
Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10340

Uncovering the limits of visual-language models in
engineering knowledge representation

Marco Consoloni ,1,2, , Vito Giordano ,1,2, Federico Andrea Galatolo ,1,
Mario Giovanni Cosimo Antonio Cimino ,1 and Gualtiero Fantoni ,1,2

1 University of Pisa, Italy, 2 Business Engineering for Data Science (B4DS) research group, Italy

marco.consoloni@phd.unipi.it

ABSTRACT: Visual-Language (VL) models offer potential for advancing Engineering Design (ED) by
integrating text and visuals from technical documents. We review VL applications across ED phases, highlighting
three key challenges: (i) understanding how functional and structural information is complementarily expressed by
text and images, (ii) creating large-scale multimodal design datasets and (iii) improving VL models’ ability to
represent ED knowledge. A dataset of 1.5 million text-image pairs and an evaluation dataset for cross-modal
information retrieval were developed using patents. By Fine-tuning and testing the CLIP base model on these
datasets, we identified significant limitations in VL models’ capacity to capture fine-grained technical details
required for precision-driven ED tasks. Based on these findings, we propose future research directions to advance
VL models for ED applications.
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1. Introduction
When we interact with the world surrounding us, we see objects, hear sounds, fell textures and smell
odours. This process involves multiple modalities. A modality refers to the medium through which an
object exists or is experienced (BaltruŠaitis et al., 2018). Common modalities include natural language
text, visuals signals (e.g., images or videos), and audio signals.
Throughout the process of Engineering Design (ED), ED knowledge is communicated and evolves
across different modalities. In the early stages of ED, abstract representations such as free-hand sketches
and handwritten textual descriptions enable designers to effectively communicate their ideas, quickly
modify their designs and explore the design space. In later stages, high-fidelity representations such as
detailed technical drawings and written design specifications are used to, support design communication,
optimization and manufacturing. Many design documents are multimodal, for example, product design
specifications combine CAD models with textual descriptions, patents use images and text to describe
patent devices, and assembly manuals pair visuals with textual instructions.
While multiple modalities are commonly used in design practice, most Artificial Intelligence (AI)
applications supporting design research rely on unimodal approaches (Song et al., 2024). In order for AI
to make progress in the field of ED, it needs to be able to interpret and capture multimodal information
from technical documents. Multimodal AI focuses on creating models that can process and relate
information from different modalities (BaltruŠaitis et al., 2018). These models offer great potential for
creating systems that can leverage images and text in technical documents, providing a deeper
understanding of the design space and supporting data-driven design applications. Among existing
multimodal models, Visual-Language (VL) models are AI models that use visual information (images or
video) with textual information (natural language text). In this work we focus only on text and image
modalities, reviewing current applications of VL models in the context of ED. Moreover, we develop a

ICED25 3261

https://doi.org/10.1017/pds.2025.10340
https://orcid.org/0009-0009-8804-2734
https://orcid.org/0000-0002-8149-8124
https://orcid.org/0000-0001-7193-3754
https://orcid.org/0000-0002-1031-1959
https://orcid.org/0000-0003-0772-600X
mailto:marco.consoloni@phd.unipi.it


VL model specifically trained on patent documents for retrieving patents using both patent text and
drawings.

2. Visual-language models for engineering design
We performed a literature review of VL models within the context of ED applications. VL models can be
divided into foundational models and fine-tuned models. Foundational models are trained on large,
general datasets, so they can be applied across a wide range of tasks. Examples of foundational VL
models are OpenAI’s GPT-4V (vision), DALL-E and Flamingo. These models are not specifically
trained on design data. Fine-tuned models are created by adapting (finetuning) foundational models using
domain-specific dataset, improving their performance on specialized tasks. Figure 1 maps key ED tasks
across the ED phases: problem definition, conceptual, embodiment and detailed design. These ED tasks
are further classified based on whether they have been addressed using foundational VL models, fine-
tuned VL models, or remain as gaps in current research.

Figure 1 shows that foundational VL models have been used for ED tasks across the conceptual,
embodiment and detailed design phases. In the conceptual design phase, Edwards et al. (2024) used
OpenAI GPT-4V (Vision) and DALL-E 3 to generate design concepts using sketches and textual
descriptions. Picard et al. (2023) used ChatGPT-4V and Llava 1.6 34B to assess design similarity of
design sketches for concept selection. In the embodiment and detailed design phases, Picard et al. (2023)
used text and image prompts to perform tasks such as selecting materials, optimizing design topology,
generating drawing descriptions, and developing CAD models. However, the effectiveness of these
foundational VL models for precision-driven ED tasks remains limited. In fact, these models struggle to
“understand” technical details, and their answers are never fully accurate (Edwards et al., 2024). For
instance, their current capabilities are not yet sufficient for interpreting complex technical drawings or
producing viable CAD outputs (Picard et al., 2023). This limitation stem from the fact that foundational
VL models have not been specifically trained on design data and their underlying design knowledge
remains limited (Song et al., 2024). As a result, they struggle to capture fine-grained design concepts.
To address this issue, several studies have fine-tuned foundational VL models using design-specific data.
Yuan et al. (2022) developed a VL model to evaluate design concepts using product reviews with images
and text. Similarly, Su et al. (2023) used 2,571 instances of online textual and visual information to
develop a VL model for evaluating vehicle designs. Song et al. (2023) fine-tuned a VL model to assess
creativity of 1,086 freehand sketches with handwritten descriptions. Kwon et al. (2022), using a dataset
comprising 2D snapshots of 26,671 3D objects, finetuned a VL model capable of retrieving design

Figure 1. Visual-language models for engineering design tasks
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stimuli by combining images with keywords describing component features in order to generate new
design concepts.
As shown in Figure 1, fine-tuned VL models, have been used only in the conceptual design phase for
design concept evaluation and generation. Furthermore, all previous approaches relied on small-scale
design datasets for fine-tuning and employed simple images such as sketches rather than complex
technical drawings. Moreover, the applications of fine-tuned VL models to other ED tasks, such as
exploring existing solutions, identifying stakeholder needs, and generating technical drawings, remains
unaddressed in the current literature due to the following main limitations.
(1) Multimodal Design Dataset Creation: the creation of large multimodal data for VL model
finetuning is challenging because large accessible design datasets like Pinterest and Fusion 360 Gallery
contain single modality data and manual labelling design data is time-consuming and resource-intensive
(Song et al., 2024, Jin et al., 2024). Moreover, creating multimodal dataset involve aligning textual
descriptions with corresponding images. This imply finding semantic relationships and correspondences
between text and visuals. For example, given a technical drawing and a caption we must find areas of the
drawing corresponding to the caption’s words or phrases. This is challenging because ED concepts like
functions, components, unit of measurements and spatial orientations are often not explicitly represented
in either the text or the visuals. Moreover, the relationships between modalities are often subjective
(Baltrusaitis et al., 2018). A single image can be described by multiple texts and vice versa, and a “correct
description” of a technical drawing may not exist. For instance, Figure 2 demonstrates alternative textual
and visual representations of a bearing-shaft assembly, where combinations of text-images pairs (T1-I1;
T2-I2) convey the same information while complementing each other. As a results, there is a lack of high-
quality multimodal datasets for ED applications. (Kwon et al., 2022; Picard et al., 2023; Song et al.,
2023; Song et al., 2024; Li et al., 2023; Consoloni et al., 2024, Jin et al., 2024).
(2) Effective Representations of Design Knowledge: VL models are required to learn how to represent
and join information from text and visuals in a way that exploits the complementarity and redundancy of
the two modalities (Baltrusaitis et al., 2018). In the context of ED, this is challenging and still far beyond
an ideal level (Pan et al., 2024), as it requires domain-specific understanding of how structural and
functional design features are expressed across text and images (Kwon et al., 2022; Picard et al., 2023;
Song et al., 2023; Song et al., 2024). For example, Figure 2 illustrates how functional and structural
information can be distributed between visual and textual descriptions when explaining a bearing-shaft
assembly. Text segment T1 encodes functional information through phrases like “shaft rotates” and
“withstands radial forces” while the corresponding image I1 conveys structural details, such as the shaft
having a taper on the left-hand side using arrows to indicate dimensions. Conversely, an alternate case
can occur, where text segment T2 describes structural information using terms like “coaxially mounted”
and “20 mm taper”, whereas the corresponding image I2 represents functional information through
visual elements such as arrows indicating rotation and force resistance.

3. The task: patent citations retrieval
In this work we develop a fine-tuned VL model for exploring existing solutions using a large-scale
multimodal patent dataset consisting of 1.5M text-image pairs This task falls under the problem
definition phase, and it has not been addressed with VL models in previous research.
In the field of ED, exploring existing solutions is a critical ED task. Patent databases are valuable
repositories of technical knowledge and serve as a key source of information on prior art. When

Figure 2. Two alternative uses of text and images to express functional and structural ED concepts
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designing a new product, conducting effective prior art searches using patents enables designers to
identify technical challenges, evaluate gaps in current solutions, and access a diverse array of design
stimuli. However, this task poses significant challenges for engineers because it requires (1) capturing
fine-grained technical similarities and differences between the proposed design and existing patented
devices and, (2) a comprehensive understanding of patent text and drawings. Additionally, commercial
patent search platforms rely solely on textual keyword searches, lacking image-based querying. This
limitation affects prior art retrieval due to language ambiguity and terminology variations, often requiring
iterative query expansion to accurately capture complex technological domains. For these reasons, VL
models offer a promising solution not only to use both patent text and drawings to search patent database
but also for facilitating cross-source retrieval by connecting patents with CADmodels and online product
reviews.
In this work, we finetuned the foundational VL model, developed by OpenAI, known as Contrastive
Language-Image Pre-training (CLIP) model (Radford et al., 2021), to perform prior art search on patent
databases using both patent text and drawings. Specifically, we tested its performance on an extremely
knowledge-intensive task: retrieving patent citations made by examiners. Patent citations are references
to existing patents which are added by patent examiners during the examination process of patent
applications. When an existing patent is cited, it indicates that examiners have assessed it as technically
relevant to a pending application, potentially challenging the application’s patentability. By choosing this
task, we aimed to evaluate our fine-tune VL model on a task where precision, high-level reasoning and
domain-specific knowledge are critical.

4. Methodology
The methodology proposed in this work is composed of three phases: (1) Data Collection and
Preprocessing involving the retrieval and processing of patent documents to create a large-scale
multimodal patent dataset (2) Model Fine Tuning, where we fine-tuned the CLIP model on our dataset;
and (3) Model Testing, evaluating the performance of the fine-tuned CLIP model in retrieving patent
citations.

4.1. Data collection and preprocessing
We collected all utility patents granted between 2020 and 2024 from the United States Patent and
Trademark Office (USPTO) Bulk Data Storage System (https://bulkdata.uspto.gov/). Following the
approach proposed by Consoloni et al. (2024), we extracted: 1) the front image from the cover page,
which is considered as representative of the invention, and 2) the first claim, which outlines the main
features and elements of the patented device for which protection is sought. Each front image was aligned
with its corresponding first claim, and patents missing either were excluded from the dataset. The final
dataset comprises 1,383,944 text-image pairs, totalling 68GB (8GB text, 60GB images). This phase,
which involved downloading and decompressing .tar archives, extracting images and textual data from
XML files, required approximately 100 hours (4 days) to complete.

4.2. Model fine tuning
We fine-tuned the CLIP model (https://huggingface.co/openai/clip-vit-base-patch32) on our dataset.
CLIP is a foundational multimodal model pre-trained on a large-scale generic dataset of text-image pairs.
Its training objective is to match texts with corresponding images (Radford et al., 2021). Specifically, the
model encodes input images and their corresponding textual descriptions into high-dimensional
numerical vectors, known as embeddings. These embeddings are mapped into a shared vector space,
known as embedding space, where both images and text are represented as points. If an image and a text
have similar meanings, their points are placed close to each other within the embedding space. If they are
semantically unrelated, their points are placed far apart. This shared embedding space enables the use of
distance measures, such as cosine similarity, to retrieve relevant texts based on an input image, or
vice versa. As a result, the model is well-suited for cross-modal information retrieval tasks (Galatolo
et al., 2021).
For this work, we divided our dataset into training (1,107,155 pairs), validation (138,394 pairs), and test
sets (138,395 pairs) following an 80:10:10 split. Then, we fine-tuned the CLIP base model using a
contrastive loss which force the model to match first claims with their corresponding front images. After
fine-tuning, our model generates 512-dimensional embeddings for first claims and front images within a
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shared embeddings space. First claims were truncated to the first 77 tokens to comply with the CLIP text
encoder’s input limit. These tokens do not necessarily correspond to words but can include sub words and
punctuation. The fine-tuning process involved training the CLIP base model for 100 epochs with a batch
size of 256. The training was conducted on an ARM Neoverse-N1 CPU (256 cores) with 1 TB of RAM
and an NVIDIA A100 GPU (PCIe), completing in 3 days.

4.3. Model testing: patent citation retrieval
4.3.1. Test dataset
We evaluated our fine-tuned model in retrieving patents cited by examiners. To create the evaluation
dataset, we used web scraping to collect first claims and front images for all US patents in IPC classes
A42B3/00, A62B18/00, and H02K19/00 from Google Patents (https://patents.google.com/). Class
A42B3/00 contains patents of “helmets or other protective head coverings”, class A62B18/00 includes
patents of “breathing masks”, and H02K19/00 contains patents of “synchronous motors or generators”.
These classes were selected to evaluate the model’s ability in retrieving and distinguishes patent citations
across closely related technological domains (A42B3/00 and A62B18/00) and significantly different
ones (H02K19/00). For each successfully scraped patent (citing patent), we randomly selected five
patents cited by examiners (cited patents) and scraped their corresponding first claims and front images.
Table 1 summarizes the number of citing and cited patents successfully scraped for each IPC class.

4.3.2. Retrieval workflow
To perform patent citation retrieval, as shows in Figure 3, we used our fine-tuned CLIP model to generate
embeddings for first claims and front images of both citing and cited patents. Next, we used qdrant
(https://qdrant.tech/), an open-source vector database and similarity search engine designed to handle
high-dimensional vectors, to organize embeddings into three separate collections: (1) text collection
which contains text embeddings of first claims; (2) image collection which contains image embeddings
of front images, and (3) joint collectionwhich contains embeddings created by summing the embeddings
of first claims and their corresponding front image embeddings.
Then, we developed three multimodal strategies to retrieved cited patents. These retrieval strategies
utilize cosine similarity to measure the closeness between text and image embeddings within the
embeddings space created by our fine-tuned CLIP model. (1) Text-vs-image retrieval: given the first
claim embedding of a citing patent (text), the system retrieves the top-30 cited patents with the closest
front image embeddings (image) in the embedding space; (2) Image-vs-text retrieval: given the front
image embedding of a citing patent (image), the system retrieves the top-30 cited patents with the closest
first claim embeddings (text) in the embedding space; (3) Joint retrieval: given the joint embedding of a
citing patent (text + image), the system retrieves the top-30 cited patents with the closest joint
embeddings in the embedding space.
The text-vs-image (image-vs-text) retrieval strategy tests the model’s ability to produce embeddings of
first claims (front images) capable of retrieving semantically related front images (first claims). These
tasks aim to evaluate the model’s capability to perform cross-modal information retrieval (i.e., transfer
ED knowledge between text and image modality). In contrast, the joint retrieval strategy tests the model’s
ability to synthesize ED knowledge into a unified representation.

4.3.3. Retrieval performance evaluation
To evaluate the performance of our fine-tuned CLIP model across the retrieval strategies, we calculated
precision, recall, and F1-score at k, where k represents the number of top-ranked results considered (e.g.,

Table 1. Experimental dataset for patent citation retrieval task

IPC class Description N. of Citing Patents (%) N. of Cited Patent (%)

A42B3/00 Helmets or other protective
head coverings.

143 (61.64) 658 (63.67)

A62B18/00 Breathing masks. 63 (27.16) 263 (25.41)
H02K19/00 Synchronous motors or

generators.
26 (11.21) 114 (11.01)

Total 232 (100.00) 1,035 (100.00)

ICED25 3265

https://patents.google.com/
https://qdrant.tech/


top 1, top 5, top 10). Specifically, for a given citing patent, these metrics assess how effectively the model
retrieves its cited patents:
Precision@k measures the number of cited patents within the top k retrieved patents. Example: if k = 10
and the system retrieved 4 cited patents, the precision at k is 4/10 = 0.4. This metric ranges from 0 to 1
and measures how accurate the system is in retrieving cited patents within the top k results. Ideally, it
should be 1; Recall@k measure the proportion of cited patents within the top k retrieved patents.
Example: if there are 5 cited patents in total, and the system retrieves 4 cited patents within the top k = 10,
the recall at k is 4/5 = 0.8. This metrics ranges from 0 to 1 and measures how comprehensive the system is
in retrieving cited patents within the top k results. Ideally, it should be 1; F1-score@k combines
precision and recall at k into a single value by taking their harmonic mean. Example: if Precision@k =
0.4 and Recall@k = 0.8, the F1score at k is 2*(0.4*0.8) / (0.4 + 0.8) = 0.53. This score ranges from 0 to 1
and balances the trade-off between precision and recall.
To evaluate the overall performance of our fine-tuned CLIP model across all citing patents, we compute
the following averages: 1) Avg. P@k: the mean of Precision@k across all citing patents; 2) Avg. R@k:
the mean of Recall@k across all citing patents, and 3) Avg. F1@k: the mean of F1-score@k across all
citing patents.

5. Results and discussions
Table 2 presents the performance results for each retrieval task across k values of 1, 3, and 5, comparing
the CLIP base model and our fine-tuned model. Bold numbers indicate the best-performing model for
each column. The baseline model achieves its highest F1-score of 0.081 for k=5 on the joint task,
indicating that, on average, it is not capable to accurately retrieve the 5 cited patents corresponding to
each citing patent. In contrast, the fine-tuned model shows slight but consistent improvements across all
tasks and k values, reaching a maximum F1-score of 0.09 at k=5 on the joint task. This indicates the
contribution of our fine-tuning to very modest performance gains. However, the overall performance of
both VL models remains insufficient for effective multimodal patent citation retrieval as their results are
significantly below the optimal value of 1. This indicate that, our fine-tuned CLIP model produces
embeddings that fails to capture technical details required for accurate patent citation retrieval within top-
5 results.
To analyse the overall performance of our fine-tuned CLIP model, Figure 4 presents the plots of Avg.
P@k, Avg. R@k, and Avg. F1@k metrics across k values up to 30 for the text-vs-image, image-vs-text
and joint tasks. In all plots, as k increases, Avg. R@k increases because retrieving more patents naturally
captures more cited patents. Conversely, Avg. P@k decreases with higher k because the inclusion of
additional retrieved patents introduces more non-cited patents, reducing precision. Given that each citing
patent has on average 5 cited patents, as expected, Avg. F1@k peaks around k=5 for all retrieval tasks. In
fact, beyond k=5, while Avg. R@k continues to increase, Avg. P@k drops as more non-cited patents are
retrieved, causing Avg. F1@k to decline.
Figure 4 indicates also that the joint retrieval task demonstrates relatively better performance compared to
the text-vs-image and image-vs-text tasks, as reflected by higher F1-scores across all k values.

Figure 3. Retrieval Workflow
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Specifically, F1@k for the joint retrieval strategy lies within the range [0.05, 0.1], whereas for the other
tasks, it remains within [0.0, 0.05]. This highlight that our fine-tuned CLIP model produces embeddings
which do not enable cross-modal retrieval of patent citations (i.e., the model has limited ability to transfer
ED knowledge between text and image modality) and, the joint embeddings demonstrate a slightly
improved capacity to capture ED knowledge.

Previous results show that our fine-tuned CLIP model is unable to retrieve the cited patents with
performance comparable to that of patent examiners. However, we evaluated the model’s capability to
distinguish between patents from different IPC classes (i.e., technological domains) during retrieval. For
example, given a citing patent which falls under the class A42B3, which relates to “helmets or other
protective head coverings,” the model should avoid retrieving patents from unrelated classes, such as
H02K19, which relates to “synchronous motors or generators”. Ideally, for a citing patent belonging to a
specific IPC class, we expect the top 30 retrieved patents to belong to the same IPC class, even if they are
not the exact cited patents. This expectation underscores the model’s ability to generate embeddings that
capture general technological domain information, ensuring that retrieved patents remain at least relevant
within the broader technological context of the citing patent.
Figure 5 shows the IPC class distribution among the top 30 retrieved patents for citing patents belonging
to A42B3, A62B18, and H02K19 IPC classes. It helps to assess the model’s ability to maintain domain
consistency by prioritizing patents from the same technological class. For example, in the case of class
A42B3, 92% of retrieved patents belongs to the same class (A42B3), 7.22% are from A62B18, and
0.77% belong to class H02K19. For all IPC classes, the majority of the top-30 retrieved patents belong to
the same IPC class as the citing patents. This shows that the model produces embeddings of first claims
and images that can effectively distinguish between IPC classes during retrieval. However, for citing
patents in A62B18, 19.21% of top-30 retrieved patents belong to class A42B3. This suggests that the
model faces challenges in achieving fine-grained differentiation between closely related domains, such as
A42B3 (helmets) and A62B18 (breathing masks). In contrast, it successfully distinguishes these classes
from the significantly different technological domain of H02K19 (electric motors).

Table 2. Results of patent citation retrieval tasks for CLIP base and fine-tuned model

k retrieval task
Avg. P@k

base
Avg. P@k
fine-tuned

Avg. R@k
base

Avg. R@k
fine-tuned

Avg. F1@k
base

Avg. F1@k
fine-tuned

1 text-vs-image 0.039 0.039 0.009 0.008 0.014 0.014
image-vs-text 0.043 0.039 0.010 0.011 0.016 0.017

joint 0.125 0.151 0.031 0.038 0.048 0.058
3 text-vs-image 0.032 0.027 0.021 0.018 0.025 0.021

image-vs-text 0.029 0.030 0.019 0.027 0.023 0.026
joint 0.098 0.111 0.066 0.082 0.077 0.090

5 text-vs-image 0.024 0.024 0.026 0.026 0.025 0.025
image-vs-text 0.024 0.033 0.028 0.045 0.025 0.036

joint 0.078 0.085 0.090 0.102 0.081 0.090

Figure 4. Performance of retrieval strategies: Avg. P@k, R@k and F1@k for k values 1-30
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This indicates that despite the use of a large dataset for fine-tuning (1,5M text-image pairs), our model
has primarily learned general ED knowledge sufficient for classify patents by IPC class. Notably, in
literature patent retrieval has been done with higher accuracy using only text. A relevant example is the
study by Siddharth et al. (2022), which utilizes text-only embeddings for patent retrieval in ED
applications. This rises a critical concern about multimodality: VL models are resource-intensive models
in terms of energy, computing infrastructures and training time. Without effective multimodal
representations to fully capture ED knowledge from both text and images, these models risk of being
nothing more than oversized, inefficient classifiers.

6. Limitations and future research directions
This section examines the limitations of our methodology and proposes potential improvements for
future research. These limitations are categorized into three layers: (1) Data, (2) Model, and (3) Testing,
highlighting the specific areas where challenges occur.
The primary limitations related to (1) Data are as follows. (1.1) one limitation is using only the first claim
as input, which relies heavily on technical-legal jargon and captures only surface-level details of
inventions. Future research will incorporate additional patent sections, such as abstracts and detailed
descriptions to provide a more comprehensive representation of technical details. (1.2) Patent first claims
describe both functional and structural aspects of a device. This approach uses first claims as input
without distinguishing these aspects. Classifying sentences into functional and structural categories using
NLP methods could enable the generation of distinct functional and structural descriptions for patent
images, enabling functional-structural indexing and retrieval of patent data (Song et al. 2023; Kwon
et al. 2022).
The primary limitations related to (2) Model are as follows. (2.1) One key issue is that CLIP’s textual
encoder truncates first claims to the initial 77 tokens, potentially omitting critical information required for
patent citations retrieval. More precisely, first claims contain an average of 243 tokens (with a standard
deviation of 152). As a result, the CLIP model discards approximately 70% of the information in first
claims. To address this issue, as suggested by Lo et al. (2024), we plan to use LLMs to summarize
functional and structural information of first claims using a prompt template. Additionally, to bypass
CLIP’s text input limit, a hierarchical encoding approach could be employed. Rather than encoding the
entire first claim at once, the text can be divided into smaller segments, each independently encoded to
capture local semantic representations. Then, these individual representations can be aggregated into a
single global embedding that capture the overall meaning of the first claim. (2.2) We implemented an
early fusion approach, summing text and image embeddings element-wise to create a single joint
representation. This is limiting because it treats both modalities equally and does not capture complex
relationships between them. This could be improved by adopting more advanced multimodal fusion
techniques, such as attention-based methods, which can capture deeper inter-modality relationships
(Song et al., 2023; Li et al., 2023). (2.3) Pretrained VL models, such as our finetuned CLIP, operate as

Figure 5. Distribution of IPC classes of retrieved patents for each citing patent
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“black boxes” making it difficult to understand how they process images and text to produce outputs
(BaltruŠaitis et al., 2018). This lack of transparency limits the explainability and complicates the analysis
of specific failure cases (Song et al., 2024). For instance, it remains unclear which concepts of ED
knowledge are represented in our embeddings, and which features of visual and textual inputs our model
attends to (prioritize) when constructing the embedding space. As a result, quantitatively determining
why some cited patents are retrieved while others are not remain extremely challenging and beyond the
scope of this work. To address this, we plan to explore our embedding space using dimensionality
reduction techniques such as PCA and t-SNE projection, which may provide macro-level insights into its
structure (Lo et al., 2024). Additionally, we also aim to use NLP techniques to identify ED concepts,
including functions, components, material and spatial arrangements within first claims. By doing so, we
aim to use these identified concepts as explanatory elements to interpret and debug misleading
similarities in model’s outputs, facilitating the validation of model predictions against established ED
knowledge (Song et al., 2023; Kwon et al., 2022). This approach will also contribute to refining the
cosine similarity metric by re-weighting embeddings based on the importance of ED concepts, ensuring
that similarity computations prioritize technical terms over common words.
The primary limitations related to (3) Testing are as follows. (3.1) Our methodology does not currently
benchmark our VL model with a text-only model for patent citations retrieval. In future studies we plan to
use an LLM to generate text embeddings of first claims and use them for our patent citations retrieval
task. In fact, when working with VL models, evaluating whether the additional complexities of image
processing and text-image alignment are justified by performance gains is crucial for advancing research
in this field. (3.2) The CLIP base model is pre-trained on coloured RGB images, primarily composed of
real-world photographs (natural images). Therefore, it may struggle to process black-and-white
schematic images found in patents, as these differ significantly in style, structure, and complexity from
the natural images used during its pre-training. To evaluate this pretraining biases, we plan to experiment
with using existing VL models on natural images of technical objects, such as 2D snapshots of CAD
models and online images of products. Since many technical images used by designers are black-and-
white and schematic, this experiment will help us evaluate how well current VL models adapt to both
natural and schematic technical images. (3.3) Our CLIP model is currently evaluated using patents from
only three IPC classes (A42B3, A62B18, H02K19), limiting conclusions on model performance to these
specific technological domains. For future studies, we plan to expand the dataset to include a broader
range of IPC classes. Since the CLIP base model is primarily pre-trained on real-world photographs of
everyday objects, it is likely to perform better on patents related to consumer products such as eyeglasses,
chairs, and helmets, rather than on highly technical systems like solar batteries, harvesting machines, or
industrial furnaces. Conducting further experiments will provide deeper insights into how effectively
existing VL models can be fine-tuned for specific technological fields and design challenges. (3.4) Our
approach relies on examiner citations to automatically build a database of linked patents, eliminating the
need for time-consuming manual relevance evaluations. While this method is effective for evaluating the
model’s ability to retrieve relevant patents, it does not account for the fact that patent citations are
backward-looking (i.e., a cited patent must always be older than the citing patent). As a result, our VL
model may retrieve subsequent relevant patents. In future studies we plan to adjust the retrieval metrics to
ensuring that only prior art is considered for retrieval (Luo et al., 2024).

7. Conclusions
This study presents a review of VL models in the field of ED, examining their application across the ED
phases. We identified two key barriers to broader VL adoption in ED: the creation of large-scale
multimodal design datasets and the effective representation of ED knowledge. To address these issues,
we introduce a scalable and automated process for generating a large-scale multimodal design dataset
from patents and an evaluation multimodal dataset using patent citations. Moreover, we fine-tuned CLIP
base model and test its performance on patent citations retrieval. Despite the large fine-tuning over a
1.5M of text-image pairs, the poor performances achieved by the models underscores that (1) dataset
quality outweighs size in achieving better performance in ED tasks; (2) the need of a deeper
understanding of how ED concepts are represented though text and images; and (3) the need for
significant research efforts to enable effective representation of ED knowledge. Based on these
limitations, we propose potential solutions to guide future research directions. This work is a first attempt
to demonstrates that both foundational and fine-tuned VL models exhibit limited readiness for
deployment in real-world ED scenarios.
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