, the response modes at Re = 2500
and 5000 are most intense at a similar streamwise location as their recirculation regions
have comparable extensions.

Appendix B. Spanwise wavenumber effects on the response modal structures

In § 4.3, we have presented the effects of the spanwise wavenumber § on the gain variation
as a function of the frequency. In this appendix, we report the changes in the response
modal structures with respect to 8. The effect of § on the response mode structures is
shown in figure 23 for Re = 1000 and 10 000, at frequencies St =0.75 and 2 and two
different time scales. The streamlines of the base flow are also plotted to highlight the
recirculation region.

We first consider the lower frequency, St =0.75. Over t, =0.8 and at 8 =0, the
response mode structure develops in the wake region for both Reynolds numbers. The
structure presents alternating oblique structures characteristic of the streamwise velocity
component of oscillating modes. As B increases, these elongated structures gradually
evolve into alternating concentrated structures located in the shear layer. This transition
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Figure 24. The domain considered for the shear layer and wake window (a), and first gain variation over
frequency for wake window ( ), and shear-layer window (- - - -) over short time scale t,, = 0.8 (b) and long
time scale t,, = 6.67 (c). Grey bands indicate the shift between wake and separated shear-layer modes.

occurs because smaller structures require stronger mean shear for amplification (Yeh &
Taira 2019; Skene et al. 2022). Over t, =6.67 and Re = 1000, the behaviour observed
over the shorter time scale persists. However, for #,, = 6.67 and Re = 10000, the mode
becomes spatially concentrated in the recirculation (elliptic) region and the trailing edge
shear-layer region at the highest .

Now, let us consider the higher frequency, St =2. Over , = 0.8, the response mode
for both Reynolds numbers gradually transitions from alternating oblique structures to
alternating concentrated structures within the shear-layer region. Over t, = 6.67 and at
Re = 1000, a mode switching occurs and structures emerge in the shear layer for higher 8
values, which are absent at § =0. Over 7, = 6.67 and at Re = 10 000 the mode structure
does not significantly change compared with the short time scale.

Appendix C. Windowed resolvent analysis

To further investigate the transition from wake modes to shear-layer modes, we perform
windowed resolvent analysis. The forcing is allowed to act over the entire domain, while
the energy is maximized by restricting the response to the shear-layer region and the
wake region, as indicated in figure 24(a). The shear and wake window correspond to the
regions (x, y) € [0, cos o] x [—0.3¢, 0.5¢] and (x, y) € [cos &, 2 cos ] x [—0.3¢, 0.5¢],
respectively, with the origin positioned at the leading edge.

In figure 24(b) we report the first gain evolution of the wake and shear-layer windowed
resolvent analysis at 7, =0.8. At low forcing frequencies the dynamics is governed by
shear-layer mechanisms. However, at St ~ 0.25 for Re = 1000 and St =~ 0.4 for Re > 2500,
wake mechanisms start prevailing over the shear-layer ones. This range, where the wake
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dynamics contribution on the total gain is higher compared with the shear-layer one,
corresponds to where we observe the local peaks that are the short-time effects of the wake
dynamics. At St~ 1 the dynamics is again dominated by shear-layer mechanisms. Over
long time scales, as shown in figure 24(b), the shift between the wake and the separated
shear-layer modes occurs at higher frequencies.

REFERENCES

BALAY, S. 2020 PETSc users manual (Rev. 3.13). Tech. Rep, Argonne National Lab.

BARKLEY, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750.

BENEDDINE, S., SIPP, D., ARNAULT, A., DANDOIS, J. & LESSHAFFT, L. 2016 Conditions for validity of
mean flow stability analysis. J. Fluid Mech. 798, 485-504.

BLOOR, M.S. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19 (2),
290-304.

BROEREN, A. & BRAGG, M. 1998 Low-frequency flowfield unsteadiness during airfoil stall and the influence
of stall type. In 16th AIAA Applied Aerodynamics Conference. AIAA Paper 1998-2517.

BRUNNER, C.E., KIEFER, J., HANSEN, M.O.L. & HULTMARK, M. 2021 Study of Reynolds number effects
on the aerodynamics of a moderately thick airfoil using a high-pressure wind tunnel. Exp. Fluids 62, 1-17.

CHU, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mechanica 1 (3),
215-234.

COUNSIL, J.N.N. & GONI BouLAMA, K. 2013 Low-Reynolds-number aerodynamic performances of the
NACA 0012 and Selig-Donovan 7003 airfoils. J. Aircraft 50 (1), 204-216.

DAwsON, S.T.M. & MCKEON, B.J. 2020 Prediction of resolvent mode shapes in supersonic turbulent
boundary layers. Intl J. Heat Fluid Flow 85 (108677).

DEISSLER, R.G. 1969 Nonlinear decay of a disturbance in an unbounded viscous fluid. Appl. Sci. Res. 21,
393-410.

FAGE, A. & JOHANSEN, F.C. 1927 On the flow of air behind an inclined flat plate of infinite span. Proc. R.
Soc. Lond. Ser. A, Containing Pap. Math. Phys. Character 116 (773), 170-197.

GENC, M.S., ACIKEL, H.H., AKPOLAT, M.T., OZKAN, G. & KARASU, I. 2016 Acoustic control of flow over
NACA 2415 airfoil at low Reynolds numbers. J. Aerospace Engng 29 (6), 375-420.

GEORGE, K.J. & SuJITH, R.I. 2011 On Chu’s disturbance energy. J. Sound Vibration 330 (22), 5280-5291.

GUPTA, S., ZHAO, J., SHARMA, A., AGRAWAL, A., HOURIGAN, K. & THOMPSON, M.C. 2023 Two-and
three-dimensional wake transitions of a NACAO0012 airfoil. J. Fluid Mech. 954, A26.

HE, W., GIORIA, R.D.S., PEREZ, .M. & THEOFILIS, V. 2017 Linear instability of low Reynolds number
massively separated flow around three NACA airfoils. J. Fluid Mech. 811, 701-741.

Ho, C.-M. & HUERRE, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365-424.

JovaNovic, M.R. 2004 Modeling, analysis, and control of spatially distributed systems. PhD thesis,
University of California. Santa Barbara.

JOVANOVIC, M.R. 2021 From bypass transition to flow control and data-driven turbulence modeling: an input—
output viewpoint. Annu. Rev. Fluid Mech. 53 (1), 311-345.

JOVANOVIC, M.R. & BAMIEH, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech.
534, 145-183.

KHALIGHI, Y., HAM, F., NICHOLS, J., LELE, S. & MOIN, P. 2011 Unstructured large eddy simulation for
prediction of noise issued from turbulent jets in various configurations. In AIAAPaper 2011-2886.

KLEWICKI, C., KLOSE, B.F., JACOBS, G.B. & SPEDDING, G.R. 2024 The footprint of laminar separation on
a wall-bounded wing section at transitional Reynolds numbers, arXiv preprint arXiv:2411.05926.

Koinma, Y., YEH, C.-A., TAIRA, K. & KAMEDA, M. 2020 Resolvent analysis on the origin of two-
dimensional transonic buffet. J. Fluid Mech. 885, R1.

KOTAPATI, R.B., MITTAL, R., MARXEN, O., HAM, F., YOU, D. & CATTAFESTA, L.N. 2010 Nonlinear
dynamics and synthetic-jet-based control of a canonical separated flow. J. Fluid Mech. 654, 65-97.

LINOT, A.J., SCHMID, P.J. & TAIRA, K. 2024 On the laminar solutions and stability of accelerating and
decelerating channel flows. J. Fluid Mech. 999, A43.

MARTINI, E., CAVALIERI, A.V.G., JORDAN, P., TOWNE, A. & LESSHAFFT, L. 2020 Resolvent-based optimal
estimation of transitional and turbulent flows. J. Fluid Mech. 900, A2.

MARXEN, O. & HENNINGSON, D.S. 2011 The effect of small-amplitude convective disturbances on the size
and bursting of a laminar separation bubble. J. Fluid Mech. 671, 1-33.

MCKEON, B.J. & SHARMA, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658,
336-382.

1021 A53-30


https://arxiv.org/abs/2411.05926
https://doi.org/10.1017/jfm.2025.10728

https://doi.org/10.1017/jfm.2025.10728 Published online by Cambridge University Press

Journal of Fluid Mechanics

MENEGHINI, J.R., CARMO, B.S., TSILOUFAS, S.P., GIORIA, R.D.S. & ARANHA, J.A.P. 2011 Wake
instability issues: from circular cylinders to stalled airfoils. J. Fluid. Struct. 27 (5-6), 694-701.

MOARREF, R., SHARMA, A.S., TROPP, J.A. & MCKEON, B.J. 2013 Model-based scaling of the streamwise
energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275-316.

Mukal, J., ENOMOTO, S. & AOYAMA, T. 2006 Large-eddy simulation of natural low-frequency flow
oscillations on an airfoil near stall. In 44th AIAA Aerospace Sciences Meeting. AIAA Paper 2006-1417.
NAKASHIMA, S., FUKAGATA, K. & LUHAR, M. 2017 Assessment of suboptimal control for turbulent skin

friction reduction via resolvent analysis. J. Fluid Mech. 828, 496-526.

NASTRO, G., ROBINET, J.-C., LOISEAU, J.-C., PASSAGGIA, P.-Y. & MAZELLIER, N. 2023 Global stability,
sensitivity and passive control of low-Reynolds-number flows around NACA4412 swept wings. J. Fluid
Mech. 957, AS.

NOGUEIRA, P.A.S., CAVALIERI, A.V.G., HANIFI, A. & HENNINGSON, D.S. 2020 Resolvent analysis in
unbounded flows: role of free-stream modes. Theor. Comput. Fluid Dyn. 34 (1), 163-176.

PICKERING, E., RIGAS, G., NOGUEIRA, P.A.S., CAVALIERI, A.V.G., SCHMIDT, O.T. & CoLONIUS, T.
2020 Lift-up, Kelvin—Helmholtz and Orr mechanisms in turbulent jets. J. Fluid Mech. 896, A2.

PICKERING, E., RIGAS, G., SCHMIDT, O.T., Sipp, D. & CoLONIUS, T. 2021a Optimal eddy viscosity for
resolvent-based models of coherent structures in turbulent jets. J. Fluid Mech. 917, A29.

PICKERING, E., TOWNE, A., JORDAN, P. & COLONIUS, T. 2021) Resolvent-based modeling of turbulent jet
noise. J. Acousti. Soc. Am. 150 (4), 2421-2433.

PuLLiAM, T.H. & VASTANO, J.A. 1993 Transition to chaos in an open unforced 2D flow. J. Comput. Phys.
105 (1), 133-149.

QADRIL U.A. & SCHMID, P.J. 2017 Frequency selection mechanisms in the flow of a laminar boundary layer
over a shallow cavity. Phys. Rev. Fluids 2 (1), 013902.

RIBEIRO, J.H.M. & TAIRA, K. 2024 Triglobal resolvent-analysis-based control of separated flows around
low-aspect-ratio wings. J. Fluid Mech. 995, A13.

RIBEIRO, J.H.M., YEH, C.-A., ZHANG, K. & TAIRA, K. 2022 Wing sweep effects on laminar separated
flows. J. Fluid Mech. 950, A23.

ROLANDI, L.V. 2021 Stability of low Reynolds number compressible flows. PhD thesis, Toulouse, Institut
supérieur de 1’aéronautique et de I’espace.

ROLANDI, L.V., JARDIN, T., FONTANE, J., GRESSIER, J. & JOLY, L. 2022 Stability of the low Reynolds
number compressible flow past a NACAO0012 airfoil. AIAA J. 60 (2), 1052-1066.

RoOLANDI, L.V, RIBEIRO, J.H.M., YEH, C.-A. & TAIRA, K. 2024 An invitation to resolvent analysis. Theor.
Comput. Fluid Dyn. 38, 603-639.

ROMAN, J.E., CAMPOS, C., ROMERO, E. & TOMAS, A. 2016 SLEPc users manual. Tech. Rep. DSIC-11/24/02
— D. Sistemes Informatics i Computaci6, Universitat Politecnica de Valencia.

ROSENBERG, K., SYMON, S. & MCKEON, B.J. 2019 Role of parasitic modes in nonlinear closure via the
resolvent feedback loop. Phys. Rev. Fluids 4 (5), 052601.

ROSHKO, A. 1954 On the development of turbulent wakes from vortex streets, NASA, Tech. Rep. 1191.

VON, S., JAKOB, G.R., SCHMIDT, O.T., JORDAN, P. & OBERLEITHNER, K. 2024 On the role of eddy
viscosity in resolvent analysis of turbulent jets. J. Fluid Mech. 1000, A51.

SCHMID, P.J., HENNINGSON, DAN S. & JANKOWSKI, D.F. 2002 Stability and transition in shear flows. Appl.
Math. Sci. Appl. Mech. Rev. 142-55 (3), B57-B59.

ScHMIDT, O.T., TOWNE, A., RIGAS, G., COLONIUS, T. & BRES, G.A. 2018 Spectral analysis of jet
turbulence. J. Fluid Mech. 855, 953-982.

SHEARD, G.J., THOMPSON, M.C. & HOURIGAN, K. 20054 Subharmonic mechanism of the mode C
instability. Phys. Fluids 17 (11), 111702.

SHEARD, G.J., THOMPSON, M.C., HOURIGAN, K. & LEWEKE, T. 2005b The evolution of a subharmonic
mode in a vortex street. J. Fluid Mech. 534, 23-38.

SKENE, C.S., YEH, C.-A., SCHMID, P.J. & TAIRA, K. 2022 Sparsifying the resolvent forcing mode via
gradient-based optimisation. J. Fluid Mech. 944, A52.

SYMON, S., MADHUSUDANAN, A., ILLINGWORTH, S.J. & MARUSIC, 1. 2023 Use of eddy viscosity in
resolvent analysis of turbulent channel flow. Phys. Rev. Fluids 8 (6), 064601.

SYMON, S., S1pP, D. & MCKEON, B.J. 2019 A tale of two airfoils: resolvent-based modelling of an oscillator
versus an amplifier from an experimental mean. J. Fluid Mech. 881, 51-83.

TAMILSELVAM, P., ASZTALOS, K.J. & DAWSON, S.T. 2022 Transient growth analysis of flow over an airfoil
for identifying high-amplification, spatially-localized inputs. In AIAA SCITECH 2022 Forum. AIAA Paper
2022-0592.

TANG, Y., WANG, F., WANG, C., HONG, Y., YAO, Z. & TANG, X. 2021 Low-frequency oscillation
characteristics of flow for NACA66 hydrofoil under critical stall condition. Renew. Energy 172, 983-997.

1021 A53-31


https://doi.org/10.1017/jfm.2025.10728

https://doi.org/10.1017/jfm.2025.10728 Published online by Cambridge University Press

L.V. Rolandi, L. Smith, M. Amitay, V. Theofilis and K. Taira

THOMAREIS, N. & PAPADAKIS, G. 2018 Resolvent analysis of separated and attached flows around an airfoil
at transitional Reynolds number. Phys. Rev. Fluids 3 (7), 073901.

ToPPINGS, C.E. & YARUSEVYCH, S. 2024 Laminar separation bubble formation and bursting on a finite
wing. J. Fluid Mech. 986, A26.

TOWNE, A., COLONIUS, T., JORDAN, P., CAVALIERI, A.V. & BRES, G.A. 2015 Stochastic and nonlinear
forcing of wavepackets in a Mach 0.9 jet. In 2/st AIAA/CEAS Aeroacoustics Conference. AIAA Paper
2015-2217.

TOWNE, A., SCHMIDT, O.T. & CoLoONIUS, T. 2018 Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821-867.

TREFETHEN, L.N., TREFETHEN, A.E., REDDY, S.C. & DRISCOLL, T.A. 1993 Hydrodynamic stability
without eigenvalues. Science 261 (5121), 578-584.

TURTON, S.E., TUCKERMAN, L.S. & BARKLEY, D. 2015 Prediction of frequencies in thermosolutal
convection from mean flows. Phys. Rev. E 91 (4), 043009.

VREMAN, A.W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and
applications. Phys. Fluids 16 (10), 3670-368]1.

Xu, D., SONG, B. & AvVILA, M. 2021 Non-modal transient growth of disturbances in pulsatile and oscillatory
pipe flows. J. Fluid Mech. 907, RS.

YARUSEVYCH, S., KAWALL, J.G. & SULLIVAN, P.E. 2003 Effect of acoustic excitation on airfoil performance
at low Reynolds numbers. AIAA J. 41 (8), 1599-1601.

YEH, C.-A., BENTON, S.I., TAIRA, K. & GARMANN, D.J. 2020 Resolvent analysis of an airfoil laminar
separation bubble at Re = 500 000. Phys. Rev. Fluids 5 (8), 083906.

YEH, C.-A. & TAIRA, K. 2019 Resolvent-analysis-based design of airfoil separation control. J. Fluid Mech.
867, 572-610.

ZAMAN, K.B.M.Q., MCKINZIE, D.J. & RUMSEY, C.L. 1989 A natural low-frequency oscillation of the flow
over an airfoil near stalling conditions. J. Fluid Mech. 202, 403—442.

ZAMAN, K.B.M.Q. & MCKINZIE, D.J. 1991 Control of laminar separation over airfoils by acoustic excitation.
AIAA J. 29 (7), 1075-1083.

ZHU, W., CHEN, X. & Fu, L. 2024 Resolvent analyses of incompressible turbulent channel, pipe and
boundary-layer flows. Intl J. Heat Fluid Flow 106, 109331.

1021 A53-32


https://doi.org/10.1017/jfm.2025.10728

	1. Introduction
	2. Theoretical background and numerical implementation
	2.1. Biglobal resolvent analysis
	2.2. Computational set-up

	3. Reynolds number effects on the unsteady and base flows
	3.1. Unsteady flows
	3.2. Oscillator and amplifier dynamics
	3.3. Time-averaged base flows

	4. Resolvent analysis
	4.1. Eigenvalue decomposition of the linear operator
	4.2. Temporal discounting
	4.3. Spanwise wavenumber effects

	5. Scaling of wake and shear-layer dynamics
	6. Conclusions
	Appendix A. Effects of the discount parameter
	Appendix B. Spanwise wavenumber effects on the response modal structures
	Appendix C. Windowed resolvent analysis
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


