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Abstract

Low-dimensional representation and clustering of network data are tasks of great interest across vari-
ous fields. Latent position models are routinely used for this purpose by assuming that each node has
a location in a low-dimensional latent space and by enabling node clustering. However, these models
fall short through their inability to simultaneously determine the latent space dimension and number
of clusters. Here we introduce the latent shrinkage position cluster model (LSPCM), which addresses this
limitation. The LSPCM posits an infinite-dimensional latent space and assumes a Bayesian nonparametric
shrinkage prior on the latent positions’ variance parameters resulting in higher dimensions having increas-
ingly smaller variances, aiding the identification of dimensions with non-negligible variance. Further, the
LSPCM assumes the latent positions follow a sparse finite Gaussian mixture model, allowing for automatic
inference on the number of clusters related to non-empty mixture components. As a result, the LSPCM
simultaneously infers the effective dimension of the latent space and the number of clusters, eliminating
the need to fit and compare multiple models. The performance of the LSPCM is assessed via simulation
studies and demonstrated through application to two real Twitter network datasets from sporting and
political contexts. Open-source software is available to facilitate widespread use of the LSPCM.

Keywords: Latent position model; network analysis; mixture models; Bayesian nonparametric priors; multiplicative gamma
process

1. Introduction

Network data are an important class of structured data where objects are represented as nodes
and the relationships between these objects are represented as edges. Network data arise in various
fields, including epidemiology (Jo et al., 2021), neuroscience (Yang et al., 2020), brain connectivity
(Aliverti and Durante, 2019), and sociology (D’Angelo et al., 2019). A key interest in the analysis of
network data is the task of clustering the nodes in the network, where the aim is to group together
nodes that share similar characteristics or behaviors.

While a variety of network models exist, many originate from the influential Erd6s-Rényi ran-
dom graph model (Erdos and Rényi, 1959; Gilbert, 1959), including the widely utilized stochastic
block model (Holland, et al., 1983; Snijders and Nowicki, 1997) and the latent position model
(LPM, Hoff, et al., 2002). Here, we focus on the LPM which assumes each node in a network has
a position in a latent p-dimensional space. Under the LPM, the probability of an edge between
two nodes is determined by their proximity in the latent space. The latent position cluster model
(LPCM, Handcock, et al., 2007) extended the LPM to allow for model-based clustering of nodes in
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a network by assuming the latent positions are generated from a finite mixture of Gaussian distri-
butions. Various extensions to the LPCM have been proposed, including approaches that account
for random effects (Krivitsky et al., 2009), that incorporate covariates through a mixture of experts
framework (Gormley and Murphy, 2010), that employ a variational approach to Bayesian infer-
ence (Salter-Townshend and Murphy, 2013), that model longitudinal networks (Sewell and Chen,
2017), that allow for edge clustering (Sewell, 2020; Pham and Sewell, 2024), and that model mul-
tiplex networks (D’Angelo et al., 2023); see Rastelli, et al. (2016); Sosa and Buitrago (2021); Kaur
et al. (2024) for comprehensive reviews.

Although the LPCM is widely used, inferring the number of clusters and the dimensionality of
the latent space remains a challenging task. In practice, the numbers of clusters and dimensions
are typically treated as user-defined parameters, with the latter set as 2 in the majority of cases
to allow for simple visualization and interpretation (D’Angelo et al., 2023; Liu and Chen, 2022).
Often, a set of LPCMs with different numbers of clusters and dimensions are fitted to the network
data and a model selection criterion is used to select the optimal model. Many model selection
criteria have been used for this purpose e.g., Handcock et al. (2007) use a variant of the Bayesian
information criterion (BIC) to select optimal numbers of clusters and dimensions but highlight
its lack of robustness. Other model selection criteria such as the Watanabe-Akaike information
criterion (WAIC) (Ng et al., 2021; Sosa and Betancourt, 2022), the Akaike information criterion
(AIC) and the integrated completed likelihood (ICL) (Sewell, 2020) have also been used. While
these criteria have found some success, they can give conflicting inference on the same data and
their use requires fitting a large set of models, each with a different combination of number of clus-
ters and number of dimensions, which becomes computationally prohibitive as the set of possible
models grows.

Alternative, automated strategies for inferring the numbers of clusters and dimensions from
the network data have emerged. In the context of stochastic block models, Yang et al. (2020) uti-
lize a frequentist framework, while Passino and Heard (2020) employ a Bayesian framework for
this purpose. In the LPCM setting, automatic inference on the number of clusters has been con-
sidered in D’Angelo et al. (2023) via an infinite mixture model, while Durante and Dunson (2014)
and Gwee, et al. (2024a) employed nonparametric shrinkage priors to address the latent space
dimensionality. However, automated, simultaneous inference of both the number of clusters and
the effective latent space dimension in the LPCM setting has not yet been considered.

Here the latent shrinkage position cluster model (LSPCM) is introduced, which simultaneously
infers the node clustering structure and the effective latent space dimension. To achieve clustering
of the nodes, a sparse finite mixture model (Malsiner-Walli et al., 2014, 2017) is employed that
overfits the number of components in the mixture model. The adoption of a sparse prior on the
mixture weights encourages emptying of redundant components, thereby allowing inference on
the number of clusters. Within each cluster, a Bayesian nonparametric truncated gamma process
shrinkage prior (Bhattacharya and Dunson, 2011; Gwee, et al., 2024a) is placed on the variance
of the nodes’ positions in the latent space. While the latent space is assumed to have infinitely
many dimensions, the shrinkage prior implies that higher dimensions have negligible variance and
therefore are non-informative. The LSPCM eliminates the need for choosing a model selection
criterion and only requires the fitting of a single model to simultaneously infer both the optimal
number of clusters and the effective latent space dimension, reducing the required computation
time. Additionally, the Bayesian framework naturally provides uncertainty quantification for the
number of clusters and the number of effective dimensions.

The remainder of this article is structured as follows: Section 2 describes the proposed LSPCM
while Section 3 outlines the inferential process along with practical implementation details.
Section 4 describes simulation studies conducted to explore the performance of the LSPCM in
a variety of settings where the numbers of nodes, dimensions, and clusters, as well as cluster vol-
umes, vary. Section 5 applies the proposed LSPCM to two real Twitter network data sets: one
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concerning football players in the English premier league and one concerning the Irish politi-
cal context. Section 6 concludes and discusses potential extensions. R (R Core Team, 2024) code
with which all results presented herein were produced is freely available from the Ispm GitLab
repository.

2. The latent shrinkage position cluster model

To cluster nodes in a network, we introduce the novel LSPCM which draws on and fuses together
ideas from both the latent shrinkage position model (LSPM) of Gwee et al. (2024a), the LPCM of
Handcock et al. (2007), and the sparse finite mixture models of Malsiner-Walli et al. (2014).

2.1 The latent shrinkage position model
Network data typically take the form of an n x n adjacency matrix, Y, where # is the number of
nodes and entry y;; denotes the relationship or edge between nodes i and j. Self-loops are not
permitted and thus the diagonal elements of Y are zero. Here we consider binary edges but a
variety of edge types can be considered.

Under the LPM (Hoff, et al., 2002), edges are assumed independent, conditional on the latent
positions of the nodes. The sampling distribution is then

P(Y | o, Z) = l_[ P(y”J | o,Z, Z])
i#f
where Z is the matrix of latent positions, with z; denoting the latent position of node i; « is a
global parameter that captures the overall connectivity level in the network. Denoting by g;; the
probability of an edge between nodes i and j, i.e. P(y;j = 1| a, z;, zj), a logistic regression model
formulation is used where the log odds of an edge between nodes i and j depends on the Euclidean
distance between their respective positions z; and z; in the latent space,

el T PRI EL ()

dij
As in Gollini and Murphy (2016) and D’Angelo et al. (2019), in (1) the distance is taken to be
the squared Euclidean distance, giving higher weight to the latent space in the model than that
induced by a linear Euclidean distance.

Gwee et al. (2024a) propose the LSPM, a Bayesian nonparametric extension of the LPM that
allows automatic inference on the number of the infinite latent space dimensions that are neces-
sary to fully describe the network i.e., the number that are effective since they have non-negligible
latent position variance. Under the LSPM, the latent positions are assumed to have a zero-
centered Gaussian distribution with diagonal precision matrix €2, whose entries w; denote the
precision of the latent positions in dimension ¢, for £ =1, ..., 0o. Spherical Gaussian distribu-
tions are assumed, as is standard in latent position models, since the likelihood is invariant to
rotations of the latent space (Handcock, et al., 2007). The LSPM employs a multiplicative trun-
cated gamma process (MTGP) prior on the precision parameters: the latent dimension 4 has an
associated shrinkage strength parameter &5, where the cumulative product of §; to &, gives the
precision w;. An unconstrained gamma prior is assumed for §;, while a truncated gamma distri-
bution is assumed for the remaining dimensions to ensure shrinkage. Specifically, fori=1,...,n

log

z; ~ MVN(0, Q1)
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£
Q= we:l_[(ShforZ:I,...,oo
h=1

-1
0 w5

81~ Gam(a;, b1 =1) 8y~ GamT(ay, by =1, = 1) forh>1.

Here a; and b; are the gamma prior’s shape and rate parameters on the first dimension’s shrinkage
parameter, while a, is the shape parameter, b, is the rate parameter, and f, is the left truncation
point (here set to 1) of the truncated gamma prior for dimensions h > 1. This MTGP prior results
in an increasing precision and therefore a shrinking variance of the positions in the higher dimen-
sions of the latent space. Further details regarding these hyperparameters and their choices are
given in Appendix A. Under this MTGP prior, the LSPM is nonparametric with infinitely many
dimensions, where unnecessary higher dimensions’ variances are increasingly shrunk towards
zero. Dimensions that have variance very close to zero will then have little meaningful informa-
tion encoded in them as the distances between nodes will be close to zero. Thus, under the LSPM,
the effective dimensions are those in which the variance is non-negligible (Gwee, et al., 2024a).

2.2 The latent shrinkage position cluster model

To infer the unknown number of clusters of nodes, we propose the novel LSPCM which
results from fusing the LSPM (Gwee, et al., 2024a), the latent position cluster model (LPCM) of
Handcock, et al. (2007) and the sparse finite mixture model framework of Malsiner-Walli et al.
(2014, 2017). Like the LPCM, the proposed LSPCM assumes that latent positions arise from a finite
mixture of G spherical multivariate normal distributions; however, unlike the LPCM, the LSPCM
assumes an infinite-dimensional latent space as in the LSPM. Further, the LSPCM employs a
sparsity-inducing Dirichlet prior on the mixture weights, facilitating automatic inference on the
number of clusters.

Specifically, the LSPCM assumes, fori=1,...,n,

G
zi~ ) eMVN(g, v ') )
g:l

Mgl Q~MVN(0,£Q7") ¥, ~Gam(ay, by)

-1
w; ... 0 '

Q= a)gzl_[(Shfor@:l,...,Oo

0 o] h=l

81 ~Gam(a;, by =1) 8~ GamT(ag, by=1,6p=1)forh> 1.

Here 7, denotes the probability that a node belongs to the g-th component, so that 7, >0

(g=1,...,G)and Zngl g = 1. For the mean latent position g, of the g-th component, a mul-
tivariate Gaussian prior with zero mean and a scaled version of the same precision matrix as
the latent positions with its MTGP prior is assumed; this ensures the latent positions will all
shrink towards zero at higher dimensions. Consequently, the component means are increasingly
shrunk towards zero, resulting in higher dimensions characterized by increasingly overlapping
mixture components, and, as a result, becoming less informative for cluster separation. Further,
as in Ryan et al. (2017), the prior covariance on i, is inflated by a scaling factor &; values of
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& > 1 result in cluster means that are more dispersed than cluster members. While a range of
values of £ ={1,9, 100} were considered, posterior predictive checks suggested that, similar to
Ryan et al. (2017), £ = 9 showed good model fit by encouraging both separate yet connected clus-
ters. Additionally, a cluster-specific factor 1 scales the precision matrix of the latent positions
providing the flexibility to model clusters of different volumes.

While the LPCM assumes a finite mixture of spherical multivariate normal distributions and
casts the problem of inferring the number of clusters as one of model selection, the LSPCM
considers an overfitted (or sparse) finite mixture model which provides automatic inference on
the number of clusters. Here, following Malsiner-Walli et al. (2014); Fruhwirth-Schnatter, et al.
(2019), a symmetric Dirichlet prior is placed on the mixture weights 7 with a gamma prior placed
on the Dirichlet’s influential sparsity-inducing hyperparameter v, i.e.,

T=(11,...,7G) ~Dir(v,...,v) v ~ Gam(a,, Gb,).

Under such an overfitted mixture, a distinction is made between the number of mixture compo-
nents G, the number of non-empty mixture components G, and the number of clusters in the
data G*. A large number G of initial components is specified and under a gamma prior that favors
small values of v, unnecessary components are emptied out during the inferential process. The
number of non-empty components G then serves as an estimate of the number of clusters G*.
Thus, the LSPCM allows for automatic, simultaneous inference of the number of clusters and of
the number of effective latent space dimensions, while requiring only a single model to be fit to
the network data.

While the LSPM adopts a nonparametric approach, an overfitted sparse finite mixture
approach for the clustering aspect of LSPCM is employed here as the sampling algorithm is
simpler than that required to fit an infinite mixture model. Further, as detailed in Frithwirth-
Schnatter and Malsiner-Walli (2018), under certain hyperparameter specifications, similar infer-
ence with respect to the number of clusters is obtained under the sparse finite and nonparametric
approaches. Additionally, Frithwirth-Schnatter and Malsiner-Walli (2018) and Murphy, et al.
(2020) highlight that overfitted mixtures serve well in situations where the data arise from a mod-
erate number of clusters, even with growing sample size, whereas infinite mixtures are suited to
cases where the number of clusters increases with sample size. As the networks considered here
are anticipated to arise from a moderate number of clusters, an overfitted approach is preferred

and taken.
To facilitate inference, we introduce C=(ci,...,c,) which contains the latent component
membership vectors ¢; = (ci1, . . ., ¢ig), for i=1,...,n, where cig =1 if node i belongs to com-

ponent g and cjg =0 otherwise. Thus, ¢; ~ MultiNom(1, 7). A summarizing graphical model
representation of the LSPCM is shown in Figure 1.

3. Inference

Denoting by ® the component means f,, . . ., L, the precision scaling factors ¥1, . .., ¥ and
the precision matrix €, the joint posterior distribution of the LSPCM is then

P(,Z,C, 7,0 |Y) xP(Y |, Z)P()P(Z | C, T, ®)P(C | T)P(7)P(O)

where P(«) is the non-informative N(uy =0, o(f =4) prior for the o parameter, and P(7) and
P(®) denote the prior distributions outlined in Section 2.2. For the MTGP priors, similar to
Durante (2017) and Gwee, et al. (2024a), we set the hyperparameters to a; =2 and a, =3. A
gamma hyperprior is used on the hyperparameter v with shape a, = 5 and rate b, = 5 that is found
to work well empirically in the simulation studies. For the gamma prior on ¥, as LPMs can only
model networks of connected nodes, and as uncovering clustering structure is not possible if some
clusters are so variable that they mask others, only values of ¥, near 1 are of interest. A strongly
informed gamma prior centered on 1 is therefore assumed for v/, with ay =400 and by, = 400,
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LSPCM |

Figure 1. The graphical model representation of the LSPCM.

giving a prior concentrated around 1. A summary of the LSPCM hyperparameter settings used is
detailed in Appendix A.

3.1 An adaptive Metropolis-within-Gibbs sampler

Markov chain Monte Carlo (MCMC) is employed to draw samples from the joint posterior dis-
tribution. After defining necessary notation in Appendix B, derivations of the full conditional
distributions of the latent positions, cluster membership vectors and model parameters are given
in Appendix C. As the MTGP prior is nonparametric and assumes an infinite number of latent
dimensions, in practice setting an initial finite truncation level, pp, on the number of dimensions
fitted is required. Following Bhattacharya and Dunson (2011), an adaptive Metropolis-within-
Gibbs sampler is employed where the truncation dimension p < pg is dynamically shrunk or
augmented as the sampler proceeds, with inferential validity ensured as detailed in Bhattacharya
and Dunson (2011). The number of effective dimensions, p, can then be subsequently inferred
(see Section 3.2.3).

Denoting the current iteration by s for s=1,...,S (but for clarity s is omitted where it is
unnecessary), a single pass of the sampler proceeds as follows:

D CigZi

1. Sample the component mean R for g=1,...,G from MVN, (W’
i=1 Cig

(2 (X cg +5_1)]_1) :

2. Sample v from a Gam(o, %) where o, is a step size factor. Accept ¥ as v*1 with proba-
pv=v|-) f(av.by)
P(V:U(S)‘_) f(V(S)§“v:bv)
gamma density. Otherwise, set V61 = (),

bility , where p(v | —) is the full conditional of v and f( - ;a,, b,) is the
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3. Sample the mixing weights 7 from Dir( Y/, ¢i1 +V,..., Y iy Cig+ V).

4. Sample the cluster-specific precision scaling parameter ¢, for g=1,...,G from
Gam (al/, + %, by + % Yoy (zi— [Lg)TQ(Z,' — ;Lg)cig).
5. Sample the latent memberships ¢; for each node i=1,...,n from a Multinomial with

Tobp(zispg ¥y R
O Ty 'R
dp(zis, Ve '@~ is the p-dimensional multivariate normal density.

where

G categories by drawing the g-th category with probability

6. Sample Z from a MVNP(Z(S), kyrg 1Q~16)) proposal distribution where k is a step size

P(Y[a©,7) $pzsZkyy Q1)

P(Y| «©®,Z0) ¢7p(li;Z(s),klﬁg_1§2*1(S))’ otherwise set

factor. Accept Z as Z&tD with probability
Z(+1) — 7(s)

7. Sample ¢ from an informed Gaussian proposal distribution N (/10,,63) (Gormley and
Murphy, 2010) where

©) —z: — z:112
- (S) _2 eXP (a ”Z, Z]”Z) 1 (5)
=o +0, % E —E + e —a) |,
" B -~ e LA

and

—1

—2_ Z exp () — ||z; — z3) + !
a 2 _2
i [1 +exp (@ — ||z; — Zj”%)] %

Then, accept & as a®+? following the Metropolis-Hastings acceptance ratio.
8. Sample §; from

(n+G)p 1 n G ¢
Gam (T +ap, > Z Z (zi — ILg)ng_l (l_[ 5m> Lp(zi — pg)cig+

i=1 g=1 m=2
1 G 14
5D Mg (]‘[ 8m) Ippg + by
g:l m=2

9. Sample SZSH) forh=2,...,pfrom

n+G (p—h+1) 1 - *
i=1 m=1,m#h
1 l
EZ,LgT(g—l) [T 8% | tmg+b2 1
g=1 m=1,m#h

where s* =s+ 1 for m < hand s* =sform > h.
10. Calculate w, by taking the cumulative product of §; to §;.

11. At iteration s, adapt the truncation dimension p*) with probability exp ( — ko — k15) as
detailed in Section 3.2.2.
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3.2 Practical implementation details

When implementing the adaptive Metropolis-within-Gibbs sampler, practical details such as
initialization of latent variables and parameters, adapting the truncation dimension, and post-
processing of the MCMC chain require attention.

3.2.1 Initialization
While the LSPCM assumes an infinite number of latent dimensions and a potentially large number
of components in the overfitted mixture, this is computationally impractical due to finite compu-
tational resources. Setting initial values for both the truncation level of the latent dimensions,
po, and for the number of components in the mixture, G, prevents the sampler from explor-
ing computationally unfeasible models. Here, po =5 and G =20 are used throughout as these
settings were empirically observed to strike a balance between exploring complex models and
computational feasibility for the type of networks analyzed.

The LSPCM’s parameters, cluster allocations and latent positions also require initialization,
achieved here as follows, where s = 0:

1. Calculate the geodesic distances (Kolaczyk and Csardi, 2020) between the nodes in the
network. Apply classical multidimensional scaling (Cox and Cox, 1994) to the geodesic
distances and set Z() to be the resulting n x po positions. Empirically, this approach was
more computationally efficient than setting Z() to the LPM solution, with little notable
loss in inferential performance.

2. Fit a standard regression model, with regression coefficients « and 8, to the vector-
ized adjacency matrix where log odds(q;j = 1) =a — 88 ||z§0) - Z](o)
and B. Set ) = q.

3. Asthe LSPCM model (1) constrains 8 = 1, center and rescale the latent positions by setting
70 = M 2O, where Z(© are the mean-centered initial latent positions.

||% to obtain estimates &

4. Apply model-based clustering to Z®) viamclust (Scrucca et al., 2016) with up to G clusters
and the EEI covariance structure to obtain initial cluster allocations.

5. Obtain a)((io) for £ =1,.. ., po by calculating the empirical precision of each column of Z(©.
©)

6. Set 850) = wgo) and calculate 8;10) = ‘31+) where h=2, ..., po.
-1

3.2.2 Adapting the truncation dimension

As in Bhattacharya and Dunson (2011) and Gwee et al. (2024a), the LSPCM adapts the truncation
dimension p as the MCMC sampler runs. This adaptation approach is employed to ease compu-
tational load as there are often relatively few important factors. Further, under the LSPCM, later
dimensions will have very small, but not exactly zero, variance, thus contributing to the distance
between nodes in (1) and potentially introducing bias to parameter estimates. This behavior is
considered in Gwee et al. (2024a). Similarly to Bhattacharya and Dunson (2011), the probability of
adapting p at iteration s is taken as IP(s) = exp ( — ko — k1), which decreases exponentially as the
MCMC chain evolves. Here, setting ko = 4 and k] = 5 x 10~* demonstrated good performance in
empirical experiments.

After the burn-in period, at an adaptation step, when p > 1, p is reduced based on the cumu-
lative proportion of the latent position variance that the dimensions £ =1, ...,p — 1 contain. If
the dimensions up to the £-th cumulatively contain a proportion greater than €, of the total vari-
ance, then the dimensions from £ + 1 to p add little information, and p is reduced to £. In general,
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€1 = 0.8 was found to work well but higher values of €; also showed good performance in net-
works with large 7. If the criterion for reducing p is not met, an increase in p is then considered by
examining 8, ! and a threshold e;: if 8y 1> ¢, p is increased by 1, with the additional associated
parameters drawn from their respective priors. We consider €, = 0.95 which was found to work
well in practice. The case where p =1 at an adaptation step requires a different criterion: if the
proportion of latent positions with absolute deviation from their empirical mean > 1.96 (the 95%
critical value of a standard Normal ) is greater 0.05 x €3, then p is increased to 2; setting €3 =5
was found to work well in practice. Reducing p is not considered if p = 1.

3.2.3 Post-processing of the MCMC chain

The likelihood function of the LSPCM depends on the Euclidean distances between the latent
positions; hence, it remains unaffected by rotations, reflections, or translations of these positions,
giving rise to identifiability issues. To ensure valid posterior inference, similar to Gormley and
Murphy (2010), a Procrustean transformation of the sampled latent positions ZW, . 2O s
considered. The transformation aligns the sampled positions with a reference configuration Z,
which is selected based on the configuration that yields the highest log-likelihood during the burn-
in phase of the MCMC chain. Although this choice is arbitrary, it has little effect as the reference
configuration solely serves the purpose of addressing identifiability.

The MCMC sampler provides insight on the number of effective latent dimensions p. Here,
post hoc, the number of effective dimensions at each iteration s, p¥), is determined as p' =
p —m, where m® is the number of non-effective dimensions, i.e. dimensions with negli-
gible variance. For each iteration, the cumulative proportion of variance of each dimension is
computed. If the first £¢) dimensions cumulatively contain a proportion greater than €; = 0.8
of the total variance, then the dimensions from £ +1 to p'®) are considered as non-effective
and m® = p©® — ¢ Similar to Bhattacharya and Dunson (2011) p,,, the mode of the thinned
P, ..., p9), is used to denote the modal effective dimension, with empirical intervals quantifying
the associated uncertainty.

Since the MCMC samples of the component allocations will have varying numbers of non-
empty components, and because of the label switching problem caused by invariance of the
mixture with respect to permutation of the component labels, care must be taken when deriv-
ing posterior summaries of cluster labels and parameters. While Fruhwirth-Schnatter et al. (2019)
give an overview of many potential approaches, here, as it demonstrated robust and accurate per-
formance for the networks examined, we adopt the procedure of Fritsch and Ickstadt (2009) to
estimate the cluster labels of the nodes and subsequently the number of clusters. The method,
implemented in the R package mcclust (Fritsch, 2022), first estimates the posterior similarity
matrix containing the proportion of times a pair of nodes are placed in the same cluster and then
maximizes the posterior expected adjusted Rand index (PEAR) to obtain the optimal cluster labels.
In addition, as in Malsiner-Walli et al. (2014), the posterior distribution of the number of filled
components G4 and the corresponding posterior mode G,, are examined to inspect the uncer-
tainty in the number of clusters. In some situations (see Section 5.1 for an example), the posterior
mode may differ from the number of clusters estimated by the PEAR method. Finally, for sum-
marizing the posterior distributions of the cluster parameters, as in Gormley and Murphy (2010),
cluster parameters are obtained after permuting cluster labels to minimize a loss function based
on the cluster means.

4. Simulation studies

The performance of the LSPCM is assessed on simulated data scenarios by evaluating its ability to
recover the effective latent dimension of the latent space and to correctly infer the latent positions,
the number of clusters, and the cluster allocations. The latent positions are simulated according to
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Figure 2. (a) Posterior distribution of the number of active clusters G and (b) the distribution of the effective latent space
dimension p across 30 small simulated networks. The true number of clusters and latent dimensions are highlighted in red.

(2) and the mixture weights T are generated from a symmetric Dir(10, . . ., 10) which gives rise to
clusters with similar numbers of nodes. Given the latent positions, a network is then generated as
in (1). Three scenarios are considered: Sections 4.1 and 4.2, respectively, assess the performance of
LSPCM on networks with small and moderate numbers of nodes, dimensions, and clusters, while
Section 4.3 assesses the performance when clusters have varying volumes i.e., when v, # lpé for
g # ¢ . A total of 30 networks are simulated in each scenario. In Sections 4.1 and 4.3, the MCMC
chains are run for 500,000 iterations with a burn-in of 50,000 iterations, thinned every 1,000th
iteration while in Section 4.2, 1,000,000 iterations are considered, with a burn-in of 100,000 itera-
tions, thinned every 2,000th iteration due to the larger settings considered. To ensure acceptance
rates in the 20% — 40% range, step sizes of o, = 0.5 and k values between 1 and 2.5 were employed
in the proposal distributions.

4.1 Scenario 1: small networks

Networks with n = 50 are generated with the true number of latent dimensions p* =2 and true
number of clusters G* = 3, with shrinkage strength § = (1, 1.05), ¥; = ¥» = ¥3 =1, and cluster
mean positions . = {(0, 0), ( — 4,0), (— 4, 4)} giving well-separated clusters. Across the 30 simu-
lated networks, the smallest cluster contained 6 nodes while the largest cluster contained 31, and
fixing o = 6 gave rise to network densities between 27% and 38%.

Figure 2a shows that the posterior modal number of clusters G, =3 and Figure 2b shows
that the modal effective number of dimensions is p,, = 2. Overall, the adjusted Rand index (ARI,
Hubert and Arabie, 1985), which measures agreement between the inferred cluster memberships
and the true cluster labels, shows good correspondence, with mean value of 0.88 (standard devi-
ation (sd) = 0.11). Procrustes correlations (PC, Peres-Neto and Jackson, 2001) between inferred
and true latent positions also show that the latent positions are accurately estimated, with average
value of 0.97 (sd = 0.03). Additional visualization of the posterior distributions on the variances,
shrinkage strengths, and the parameter « are available in Appendix D.

Additionally, in this scenario sensitivity to the setting of €; was explored by also considering
€1 = 0.9 when deciding to add a truncation dimension but with the lower value of 0.8 employed
when inferring the effective number of dimensions; there was no change in the modal effective
dimension inferred, with only a small change in the posterior probability of p = 3 to 0.9225.

For comparison, the LPCM is fitted on the same simulated data using the R package
latentnet (Krivitsky and Handcock, 2008). Upon fitting 25 LPCMs with different combina-
tionsof p={1,...,5}and G={1,.. ., 5} to each of the 30 simulated networks, the BIC suggested
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Figure 3. (a) Posterior distribution of the number of active clusters G and (b) the distribution of the effective latent
space dimension p across 30 moderately sized simulated networks. The true number of clusters and latent dimensions are
highlighted in red.

2 dimensions and 3 clusters for all of them, with average ARI and PC values between the LPCM’s
posterior modal cluster labels and the true labels of 0.87 (sd = 0.12) and 0.96 (sd = 0.04), respec-
tively. In terms of computational cost, fitting the LSPCM on a computer with an i9-13900H CPU
and 32 GB RAM took on average 18.5 minutes. The LPCM with the correct p and G took 5.55 min-
utes on average to run for the same number of iterations. Across the various simulated networks,
the total time taken to fit the 25 LPCMs with different combinations of p and G was comparable
to or longer than the time taken to fit the LSPCM. However, notably, when fitting the LPCMs no
quantification of the uncertainty in p and G is provided.

4.2 Scenario 2: moderately sized networks

Networks with n =200 were generated with p* =3 latent dimensions and § = (1, 1.1, 1.05).
The true number of clusters G* = 7 with u = {(— 5, 0, 0), (— 5, 5, 0), (0, —5, 5), (0, 0, —5), (2, 0, 2),
(=2,2,-2),(0,—2,0)} and ¢y =1forg=1,...,7. The 7 clusters have different degrees of sepa-
ration across the dimensions. Among the 30 simulated networks, the smallest cluster had 4 nodes
while the largest had 54. The parameter o = 20, which resulted in networks with density varying
between 23% and 31%.

Figure 3a shows that the posterior modal number of clusters is correctly inferred with G,, =7
and Figure 3b suggests the modal effective number of dimensions is also correctly inferred with
Pm=3.

The ARI values indicate very accurate and robust inference of cluster membership with mean
value of 0.941 (sd = 0.024). The average PC value was 0.994 (sd = 0.002). The PC values are
calculated using only dimensions up to and including the modal effective number of dimensions;
in cases where p,, < p*, the higher dimensions are not included in the comparison resulting in
lower PC values. Additional visualization of the posterior distributions of the variances, shrinkage
strengths, and the parameter o for this setting are available in Appendix D. In scenarios with
larger p*, underestimation of the true number of dimensions often occurred as empirically with
only n =200 and G* = 7 the relative variance in later dimensions was intuitively small.

Upon fitting the LPCM with 3 dimensions and 7 clusters the average ARI and PC values
between the LPCM’s posterior modal cluster labels and the true labels were 0.84 (0.09) and
0.98 (0.01), respectively (standard deviation in brackets). The average time for the completion
of one MCMC chain for the LSPCM was 149 minutes. However, fitting the LPCM for multiple
combinations of p and G would incur a considerably larger computational cost. In fact, solely for
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Figure 4. (a) Posterior distribution of the number of active clusters G and (b) the distribution of the effective latent space
dimension p across 30 small simulated networks with clusters of slightly different volumes. The true number of clusters and
dimensions are highlighted in red.

p=3and G=7 it took 142 minutes to run the MCMC via latentnet for the same number of
iterations, and again no uncertainty quantification is provided.

4.3 Scenario 3: networks with clusters of different volumes

Networks are generated with the same settings as in Section 4.1 except with clusters of different
volumes. Two settings are considered: clusters of slightly different volumes where v/ values are
setas (Y1, ¥, ¥3) = (‘5—1, 1, %) and clusters of highly different volumes with (1, ¥, ¥3) = (é, 1,5).
For comparison purposes, the networks simulated in Section 4.1 will be considered as networks
with clusters of the same volume as y, = 1Vg. For the setting with slightly different volumes,
network densities varied between 26% and 38% while in the highly different volumes setting,
networks had densities between 22% and 38%.

Figure 4 shows that, for clusters of slightly different volumes, the number of clusters and effec-
tive dimensions were correctly inferred, but with lower certainty than shown in Figure 2 for
networks with clusters of the same volume. For the highly different volumes setting, Figure 5a
shows the posterior modal number of clusters G,, = 4 which underestimates the true number of
clusters, while 5b shows the effective number of dimensions is correctly inferred but again with
less certainty than in the setting with clusters of the same volume. For networks with clusters of
highly different volumes, intuitively the ARI values indicate poor clustering performance with
mean value of 0.617 (sd = 0.208); for the slightly different volumes setting the average ARI was
0.882 (sd = 0.105). Similarly, the average PC values were 0.899 (sd = 0.091) and 0.973 (sd = 0.032)
for the highly and slightly different volumes settings, respectively.

Figure 6a highlights the intuitive difficulty in clustering nodes in networks with clusters of
highly different volumes. The nodes from the cluster with the largest volume (indicated by black
squares in Figure 6a) are far apart in the latent space, and many lie closer to nodes from another
cluster e.g., to nodes from the medium volume cluster indicated by red circles. The result, as
illustrated in Figure 6b, is that the LPSCM intuitively fits more clusters with smaller volumes than
the truth.

5. Application to Twitter network data

The LSPCM is fitted to two binary Twitter networks with different characteristics: a football play-
ers network with a small number of nodes, in which each player is known to belong to one of
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Figure 5. (a) Posterior distribution of the number of active clusters G, and (b) the distribution of the effective latent space
dimension p across 30 small simulated networks with clusters of highly different volumes. The true number of clusters and
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Figure 6. One of the 30 simulated networks when clusters have highly different volumes with (a) the true positions and
cluster labels and (b) the LSPCM posterior mean positions conditioned on the modal effective number of dimensions (9, = 2)
and the estimated cluster labels.

three football clubs, and a network among Irish politicians with a moderate number of nodes,
where each politician is affiliated to one of seven Irish political parties. The data are publicly avail-
able at this link (Greene and Cunningham, 2013). In the analyses, hyperparameters, initial values,
and step sizes are set as in Section 4.

5.1 Football players network

This binary network consists of directed edges indicating the presence of Twitter mentions from
one English Premier League football player’s Twitter account to another. The data were adapted
from those provided in Greene and Cunningham (2013) by considering only the top 3 clubs that
have the most player Twitter accounts: 55 players playing for 3 different Premier League clubs
are considered with 15 players from Stoke City football club (Stoke), 23 players from Tottenham
Hotspur (Spurs), and 17 players from West Bromwich Albion (West Brom). In total, there were
497 mentions between players, giving a network density of 16.73%. To fit the LSPCM to these
data, 10 MCMC chains are run, each for 1,000,000 iterations with a burn-in period of 100,000
and thinned every 1,000th. The average time for the completion of one MCMC chain was 30.6
minutes. With 10 MCMC chains, the Gelman-Rubin convergence criterion (Gelman et al., 2014),
computed conditional on the modal effective number of dimensions, was satisfied with 1.0 < R <
1.1 for the « , v, and ¥ parameters, and with R=1.3and R=1.2for §; and 6, respectively. Trace
plots are provided in Appendix E.
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Figure 7. For the football players network, (a) the posterior distribution of the number of non-empty components G, and
(b) the distribution of the number of effective latent space dimensions p.
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Figure 8. Football players network, (a) the Fruchterman-Reingold layout with players colored by club, (b) the Fruchterman-
Reingold layout with players colored by inferred cluster label and (c) posterior mean latent positions on the p,, = 2 effective
latent dimensions colored by inferred cluster label.

Figure 7 illustrates that under the LSPCM the posterior modal number of clusters G,,, = 1 (1, 4)
and the modal effective number of dimensions is p,, =2 (1, 2), with 95% empirical intervals in
brackets. There is uncertainty in G+ as demonstrated by the wide posterior interval and notable
support for G4 = 3, but there is strong certainty on the number of effective dimensions p.

Despite G, = 1, maximizing PEAR across the 10 chains resulted in an estimate of 3 clusters,
with an ARI of 0.94 between this final clustering and the players’ clubs. Figures 8a and 8b show
the Fruchterman-Reingold layouts (Kolaczyk and Csardi, 2020) of the network with the players’
clubs and inferred clusters detailed respectively. Only one player was clustered differently to the
other players in his club: the West Brom player Romelu Lukaku who was originally from Chelsea
football club and was on a season-long loan deal with West Brom. Lukaku mentioned and was
mentioned by only one player, the Spurs player Jan Vertonghen and intuitively the LSPCM has
clustered them together. Figure 8c shows the posterior mean latent positions colored by the cluster
labels that maximizes the PEAR across the 10 chains. Cluster 1 (which contains all of the Stoke
players only) and cluster 2 (all players from Spurs, and Romelu Lukaku) are separate from each
other on the first dimension, while in the second dimension cluster 3 (which captures West Brom
players except Romelu Lukaku) is separated from clusters 1 and 2, indicating both effective latent
dimensions are necessary for representation of the nodes in the three clusters.
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Figure 9. Heat map of the posterior similarity matrix of the cluster labels inferred from the football network, ordered by the
cluster labels.

Through the posterior similarity matrix, Figure 9 illustrates the uncertainty in the football play-
ers’ cluster labels where the color intensity indicates the probability of a player being clustered
together with another player. Cluster 2 (predominantly players from West Brom) has the strongest
certainty in its cluster labels, while there is some uncertainty in the membership of players in
clusters 1 and 3.

Upon fitting 16 LPCMs from all combinations of p={1,...,4} and G={1,.. ., 4}, the BIC
suggests 3 clusters and 2 dimensions as optimal. The ARI between the cluster labels of the
optimal LPCM and LSPCM is 1, indicating that both approaches provide the same cluster allo-
cations. The average Procrustes correlation between the posterior mean latent positions under
the optimal LPCM and the LSPCM was 0.973 (standard deviation of 0.005) across the 10 LSPCM
chains. Additional results regarding the posterior distributions of variance and shrinkage strength
parameters can be found in the Appendix E.

5.2 Irish politicians network

The LSPCM is used to analyze a Twitter network between 348 Irish politicians from 2012. The
network consists of binary directed edges indicating if one politician follows another (Greene and
Cunningham, 2013). Each of the politicians is affiliated with one of the seven Irish political parties:
49 are affiliated with Fianna Fail (FF), 143 with Fine Gael (FG), 7 with the Green Party (Green),
79 with the Labour Party (Lab), 31 with Sinn Féin (SF), 8 with the United Left Alliance (ULA) and
31 are Independent (Ind). There are 16,856 directed relationships between the politicians, giving
a network density of 13.96. For inference, 10 MCMC chains are run, each for 2,000,000 iterations
with a burn-in period of 100,000 and thinned every 4,500th sample. Here, the setting of G=
20 and b, = 5 resulted in very many sparsely populated clusters which provided little clustering
insight. Motivated by the context, G = 10 and b, = 1000 were instead used resulting in fewer, more
populated clusters the results of which are presented here; results under G =20 and b, =5, and
G =10 and b, = 100 are provided in Appendix E for the interested reader. The average time for
the completion of one MCMC chain was 11.71 hours. With 10 MCMC chains, the Gelman-Rubin
convergence criterion (Gelman et al., 2014), computed conditional on the modal effective number
of dimensions, was satisfied with 1.0 < R < 1.1 for the a, v, and Vg parameters, and 1.0 < R<16
for § parameters. Trace plots are provided in Appendix E.

Figure 10 shows that, under the LSCPM, the posterior modal number of clusters is 6 (5, 7)
and the modal number of effective dimensions is 4 (3, 4), with the 95% empirical intervals
reported in brackets. Upon fitting multiple LPCMs across all combinations of p={2,...,8} and

https://doi.org/10.1017/nws.2025.10014 Published online by Cambridge University Press


https://doi.org/10.1017/nws.2025.10014

16 X.Y. Gwee et al.

—
[V
~
.0
—
O
g

o _ 0.9558
o |
§ ° 5 @
5 o g °
g o s @ |
o 0.4407 a °
5 < 0.4144 5
§ o s I
7 3 ©
g &
N
o ] 0.1135 S
0.0215 0.0442
o | 00064 0.0012 o | m—
o o
4 5 6 7 8 9 3 4
G. b

Figure 10. For the Irish politicians network: (a) the posterior distribution of the number of non-empty components G, and
(b) the distribution of the effective latent space dimension p.

G={2,...,8}, the BIC suggests 6 clusters and 6 dimensions. The ARI between the cluster labels
of the optimal LPCM and LSPCM is 0.55, indicating different clustering solutions under the 2
approaches. The mean Procrustes correlation between the posterior mean positions under the
LPCM and LSPCM was 0.71 (standard deviation of 0.01) across the 10 LSPCM chains. Additional
results regarding the posterior distributions of variance and shrinkage strength parameters can be
found in Appendix E.

Despite G, = 6, maximizing the PEAR across the 10 chains resulted in 5 clusters and the ARI
between the inferred cluster labels and the politicians’ political affiliations is 0.89. Table 1 presents
the cross-tabulation of the political party membership and the LSPCM cluster labels. Additionally,
Figure 11 shows the Fruchterman-Reingold layout of the network with nodes colored by politi-
cal party affiliation and LSPCM inferred cluster label. The inferred clustering structure captures
the composition and nature of the 2012 Irish political landscape: a coalition government of Fine
Gael and the Labour Party were in power with Fianna Fail the main opposition party. Intuitively,
cluster 3 captures the large number of Fine Gael politicians with cluster 1 capturing the Labour
politicians in power with them at the time. Cluster 5 captures all of the opposition’s Fianna Fail
politicians. Cluster 2 solely contains the Sinn Féin candidates, with cluster 4 capturing many inde-
pendent candidates and those from the United Left Alliance. Through the posterior similarity
matrix, Figure 12 shows that politicians in cluster 2 (Sinn Féin) have the strongest certainty in
their cluster labels while other politicians have some uncertainty.

Figure 13 shows the politicians’ posterior mean latent positions on the p,, =4 dimensions
with nodes colored by the maximized PEAR estimated cluster allocation across the 10 chains.
On each dimension, one cluster tends to be located separately to the others, indicating that all the
dimensions provide relevant information to distinguish the clusters. For example, on dimension
1 the politicians in cluster 3 are located separately from the other politicians. Similar patterns are
apparent for politicians in cluster 5 on dimension 2, politicians in cluster 2 on dimension 3 and
politicians in cluster 4 on dimension 4. Visually, the combination of all four dimensions allows for
separation of the five clusters.

6. Discussion

The LSPCM enables simultaneous inference on the number of clusters of nodes in a network and
the effective dimension of the latent space required to represent it. This is achieved, respectively,
through employing a sparse prior on the weights of a mixture model and a Bayesian nonpara-
metric shrinkage prior on the variance of the nodes’ positions in the latent space. The LSPCM
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Table 1. Cross-tabulation of political party membership and the LSPCM repre-
sentative cluster labels

Cluster
1 2 3 4 5
Fine Gael 3 140
Fianna Fail 49
Political Labour Party 79
Parties Independent 9 1 1 20
Green Party 3 3 1
Sinn Féin 31
United Left Alliance 8
(b)
Cluster 1
Cluster 2
e Cluster 3 o
Cluster 4 o
e Cluster 5 Q o ©
o)
O

Figure 11. Fruchterman-Reingold layout of the Irish politicians network with nodes colored by (a) political party affiliation
and (b) LSPCM inferred cluster labels.

eliminates the need for the computationally expensive procedure of fitting multiple latent posi-
tion cluster models with different numbers of clusters and dimensions and then choosing the best
model using a range of model selection criteria. The performance of the LSPCM was assessed
through simulation studies and its application to sporting and political social networks uncovered
interesting and intuitive clustering structures.

While the LSPCM demonstrated good performance, it is important to consider its sensitiv-
ity to specification of the parameters and threshold parameters employed. As the focus here is
on the clustering solution, it is particularly important to consider sensitivity to the parameters
of the gamma prior on the Dirichlet parameter, especially in small networks, but the context of
the network at hand can provide some guidance. Additionally, sensitivity to the latent position
dimension threshold settings should be considered carefully by practitioners as underestimat-
ing the dimension could result in invalid inference while overestimating the effective number of
dimensions could result in bias. In practice, the values required to recover the effective dimen-
sion may change according to the size and density of the network. Using a prior may enable more
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Figure 12. Heat map of the posterior similarity matrix of the Irish politicians ordered by the cluster labels.

robust inference on this parameter. Regarding identifiability, as in the case of LPCM, the inter-
play between the number of dimensions and the number of clusters is of interest. Here, due to the
shrinkage of the variance of the latent dimensions induced by the prior, higher dimensions are
less likely to exhibit clustering structure as the cluster means become closer in higher dimensions.
Thus, any clustering structure should be captured in the earlier dimensions. Moreover, while the
influence of the parameters of the Dirichlet prior and the MTGP shrinkage prior are intuitively
related as they are specified within the same model, there is perhaps surprisingly little interaction
between the dimension of the latent space and the number of clusters, as observed in Handcock
etal. (2007). Relatedly, assessing model fit in a Bayesian clustering setting for network data is chal-
lenging; efforts to do so via posterior predictive checks (Gwee, et al., 2024a) and cross validation
(Sosa and Rodriguez, 2021) have received attention, albeit in a non-clustering setting.

Fitting the LSPCM is computationally feasible on networks of the scale considered here; how-
ever, it would be computationally burdensome to apply it to larger networks. As the number of
nodes increases, their computational cost increases quadratically (Salter-Townshend and Murphy,
2013; Rastelli, et al., 2024), making the LSPCM challenging to scale especially with the use of
Metropolis-within-Gibbs sampling. Spencer, et al. (2022) propose faster inference for the LPM
by combining Hamiltonian Monte Carlo and firefly Monte Carlo, which could be adapted for the
LSPCM. Further, while adapting the LSPCM to facilitate modeling of networks with more com-
plex edge types is a natural extension, such advances would come with additional computational
cost. Addressing these issues could be possible by employing case-control approaches for the
likelihood function (Raftery et al., 2012) and/or avoiding MCMC through the use of variational
inference methods (Salter-Townshend and Murphy, 2013; Gwee, et al., 2024b). Many variational
algorithms have shown empirical success, and recent theoretical contributions by Yang, et al.
(2020) and Liu and Chen (2022) have provided better understanding into the statistical guarantees
of these approaches.

Finally, while here a MTGP shrinkage prior was employed on the latent dimensions’ variances
and an overfitted mixture was used to infer the number of clusters, the LSPCM could be viewed
as a member of a broader family of such models given the variety of alternative shrinkage priors
and clustering approaches available. Grushanina (2023) provides a broad review of approaches to
infinite factorisations. For example, the Indian buffet process (IBP) has been employed to penal-
ize increasing dimensionality in latent factor models; while it allows for the contribution from
a dimension to be exactly zero (Knowles and Ghahramani, 2011; Rockova and George, 2016),
the sparsity the IBP enforces could be too restrictive here. The spike-and-slab approach of the
cumulative shrinkage prior of Legramanti, et al. (2020) is an alternative, likely fruitful approach.
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Figure 13. LSPCM inferred posterior mean latent positions of the Irish politicians on the pp, = 4 dimensions with nodes
colored by cluster membership.
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From the clustering point of view, an infinite mixture model could be used to infer the num-
ber of clusters. Frithwirth-Schnatter and Malsiner-Walli (2018) discuss linkages between infinite
and overfitted mixtures, where they highlight overfitted and infinite mixtures yield comparable
clustering performance when the hyperpriors are matched.
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A. Hyperparameter specifications

Table 2. Hyperparameter specifications for the LSPCM model

Parameter Hyperparameters Values Comments
Po Generally 5
G Generally 20
a (o, 07) (0,4)
v (ay, Gb,) Generally Gamma Increasing b,, increases the likelihood of a smaller
(a, =5, Gb, = G5) number of clusters.
Vg (ay, by) (400,400) Require expected value near 1 with low variance to
avoid very variable clusters.
81 (a1, by) (2,1) Based on the work from Durante (2017); Gwee, et al.
(2024a).
Sh (a2, by, t7) (3,1,1) Based on the work from Durante (2017); Gwee, et al.
(2024a).
& 9 Based on Ryan et al. (2017).
Ko Generally ko =4 Increasing ko decreases adaptation.
K1 Generally k; =5 x 10~* Increasing k; decreases adaptation.
€ Generally e; =0.8 Increasing €; makes it harder to decrease the number

of dimensions.

€ Generally e =0.9 Increasing €, (up to €; = 1) makes it harder to increase
the number of dimensions.

€3 Generally e3 =5 Increasing €3 makes it harder to increase the number of
dimensions.
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B. Notation and terminology

n: Number of nodes.

p: The truncation dimension in the fitted LSPM.

p: The number of effective dimensions.

p*: The true effective dimension of the latent space.

po: The initial truncation level of the number of dimensions.

Pm: The modal number of effective dimensions.

G: The number of mixture components.

G4: The number of non-empty mixture components.

G*: The true number of clusters.

Gpm: The posterior modal number of non-empty components.

Y: n x n network adjacency matrix.

ij: Value of an edge between node i and node j.

Z: n x p matrix of latent positions.

zj¢: The latent position of node i in dimension £.

gi;: Probability of forming an edge between node i and node j.

a: Global parameter that captures the overall connectivity level in the network.
7yt The mixing weight of component g.

Vg: The cluster g specific variance scaling parameter.

v: The hyperparameter for 7.

cig: A binary indicator variable of membership of node i in component g.

i: G x p matrix of the mean latent positions.

R: The mean latent position parameter for component g.

2: p x p precision matrix of the latent positions.

wy: Precision/global shrinkage parameter for dimension £.

8y, Shrinkage strength from dimension h.

&: Scaling factor in the prior covariance of the component means.

©: A collective term for 7, ., .

a1: Shape parameter of gamma distribution for §; in dimension 1.

bi: Rate parameter of the gamma distribution for §; in dimension 1.

ay: Shape parameter of gamma distribution for §j in dimension h.

b,: Rate parameter of the gamma distribution for &, in dimension h.

ty: Left truncation point of the gamma distribution for §j.

a,: Shape parameter of gamma distribution for v.

b,: Rate parameter of the gamma distribution for v.

ay: Shape parameter of gamma distribution for .

by : Rate parameter of the gamma distribution for 1.

ko: The parameter that affects the horizontal translation of the dimension adaptation probability
exponential function.

k1: The parameter that affects the horizontal scaling of the dimension adaptation probability
exponential function.

€1: The threshold for decreasing dimensions in the dimension adaptation step.
€3: The threshold for adding a dimension in the dimension adaptation step.
€3: The threshold for adding a dimension in the dimension adaptation step when the truncation
dimension is 1.

C. Derivation of full conditional distributions

Links between nodes i and j are assumed to form probabilistically from a Bernoulli distribution:

yij ~ Bin(g;,)
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For a binary network, the probability g;; is expressed in terms of a logistic model i.e.

i 2
log =a — ||lz; — zjll5.
l—q,’,j
ing ni: = 2 L
Denoting 7;j = o — ||zi — I3, then g = = i)

The likelihood function of the LSPCM is
LY|Z,a) = ]_[ P(yijlzi, zj, )

i#j

1 [ exp (i) r'j [1 __exp (miy) ]1—ny
sy L1+ exp (7)) 1+ exp (7i5)
1—[ exp (771])/1]

1+ exp (771])

The joint posterior distribution of the LSPM is
P(«,Z,C, 7,0 |Y) xP(Y |, Z)P(x)P(Z | C, 7, ®)P(C| 7)P(7), P(®)
Then

Pla,Z,C, 7,0 |Y) x l—[|: exp 7711)’1]) :I

14 exp ()

1

X{ ZJTO'O%eXP[ 20 z(a_ﬂa)i”
G 1 £

<[111 {(E) [det (v¢2)]

1 T &
exp [—E(Zi — o) (Yg2)(zi — I"g)} }

NI

G 1 I
x 1‘[(5) [det (67'2)) 72

g=1

exp [—%(ug — )19k — 0)} }

Ay
x { F(Zw) (Y)™ " exp [—bw(wg)]}

b
{ ()* Lexp[— bv(V)]}

I'(ay)
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b
X { F(:h) (61" ! exp [—b1(51)]}

p baz -
i {H ) O e [_bzwh)]}

h=2

Indicating with — the conditioning on all the remaining variables, the full conditional distribution
for o is:

exp (1i,yij) 1 1 (o — pho)?
Por | =) o | | |:— X exp | —-— %2
i L1 eXP (i) V2ma? P12 ol

1—[ |: exp (nijyij) } X exp |:_l (o — ua)z}
1+ exp (nij) 2 o

ij
1 (o — pia)?
logPlar | =) o< D {mijpij — log[1+exp ()]} — - =5
i#j ¢
x Z {nijyij —log [1+exp (n:j)]} — (& — pa)?
ij
o Y (o = llzi — zjl13)yij — log [1+ exp (o — llz; — 2i[13)]} — (@ — p1a)?
ij
log P(ar| =) o ) {eryyj —log [1+exp (& — llz: — 1)} — (& — pro)?
i]

As this is not a recognizable distribution, the Metropolis-Hasting algorithm is employed.
The full conditional distribution for Z is:

P(Z| ) o g |:1+eXP(77i,j)i|

n G % 1 *
<111 {(i) [det (D)7 exp [_%(z,. ~ ) (e Dai — g)} }

i=1 g=1
n G 1 Cig
log P(Z ] —) Z {niyij —log [1+exp (n;))]} — Z Z |:E(Zi — ) (Y Q) (i — Mg)]
i#j i=1 g=1
o Y {llzi = zjl13yi; — log [1+ exp (¢ — |l2i — 213) 1}

i
n G 1 Cig
-> 2 [Eui — g) (Y 2)(2i — ug)]
i=1 g=1

As this is not a recognizable distribution, the Metropolis-Hasting algorithm is employed.
The full conditional distribution for cjg = 1 is:

Plci, =1 —)= P(—lcg=1DP(cig=1)  P(zi|cg=1P(cig=1)
ig = —)= —
]P( B ) Zf:l P(zir | Cir = I)P(Cir = 1)
MVNP(Zi;’Lg’ wglﬂ_l)rg TgMVNp(Zi;ILg’ ¢§19—1)

S MVN (@i, Vg 'R DT YL T MVNy @z, Y Q7))
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The full conditional distribution for ; is:

1 L
P(rgl—)a[mr; 1j| [Utgg]

i=1

n
v—1_ i Cig
X 'L'g ‘L'g

" cigtv—1
x _CgZIA g

n
~ Dir( Z Cig +v)

i=1

The full conditional distribution for v is:

G a
1 v—1 bVV ay—1 _
P | —) o Wg 7 {F(a,,)(v) exp [ bv(v)]}
G
10 l_[ tg"_lv“”_l exp [—b,,(v)]
g=1

As this is not a recognizable distribution, the Metropolis-Hasting algorithm is employed.
The full conditional distribution for v/, is:
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The full conditional distribution for Ry is:
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Figure 14. For the simulated network with p* =2 and G* =3, the posterior distribution of (a) the shrinkage strength
parameter, (b) the latent position variance parameter, and (c) the « parameter.
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Figure 15. For the simulated network with p* =3 and G* =7, the posterior distribution of (a) the shrinkage strength
parameter, (b) the latent position variance parameter, and (c) the & parameter.

D. Simulation studies’ additional posterior distribution plots

The performance of LSPCM is also assessed through the posterior distributions of latent positions’
variance, shrinkage strength, and the parameter «. Included here are supplementary plots to assist
in assessing the performance of the LSPCM.
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Figure 16. For the football Twitter network: an example of a trace plot for the parameters (a) «, (b) v, (c) 81, and (d) 5>.
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Figure 17. For the football Twitter network: an example of a trace plot for the parameters (a) 1, (b) ¥, and (c) 3.
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E. Additional results from analyses of Twitter networks

Supplementary results from applying the LSPCM to the Twitter networks are provided here,
including the trace plots (Figures 16, 17, 19 and 20), and the posterior distributions of the variance,
shrinkage strength, and the o parameters (Figures 18 and 21). For the Irish politicians’ network,
Figures 22 and 23 show the LSPCM clustering solution from a single MCMC chain at differ-
ent values of G and b, which then informed the prior hyperparameter choices used in Section
5.2. Figure 22a and Table 3 show that under the hyperparameter settings detailed, the LSPCM
estimated clustering solutions had high variance on the number of non-empty components and
resulted in clusters with very small numbers, with some having as few as 3 nodes in a cluster.
The context and knowledge of the political composition of the Irish political landscape prompted
a lower value of G and and a higher value of b, to be employed to better reflect the anticipated
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Figure 18. For the football Twitter network, (a) the posterior distributions of the shrinkage strength parameters across
dimensions, (b) the posterior distributions of the variance parameters across dimensions, and (c) the posterior distribution
of a.
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Figure 19. For the Irish politicians Twitter network: an example of a trace plot for the parameters (a) «, (b) v, (c) 81, (d) 82, (e)
83, and (f) 54.
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Figure 20. For the Irish politicians’ Twitter network: an example of a trace plot for the parameters (a) ¥, (b) ¥, (c) ¥3, (d)
¥4 and (e) ¥s.
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Figure 21. Irish politicians Twitter network, (a) the posterior distribution of the shrinkage strength parameters across
dimensions, (b) the posterior distributions of the variance parameters across dimensions, and (c) the posterior distribution
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Figure 22. For the Irish politicians network with a, =5, b, = 5G, where G = 20: (a) the posterior distribution of the number
of non-empty components G, and (b) the distribution of the effective latent space dimension p.
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Figure 23. For the Irish politicians network with a,, = 5, b, = 10G, where G = 10: (a) the posterior distribution of the number
of non-empty components G, and (b) the distribution of the effective latent space dimension p.
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Table 3. For the Irish politicians network with a, =5, b, = 5G, where G = 20: cross-tabulation of political party
membership and the LSPCM representative cluster labels

Cluster

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fine Gael 89 14 10 12 11 5

Fianna Fail 3 43 1 2
Political Labour Party 71 2 6
Parties Independent 1 2 16 3 3 2 1 3
Green Party 5 2
Sinn Féin 30 1

United Left Alliance 1 7

Table 4. For the Irish politicians network with a, =5, b, =10G, where G=10: Cross-
tabulation of political party membership and the LSPCM representative cluster labels

Cluster

Fine Gael 119 20 2 2

Fianna Fail 49

Political Labour Party 7 2

Parties Independent 6 2 2 16 5
Green Party 1 6
Sinn Féin 31

United Left Alliance 8

range of the likely numbers of clusters and to encourage stronger emptying of components to
concentrate the nodes in fewer clusters for clearer insight to the clustering structure.
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