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Abstract

We investigate the arithmetic properties of the second-order mock theta function B(g) and establish two
identities for the coeflicients of this function along arithmetic progressions. As applications, we prove
several congruences for these coefficients.
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1. Introduction

In his last letter to Hardy [23, pages xxxi—xxxxii, 354-355], Ramanujan introduced
several families of mock theta functions. Since then, properties of these functions have
been widely studied. One important direction involves identities between mock theta
functions and generalised Lambert series (see [2, 5, 9, 18, 19]). Recently, using the
theory of modular forms, Zwegers [27] and Bringmann and Ono [10-12] proved that
mock theta functions are the holomorphic parts of certain nonholomorphic modular
forms (see [21, 26] for more details).

We study arithmetic properties of the coefficients f(n) of the second-order mock
theta function
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In the equation above and for the rest of this paper, we use the notation
m—1

(X1, X2, oo, X = (X1, X0, « o, Xp @ 2= l—[(l - x14")(1 = x2q") - - - (1 = x,q"),
n=0

(1220 2o = (1,220, 2 Qoo = | (1= 301g"(0 = 329" -+ (1= xeq”),
n=0

(X1, X2, Xeloo = [X1, X2, s Xi3 oo = (X1, G/ X1, X2, @/ X2, - Xk G/ Xk @)oo
J(x5q) := (0)eo(g/ X)oo(@)oos
Jap = (4" 4" 4" ),
Ip = (@" "),
and we require |g| < 1 for absolute convergence.

Modular transformation formulas for B(g) were first studied in [1]. Also, in [1,
(4.3)], the function B(q) is expressed in terms of a generalised Lambert series: that is,

(_qZ. qZ)w & (_l)nq2n2+2n
22 — 2n+l

(O R R Sl
Armed with the above identity, Gordon and Mclntosh [17] proved that

B(g) + B(=9)
=L = (g (1.1)
It is easy to see that (1.1) is equivalent to

2.2
Zf(Zn)q” = —(qq i )°§ : (1.2)

In [14], Chan and the author found that

B(q)

S (q*: 9%
4n+2)q" =4 1.3
HZ:;: Jln+2)q (4: D(q 4% 4% (-

and

(-4 )2(q" 4%
(@ DN 5 (=% D
The first objective of this paper is to give analogues of (1.2), (1.3) and (1.4) modulo 6.

D fén+ g =2 (1.4)
n=0

TraEOREM 1.1.

N . 4(¢% 4%
Z_; Jon+ 24" = l4: ¢°101g%: ¢°1% (1>
and
N . 94’ ¢%)
6n+4)q" = . 1.6
nzzolf( " [4: 4°18 (4% 4°1& 14 4°1a (1

In particular, f(6n +2) =0 (mod 4) and f(6n +4) =0 (mod 9).

https://doi.org/10.1017/5S0004972719001175 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972719001175

52 R. Mao [3]

Congruences for the coefficients of mock theta functions have been studied widely.
Using the theory of (mock) modular forms and Sturm’s theorem, Waldherr [24]
considered the third-order mock theta function

2n2+2n

wlg) = Z = Z au(n)q"
n+l
and established the congruences
a,(40n +27) = a,(40n + 35) = 0 (mod 5). 1.7)

Wang [25] established many more congruences for a,(n) by using identities for the
coeflicients of w(g) in arithmetic progressions. In particular, he proved that

© 2)10

2.
> au@n+3)g" = 4D
= (4: Do
One can easily deduce (1.7) from (1.8).

Applying identities on the coefficients in arithmetic progressions, we prove similar
congruences for f(n). For example, we see that (1.3) and (1.4) give

f(4n+2)=0 (mod 4)

(1.8)

and
f@n+1)=0 (mod 2). (1.9)

Generalising (1.9), Qu, Wang and Yao [22] proved that f(2n + 1) =0 (mod 2). For
more on congruences from mock theta functions, see [4, 6, 16, 20]. Based on (1.2),
(1.5) and (1.6), we give some further congruences for f(n).

CoROLLARY 1.2.

£(10n+6) = f(10n +8) =0 (mod 5), (1.10)
f(12n+8) =0 (mod 8), (1.11)
£(30n +8) = f(30n +26) =0 (mod 20), (1.12)
f(12n+10)= 0 (mod 18). (1.13)

2. Proof of Theorem 1.1
We need to find the 3-dissection of (¢%; ¢%)w/(q: ¢*)%.
Lemma 2.1 [13, Lemma 2.1]. We have
(-q: oo _ le quIZ 4q2112
CHS ‘]318‘]618‘]9»18 ‘]318‘1218]318 ngsjgwjgls‘

Lemma 2.2. We have

(2.1)

2% Josd] VA VA
(¢ ,.61 2)00 _ 9128 18 g 18 4 2018 2.2)
(@497 T3 g J318 Jo18
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Proor. Recall [8, Equation (2.1)] that
@G5 _ i (=Dfgtebr 23)
@)% Peo(X; P 1 xqk
Replacing g by ¢ and setting x = g in (2.3),
(q2; q2)§o ( l)k k(k+1) ( 1)k k(k+l)(1 + q2k+l + q4k+2)
A 0 o = 24
(@ 4P k;oo 1= k;w 1 — gk 2.4
Splitting the infinite sum on the right-hand side of (2.4) into three sums according to
the value of kK modulo 3, we find that
(q q )2 Z ( 1)k 3k(3k+])(1 6k+l + q12k+2)
@ads  “ qlg"”
& (1) q(3k+1)(3k+2)(1 + g3 4 g12k+6y
B Z | — 189
S (1) q(3k+2)(3k+3)(1 ¢+ + q121<+10)
+ D e 25)
k=—o00
Rewrite (2.5) as
(4" )%

——— =So+¢gS;1 + quz,
(4,45 4P !
where we define

0 2 e 2

o (_l)kq‘)k +3k (_l)kq9k +15k+6

So:= Z [ — g5 [ = giskis
k=—c0

=—00

s (—1YegoR+9%k & (1)t +2Tke1s
Si:= Z | — g%k + Z
K=o

1 - q18k+15 ?

=—00

(2.6)
SZ o Z (_l)kq9k2+15k . i (—l)kq9k2+21k+9 (_l)kq9k2+9k
C T — _18k+3 — gI8k+15 - — _18k+9
marl kA k=—co 1 ' k=—co I =g
( l)k k2 +21k+6 ( l)k k% +15k+3
a Z 1-¢ T — g8k 1-¢ T g8k 2.7)
k=—o0 k=—00
Hence, it suffices to show that
Jo18J3
So=——2, (2.8)
J318
J3
S =212, (2.9)
! J3,18
J3
S, = 2% (2.10)
Jo,18
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Recall the following special case with s =2, = 1 of [13, Theorem 2.1]: that is,

[ale (@2 la/bile S (=DigHesDP (i)k
[b1,02)  [b2/bi)e A 1=bigt \by

la/br]e ~— (=1)kgkt+Di2 (i)k
[b1/b2)e S, 1=bagt \bi)

@2.11)

Replacing ¢ by ¢'® and setting a = ¢°, by = ¢, b, = ¢ in (2.11),

18)2 k% +3k k2+15k+6

[q9;q18]m(q]8;q ( 1)k Z ( l)k 9 _g
3. 1812 Z 18k+3 18k+15 0
l4%: 4" frard <

which gives (2.8). Replacing the summation index k by —k in the second sum on the
right-hand side of (2.9) and simplifying gives

(_l)kq9k2+27k+15 S (_l)kq9k2+9k

[ —g8k+1s 1 —gl8k+3
k=—o00 k=—o00
Thus, by (2.6),
( l)k 9k +9k
Z T (2.12)
k=—oo

Replacing ¢ by ¢'® and setting x = ¢° in (2.3),
(q"%; ¢'5)2 1 (—1)kg ok
(4% 4"5] = = giskes

k=—c0

Equations (2.12) and (2.13) imply (2.9). Proceeding as in the proof of (2.8) and (2.9),
after applying (2.3) and (2.11),

(2.13)

( l)k k> +15k ( l)k 9k2+15k+3 (qIS;CIlS)gO
Z q'8k+3 - Z q'8k+9 - (% "]
k=—00 k= ’ 0
Z (- l)k 9k>+21k+9 ~ (- 1)k k> +21k+6 _ (q18;q18)go
) 1 — g'8k+15 o 1 — g'8k+9 (2% ¢"%].,
& ( l)kq9k2+9k (q18. q18 2
k;m 1= q18k+9 - [51926118]00
Substituting these three equations into (2.7) gives (2.10). O

Now we are in a position to prove (1.5) and (1.6). Note that

00 2.2 2. .22 (.
3 fng' = @59)w _ 4300 (4P (2.14)

@ 7:9%  @6P)e (@G Po
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Substituting (2.1) and (2.2) into (2.14),

> Jo 13 J> J? J?
Zf(2n)q" :{ 9,18/ 13 +2g-18 4 2008 }
n=0

J3 1 J3,18 Jo.18
Y, SN
o - L R S (2.15)
J3,18J6,18J9’18 J3,18J6,18‘]9,18 J3,18J6,18J9,18
Extracting the terms in ¢" where n = 2 (mod 3), we arrive at
0 J J3 4 2J12
Zf(6n+4)q3n+2 — 9’128 18 . q 18
J S 5 £
n=0 3,18 3,1876,1879,18
3 12 3 12
49 Jis  2q)5 + 2 s 1§
T 7708 2 T 7B J*
318 J318Y6,1879,18 918 J31876,1879.18
15
= 94 Ur
8 14 2 °
J3,18J6,18J9,18
which gives (1.6). Extracting terms with ¢" where n = 1 (mod 3) in (2.15),
& Jo 13 )3 2¢qJ 12
Zf(6n+2)q3n+l — 9’128 18 . - q4 18 -
=0 Sis 315615 70s
3 12 3 2 712
+2qJ18 . i g Jis A4 )i
s 14 6 14 3
J318 31876187918 Jo.18 I31876.1870.18
JlS J15
18 4 18
=4q 5 ” +4q 5 " ” (216)
‘]3,18‘]6,18‘]9’18 J3,18J6,18J9,18

From the identity [15, Equation (3.1)], namely,
[A/b,Alc,Ald,Ale;qle — [b,c,d, e;qle = B[A,A/bc,Albd, Albe; g,

with ¢ replaced by ¢'® and (A, b, c,d,e) = (¢"°,4°,¢°,4°, ¢°), we find that

18]3

4% q"1% - [47: 9" 1eld’: "1 = Pla; 4P 1%

Armed with the above equation, one can easily check that

3 4
1 . Js.18
3 3 T 14 3 0
‘]3,18 ‘]9,18 J3,18J9,18
which gives
15 15 15
Jig 4 Jig g
97 1 +4q 6 g4 g4 — q10 g4
J3,18J6,18J9’18 J3,18J6,18J9,18 J3,18J9,18

This, together with (2.16), implies (1.5).
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3. Proof of Corollary 1.2
3.1. Proof of (1.10). By the binomial theorem,

(@5 P _ @D _ (@@ _ Zi-oCDg?
(@)% (@)% (@54 (4"

(mod 5),

where the last equality follows from Euler’s pentagonal number theorem [3, page 11]:
that is,

(@ = ) (~1Yg/O V2,
Jj=—0

Since j(3j—1)/2=0,1,2 (mod 5), the coefficients of ¢**> and ¢>*** in the g-
expansion of (¢%; ¢*)«/(q; ¢*)% are multiples of 5. This, together with (1.2), gives
(1.10).

3.2. Proof of (1.11) and (1.12). By the binomial theorem,

@%q  _ (4%
G g g ot G.1)
and
6. 6 6. 6 3 6
RS N VST S EIUST M Ry a2

[: ¢%1201¢% ¢°1%  [9'%;4%1w[9"; ¢

By (3.1), the coefficients of g?**! in the g-expansion of (¢°%; ¢®)e/[4; ¢°1'%[¢°; ¢°1%, are
all even integers. This, together with (1.5), gives (1.11).
Applying Jacobi’s triple product identity [7, pages 33-36]

o
(42,417, ¢*; ¢P)eo = Z Zq”,
Jj=—00
we find that
o
@ 04" ") = D (-1
Jj=—00

Thus, by (3.2),

- 32
%)  _  Zie(=D'gV

[4:0°1014%: ¢%1 19" ¢%)19": %o

Since 3> = 0,2 or 3 (mod 5), the congruence (3.3) implies that the coefficients of ¢"

with n = 1,4 (mod 5) in the g-expansion of (¢%; ¢%)e/[q: ¢°1°[¢>; ¢°1%, are multiples
of 5. This, together with (1.5), proves (1.12).

(mod 5). (3.3)
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3.3. Proof of (1.13). From

(4% ¢%)e (4% ¢%)eo
[¢;: %1% [¢% 481513 %1% 6% 9'21%1q% 9212165 12w

(mod 2),

the coefficients of ¢g?"*! in the g-expansion of (¢°; ¢®)w/[q: ¢°13,[¢%: ¢°1% [4%; ¢°12, are

all even integers. This, together with (1.6), gives (1.13).

4. Concluding remarks

The referee pointed out that

= (G5 qHY
§ dnyg = — 224 o 4.1
pars Tt (4 D&(q*; gh% @D

Proceeding as in the proof of Theorem 1.1, one can prove (4.1) by making a
2-dissection of the infinite product in (1.2).
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