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The constant temperature and constant heat flux thermal boundary conditions, both
developing distinct flow patterns, represent limiting cases of ideally conducting and
insulating plates in Rayleigh–Bénard convection flows, respectively. This study bridges the
gap in between, using a conjugate heat transfer (CHT) set-up and studying finite thermal
diffusivity ratios κs/κ f to better represent real-life conditions in experiments. A three-
dimensional Rayleigh–Bénard convection configuration including two fluid-confining
plates is studied via direct numerical simulations given a Prandtl number Pr = 1. The
fluid layer of height H and horizontal extension L obeys no-slip boundary conditions at
the two solid–fluid interfaces and an aspect ratio of Γ = L/H = 30 while the relative
thickness of each plate is Γs = Hs/H = 15. The entire domain is laterally periodic. Here,
different κs/κ f are investigated for moderate Rayleigh numbers Ra = {104, 105}. We
observe a gradual shift of the size of the characteristic flow patterns and their induced heat
and mass transfer as κs/κ f is varied, suggesting a relation between the recently studied
turbulent superstructures and supergranules for constant temperature and constant heat
flux boundary conditions, respectively. Performing a linear stability analysis for this CHT
configuration confirms these observations theoretically while extending previous studies
by investigating the impact of a varying solid plate thickness Γs . Moreover, we study the
impact of κs/κ f on both the thermal and viscous boundary layers. Given the prevalence of
finite κs/κ f in nature, this work is a starting point to extend our understanding of pattern
formation in geo- and astrophysical convection flows.
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1. Introduction
Thermal convection – the buoyancy-driven transport of mass and heat – is an omnipresent
fluid flow process in nature, occurring not just in geophysical systems like clusters of
clouds over the ocean (Mapes & Houze 1993) or the Earth’s mantle (Chillà & Schumacher
2012), but also on other planets such as the storms on Jupiter (Young & Read 2017) and
Saturn (García-Melendo, Huseo & Sánchez-Lavega 2013) or stars like in the Sun’s solar
convection zone (Schumacher & Sreenivasan 2020). Understanding this process is thus
vital to comprehending geo- and astrophysical flows.

Rayleigh–Bénard convection can be seen as the paradigm of such, containing all
essential ingredients and permitting the investigation of even complex convection
phenomena like pattern formation in detail. There, fluid is confined between two parallel,
horizontally extended plates while being heated from below and cooled from above.
When interacting with gravity, an interplay between buoyant and viscous forces occurs
which is quantified by the Rayleigh number Ra. Once thermal driving gets strong enough
to destabilise the fluid layer – marked by passing the critical Rayleigh number Rac –
instabilities start growing and convection sets in (Rayleigh 1916).

By virtue of rapid improvements in computational power, it only became possible in
recent years to numerically study large-scale pattern formation for extended domains
due to the strong scale separation towards the small Kolmogorov or Batchelor scales
(Scheel, Emran & Schumacher 2013). Extended fluid domains, i.e. domains possessing
a (horizontal) aspect ratio Γ = L/H � 1 where L and H are the horizontal and vertical
extent, respectively, are vital for understanding natural systems. Since the influence of
lateral boundaries decreases with O(Γ −2) (Manneville 2006; Cross & Greenside 2009;
Koschmieder 2009), it is typically assumed that Γ � 20 lets this impact practically vanish
and thus approximates real-life scenarios fairly well (Koschmieder 2009; Stevens et al.
2018; Krug, Lohse & Stevens 2020).

Traditionally, the heating and cooling of the fluid has been achieved in two ways:
either applying (two different) constant temperatures (i.e. Dirichlet type thermal boundary
condition) or a constant heat flux (i.e. Neumann type). Previous studies have found that
these thermal boundary conditions govern the pattern formation process, leading to either
turbulent superstructures – an arrangement of large-scale convection rolls and cells of size
Λ ∼ O(H) – in the Dirichlet case (Pandey, Scheel & Schumacher 2018; Stevens et al. 2018)
or a pair of supergranules – two pairs of larger-scale convection rolls Λ ∼ Γ H � O(H)

that eventually span across the entire domain – in the Neumann case (Vieweg et al.
2021, 2022, 2024; Vieweg, 2024a). Interestingly, both kinds of these turbulent long-
living large-scale flow structures (Vieweg 2023) are reminiscent of the respective critical
pattern present at the onset of convection (Rayleigh 1916; Pellew & Southwell 1940; Hurle,
Jakeman & Pike 1967).

These two conditions, however, represent mathematically idealised scenarios, which
are illustrated in figure 1(a). In fact, they omit the vertically adjacent matter or solid
that confines and, thus, influences the fluid. Using a conjugate heat transfer (CHT) set-
up addresses the problem more holistically by modelling these plates as solid thermal
conductors such that not only the heat transfer in the fluid, but also in the adjacent solids
as well as their solid–fluid interaction is considered (Perelman 1961). Here, as illustrated in
figure 1(b), (external) thermal boundary conditions are applied as constant temperatures Th
and Tc at the very bottom and top of the solid plates of relative thickness or vertical aspect
ratio Γs = Hs/H , respectively. This causes a temperature gradient within the solid plates
before reaching the (internal) thermal boundary conditions at the solid–fluid interfaces –
offering the, based on system dynamics, dynamically manifesting temperatures Tb and Tt –
where both the temperature and heat flux are coupled between the different subdomains.
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(b) ...with conjugate heat transfer

Heated impermeable plane

Cooled impermeable plane
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Figure 1. Fundamental configuration. In Rayleigh–Bénard convection, (a) a layer of fluid is confined between
a heated bottom and a cooled top plane, respectively. While these planes are typically also the limits of the
numerical domain, (b) this study includes the (otherwise omitted) adjacent plates together with the coupled
or conjugate heat transfer (CHT) across the two solid–fluid interfaces. The location of different temperatures
is defined on the right while only Th and Tc are controlled – other temperatures manifest dynamically. In this
study, κst = κsb = κs and Γst = Γsb = Γs .

The ratio of thermal diffusivities between the solids and the fluid, κs/κ f , plays an integral
role in governing the aforementioned pattern formation process as the Neumann case is
represented by κs/κ f → 0 whereas the Dirichlet case corresponds to κs/κ f → ∞. While
previous studies in large aspect ratios (Pandey et al. 2018; Vieweg et al. 2021, 2021a, 2022;
Schneide et al. 2022, 2024, 2025; Vieweg 2023, 2024a) have only been focusing on these
extreme ends, natural systems always are located somewhere in between. Although some
studies of finite κs/κ f have already analysed heat transfer in a CHT set-up experimentally
(Vasil’ev et al. 2015) or for cylindrical cells of small aspect ratios Γ = 1/2 (Verzicco
2002, 2004; Foroozani, Krasnov & Schumacher 2021) and others have contrasted the
difference in heat transport between the Dirichlet and Neumann cases in small cells
(Verzicco & Sreenivasan 2008; Johnston & Doering 2009), the pattern formation process
has not yet been investigated. Since both turbulent superstructures (Krug et al. 2020) and
supergranules (Vieweg, Scheel & Schumacher 2021) are of crucial importance for the
induced heat transfer across the fluid layer, a detailed understanding of pattern formation
is indispensable. Moreover, the ratio of thermophysical properties between the solid and
fluid is crucial beyond our focus on pattern formation aspects, e.g. for the turbulent heat
transfer across the fluid layer. This holds particularly for laboratory experiments at very
large Rayleigh numbers of Ra � 1012 where the enhanced turbulence-induced effective
conductivity in the fluid can be close to the one in the plates. This requires corrections in
Nu, which have been discussed, for example, by Niemela & Sreenivasan (2006).

This study aims to represent natural scenarios of κs/κ f ∈ (0, ∞) at a large aspect ratio
Γ = 30 more accurately by considering the coupled or conjugate heat transfer (CHT)
at the solid–fluid interfaces, thus coining the term natural thermal boundary conditions.
Comprehending this region is crucial to enhancing our understanding of convection flows
and their properties in real-life geo- and astrophysical scenarios. To do so, direct numerical
simulations are conducted for two Rayleigh numbers Ra = {104, 105} over an array of
different κs/κ f . As a primary result of this work, we observe pronounced gradual shifts
of both the size of flow structures and their induced heat transfer when varying κs/κ f ,
underlining the importance of long-living large-scale flow structures as an umbrella term
for both turbulent superstructures and supergranules. The transition of large-scale flow
structures comes with gradual shifts in both the thermal as well as viscous boundary layer
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thicknesses. This numerical approach is complemented theoretically by a comprehensive
linear stability analysis regarding the onset of convection. This analysis confirms the
aforementioned transition between flow structures as a gradual shift towards larger critical
wavenumbers kc is observed when moving from Neumann to Dirichlet conditions. As
the vertical aspect ratio or plate thickness Γs represents an additional free parameter in
the CHT set-up, we extend both of our approaches towards a variation of Γs and find
that thin plates stabilise the layer especially for moderate λs/λ f . We remark that this,
together with easy-to-handle regression fits, extends the results obtained by Hurle et al.
(1967) for infinitely thick plates. The present study bridges the gap between classical
thermal boundary conditions by incorporating solid subdomains together with the coupled
temperatures and heat transfers at the solid–fluid interfaces, allowing us to interpret natural
flows in the geo- and astrophysical context more successfully.

2. Governing equations and numerical method

2.1. Governing equations
We consider an incompressible flow based on the Oberbeck–Boussinesq approximation
(Oberbeck 1879; Boussinesq 1903). This means that all material parameters are constant –
except for the mass density, the latter of which varies at first order with temperature
when interacting with gravity only. The three-dimensional equations of motion are non-
dimensionalised based on the fluid layer height H and the temperatures at the bottom and
top of this fluid layer, Tb and Tt (see also figure 1b), respectively. We use the spatiotemporal
average of these temperature fields to define the characteristic (dimensional) temperature
scale �T := 〈Tb − Tt 〉A,t where A denotes the entire horizontal cross-section. Note that
this implies a non-dimensionalisation T = �T T̃ together with the assumption of a
resulting non-dimensional temperature difference across the fluid layer of �TN := 〈T̃b −
T̃t 〉A,t ≡ 1. We stress explicitly that we write out the tildes here to clearly distinguish the
dimensional �T and non-dimensional temperature difference �TN but will, from now on,
mostly omit such for better readability. By virtue of the free-fall inertia balance, the free-
fall velocity U f = √

αg�T H and time scale τ f = H/U f = √
H/αg�T can be acquired

where α is the volumetric thermal expansion coefficient of the fluid at constant pressure,
g the acceleration due to gravity and ρre f, f the reference density of the fluid at reference
temperature. We solve the resulting coupled equations using the spectral-element solver
Nek5000 (Fischer 1997; Scheel et al. 2013).

For the fluid subdomain, the governing equations are

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇) u = −∇ p +
√

Pr

Ra
∇2u + T ez, (2.2)

∂T

∂t
+ (u · ∇) T = 1√

Ra Pr
∇2T . (2.3)

In contrast, the solid subdomains require us to solve a pure diffusion equation

∂T

∂t
= κs

κ f

1√
Ra Pr

∇2T (2.4)

only (Foroozani et al. 2021; Vieweg et al. 2025). Here, u, T and p represent the (non-
dimensional) velocity, temperature and pressure fields, whereas κΦ = λΦ/ρre f ,Φcp,Φ is
the thermal diffusivity. Its ratio between the solid and fluid domains κs/κ f constitutes an
important control parameter over the course of this work, with the subscripts Φ = { f, s}
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denoting the fluid and solid, respectively. Here λΦ represents the thermal conductivity,
ρre f ,Φ the mass density and cp,Φ the specific heat capacity at constant pressure.
Furthermore, the Rayleigh and Prandtl number are defined via

Ra = αg�T H3

ν f κ f
and Pr = ν f

κ f
, (2.5)

where ν f is the kinematic viscosity of the fluid . Note that (2.4) holds for both the top and
bottom plate – as they will offer identical thermal diffusivities – and, thus, differs from
our recent work (Vieweg et al. 2025).

2.2. Numerical domain, boundary and initial conditions
These governing equations are complemented by a numerical domain and its respective
boundary conditions. We define the horizontal extent L of our numerical domain by
the (horizontal) aspect ratio Γ := L/H , whereas the vertical aspect ratio Γs := Hs/H
describes the thickness of each of the surrounding solid plates. Note that both of these
aspect ratios are based on the height H of the fluid domain, whereas any subdomain offers
the square horizontal cross-section A = Γ × Γ . Regarding figure 1, the solid bottom and
top domains are thus situated at z ∈ [−Γs, 0] and z ∈ [1, 1 + Γs], respectively, with the
fluid in between at z ∈ [0, 1].

We consider a horizontally periodic domain where any quantity Φ repeats according to

Φ (x) = Φ
(
x + ix Lx ex + iy L y ey

)
, ix,y ∈N (2.6)

and offers no-slip boundary conditions

u (z = {0, 1}) = 0 (2.7)

at both solid–fluid interfaces. Thermal boundary conditions are applied in the form of
constant temperatures at the very top and bottom of the plates (i.e. z = {−Γs, 1 + Γs})
which will further be referred to as

T (z = −Γs) = Th and (2.8)
T (z = 1 + Γs) = Tc. (2.9)

By nature of the CHT set-up, temperature fields and diffusive heat fluxes are coupled at
the solid–fluid interfaces (i.e. z = {0, 1}) according to

Tb := T f (z = 0) = Ts (z = 0) ,
λs

λ f

∂Ts

∂z

∣∣∣∣
z=0

= ∂T f

∂z

∣∣∣∣
z=0

, (2.10)

Tt := T f (z = 1) = Ts (z = 1) ,
λs

λ f

∂Ts

∂z

∣∣∣∣
z=1

= ∂T f

∂z

∣∣∣∣
z=1

. (2.11)

Note that while the energy equation (2.4) contains κs/κ f due to the non-dimensionalisation,
the boundary conditions (2.10) and (2.11) include the ratio λs/λ f to match the diffusive
heat fluxes at the interfaces. In order to avoid another control parameter, we assume in our
simulations ρscp,s/ρ f cp, f = 1 such that λs/λ f ≡ κs/κ f follows. We will thus use κs/κ f as
the control parameter for the discussions in the main text, except for the linear stability
analysis. We additionally stress that as we fix the externally applied temperatures Th and
Tc, see again (2.8) and (2.9), the resulting temperature fields at the solid–fluid interfaces
Tb and Tt vary in both space and time by virtue of the systems dynamics.

The ratio κs/κ f strongly impacts the way in which the fluid interacts with the solid and
vice versa. For κs/κ f → ∞, the Dirichlet case is resembled where the temperatures at the
solid–fluid interfaces become constant (since the solid is a much better thermal conductor).
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Setting Solid/Fluid κs/κ f λs/λ f

Ocean Seawater/air 5.71 × 10−3 22.8
Mountain (Dolomites) Dolomite/air 1.16 × 10−1 220
Beach Quartz/air 2.20 × 10−1 352

Table 1. Ratios of thermophysical properties in natural configurations. Values of both the thermal diffusivity as
well as thermal conductivity are taken at 10 ◦C for seawater (salinity of 35 p.p.t.), air and quartz from Ochsner
(2019), Ibrahim & Badawy (2017), and for dolomite from Stout & Robie (1963) and Horai (1971).

In contrast, for κs/κ f → 0 the Neumann case is mimicked where the vertical temperature
gradient becomes constant at these interfaces (since thermal resistance through the
fluid is smaller compared with the solid). A more elaborate explanation is provided in
Appendix B. In this study, bridging the gap between Dirichlet and Neumann conditions,
we are interested in a broad range of κs/κ f centred around unity. Table 1 includes this
ratio for a variety of natural configurations and shows that natural flows tend to offer
κs/κ f ∼ O(10−3 . . . 10−1).

Concerning our initial condition, we follow the procedure described and introduced
by Vieweg et al. (2025). In a nutshell, we initialise each simulation with a fluid at
rest, i.e. u(x, t = 0) = 0, and linear temperature profiles which respect the internal
boundary conditions between the different subdomains as outlined in (2.10) and (2.11).
By adding some tiny random thermal noise 0 ≤ Υ ≤ 10−3, we accelerate the transition
to the statistically stationary state under the assumption of an initial Nusselt number
Nu(t = 0) > 1 based on preliminary simulation runs.

The required, externally applied temperatures Th and Tc (see (2.8) and (2.9)) are
determined as follows. First, we define the global Nusselt number

Nu(t) :=
〈(

Jdi f + uT
) · ez

〉
V f

〈Jdi f · ez〉V f

=
〈
−∂T

∂z

〉
V f

+
〈√

Ra Pr uzT
〉
V f

= 1 + √
Ra Pr 〈uzT 〉V f

, (2.12)

as a measure of the induced amplification of the global heat transfer due to convective
fluid motion. Note that the latter is associated with uT and in contrast to the diffusive heat
current Jdi f while V f = A × H represents the fluid volume (Otero et al. 2002; Vieweg
2023). Second, given the linear conduction profiles outlined in (Vieweg et al. 2025) and
an assumed amplification of heat transfer as measured by Nu, it is possible to estimate
these applied temperatures – that are required to achieve �TN ≈ 1 – according to

Th = 1 + λ f

λs
Γs Nu and Tc = −λ f

λs
Γs Nu. (2.13)

Note that, as the final Nu is not known a priori, either preliminary two- and three-
dimensional simulation runs or our introduced tanh-relationship (which will be discussed
in § 4) have been used to find appropriate values for Th and Tc.

3. Linear stability analysis of the coupled system
Flow structures at the onset of convection, as derivable analytically via a linear stability
analysis, are a characteristic of the dynamical system and, thus, helpful for understanding
even turbulent flow structures (Pandey et al. 2018; Vieweg et al. 2021). Although such a
linear stability analysis yields a relation Ra(k), it is the global minimum of this function
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that determines the critical Rayleigh number Rac and critical wavenumber kc. If Ra �
Rac, linear perturbations grow exponentially over time and lead to the associated size or
wavelength of the emerging flow structures of λc = 2π/kc.

While, given our no-slip boundary conditions, (Rac, kc) are well known for the
Dirichlet (Rac = 1707.8, kc = 3.13) (Pellew & Southwell 1940) and Neumann (Rac =
6! = 720, kc = 0) (Hurle et al. 1967) cases, these values change for vertically infinitely
extended (i.e. Γs → ∞) CHT set-ups with finite ratios of thermal conductivities λs/λ f ∈
(0, ∞) (Hurle et al. 1967). One can expect that a finite plate thickness Γs adds an additional
layer of complexity.

This study extends the work of Hurle et al. (1967) by (i) investigating a broader range of
λs/λ f , (ii) considering even finite plate thicknesses Γs (in § 6) and (iii) deriving easy-to-
handle relationships between Rac, kc and λs/λ f .

In order to determine the neutral stability curve and subsequently derive Rac as well as
kc, a system of four equations needs to be solved where the determinant of the coefficient
matrix ME is set to zero to obtain a non-trivial solution,

det ME
!= 0 =

∣∣∣∣∣∣∣∣∣

0 1 1 1
0 q1t1 q2t2 q3t3

−λ f
λs

tanh (kΓs) γ −γ
2

(
1 − i

√
3
)

−γ
2

(
1 − i

√
3
)

k γ q1t1 −γ
2

(
1 − i

√
3
)

q2t2 −γ
2

(
1 − i

√
3
)

q3t3

∣∣∣∣∣∣∣∣∣
.

(3.1)

In the following, we only regard the case of even modes as it provides the lower values for
Rac. A detailed derivation – explaining all involved variables – is provided in Appendix A.

Figure 2(a) contrasts different resulting neutral stability curves for different λs/λ f given
Γs → ∞. Remember that the extreme cases λs/λ f = {10−6, 106} mimic the Neumann and
Dirichlet cases, respectively, and with which they correspond (Pellew & Southwell 1940;
Chandrasekhar 1981; Takehiro et al. 2002). Interestingly, after having solved (3.1) for a
large number of λs/λ f , we find a gradual and monotonic transition for both Rac and kc
in between these extreme conditions as visualised in figure 2(b–d). Our analysis shows
that the onset of convection is generally delayed (i.e. larger Rac) with smaller emerging
flow structures (i.e. larger kc) for relatively better solid thermal conductors (i.e. increasing
λs/λ f ). As highlighted by the inset in figure 2(b), kc(λs/λ f ) exhibits different asymptotic
convergence behaviours for the extremes of λs/λ f : While kc ∼ λs/λ

1/3
f for λs/λ f → 0, kc �

3.13 = const. for λs/λ f → ∞. Interestingly, the inflection point is around λs/λ f ≈ 10−3/4

(rather than 100) and thus introduces an asymmetry with respect to λs/λ f .
These (true) solutions are the result of solving (3.1). In order to provide handier solutions

that are more accessible, we apply tanh- or polynomial-based regressions to the original
data from figure 2(b–d) and include them therein. Given the parameters shown in table 2,
such simple regression fits approximate the true solutions (very) well.

Albeit this linear stability analysis is based on Γs → ∞, we find that its solutions
practically coincide with our numerically employed finite case Γs = 15 as shown in § 6.

4. Nonlinear pattern formation

4.1. Conducted simulations and pattern formation process
In order to systematically investigate the impact of natural thermal boundary conditions on
convection flows beyond their onset, we conduct two main series of simulations at two Ra
varying κs/κ f across a broad range. For all these simulations, the Prandtl number Pr = 1,
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Figure 2. Linear stability of CHT-driven Rayleigh–Bénard convection. The combination of thermophysical
properties controls both the general stability (Rac) as well as the size of the critical flow structures (kc). (a)
Different neutral stability curves indicate (c) a gradual and monotonic transition of both Rac and kc (see also
panels (d) and (b), respectively). The true solutions from panels (b–d) can be approximated well by tanh- or
polynomial-based regressions using parameters described by table 2. Note the different convergence behaviour
of kc for λs/λ f → ∞ (kc = const.) and λs/λ f → 0 (kc ∼ (λs/λ f )

1/3) as highlighted by the inset in panel (b), the
latter of which plots the data double-logarithmically instead.

horizontal aspect ratio Γ = 30 and vertical aspect ratio Γs = 15. Our choice of such a
horizontally extended domain makes the heat and momentum transfer, as quantified by Nu
and Re, independent of Γ (Stevens et al. 2018) and delays limiting the pattern formation
process by the horizontal extent of the domain (Stevens et al. 2018; Krug et al. 2020;
Vieweg 2023) as further discussed in § 4.3. We report a third series of simulations at
different Γs given κs/κ f = 100 in § 6 whereas we contrast extreme cases of κs/κ f with their
plateless classical representatives in Appendix B.
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f a b c d e R2 Range of applicability

kc(λs/λ f ) 1.543 0.293 0.554 1.608 – 0.9985 λs/λ f ∈ [0, ∞)

Rac(λs/λ f ) 493.546 0.441 0.122 1216.713 – 0.9999 λs/λ f ∈ [0, ∞)

Rac(kc) 0.341 7.576 74.868 0.234 719.996 1.0000 kc ∈ [0, 3.13]
Table 2. Regression parameters for kc and Rac. A tanh-fit of the form f (λs/λ f , Ra) =
a tanh [bIn(λs/λ f ) + c] + d is applied to the values in figure 2 (a,b). For Rac(kc) in figure 2(c), a
fourth-order polynomial fit of the form f (kc) = ak4

c + bk3
c + ck2

c + dkc + e is applied. Here R2 is the
coefficient of determination (Wright 1921) and underlines the quality of these fits.

105

t = 100(a) (b) (c) (d )

(e) ( f ) (g) (h)

t = 700 t = 3500 t = 17 730

2.0

0.5

–3.0

ETT

EuzT

Euzuz

100

10–5

10–1 100 101

kh kh kh kh

10–1 100 101 10–1 100 101 10–1 100 101

Figure 3. Gradual pattern formation. (a) At early times, large-scale granulated flow structures emerge that
(b,c) gradually merge and form even larger supergranules before (d) a statistically stationary state is reached.
Here we visualise the thermal footprint T (x, y, z = 0.5, t) of these flow structures. (e–h) The corresponding
azimuthally averaged Fourier energy spectra (of various fields) highlight a gradual shift of spectral energy
towards larger horizontal scales. This shift is governed by κs/κ f , as κs/κ f → 0, more energy accumulates
at even smaller kh . In contrast to the idealised Neumann case – compare with (Vieweg et al. 2021) – the
growth of the supergranules stops in this CHT set-up of Ra = 105 and κs/κ f = 100 (Case C5c) before reaching
domain size.

Convective pattern formation is known to be a gradual process which reaches
statistically stationary flow structures only after a long time, potentially even O(104τ f )

or longer (Vieweg et al. 2021, 2022, 2024; Vieweg 2023, 2024a). Figure 3 illustrates this
process for one of our present CHT cases: at the beginning, granulated flow structures
manifest that merge over time towards larger structures. While figure 3(a–c) depict the
transient regime, figure 3(d) illustrates the flow structures by means of their thermal
footprint at their statistically stationary state. Reaching this late regime has successfully
been probed using different measures such as the integral length scale (Parodi et al. 2004;
Vieweg et al. 2022)

ΛT (z = 0.5, t) := 2π

∫
kh

[
ET T /kh

]
dkh∫

kh
ET T dkh

(4.1)

1016 A30-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10361


M. Ettel, P.P. Vieweg and J. Schumacher

with ET T ≡ ET T (kh, z = 0.5, t) representing the azimuthally averaged Fourier energy
spectrum of the temperature field and kh the horizontal wavenumber, or the thermal
variance (Vieweg et al. 2022)

Θrms (t) :=
√

〈Θ2〉V with Θ(x, t) := T (x, t) − Tlin(z) (4.2)

where Θrms is the temperature deviation field around the mean linear conduction profile
Tlin = 1 − z across the fluid domain (Vieweg 2023, 2024a). In case of Neumann-type ther-
mal boundary conditions, ΛT usually converges more quickly than Θrms (Vieweg 2023).

Figure 3(e–h) demonstrate how various azimuthally averaged Fourier energy spectra
develop over the course of this gradual aggregation process. Here, given EΦ1Φ2 :=
〈1/2 Re(Φ̂1Φ̂

∗
2 )〉φ with the Fourier coefficients Φ̂ ≡ Φ̂(kh, z, t) and azimuthal angle φ,

we include the averaged spectra associated with the temperature field ET T , vertical
convective heat flux Euz T and vertical velocity Euzuz as a function of the absolute
horizontal wavenumber kh . As pattern formation progresses, spectral energy shifts towards
smaller kh – i.e. larger structures – across all of these spectra, thereby underlining the
increasing dominance of large-scale flow structures. However, in comparison with the
Neumann case described in Vieweg et al. (2021) or Vieweg (2023), the aggregation
process in the CHT set-up may cease before reaching the domain size – depending on
κs/κ f . This dependence between the final size of flow structures (as quantified by ΛT , see
again (4.1)) and κs/κ f will be analysed in more detail in § 4.3.

In this work, due to the inclusion of solid subdomains and thus the two solid–
fluid interfaces, we complement the above measures by the dynamically manifesting
temperature drop �TN across the fluid layer. We find that this measure requires similar
time scales of convergence with particularly large times observed for moderate κs/κ f ∈
[10−1, 101/2]. Note that we always require the temperature drop across the fluid layer
�TN � 1 (so the non-dimensionalisation for (2.1)–(2.4) holds) whereas the temperature
drop across each solid plate (Th − Tc − 1)/2 depends strongly on κs/κ f .

Starting from initial conditions as described in § 2.2, we run each numerical simulation
as long as necessary to reach the late statistically stationary regime (probed by ΛT , Θrms
and �TN ) and cover the latter for an extended period of time. Table 3 summarises the
simulation parameters for all of our simulation runs.

Figure 4 underlines the increased complexity of these simulations due to the added solid
subdomains and their coupled interaction with the fluid layer. While we apply Dirichlet-
type fixed temperatures at the very top and bottom of the domain – see figure 4(a,d) – the
local heat flux at these planes may vary in space and time as visualised in figure 4(e,h).
The coupled heat transfer at the two solid–fluid interfaces implies that we control neither
the temperature nor the local heat flux (see figures 4(b,c) or 4(f,g), respectively) allowing
for significantly weaker constraints on the dynamical fluid system. Interestingly, we find
the vertical temperature gradient fields not only to be strongly negatively correlated across
the fluid layer (i.e. between planes z0 = {0, 1}) but also across the entire solid–fluid–solid
domain (i.e. between planes z0 = {−Γs, 1 + Γs}) despite Γs = 15. The temperature fields,
on the other hand, appear to be shifted from generally warmer temperatures at z0 = 0 to
colder ones at z0 = 1 while still showing the footprint of the underlying flow structures.
This underlines the pronounced interplay between solid thermal capacities and the fluid
flow.

4.2. Convective flow patterns for different κs/κ f

We start by resembling the classical, well-known Neumann- (Vieweg et al. 2021;
Vieweg 2023) and Dirichlet-type (Pandey et al. 2018; Vieweg et al. 2021) thermal
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Identifier Ra κs/κ f Γs Ne N tr (Th − Tc − 1)/2

N4 104 → 0 15 1002×4 7 10 200 −
C4N 104 10−6 15 1002×(4+2×30) 7 8850 47.5 × 106

C4a 104 10−1 15 1002×(4+2×30) 7 22 950 445.70
C4b 104 10−1/2 15 1002×(4+2×30) 7 16 100 128.25
C4c 104 100 15 1002×(4+2×30) 7 12 000 36.50
C4d 104 101/4 15 1002×(4+2×30) 7 6100 19.90
C4e 104 101/2 15 1002×(4+2×30) 7 10 100 10.90
C4f 104 103/4 15 1002×(4+2×30) 7 2900 6.14
C4g 104 101 15 1002×(4+2×30) 7 6500 3.45
C4D 104 106 15 1002×(4+2×30) 7 8140 0.00
D4 104 → ∞ 15 1002×4 7 10 550 −

N5 105 → 0 15 1002×4 11 7000 −
C5a 105 10−1 15 1002×(4+2×30) 11 9030 730.00
C5b 105 10−1/2 15 1002×(4+2×30) 11 16 530 227.37
C5c 105 100 15 1002×(4+2×30) 11 17 730 70.00
C5d 105 101/4 15 1002×(4+2×30) 11 5530 38.91
C5e 105 101/2 15 1002×(4+2×30) 11 10 030 21.54
C5f 105 103/4 15 1002×(4+2×30) 11 3030 12.09
C5g 105 101 15 1002×(4+2×30) 11 4530 6.71
D5 105 → ∞ 15 1002×4 11 3000 −

C5cG1 105 100 1 1002×(4+2×4) 11 8530 4.70
C5c 105 100 15 1002×(4+2×30) 11 17 730 70.00
C5cG30 105 100 30 1002×(4+2×45) 11 20 030 140.30

Table 3. Simulation parameters. The Prandtl number Pr=1 in a horizontally periodic domain of (horizontal)
aspect ratio Γ =30 and no-slip conditions at the two solid–fluid interfaces. The table contains beside the
identifier further the Rayleigh number Ra, the thermal diffusivity ratio κs/κ f , the vertical aspect ratio (or
thickness) Γs of each of the two adjacent solid plates, the total number of spectral elements Ne=Ne,x×Ne,y×
(Ne,z, f +2× Ne,z,s), the polynomial order N of each spectral element, the total simulation runtime tr and the
applied mean temperature drop across each solid plate (Th − Tc − 1)/2.

boundary conditions using our CHT set-up subjected to the extreme κs/κ f = {10−6, 106}.
Appendix B contrasts the resulting flow structures – which are commonly distinguished,
respectively, as supergranules (Vieweg et al. 2021) and turbulent superstructures (Pandey
et al. 2018) (or spiral defect chaos for this lower Ra) – and confirms a convergence of the
flow for plateless and CHT configurations.

Bridging the gap between these previously studied idealised conditions, figure 5
visualises snapshots of our simulations applying natural thermal boundary conditions
covering the range 10−1 � κs/κ f � 101. Our simulations show that smaller κs/κ f lead
gradually to increased flow structures given a sufficiently extended domain. In our case,
the growth of the flow structures is limited by the numerically finite horizontal domain size
Γ = 30 at κs/κ f = 10−1/2 and below. Although we study a limited range of κs/κ f around
unity only, it is sufficient to indicate the clear convergence towards either supergranules
or turbulent superstructures. This gradual transition from one of the latter to the other
suggests covering them both under the umbrella term of long-living large-scale flow
structures. Our numerical results for Ra � Rac are in line with the general, monotonic
trend suggested by the linear stability analysis from § 3. Independently of κs/κ f , we find
that a larger Ra introduces stronger turbulence on smaller scales including the granular
scale (Vieweg et al. 2021; Vieweg 2023).

1016 A30-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10361


M. Ettel, P.P. Vieweg and J. Schumacher

T 
(x

, 
y,

 z
0
, 
t r)

∂
T/

∂
z 

(x
, 
y,

 z
0
, 
t r)

 +
 N

u

–0.02

–2.0 0.5 3.0

0 0.02

z0 = –Γs(a) (b) (c) (d )

(e) ( f ) (g) (h)
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Figure 4. Conjugate heat transfer. In the coupled system, both the temperature (a–d) and heat flux (e–h) are
coupled at the two solid–fluid interfaces (b,c,f,g) while only the temperature field is controlled at the very
bottom (a) and top (d). The respective local heat flux (e,h) is still correlated. Here Ra = 105, Γs = 15, and
κs/κ f = 100 (i.e. case C4c). Note that when κs/κ f → ∞ or κs/κ f → 0, either (b,c) or (f,g) become constant,
respectively.
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(a)

κs/κf = 10–1 κs/κf = 100κs/κf = 10–1/2 κs/κf = 101/4 κs/κf = 101/2 κs/κf = 103/4 κs/κf = 101

C4a (b) C4b (c) C4c (e) (g)( f )C4e C4f(d ) C4d C4g
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 =

 1
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4
Ra

 =
 1

0
5

C5a (i) C5b ( j) C5c (l) (n)(m)C5e C5f(k) C5d C5g

0.5 5.0

Figure 5. Nonlinear pattern formation. Worse solid thermal conductors (relative to the fluid) lead to the
formation of larger flow structures. Here we visualise the instantaneous temperature fields T (x, y, z = 0.5, t =
tr) given Γs = 15. Identifiers for the runs (see the top-right of each panel) are listed in table 3.
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4.3. Quantitative analysis of convective flow patterns
We proceed by quantifying selected aspects of our flow structures as well as their
induced statistical properties. Firstly, we measure the strength of appearing thermal
inhomogeneities at the two solid–fluid interfaces based on both the instantaneous
maximum horizontal temperature difference

max (ΔhT ) (t) := max
x,y

(T ) − min
x,y

(T ) (4.3)

and the standard deviation std(T ) for T ∈ {Tb, Tt }. This is complemented by the induced
global momentum transfer as measured by the Reynolds number (Scheel & Schumacher
2017)

Re(t) :=
√

Ra

Pr
urms with urms :=

√〈
u2
〉
V . (4.4)

Thirdly, we measure the size or horizontal extent of flow structures based on the integral
length scale ΛT as defined in (4.1).

Table 4 summarises the temporal averages and associated temporal standard deviations
for all our simulations. Note that this analysis covers an extended period tss of the late
statistically stationary regime of pattern formation rather than a single snapshot.

We remark that reaching exactly �TN = 1 is not possible in a CHT set-up – although
being assumed in our non-dimensionalisation, see again § 2.1 – affecting in turn the
Rayleigh number as defined in (2.5) and thus also Nu and Re from (2.12) and (4.4),
respectively. Therefore, the achieved Nusselt and Reynolds numbers have been corrected
by this error δT = �TN − 1 according to

Re = Rea

√
�TN

= Rea

√
1 + δT

∼ δT −1/2 and Nu = Nua

�TN
= Nua

1 + δT
∼ δT −1, (4.5)

where the superscript Φa denotes the achieved values by the simulation under presence of
�TN �= 1.

In addition to the typical definition of the global Nusselt number from (2.12) –
considering the fluid domain only – one may also define a CHT Nusselt number
NuC H T which relates the heat current through the entire CHT set-up (including the solid
subdomains) to the diffusive heat current through the fluid layer

NuC H T (t) := 〈J · ez〉V

〈Jdi f, f · ez〉V f

=
∑

Φ

〈
Jdi f,Φ · ez

〉
VΦ

+ 〈uT f · ez
〉
V f

〈Jdi f, f · ez〉V f

(4.6a)

= 〈uzT 〉V f

κ f
�T f

H

+ 1 + 2
Γs

κs

κ f

�Ts

�T f
= Nu (t) + 2

Γs

κs

κ f

�Ts

�T f
, (4.6b)

where Φ = { f, sb, st} and �Ts, f are the non-dimensional temperature drops across the
solid or fluid, respectively (i.e. �T f = �TN and �Ts = (Th − Tc − �T f )/2). We stress
that NuC H T ≥ Nu, i.e. it represents the latter plus an additional offset that vanishes for
κs/κ f → ∞ only.

Figure 6 illustrates the overall trends of the size of flow structures and their induced
momentum and heat transfer for our two main series of simulations across different κs/κ f .
First, see figure 6(a), we find that the qualitative impression from figure 5 is clearly
supported by ΛT (κs/κ f ). While such a growth of flow structures is in line with our linear
stability analysis from § 3, we note that we would expect to see a further but still finite
growth of turbulent flow structures for κs/κ f ∈ (10−1, 10−1/2) if we provided a sufficiently
larger numerical domain.
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Figure 6. Size of flow structures and their induced transport. The worst solid thermal conductors (relative to the
fluid) – and thus the largest flow structures – induce strongest turbulence and the greatest global heat transfer.
Solid lines indicate regressions of the data points based on a hyperbolic tangent function with parameters
described by table 5 . Here Γs = 15 for all data. Note that, in panel (d), NuC H T (Ra = 104, κs/κ f = 106) = 2.23
lies beyond the axis limits.

As shown by table 4, larger flow structures – or in other words, smaller κs/κ f – naturally
induce stronger thermal heterogeneities at the solid–fluid interfaces. This relaxes the
bounds on the temperature field (that is felt by the fluid) and allows thus for a stronger local
volumetric forcing in the Navier–Stokes equation (2.2). As a result, we find an increased
global transfer of momentum as shown by Re(κs/κ f ) in figure 6(b). Consequently and
similarly, also the global heat transfer across the fluid layer is enhanced as measured by
Nu(κs/κ f ) in figure 6(c). These trends are in line with previous results by Vieweg (2023)
for the extreme Neumann and Dirichlet cases. In addition, see figure 6(d), NuC H T (κs/κ f )

offers trends similar to Nu(κs/κ f ).
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f Ra a b c d R2

Nu 104 −0.463 0.558 0.660 2.708 0.9985
Nu 105 −0.357 0.286 0.152 4.687 0.9982
Re 104 −2.673 0.578 0.630 20.158 0.9981
Re 105 −4.402 0.369 −0.055 72.969 0.9973

Table 5. Regression parameters for Nu and Re. A tanh-fit of the form f (κs/κ f , Ra) =
a tanh [bIn(κs/κ f ) + c] + d is applied to the values in figure 6. Here R2 is the coefficient of determination
(Wright 1921) and underlines the quality of these fits.

Starting from the Dirichlet- and moving towards the Neumann case, we find that both
Re and Nu experience substantial increases of up to 32 % and 43 %, respectively. Albeit
these relative changes decrease with increasing Ra due to the increased turbulent mixing,
the absolute change of Re seems still to increase. This underlines that thermal boundary
conditions may even affect scaling laws such as Nu ∼ Raγ (Plumley & Julien 2019;
Vieweg 2023) in certain ranges. In more detail, the trends in global heat transfer across
the fluid layer of our three-dimensional CHT simulations in a square Γ = 30 domain align
qualitatively with the ones of Johnston & Doering (2009), the latter of which compared
the Dirichlet and Neumann cases for Γ = 2 at Ra � 1010 in a two-dimensional domain
and found that Nu is increased in the Neumann case for Ra � 106. In contrast, the
impact of the thermal boundary conditions vanished for Ra > 106. The same trend was
observed by Vieweg (2023) for three-dimensional domains of square Γ = 60 at Ra � 107

and by Verzicco & Sreenivasan (2008) in a cylinder of Γ = 1/2 at Ra > 109. Albeit this
evidence may lead one to suspect that the impact of κs/κ f on Nu and Re vanishes for
Ra � 105 due to increased turbulent mixing, further studies at higher Ra are required to
prove it.

In analogy to § 3, we apply hyperbolic tangent fits to our numerical data. While the
resulting fits are included in figure 6, their underlying parameters are provided in table 5
and allow us to estimate expected values of Re and Nu given Pr = 1 and Ra = {104, 105}
under different κs/κ f . Reminiscent of § 3, we observe again an asymmetric behaviour with
the inflection point being skewed towards κs/κ f < 100.

5. Boundary layer analysis
Albeit the global heat and momentum transport through the fluid layer have been quantified
in § 4.3, detailed knowledge of both its thermal and viscous boundary layers is essential,
too. On the one hand, the thermal boundary layers account for the majority of the
temperature drop across the fluid layer (Scheel et al. 2013; Vieweg et al. 2021) and thus
induce the essential destabilisation of the latter. On the other hand, the viscous boundary
layers are highly dissipative regions (Scheel et al. 2013; Vieweg et al. 2021) that slow down
fluid motions towards the walls and insinuate the strong turbulence present in the adjacent
bulk.

While the thermal boundary layer thickness is traditionally defined based on the mean
(conductive) heat transfer at the top and bottom boundaries (Chillà & Schumacher 2012)

δT = 1
2 Nu

, (5.1)

there is no equivalent transfer of momentum at these planes into the fluid. Instead, the
viscous boundary layer is generated by randomly oriented patches of shear flow and
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usually lacks a mean flow (Samuel et al. 2024). This structure suggests an alternative
measure of the boundary layer thickness based on the full and horizontal velocity
fluctuation profiles

urms (z) =
√〈

u2
x + u2

y + u2
z

〉
A,t and uh

rms (z) =
√〈

u2
x + u2

y

〉
A,t (5.2)

where the maxima mark the viscous fluctuation thicknesses δu,rms and δh
u,rms , respectively.

Equivalently, a similar definition for the thermal fluctuation thickness δΘ,rms is given by
the maximum of the temperature fluctuation profile

Θrms (z) =
√〈

Θ2
〉
A,t (5.3)

which has been found to strongly correlate with δT (Long et al. 2020). Note the difference
between this profile of Θrms and its global quantity defined in (4.2).

We prepare this analysis of thermal and viscous boundary layers by increasing the
spatial resolution of our simulations: after tr (see table 3), we change the vertical number
of spectral elements within the fluid layer from four to six – leading to at least 14
grid points within a boundary layer – and relax the flow onto this new grid for 50τ f
before analysing the subsequent 100τ f . Moreover, we rescale the temperature field for the
following postprocessing based on the original �TN (Vieweg 2023, 2024a) for improved
comparability between the Neumann and remaining cases.

Figure 7 illustrates the mean temperature profiles across our different κs/κ f for Ra = 104

in figure 7(a,b) and Ra = 105 in figure 7(d,e). Bridging the gap between idealised thermal
boundary conditions reported in Pandey et al. (2022) and Vieweg (2023, 2024a), our
CHT set-up exhibits at this intermediate Pr = 1 an increased tendency for a manifestation
of a (weak) stable stratification in the bulk of the fluid layer when decreasing κs/κ f .
This stratification is the result of weakly mixing thermal plumes that detach and shoot
deep into or even through the bulk (Vieweg 2024a). This might be supported by an
increased size and thus large-scale organisation of the flow structures. As the (classical)
thermal boundary layer thickness δT is directly linked to Nu, we find that δT decreases
with decreasing κs/κ f . As Nu tends to become more independent of κs/κ f for larger Ra
(see again figure 6), δT converges as well. As an alternative to this classical measure,
figure 7(c,f ) visualise the thermal fluctuation thicknesses δΘ,rms . Given natural thermal
boundary conditions that are more similar to the Dirichlet case, δT and δΘ,rms converge
as Ra is increased (Samuel et al. 2024). However, for conditions more similar to the
Neumann case with smaller values of κs/κ f , the definition of δΘ,rms loses significance
as worse solid thermal conductors imply quicker relaxations of thermal perturbations
in the fluid and thus a shift of these peaks of variance closer to (or even into) the
solids.

Figure 8 moves the focus of the boundary layer analysis to the velocity field. As
shown across the entire fluid domain in figure 8(a,d), we observe pronounced peaks
in the fluctuation profiles especially for smaller κs/κ f , i.e. for more pronounced large-
scale organisations of the flow. Especially figure 8(a) indicates the presence of dominant,
horizontally extended convection rolls that offer strong horizontal velocities, see also fig-
ure 8(b,c). Interestingly, despite the very different amplitudes of these profiles across κs/κ f ,
the viscous boundary layer thickness is very similar and varies only weakly with Ra (and
thus Re). In other words, the viscous boundary layer thickness varies less with both κs/κ f
and Ra than the thermal one. As a result, the ratio δu,rms/δΘ,rms tends to increase for larger
Ra (Samuel et al. 2024). However, our data suggests that it is not solely Re that governs
the thickness of the viscous boundary layer: for fixed Ra, our Re is larger for smaller
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Figure 7. Thermal boundary layer analysis. Although a glimpse at (a,d) the entire vertical profiles shows only
little variation of them with κs/κ f , a closer look at the bottom region for both the planar (b,e) average and (c,f )
variation reveals a more pronounced dependence of appropriately defined boundary layer thicknesses δT and
δΘ,rms (as indicated by the horizontal lines). Note that we exploit the rescaled temperature field for this analysis
and Γs = 15 for all data.

κs/κ f even though both δu,rms and δh
u,rms exhibit the opposite trend. This suggests that

long-living large-scale flow structures play a crucial role even for viscous boundary layers.

6. The impact of the plate thickness

6.1. Choice of the vertical aspect ratio Γs

In all our simulations discussed so far, a vertical aspect ratio of Γs = 15 has been used.
This deliberate choice is based on a diffusion time argument: temperature differences are
supposed to relax more quickly in the horizontal than in vertical direction,

τκ,s,v
!
� τκ,s,h with τκ = L2

ch

κ
, (6.1)

promoting a weak to negligible footprint of the applied thermal boundary conditions on the
solid–fluid interfaces. Given our laterally periodic domain, the largest structure satisfying
this condition has a horizontal extend of Lch,h = L/2 = Γ H/2. Hence, condition (6.1)
turns into
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Figure 8. Viscous boundary layer analysis. While in (a,d) the entire vertical profiles highlight the presence of
dominant horizontally extended flow structures in particular for smaller κs/κ f and Ra, these profiles’ variation
allows to derive and contrast appropriately defined boundary layer thicknesses δu,rms (as indicated by the
horizontal lines) for both the full as well as only the horizontal velocity field. Note that Γs = 15 for all data and
the colour encoding coincides with figure 7.

H2
s

κs

!
� L2/4

κs
= Γ 2 H2

4κs
⇔ Γs ≥ Γ

2
(6.2)

and a domain of Γ = 30 should offer (at least) Γs = 15.
Figure 9 scrutinises our condition (6.2) by plotting and contrasting vertical profiles of the

standard deviation in the temperature field std(T ) across all κs/κ f in figure 9(a). We find
that the propagation of thermal inhomogeneities into the solid plates is asymmetric with
respect to κs/κ f . Interestingly, thermal perturbations relax most slowly in case of κs/κ f =
100 despite its weaker thermal inhomogeneities at the solid–fluid interface compared with
κs/κ f = {10−1, 10−1/2} (see also again table 4).

In order to probe the impact of our applied thermal boundary condition at z = 1 + Γs
(see (2.9)), we proceed by varying Γs given a fixed κs/κ f = 100. Figure 9(b) contrasts two
additional simulations of Γs = {1, 30} with the previous case. On the one hand, we find
that thin plates of Γs = 1 result in significant decreases of the thermal inhomogeneities
and size of the resulting flow structures compared with Γs = 15, see also again table 4.
This suggests that temperature differences in the horizontal direction are not sufficiently
relaxed and that the underlying thermal boundary conditions leave a considerable
footprint on the solid–fluid interfaces. On the other hand, even thicker plates of Γs = 30
do not seem to provide a significant benefit. Despite somewhat larger inhomogeneities
at the solid–fluid interfaces, the vertical profile underlines that the relaxation of thermal
inhomogeneity is barely altered despite a doubling of the plate thickness. Hence, we
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Figure 9. Relaxation of turbulent flow-induced thermal perturbations across the solid plates. (a) Given Γs =
15 (at Ra = 105), the relaxation is slowest close to a unity ratio κs/κ f = 100. Even for this critical case, (b)
the situation has mostly converged to that with plates of even twice the thickness. In contrast, thinner plates
with Γs = 1 impact the temperature field at the solid–fluid interfaces strongly. The situation is symmetric for
−Γs ≤ z ≤ 0.

conclude that the choice of Γs = 15 based on condition (6.2) for our main production
simulations has been appropriate.

6.2. Linear stability analysis for different plate thicknesses Γs

Similar to the turbulent flow at Ra � Rac, we expect the onset of convection to be affected
by the thickness of the solid plates Γs . As shown in Appendix A, we extend the work of
Hurle et al. (1967) (who considered Γs → ∞) by respecting the plate thickness via the
−λ f/λs tanh(kΓs) term in the solution of the linear stability of the system (see (3.1)).

Figure 10 compares various neutral stability curves given constant λs/λ f in different
panels. On the one hand, we find that the curves (across the different panels) converge
for infinitely small vertical aspect ratios Γs → 0 – independently of λs/λ f – towards the
classical Dirichlet case (i.e. the violet curves are all the same). This case, making any
plates obsolete, is certainly influenced by our applied Dirichlet-type boundary conditions
at the very top and bottom. On the other hand, we observe that the curves (in each
panel) converge for large vertical aspect ratios Γs � 1 independently of λs/λ f . In other
words, there is practically no difference between Γs = 15 and Γs → ∞. This substantiates
our choice of Γs = 15 in § 6.1. Additionally, we find that the neutral stability curves
converge for λs/λ f → {0, ∞} as long as Γs > 0 and sufficiently large (e.g. Γs = 0.1).
Only a zoom towards k ≈ 0, see figure 10(d), indicates the gradual convergence of the
critical wavenumber for the Neumann case as one of these two idealised thermal boundary
conditions. For such small, yet positive λs/λ f , the solid plates conduct heat way worse
than the fluid, and so even very thin plates of Γs = 0.1 effectively act insulating. This
may have important implications for any coating of a wall in laboratory convection set-ups
(Schindler et al. 2022, 2023; Wondrak et al. 2023).

The situation becomes significantly more complex once no limit of either Γs or λs/λ f

is considered. Contrasting figure 10(b,c,e,f ), a certain asymmetry around λs/λ f = 100 can
(once again) be noticed. While the neutral stability curves almost coincide for λs/λ f = 101
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Figure 10. Neutral stability across varying Γs . While vertically infinitely extended plates are already resembled
at Γs � 1, thinner plates Γs � 1 impact the system significantly and stabilise the layer successively. Worse solid
thermal conductors (relative to the fluid) are more strongly affected by this stabilisation; contrast therefore in
particular panels (c,f ) which are symmetrically spaced around λs/λ f = 100.

in figure 10(f ), there is a significant spread for λs/λ f = 10−1 in figure 10(c). This begs the
following question: Which ratio of thermal conductivities is most sensitive to a variation
of Γs?

In an attempt to quantify the divergence of the neutral stability curves, we measure the
differences in Rac and kc between the cases of Γs = 0.1 and Γs → ∞ via

�Rac

(
λs

λ f

)
= Rac

(
λs

λ f
, Γs = 0.1

)
− Rac

(
λs

λ f
, Γs → ∞

)
, (6.3)

�kc

(
λs

λ f

)
= kc

(
Rac

(
λs

λ f
, Γs = 0.1

))
− kc

(
Rac

(
λs

λ f
, Γs → ∞

))
. (6.4)

Figure 11 illustrates these results. Note that while �Rac > 0 implies a stabilisation of
the convection layer when decreasing the thickness of the solid plates, �kc > 0 indicates
a decrease in the size of critical flow structures. Moreover, we find that both �Rac
and �kc offer pronounced peaks around λs/λ f ≈ 10−0.5 and λs/λ f ≈ 10−1, respectively.
Supported by the general asymmetry of these curves, this analysis underlines the complex
ramifications an interplay between the solid and fluid domain can exhibit.
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Figure 11. Sensitivity of neutral stability on plate thickness for varying λs/λ f . The differences in Rac (a)
and corresponding kc (b) are shown when moving from infinitely thick (Γs → ∞) towards very thin plates
(Γs = 0.1). Decreasing Γs thus stabilises the layer successively, with the strongest impact near λs/λ f ≈ 10−1/2,
not just shifting the onset of convection, but also reducing the initial pattern size at this point.

7. Discussion and perspective
Long-living large-scale flow structures are crucial for an understanding and prediction
of convection flows such as in the Earth’s atmosphere. Previous studies of horizontally
extended Rayleigh–Bénard convection focussed on idealised thermal boundary conditions
such as constant temperatures (the so-called Dirichlet case) or a constant heat flux
(Neumann case) (Pandey et al. 2018; Vieweg et al. 2021; Vieweg 2023). However, these
conditions reduce the problem to the fluid layer only and thus represent rather idealised
cases. In contrast, any natural convection flow is confined by some adjacent matter. Using
a coupled or CHT set-up, this study includes two identical fluid-confining solid plates at
the bottom and the top of the fluid layer. The ratio of thermal diffusivities κs/κ f between
the solids and the fluid represents the key control parameter characterising the (to the
perspective of the fluid) resulting thermal boundary conditions. The inclusion of solid
subdomains allows us to resemble the Neumann case via κs/κ f → 0 and the Dirichlet case
via κs/κ f → ∞, see Appendix B. Varying κs/κ f across a broad range, this study bridges
the gap in between by introducing natural thermal boundary conditions.

Given a Prandtl number Pr = 1, (horizontal) aspect ratio Γ = 30 and thickness of the
solid plates Γs = 15, we have conducted direct numerical simulations subject to varying
κs/κ f for Ra = {104, 105} under no-slip boundary conditions at the solid–fluid interfaces
and periodic boundary conditions concerning the lateral extent of the domain of square
horizontal cross-section. As shown in figure 4, such a coupled system allows for highly
complex dynamics of both T and ∂T/∂z at the various (partly solid–fluid) interfaces based
on the manifesting fluid flow.

Varying κs/κ f from κs/κ f � 100 towards κs/κ f � 100, we found that both structural
as well as statistical properties of the flow undergo significant changes: the long-living
large-scale flow structures grow, and both their induced momentum and heat transfer are
(asymmetrically with respect to κs/κ f ) increased by up to 43 %. The increase of these
measures can be explained by stronger thermal inhomogeneities – the footprints of these
flow structures – at the solid–fluid interfaces and align with recent results for idealised
thermal boundary conditions (Vieweg et al. 2021; Vieweg 2023) or strongly asymmetric
CHT set-ups (Vieweg et al. 2025). We observe a gradual transition from turbulent
superstructures towards supergranules, underlining the importance of the umbrella term
of long-living large-scale flow structures (Vieweg 2023).

A linear stability analysis of our CHT set-up confirms both the growth of flow structures
as well as an increased heat transfer for smaller values of λs/λ f . In other words, we observe
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a monotonic shift of both the critical Rayleigh number Rac and critical wavenumber
kc when varying λs/λ f between its limits. This implies a change in the supercriticality
Ra/Rac given a fixed Ra > Rac and affects thus the induced heat transfer.

We have extended the previous work by Hurle et al. (1967) with respect to two important
aspects: first, we provided simple relations or regressions for kc(λs/λ f ), Rac(λs/λ f ), and
Rac(kc) – see again table 2. This hopefully improves the accessibility of our results.
Second, we investigated the impact of a finite thickness of the solid plates in § 6.2, allowing
us to understand the convergence of the system for the limits

{
Γs, λs/λ f

}→ {0, ∞} and
find its point of largest susceptibility to a change in the plate thickness (as quantified by
�Rac) at λs/λ f ≈ 10−1/2.

This effect of a varying plate thickness Γs was additionally studied numerically. We
found that Γs � 1 tends to stamp the external thermal boundary condition onto the internal
solid–fluid interface, whereas our chosen Γs = 15 � 1 represents a fair approximation
of Γs → ∞. We note at this point that the computational cost of one CHT simulation
involving Γs = 15 increases the required wallclock solution time by a factor of roughly 8
compared with a simulation without solid plates (for the same number of non-dimensional
time units τ f ). Both this numerical investigation of varying Γs as well as the corresponding
investigation of the linear stability have important implications for the design of laboratory
experiments (Foroozani et al. 2021; Moller, Resagk & Cierpka 2021; Moller 2022;
Wondrak et al. 2023; Vieweg et al. 2025).

An additional analysis of both the thermal and viscous boundary layers confirmed an
increasing ratio between these thicknesses, δu,rms/δΘ,rms , for increasing Ra (Samuel et al.
2024), even though we considered two different Rayleigh numbers only. However, our data
suggests that long-living large-scale flow structures play an important role in the formation
of δu,rms , so that the latter is not solely governed by Re.

In nature, thermal convection flows offer typical ratios of thermal diffusivities in
the range of κs/κ f ≈ [10−3, 10−1] (see again table 1). Such values are not only clearly
between the typically studied cases of κs/κ f → 0 and κs/κ f → ∞, but also shifted towards
the only more recently investigated Neumann case (Vieweg et al. 2021, 2022, 2024;
Vieweg 2024a). Albeit we have covered corresponding values of κs/κ f , natural flows
exhibit far greater Ra and potentially smaller Pr as well as additional mechanisms like
rotation (Schumacher & Sreenivasan 2020; Vieweg et al. 2022). This present study can
be seen as an important, yet early step towards understanding these more demanding and
sophisticated geophysical and astrophysical systems. Our recent work (Vieweg et al. 2025)
already started investigating asymmetric top and bottom plates and thermal boundary
conditions as present in scientific engineering applications. Together with additional
rotation around the vertical axis (Vieweg et al. 2022), this may represent an interesting
potential path for future extensions relevant to core–core–mantle or core–ocean–ice
configurations found on Earth or icy moons, respectively. Given this last discussion, the
present work can define a starting point for further investigations on non-ideal boundary
condition effects only.
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Appendix A. Linear stability analysis for the coupled system

A.1. Key idea of the linear stability analysis
The aim of the linear stability analysis is to find the point of the onset of convection with
the fluid being initially at rest. The system is considered stable if perturbations, induced
as infinitesimally small fluctuations in the form of planar waves, decay. Vice versa, it
is unstable if such perturbations grow over time. The analysis is termed linear since one
linearises the governing equations with respect to the (infinitesimally small) perturbations.

As it will turn out, the point of the onset of convection is determined by the critical
Rayleigh number Rac and is caused by the normal mode of the critical wavenumber kc.
In order to transition from a linearly stable to a linearly unstable state, the system must
pass the so-called marginal state – which is exactly the one defining these critical numbers
(Chandrasekhar 1981).

In the following, the linear stability analysis for the CHT case will be performed. This
will yield not only the neutral stability curves for different thermal conductivity ratios
λs/λ f , the former of which represent the marginal states via Ra(k), but also the critical
Rayleigh numbers Rac and wavenumbers kc as given by their global minimum.

A.2. Governing equations and boundary conditions
We consider the same set-up as shown in figure 1(b). As long as Ra<Rac, we are in a
non-convective regime and the fluid is at rest. As mentioned in § 2.2 and laid out in more
detail in Vieweg et al. (2025), in both the solids and the fluid the temperature profile will
be linear. For further analysis it will be beneficial to use the temperature deviation Θ(x, t).
It is the deviation of the actual temperature profile from the linear one (which is present in
a non-convective case) for both the solids and the fluid

ΘΦ(x, t) = TΦ(x, t) − Tlin,Φ(z), with Φ = { f, sb, st}. (A1)

For this analysis, we use the governing equations (2.1)–(2.4) based on a different non-
dimensionalisation. Instead of the free-fall-inertia-balance (favourable for large Re), we
consider a scaling based on the viscous diffusion time scale τν = H2/ν leading to

∇̃ · ũ = 0, (A2)
∂ ũ
∂t

+ (ũ · ∇̃)ũ = −∇̃ p̃ + ∇̃2ũ + RaΘ̃ez, (A3)

Pr
∂Θ̃ f

∂ t̃
+ Pr(ũ · ∇̃)Θ̃ f = ∇̃2Θ̃ f + ũz, (A4)

Pr
κ f

κs

∂Θ̃s

∂ t̃
= ∇̃2Θ̃s . (A5)

Equations (A2)–(A5) are completed by corresponding boundary conditions. In our set-up,
mechanical no-slip boundary conditions are applied at both interfaces. Due to the present
symmetry in our domain, we place the origin of the z-coordinate at the midplane of the
fluid layer. Together with the continuity equation (A2), this results in
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ũ (z̃ = ±1/2) = 0, (A6)
∂ ũz

∂ z̃

∣∣∣∣
z̃=±1/2

= 0. (A7)

As the subdomains are coupled at the solid–fluid interfaces, both the temperatures and
heat fluxes must match there which leads to

Θ̃ f (z̃ = 1/2) = Θ̃st (z̃ = 1/2) , (A8)

Θ̃ f (z̃ = −1/2) = Θ̃sb (z̃ = −1/2) , (A9)

∂Θ̃ f

∂ z̃

∣∣∣∣∣
z̃=1/2

= λst

λ f

∂Θ̃st

∂ z̃

∣∣∣∣∣
z̃=1/2

, (A10)

∂Θ̃ f

∂ z̃

∣∣∣∣∣
z̃=−1/2

= λsb

λ f

∂Θ̃sb

∂ z̃

∣∣∣∣∣
z̃=−1/2

. (A11)

We shall omit the tildes in the following for better readability.

A.3. Perturbation equations
Next, we apply infinitesimally small perturbations to the system by using a linear
combination of basic perturbations. This forms a full set and allows us to extract the one
at which instability first occurs. All variables will be subject to the perturbation φ′ with
ε � 1 as a perturbation parameter, such that the base state φ̄ is disturbed via

φ = φ̄ + εφ′ for φ = {u, p, Θ}. (A12)

Applying the curl to (A3) twice allows us to drop the pressure term. At this point, the
infinitesimally small perturbations are applied to all variables. Keeping in mind that the
fluid is at rest and the temperature deviation is absent for the base state, implying

ū = 0 and Θ̄ = 0, (A13)

as well as dividing by ε �= 0 and dropping all terms of O(ε2) since ε � 1 (i.e. ε2 ≪ 1)
yields the linearised equations

∇ · u′ = 0, (A14)

∂(∇2u′)
∂t

= ∇4u′ + Ra

(
∇2Θ ′

f − ∇ ∂Θ ′
f

∂z

)
, (A15)

∂Θ ′
f

∂t
= ∇2Θ ′

f + u′
z, (A16)

Pr
κ f

κs

∂Θ ′
s

∂t
= ∇2Θ ′

s . (A17)

In a next step, a normal mode ansatz is applied: we assume an infinitely extended domain
in the horizontal directions (in line with our laterally periodic boundary conditions) and
use the linear equations (A14)–(A17) to superpose plane waves or normal modes which
form a complete set of basis functions. These key features allow for linear superposition in
the first place and later for an extraction of the wave at which instability occurs first. Such
plane waves are given by

φ′ = φ̂′ (z) ei(kx x+ky y)+σ t , (A18)

1016 A30-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10361


M. Ettel, P.P. Vieweg and J. Schumacher

where kx,y are the wavenumbers in x and y directions, defining the horizontal wavenumber

kh = k =
√

k2
x + k2

y . (A19)

Here σ ∈C is the growth rate. Each perturbation φ′ in (A14)–(A17) is expressed via (A18)
in terms of normal modes. Exemplary for the continuity equation, this results in

∇ · u′ ≡
[

ikx û′
x (z) + ikyû′

y (z) + ∂ û′
z (z)

∂z

]
ei(kx x+ky y)+σ t = 0. (A20)

For abbreviation, we define

U := û′
x (z) , V := û′

y (z) , W := û′
z (z) , Θ̂ ′ (z) = Θ, Dφ := ∂ (φ)

∂z
, (A21)

such that (A20) translates to simply

ikxU + iky V + DW = 0. (A22)

Applying this in a similar fashion to (A15) in z and (A16)–(A17), we obtain

σ
(
D2 − k2)W = (D2 − k2)2W − Rak2Θ f , (A23)

PrσΘ f = (D2 − k2)Θ f + W, (A24)

Pr
κ f

κs
σΘs = (D2 − k2)Θs . (A25)

On the other hand, the boundary conditions (A6)–(A11) translate to

W (z = ±1/2) = 0, (A26)
DW |z=±1/2 = 0, (A27)

Θ f (z = 1/2) = Θst (z = 1/2) , (A28)
Θ f (z = −1/2) = Θsb (z = −1/2) , (A29)

DΘ f |z=1/2 = λst

λ f
DΘst |z=1/2, (A30)

DΘ f |z=−1/2 = λsb

λ f
DΘsb|z=−1/2. (A31)

A.4. Marginally stable state
The marginally stable state is the one we are looking for, defining neutral stability.
Depending on the imaginary part of the growth rate, the system may be in overstability,
if for at least one wavenumber Im(σ ) �= 0. Otherwise, if all wavenumbers result in an
imaginary part of 0, the principle of exchange of stabilities is valid.

Chandrasekhar (1981) has shown that the latter applies for the Rayleigh–Bénard
convection set-up. Moreover, Hurle has adapted this to the CHT case, allowing for the
application of this principle (Hurle et al. 1967). Thus, we can set

Re (σ )
!= 0 ∧ Im (σ )

!= 0 ⇒ σ ≡ 0. (A32)

Applying this to (A23)–(A25) gives us our modelling equations. We can rewrite (A24)

PrσΘ f︸ ︷︷ ︸
σ=0

= (D2 − k2)Θ f + W ⇔ Θ f = − W

D2 − k2 or W = −(D2 − k2)Θ f , (A33)
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and insert it into (A23), yielding either an ordinary differential equation for W ,((
D2 − k2)3 + Rak2)W = 0 (A34)

or, alternatively, for Θ f (
D2 − k2)((D2 − k2)3 + Rak2)Θ f = 0. (A35)

For the solids, in turn,

Pr
κ f

κs
σΘs︸ ︷︷ ︸

σ=0

= (D2 − k2)Θs ⇔ (
D2 − k2)Θs = 0. (A36)

An interesting aspect of (A34)–(A36) is that the dependence on the Prandtl number Pr
cancels out (because we assumed σ ≡ 0). Furthermore, all three equations are linear
ordinary partial differential equations, making them comparatively easy to solve.

A.5. Solution of the modelling equations
Dealing with linear ordinary differential equations, an exponential ansatz of the form

φ (z) = eqz, φ = {W, Θ f , Θsb, Θst } (A37)

with the free parameter q is usually promising. Starting with the simplest of the three
equations for the temperature deviation, that in the solids Θsb,st (A36), we get(

D2 − k2)Θs = 0 ⇒ Θs (z) = c1e−kz + c2ekz . (A38)

At the very top and bottom of the plates, respectively, temperature deviations must be 0 as
the temperature is set by virtue of the (external) thermal boundary conditions. Thus, we
apply

Θst (z = 1/2 + Γst )
(A38)
=⇒ Θst (z) = c1

(
e−kz − ekze−k(1+2Γst )

)
, (A39)

Θsb (z = − (1/2 + Γsb))
(A38)
=⇒ Θsb (z) = c2

(
ekz − e−kze−k(1+2Γsb)

)
. (A40)

Solving (A34) and (A35) with this the exponential ansatz leads to((
q2 − k2)3 + Ra k2)W = 0, (A41)(

q2 − k2)((q2 − k2)3 + Ra k2)Θ f = 0 (A42)

whereas we obtain

Θ f =
(
q2 − k2)2

Rak2 W (A43)

using (A23) when setting σ = 0 and using the same exponential ansatz. We obtain the
solutions

q1,5 = ±
√

k2 − (Ra k2
) 1

3 , (A44)

q2,6 = ±
√

k2 + 1/2
(
Ra k2

) 1
3
(
1 − i

√
3
)
, (A45)
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q3,7 = ±
√

k2 + 1/2
(
Ra k2

) 1
3
(
1 + i

√
3
)
, (A46)

q4,8 = ±k, (A47)

where q4,8 applies to (A42) only whereas the other solutions are valid for both (A41) and
(A42).

Looking at the (q2 − k2)-term in (A41) and (A42), one can observe symmetry.
Therefore, the solution may be written as a combination of sinh and cosh with orthogonal
basis functions, splitting the overall solution into the even and odd solutions

W = We + Wo =
3∑

j=1

A j cosh
(
q j z
)+ 3∑

j=1

B j sinh
(
q j z
)
, (A48)

Θ f = Θ f,e + Θ f,o =
4∑

j=1

C j cosh
(
q j z
)+ 4∑

j=1

D j sinh
(
q j z
)
, (A49)

Θ f = 1
Ra k2

⎛
⎝ 3∑

j=1

A j
(
q2

j − k2)2 cosh
(
q j z
)+ 3∑

j=1

B j
(
q2

j − k2)2 sinh
(
q j z
)⎞⎠ , (A50)

where (A43) is used to obtain (A50).

A.6. Applying the boundary conditions
Now we apply the boundary conditions (A26)–(A31) to solve (A48) and (A49) while using
these conditions for the solids (A39) and (A40). For each condition, (A48) and (A49) are
split into even and odd modes and solved separately. Regarding identical bottom and top
plates, we can further set

λst = λsb = λs, (A51)
Γst = Γsb = Γs . (A52)

Note that this makes the boundary conditions for the solid bottom domain obsolete as the
solution coincides with that of the solid top domain by virtue of symmetry. For (A26), one
obtains

We (z = 1/2) =
3∑

j=1

E j = E1 + E2 + E3 = 0, (A53)

Wo (z = 1/2) =
3∑

j=1

O j = O1 + O2 + O3 = 0, (A54)

with the new constants

E j := A j cosh
(q j

2

)
, (A55)

O j := B j sinh
(q j

2

)
. (A56)

Applying (A27) yields

DWe (z = 1/2) =
3∑

j=1

E j q j t j = 0, (A57)
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DWo (z = 1/2) =
3∑

j=1

O j q j c j = 0, (A58)

with

t j := tanh
(q j

2

)
, (A59)

c j := coth
(q j

2

)
. (A60)

For (A28) one gets

−E0
λ f

λs
tanh (kΓs) + 1

Ra k2

3∑
j=1

E j
(
q2

j − k2)2 = 0, (A61)

−O0
λ f

λs
tanh (kΓs) + 1

Ra k2

3∑
j=1

O j
(
q2

j − k2)2 = 0, (A62)

where the new constant is

E0 = O0 := c1e−k/2 · λs

λ f
· 1 − e−2kΓs

tanh (kΓs)
. (A63)

Finally, for (A30) one obtains

E0k + 1
Ra k2

3∑
j=1

E j q j t j
(
q2

j − k2)2 = 0, (A64)

O0k + 1
Ra k2

3∑
j=1

O j q j c j
(
q2

j − k2)2 = 0. (A65)

As a result, we are left with two systems of equations: One for the even modes and one for
the odd modes. Together with the parameter

γ :=
(

Rak2
)−1/3

, (A66)

(A64) and (A65) can be written as⎛
⎜⎜⎜⎝

0 1 1 1
0 q1t1 q2t2 q3t3

−λ f
λs

tanh (kΓs) γ −γ
2

(
1 − i

√
3
)

−γ
2

(
1 − i

√
3
)

k γ q1t1 −γ
2

(
1 − i

√
3
)

q2t2 −γ
2

(
1 − i

√
3
)

q3t3

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
ME

⎛
⎜⎝

E0
E1
E2
E3

⎞
⎟⎠

︸ ︷︷ ︸
E

=
⎛
⎜⎝

0
0
0
0

⎞
⎟⎠,

(A67)⎛
⎜⎜⎜⎝

0 1 1 1
0 q1c1 q2c2 q3c3

−λ f
λs

tanh (kΓs) γ −γ
2

(
1 − i

√
3
)

−γ
2

(
1 − i

√
3
)

k γ q1c1 −γ
2

(
1 − i

√
3
)

q2c2 −γ
2

(
1 − i

√
3
)

q3c3

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
MO

⎛
⎜⎝

O0
O1
O2
O3

⎞
⎟⎠

︸ ︷︷ ︸
O

=
⎛
⎜⎝

0
0
0
0

⎞
⎟⎠.

(A68)
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In other words, both the even and odd solutions represent a system of four equations which
must be solved at once. Note that the involved q j , t j , c j and γ are defined in (A44)–(A46),
(A59), (A60) and (A66), respectively. The trivial solutions, i.e. all constants E j , O j =
0 ∀ j ∈ [1, 4], are obvious. To find the non-trivial solution, the determinants of the given
coefficient matrices ME, MO must contract to zero.

In this solution, there are four free variables left: Γs , λ f/λs , k and Ra. This allows us
to fix Γs and λ f/λs to compute the neutral stability curves Ra(k) for the even and odd
solutions.

We find that odd solutions are generally more stable than even solutions. In other words,
the neutral stability curves from even solution are below those from odd solutions. Hence,
we restrict our analysis in the main text, see (3.1), to the solution of (A67).

Appendix B. Convergence of thermal boundary conditions at extreme ratios of
thermal diffusivities κ s/κ f

In order to validate our CHT set-up – which adds two identical fluid-confining solid plates
at the top and bottom of the classically studied fluid layer – we conduct two simulations
using extreme κs/κ f = {10−6, 106}. These parameters are supposed to resemble the
idealised Neumann and Dirichlet case, κs/κ f → 0 and κs/κ f → ∞, respectively.

For understanding these limits and their consequences, it is helpful to think of our CHT
set-up as a thermal circuit with its different involved thermal resistances or conductances
(representing, e.g. the different subdomains) (Incopera et al. 2007; Vieweg et al. 2025). If
one pathway of heat transfer offers a significantly smaller thermal resistance Rth – or, as
Rth ∼ λ−1 ∼ κ−1, larger thermal conductivity or diffusivity – it represents a shortcut and
will be favoured over other pathways.

In case of κs/κ f → 0 or κs � κf, the thermal resistance of the solid plates is enormous.
However, as our domain is horizontally periodic, heat transfer through these plates is
unavoidable and the ‘easiest’ way through the plate is by passing it vertically. This means
for the present set-up that heat transfer from Th to Tc tends to avoid ‘expensive’ horizontal
transfer within the solid plates and results in a uniform heat flux at the solid–fluid
interfaces. Thus, the classical Neumann case is resembled.

In the opposite case of κs/κ f → ∞ or κs � κf, the thermal resistance of the solid plates
is tiny whereas that of the fluid layer is huge. Heat transfer starting from Th or towards
Tc will go all possible ways within the solid plates before eventually interacting with the
resistive fluid layer. As a result, heat transfer within the solid plates is faster than through
the fluid layer and the plates become isothermal, leading to the classical Dirichlet case.

Figure 12 compares our extreme CHT cases with classical, plateless scenarios. It is
obvious that the more natural implementations of the Neumann and Dirichlet cases match
their idealised counterparts very well. This first qualitative impression is further confirmed
by Nu, Re and ΛT as provided in table 4.

The direct comparison of a plateless Neumann case and the plate-involving CHT
case results in an artefact concerning the mean temperature difference across the fluid
layer: in the Neumann case, the non-dimensionalisation is not based on the characteristic
temperature Tchar,D = �T (as in the Dirichlet and CHT cases) but rather on the applied
vertical temperature gradient across the fluid layer Tchar,N = −∂T/∂z. In other words, the
characteristic temperature scale is different. As a result, the resulting mean temperature
difference �TN � 1 (Otero et al. 2002). This leads to out-of-line scaling in the legend of
figure 12 as well as max(ΔhT ) and std(T ) in table 4. However, this is more of a technical
issue and can be circumvented by rescaling the solution fields based on �TN (Vieweg
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(a) κs/κf  → 0 κs/κf  → ∞κs/κf = 10–6 κs/κf = 106(b) (c) (d )

2.0 –4.0 0.5 5.0 0 0.5 1.0 0 0.5 1.0

Figure 12. Pattern formation at extreme ratios of thermal diffusivities κs/κ f . For extreme values of κs/κ f , (b,c)
the flow patterns of CHT simulations converge perfectly towards (a,d) those obtained from classical idealised
thermal boundary conditions. Here Ra = 104 and Γs = 15 (if applicable). Note that the simulations from panels
(a,d) do not comprise any solid plates, whereas those from panels (b,c) do.

2023, 2024a), eventually realigning the values and proving the validity of our used
set-up.
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