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Abstract

In recent years, there has been growing interest regarding the impact of human movement quality on health.
However, assessing movement quality outside of laboratories or clinics remains challenging. This study aimed to
evaluate the capabilities of consumer-grade wearables to assess movement quality and to consider optimal sensor
locations. Twenty-two participants wore Polar Verity Sense magnetic, angular rate, and gravity (MARG) sensors
on their chest and both wrists, thighs, and ankles, while performing repeated bodyweight movements. The
Madgwick sensor-fusion algorithm was utilized to obtain three-dimensional orientations. Concurrent validity,
quantified using the root-mean-square-error (RMSE), was established against a Vicon optical motion capture
system following time-synchronization and coordinate-system alignment. The chest sensors demonstrated the
highest accuracies overall, with mean RMSE (RMSE,can) less than 9.0° across all movements. In contrast, the
wrist sensors varied considerably (5.5° < RMSEjean < 139.1°). Ankle and thigh sensors yielded mixed results,
with the RMSE ;ean ranging from 2.0° to 40.0°. Notably, yaw angles consistently demonstrated higher discrep-
ancies overall, while pitch and roll were relatively more stable. This study highlights the potential of consumer-
grade MARG sensors to increase the real-world applicability and accessibility of complex biomechanical models.
It also accentuates the requirement for strategic sensor placement and refined calibration and postprocessing
methods to ensure accuracy.

1. Introduction

Following the technological revolution, wearable technology has become an integral part of modern lives.
Current wearable devices offer an array of functionalities, including the capability to provide numerous
health-related metrics (Zhang et al., 2019). However, while wearables are increasingly used to promote
physical activity and exercise among the general population, such devices have primarily focused on the
quantification of movement (Venek et al., 2022). Yet, there is growing awareness of the concomitant
importance of movement quality as well as movement quantity, although this remains an often-
overlooked component of physical activity (Rudd et al., 2020). Indeed, quality movement is vital for
minimizing injury risks, while also enabling enhanced athletic performance (Venek et al., 2022).
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Moreover, life expectancy may also be extended by increasing individuals’ motivation and confidence to
engage in physical activity (Robinson et al., 2015).

Historically, movement quality has been measured and evaluated within research and clinical settings.
In clinical environments, assessments are typically conducted subjectively by movement experts, with
optical motion capture (OMC) commonly utilized as the gold standard in research-based evaluations
(O’Reilly et al., 2018). However, assessing movement quality outside of these constraints remains
challenging, due to substantial time, financial, and spatial limitations (Adesida et al., 2019; Kruk and
Reijne, 2018). Moreover, the applicability of these environments and perhaps the movements typically
analyzed may constrain ecological validity (Skjaerven et al., 2015Kruk and Reijne, 2018; Anwary et al.,
2021). Consequently, the wider population are generally precluded from the benefits associated with
understanding and enhancing their movement quality. Wearable technology presents a potential oppor-
tunity to overcome these restrictions by offering an affordable, accessible, and practical method of
assessing movement quality (O’Reilly et al., 2018).

Prior research has shown that wearable technology, predominantly magnetic, angular rate, and
gravity (MARG) sensors, inertial measurement units (IMUs), or their constituent components, can be
implemented in the assessment of movement quality by directly measuring and quantifying motion
characteristics (Swain et al., 2023). Often, this centers around the computation of sensor orientations,
which, consequently, also permits the estimation of joint angles (Swain et al., 2023). However, despite
extensive research validating the capabilities of wearables to measure orientations during physical
activity (Shepherd et al., 2017; Mitternacht et al., 2022; Shuai et al., 2022), such validation studies are
not without limitations. IMUs and MARG sensors, for example, are frequently validated against OMC
systems during physical activity (Swain et al., 2023). In such validations, sensors are typically secured
to the superficial rigid reflective marker clusters that are commonly used in motion capture systems,
ensuring the orientation of the cluster directly corresponds to that of the device body (Beange et al.,
2019; Teufl et al., 2019; Lin et al., 2021; Michaud et al., 2021). However, while this approach enables
precise validation of the sensor orientation data, it fails to address the nuances of movement quality; the
orientation-tracking capabilities of the sensors are validated without consideration of movement
standards or the dynamic, interconnected movements of the human body and its skeletal structure.
Therefore, a lack of practical transferability becomes evident, as OMC systems utilize skeletal-based
biomechanical models to assess human movement, with motion described relative to joint centers rather
than the superficial marker placements.

The current literature, while demonstrating the potential for wearable technology to aid the
assessment of movement quality, is largely dominated by uniplanar and single-joint movements
(Beange et al., 2019; Meng et al., 2019; Lin et al., 2021). Such studies, which predominantly utilize
clinical- or research-grade sensors (Tulipani et al., 2018; Cortesi et al., 2019; Michaud et al., 2021),
do not fully capture the complex, multidimensional nature of human motion. Additionally, there is a
paucity of studies validating multiple triaxial MARG sensor orientations for full-body compound
movements relative to standardized biomechanical models. Indeed, only two studies have sought to
validate the orientations of wearable devices relative to such models, both of which used research-
grade devices to examine primarily lower-limb movements for clinical applications (Dahl et al.,
2020; Niswander et al., 2020). Moreover, although research has shown that sensors can accurately
quantify physical activity irrespective of placement (Mackintosh et al., 2016), other studies suggest
their performance may decline during movement quality assessments if the sensor positioning is
suboptimal (Swain et al., 2023). Therefore, this study aimed to evaluate the capability of consumer-
grade wearables in assessing movement quality during compound and functional exercises in
comparison to established OMC models, encompassing both the upper and lower body. As a
secondary aim, the study sought to identify the influence of sensor location on orientation measure-
ments for use in movement quality assessments, given the potential impact this may have on sensor
accuracy.
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2. Methods
2.1. Data collection

A total of 24 healthy adult participants (aged over 18 years) volunteered for the study. Two participants
were excluded from the analysis: one due to data corruption, and the other due to a technical error. The
remaining 22 participants (17 male) had a mean age, body mass, and height of 28.5 + 7.1 years, 74.1 +
13.8 kg, and 172 £ 9 cm, respectively.

Before participation, individuals provided written informed consent and completed a Physical Activity
Readiness-Questionnaire (PAR-Q; Warburton et al., 2019). Thereafter, health screening was also con-
ducted for each participant in accordance with the American College of Sports Medicine (ACSM) Risk
Stratification Chart (Sports Medicine, 2019). This study received ethics approval from the Swansea
University Faculty of Science & Engineering Research Ethics & Governance Sub-Committee (approval
ref: 12023 6331 5423).

Each participant wore eight bluetooth-equipped Polar Verity Sense 9-axis MARG sensors (Polar
Electro Oy, Oulu, Finland), each featuring an accelerometer (+8 g, 52 Hz), gyroscope (+2,000 dps,
52 Hz), and magnetometer (50 G, 100 Hz). The devices utilized in this study were placed on the chest over
the xiphoid process, the dorsal side of each wrist at the distal end of the radius, above the lateral malleolus
on each ankle, and laterally on the thighs approximately halfway between the greater trochanter and lateral
epicondyle (Figure 1). Participants also wore a device positioned at the lumbosacral region of the lower
back. However, data from this device were not included in the present analysis. The sensors were remotely
operated via the Polar Sensor Logger V17 Android application (J. Happonen, Kempele, Finland).

ANTERIOR POSTERIOR

Figure 1. Indicative placement of Polar Verity Sense devices and Vicon optical motion capture system
reflective markers utilized in this study. The inserts show the marker clusters used on the (a) lateral thighs
and (b) lateral shanks.
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Elasticated fabric straps or adhesive tape were used to secure the devices. Concurrently, kinematic motion
data were captured at a sampling rate of 250 Hz using a 12-camera Vicon OMC system and Nexus 2.0
software (Vicon Motion Systems Ltd., Oxford, UK). A standardized and widely utilized biomechanical
model and reflective marker set, Plug-In Gait (PiG; Vicon Motion Systems Ltd., Oxford, UK; Baker et al.,
2018; Leboeufet al., 2019; Samala et al., 2020), was used as the gold standard measure (Figure 1), with
marker clusters used on the lateral surfaces of participants’ shanks and thighs to enhance measurement
accuracy (Mackintosh et al., 2016; Sports Medicine, 2019; Warburton et al., 2019; Dahl et al., 2020;
Samala et al., 2020). Furthermore, based on the sensor placements, the PiG head and feet markers, and
corresponding segments, were excluded from the analysis, as they were extraneous to the study’s focus.

Participants performed a warm-up consisting of 5 minutes on a Concept2 Model E rowing ergometer
(Concept2 Inc., Morrisville, VT, USA) followed by a range of dynamic stretches. Each participant was
then asked to complete a protocol involving five exercises: squats, push-ups, good mornings, chair dips,
and ab crunches. Ab crunch data and the chest-sensor data for push-ups were subsequently excluded from
the analysis due to positional OMC marker occlusion. The four movements included in the analysis are
shown in Figure 2. All participants deemed themselves physically capable of performing the prescribed
movements. Following a brief demonstration, each movement was performed for three sets of 10 repe-
titions, with each set and each movement interspersed with a 2-minute period of passive recovery. The
exercises were randomized within a stratified order of: upper, lower, upper, lower, upper, where the squat
and good morning were considered to be lower body exercises and the push-up, chair dip, and ab crunch
were upper body movements. The Vicon OMC system and Polar Verity Sense devices were independently
triggered prior to each set to simultaneously capture movement data and were subsequently terminated
once each set had concluded. Before commencement and following completion of each set of the
prescribed exercises, participants were asked to maintain a 5-second static pose to establish a baseline
(Tulipani et al., 2018).

2.2. Data processing and analysis

On conclusion of the data capture, where required, the Vicon recordings underwent gap filling to
overcome marker occlusion. Thereafter, the C3D marker coordinate files generated by Vicon were
exported to Visual 3D (C-Motion Inc., Germantown, MD, USA) biomechanical modeling and analysis
software program. A biomechanical model was constructed using the modified PiG marker set, com-
prising 10 segments: thorax, upper arms, lower arms, pelvis, thighs, and shanks (Figure 3). Orientations
for each limb segment were then extracted, with each segment’s local coordinate frame approximately
aligned to that of the corresponding sensor.

The data for each constituent component of the MARG sensors were stored locally as .txt files on the
Android device used for data capture and were subsequently transferred to MATLAB R2023a (The
MathWorks Inc., Natick, MA, USA) for analysis. To correspond with the OMC segment frame of
reference, the sensor data were transformed from a left- to right-handed coordinate system. Next, the
magnetometer and gyroscope components were retrospectively calibrated; the MATLAB function
“magcal” was utilized for the magnetometer (Figure 4; Magnetometer calibration coefficients —
MATLAB magcal — MathWorks United Kingdom, n.d.; Ozyagcilar, 2015), whereas a proprietary
function was used for the gyroscope. Notably, the sensor data were subject to filtering during data capture
utilizing a proprietary “black box™ algorithm. Hence, no additional filtering was required; this was
confirmed via frequency analysis. The magnetometer data, initially sampled at 100 Hz, were down-
sampled to 52 Hz to correspond with that of the accelerometer and gyroscope, ensuring uniform sampling
rates across all sensors. Moreover, while each sensory component within the MARG sensor recorded data
simultaneously, the start times were asynchronous due to varying initialization durations for each
component. To synchronize, the MARG sensor data were cropped to ensure a common temporal origin
while isolating the relevant data segments exclusively. The Madgwick gradient descent sensor fusion
algorithm was then applied to the individual datasets obtained from the MARG sensor components to
estimate the orientation of the device, utilizing the default f-value of 0.1 (Madgwick et al., 2011; Open
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a) b)

Figure 2. Exercises performed during data collection (a) chair dip, (b) push-up, (c) squat, and (d) good
morning.

Figure 3. Visual3D biomechanical model developed from the modified Plug-In Gait marker set.
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Figure 4. Magnetometer calibration process with raw precalibrated data in red and postcalibration data
in blue. The shift in distribution following calibration should be noted with the postcalibration data (blue)
centered.

source IMU and AHRS algorithms — x-io Technologies, n.d.). Orientations were expressed using classical
Euler parameters in the XYZ sequence, representing pitch, roll, and yaw rotations, respectively.

The OMC orientation data, also utilizing the XYZ convention, were imported into MATLAB for
comparison with the processed sensor data. To facilitate this, the sensor orientation data underwent
resampling to align its sampling rate with that of the OMC data. An essential step in the analysis was the
alignment of the global coordinate systems for both the OMC and MARG sensors. The OMC global
coordinate system, established during system calibration, served as the laboratory central reference
point. In contrast, the Madgwick sensor fusion algorithm, influenced by the magnetometer, outputs
orientations in a geomagnetic coordinate system, defined by the heading relative to magnetic north
(Kok etal., 2017). Consequently, a misalignment exists that predominantly affects the measurement of
rotation about the z-axis (i.e., the yaw angle; de Vries et al., 2009). To rectify this, the yaw angle
discrepancies between the OMC segments and corresponding MARG sensors were determined under
static conditions, utilizing the mean yaw angles to compensate for signal noise. Thereafter, the
Direction Cosine Matrix (DCM) was calculated for each sensor orientation data point along the
temporal sequence. A rotation matrix, based on the yaw angle discrepancy, was subsequently applied
to each DCM to align the coordinate systems, with the adjusted DCMs utilized to derive updated Euler
angles (Niswander et al., 2020).

Due to the independent recording of each system, synchronization of the OMC and MARG sensors
was enabled by utilizing distinct signal features within the orientation outputs (Figure 5; Shepherd et al.,
2017; Beange et al., 2019; Cortesi et al., 2019). Next, the data were baselined to zero to facilitate the
comparison of the absolute orientations.

To assess concurrent validity, the orientation discrepancies between the OMC and Polar Verity Sense
systems were quantified using root-mean-square-error (RMSE), frequently employed in similar studies
for evaluating waveforms (Tulipani et al., 2018; Lin et al., 2021; Michaud et al., 202 1; Mitternacht et al.,
2022; Shuai et al., 2022). The mean RMSE (RMSE,;,c.,) for the decoupled Euler parameters across all
participants was calculated for each sensor location and each movement (Table 1). Outliers were identified
and excluded using a z-score confidence interval of 95% (z = +1.96). To categorize the efficacy of the
sensors, the thresholds recommended by Poitras et al. (2019) were utilized; RMSE values below 5° were
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Figure 5. Representative data showing thorax orientations. The upper panel shows the orientation
signals prior to synchronization, illustrating the example signal features before alignment. The lower
panel shows the signals following synchronization, demonstrating alignment of the peaks.

Table 1. RMSE,,.., (SD) for sensor placements during different movements (°)

RMSE ean (SD) for sensor placements (°)

Movement Euler parameter C LA LT Lw RA RW RT
Squat ¢ 5124) 10139  93(72) 6342 7346 21.7(5.1)
9 % 7147  299(147) 90(1L1) 65(3.7) 167(8.6) 104 (10.7)
v 83(3.0) 272(21.9) 37.5(17.5 173 (104) 133 (11.7) 19.6(12.1) 30.1 (19.8)
GM ¢ 7.1 (3.0) 5927 903 (62.0) 74.9 (39.4)
0 10.7(8.0) 425(202) 7.5(52) 119(69) 37.9(12.9)
v 89(4.1) 60(3.4) 5727 843 (66.5) 139.1 (54.5)
PU ¢ - 225(190) 17.8(129) 222(205) 187(13.6) 32.5(404) 9.1 (4.4)
0 - 88(27) | 4522) 11264 6735 7.7 (6.1)
v ~ 506(31.8) 33.8(202) 42.9(342) 66.1(43.6) 54.6(403) 21.0(11.9)
cD ¢ 77(3.6) 400(387) 27.4(19.8) 8.1(7.3) 39.0(29.8) 359(348)  5.5(3.0)
0 .9.4 (11.9)  95(75)  125(69) 9.5(10.0) 102(74)  9.8(5.6)
v 59(36.9) 35.1(30.1) 58.6(53.9) 47.5(34.6) 39.7(420) 162 (9.4)

Note: Oroll, ¢ pitch, y yaw. Utilizing the thresholds recommended by Poitras et al. (2019), “excellent” RMSE values (<5°) are highlighted in green, “good”
RMSE values (5-10°) are uncolored, and “unacceptable” RMSE values >10° are shown in red.

Abbreviations: C, chest; CD, chair dip; GM, good morning; LA, left ankle; LT, left thigh; LW, left wrist; PU, push-up; RA, right ankle; RMSE,,c,,, mean root-
mean-square-error; RT, right thigh; RW, right wrist; SD, standard deviation.
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Figure 6. Box plots for RMSE based on Euler parameters.

deemed “excellent”, those ranging between 5° and 10° were classified as “good”, and any RMSE values
exceeding 10° were considered “unacceptable”.

3. Results

The overall RMSE values for the decoupled Euler parameters indicate that the yaw-angle estimates were
most erroneous across all movements and sensor locations (Table 1 and Figure 6; for specific movement
and sensor locations, please see Supplementary Material 1). Only the chest sensor was consistently
accurate in the yaw direction, along with the left ankle and thigh sensors for the good morning exercise.
The greatest yaw angle errors were produced by the wrist-worn sensors.

The roll-angle measurements typically yielded the best results. For the squat exercise, chest sensors
were consistently accurate (Table 1). Conversely, sensors placed on the left thigh and right wrist
exhibited inaccuracies for the pitch and roll angles, in addition to the right thigh sensor in the roll
direction, exclusively. All other pitch and roll measurements for the squat were within the tolerable
range (Poitras et al., 2019). During the good morning exercise, the accuracy of pitch angles varied
considerably; the chest, thigh, and ankle sensors ranged from “good” to “excellent”, although the wrist
sensors generated substantial inaccuracies. Similarly, the wrist-sensor estimates were highly erroneous
in the roll direction, with inaccuracies also observed for the thighs. However, the chest and ankle
measurements were within the reasonable accuracy limits. For push-ups, the right wrist sensor uniquely
exhibited tolerable pitch-angle accuracy, contrasting with the higher errors of other placements. In the
roll direction, only the left wrist sensor surpassed the acceptable limit; the thigh sensors notably
displayed “excellent” accuracies. For chair dips, the chest sensor accuracies were within the tolerable
accuracy range in all directions. The wrist sensors performed adequately in the pitch direction, with less
reliable estimates obtained for the ankle and thigh sensors. For the roll angles, unacceptable errors were
observed for the left wrist and right thigh, although all other sensor positions returned “good” to
“excellent” accuracies.
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4. Discussion

The results of this study suggest that the accuracy of orientation measurements using MARG sensors is
movement specific and may also be impacted by anatomical sensor positioning. Further, it highlights the
challenges associated with using superficially positioned wearables to mimic established OMC skeletal
models, the gold-standard for movement quality assessments (Samala et al., 2020).

Previous research has suggested flexibility regarding sensor placement when measuring movement
quantity. Mackintosh et al. (2016), for example, found no significant difference in energy-expenditure
measurements across a broad range of anatomical sensor placements, or with the use of multiple devices,
thereby offering consumers the advantage of choosing their preferred sensor placement. Unsurprisingly,
research has demonstrated that compliance is best achieved using a wearable device worn on the wrist
(Trost et al., 2014). However, it may not be feasible to capitalize on the ubiquity of wrist-worn devices for
the assessment of movement quality. Notably, the current study highlights that the commonality of sensor
positions for quantifying energy expenditure does not translate to movement quality assessments, with
key distinctions evident according to sensor location and movement type.

Chest-worn devices were the most consistently accurate across all exercises, likely aided by the
minimization of soft tissue artefact error due to the bony sternal placement. This aligns with the findings of
Dabhl et al. (2020), who evaluated research-grade sensors for similar movements and sensor placements
using a comparable OMC biomechanical model. This finding is significant, given the value of sensors
positioned on the torso for the assessment of movement quality. Speculatively, torso-worn sensors may
offer transferability across numerous activities due to the proximity to the body’s center of mass,
congruent with observations derived from machine learning activity recognition (Rahmani et al., 2021)
and movement discrepancy detection (O’Reilly et al., 2017a, 2017b, 2017c¢). Indeed, while multiple
devices typically offer more holistic capabilities than single units (Swain et al., 2023), evidence shows that
coarse insights can be made regarding the quality of compound movements with single units worn on the
torso, particularly for lower body dominant activities, such as walking (Caporaso and Grazioso, 2020),
squatting (O’Reilly et al., 2017c), and lunging (O’Reilly et al., 2017b). Further, torso-worn sensors,
typically positioned on the chest or back, have been effectively utilized to measure the kinematics of hip
hinge (Michaud et al., 202 1) and spinal motions (Beange et al., 2019; Brouwer etal., 2021; Michaud et al.,
2021), essential components of a diverse range of movements. Moreover, while not perceived to be as
comfortable as some other anatomical positions, such as the wrist or hip, evidence indicates that chest-
worn sensors are positively perceived overall (Beeler et al., 2018), and may therefore be viable for
consumer-friendly movement quality assessments.

Accuracies observed at other placements in the current study were considerably more varied depending
on the movement performed. A challenge with Euler-based orientation estimates derived from IMUs or
MARG sensors is gimbal lock, where two of the three rotational axes of the gyroscope align, leading to the
loss of one degree of freedom (Renaudin and Combettes, 2014). In the current study, this phenomenon was
manifest as the rotation in the roll direction approached 90°, resulting in unpredictable orientation behavior
in the pitch and yaw outputs. Alternative approaches, such as the use of quaternions, can be used to address
this gimbal lock problem (Challis, 2020). Nonetheless, as most people are unfamiliar with quaternions,
Euler angles remain more comprehensible (Mourcou et al., 2015). Gimbal lock was especially evident for
the thigh and ankle sensors during chair dips and push-ups — the greater RMSE values in the pitch and yaw
directions, with comparatively low RMSE values in the roll direction, strongly indicate the presence of
gimbal lock, despite the limited motion actually experienced by the sensors. Furthermore, the wrist sensors
exhibited similar characteristics during the good morning exercise, though with even greater error.

It is reasonable to speculate that the relatively high rotational velocity of the wrist sensors engendered
during the movements involved in the current study contributed to the large errors, congruent with the
effects observed in previous research (Lebel et al., 2013; Dahl et al., 2020), while the error was
compounded by gimbal lock. These findings underscore the sensitivity of movement quality assessments
to sensor placement, emphasizing the importance of both the body segment and the specific location on
the segment that the devices are worn. Moreover, they reveal the current limitations of consumer-grade
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IMUs and MARG sensors in accurately measuring orientations for high-speed movements. This is in
accord with Lebel et al. (2013), who highlighted the challenges posed by faster, more dynamic activities,
suggesting that wrist-worn devices may consequently be unable to accurately assess the movement
quality of everyday tasks.

Inaccuracies were prominent in the thigh and wrist sensors during the squat. It is postulated that, in
alignment with prior research (Blandeau et al., 2023), the observed error from the thigh sensors was
attributable to the influence of the upper leg musculature; underlying muscular contractions could engender
measurement errors not experienced by a more rigid segment. It is also feasible that the presence of gimbal
lock may have influenced some of the thigh sensor data during the squat. However, this would only arise
where sufficient depth was achieved (i.e., thigh segments parallel to the floor; Kritz et al., 2009), which, in
accordance with the OMC data, was only observed to be the case for a minority of participants (n = 3). For
the wrist sensors, the outputs appear to be influenced by participant arm motion during the squatting
movement. Many individuals incorporated an arm swing instead of maintaining a fixed arm position, with
the associated heterogeneity complicating the identification of a clear overarching source of error. However,
it is likely that the rapid and multidirectional nature of these arm swings contributed to the measurement
inaccuracies.

The sensor measurements demonstrated good accuracy under static conditions, or indeed where
range of motion was small. For example, the thighs and ankles during good mornings typically
exhibited good accuracies as movement was minimal, while the ankle sensors performed well during
squats in the pitch and roll directions, recognizing that the primary direction of motion was about the z-
axis (i.e., yaw). However, the practical applications of static orientation measurements are limited when
assessing human movement quality. Contrastingly, the wrist measurements during push-ups and chair
dips, which remained mostly static, exhibited unexpected errors. For both exercises, the proximity of
the sensors to the wrist joint during flexion may have contributed to the inaccuracies, indicating that a
position further up the forearm may be more appropriate. However, it is also pertinent to note that
distinct measurement discrepancies were observed between the left and right wrists, particularly during
push-ups. While the exact sources of these errors remain unidentified, potential magnetometer inter-
ference could be a contributing factor.

When considering the decoupled Euler parameters in isolation, measurements in the yaw direction
are considerably more erroneous than the pitch and roll. This is comparable with the findings of
Bergamini et al. (2014), who explored an array of orientation estimation algorithms for measuring
human movement, including the Madgwick algorithm (Madgwick et al., 2011). The errors were more
pronounced during prolonged data capture, specifically during locomotion tasks, as compared to
shorter, single-event manual tasks (Bergamini et al., 2014). This occurred despite the authors utilizing
amethod where research-grade sensors were securely affixed to rigid OMC marker clusters. The results
presented by Bergamini et al. (2014) are analogous to the findings of this study, where data capture was
continuous across multiple repetitions. Building on these observations, the findings of the current study
suggest that the pitch estimates were, overall, more erroneous than the roll angles. This is contrary to
previous research, where pitch-angle estimates are typically most accurate, or indeed comparable, to the
roll estimates (Kok et al., 2017; Madgwick et al., 2011), However, it is important to note that previous
findings are typically from highly controlled studies, where the Euler parameters are tested under
uniform conditions. The sensor placements and specific movements considered within this study
introduced considerable variability. For example, the movements considered predominantly utilized
the x- and z-axes as the primary rotational axes, with the y-axis acting as a secondary rotational axis.
Moreover, gimbal lock influenced the error in pitch and yaw angle measurements exclusively, leaving
the roll angle unaffected.

While this study presents valuable insights into the use of commercial-grade MARG sensors for
measuring human movement, it is important to consider the findings in the context of certain limitations.
The sensors utilized were manually aligned based on approximated positions relative to the local
coordinates of the OMC system. This may have influenced the precision of the measurements, although
this was accounted for where possible by considering absolute rather than relative orientations.
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Additionally, the reliance on magnetometers to correct gyroscope drift, while common, brings challenges
such as environmental interference (Ligorio et al., 2020). Despite attempts to mitigate this issue, it is not
possible to guarantee complete elimination of interference due to the nature of the movements performed,
though this also highlights the real-world limitations of current sensor technologies.

Future work should aim to address magnetometer interference by applying corrective methods to
improve sensor accuracy. Notably, the sensors require further validation under controlled conditions to
better understand the observations of the current study, including the influence of movement speeds and
range of motion. It is also suggested that gyroscope-based yaw-angle estimates could be reconsidered,
noting that research has offered novel methods to counteract gyroscope integration drift, potentially
eliminating the need for magnetometers (Han et al., 2018; Ligorio et al., 2020), notorious for their
sensitivity to interference (Kok et al., 2017) and computational inefficiencies (Han et al., 2018).
Following this, the increased prevalence of machine-learning methods in wearable technology applica-
tions offers an alternative avenue for the measurement and evaluation of movement quality (Kianifar
etal., 2017; O’Reilly et al., 2017a, 2017b, 2017c; Spilz and Munz 2022). Machine-learning models can
potentially offer greater understanding of complex movements by identifying patterns in the data and, in
the context of human movement, machine-learning classification techniques could bypass some of the
existing challenges associated with sensor kinematic measurement inaccuracies. Therefore, machine
learning may offer an interim, or integrated, solution that can complement, or potentially replace, the use
of sensor-derived kinematics and such methods warrant future consideration.

5. Conclusions

Overall, this study highlights the potential, but also inherent limitations, of using commercial-grade
MARG sensors to assess human movement. While there is notable promise, particularly in the
measurement of uniplanar motion and the use of chest-worn devices, practitioners must exercise
caution when interpreting sensor-derived orientation data. This study provides a foundation for
subsequent research aiming to refine these tools and enhance their accuracy in comparison to traditional
biomechanical models for use in real-world applications, while highlighting machine-learning classi-
fication techniques as an alternative approach to assessing movement quality. The accessibility of
wearable technology offers promising opportunities for the general public to gain insights into their
movement quality, while contributing to a more comprehensive framework for physical activity and
wellness monitoring.
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