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Research on water wave metamaterials based on local resonance has advanced rapidly.
However, their application to floating structures for controlling surface gravity waves
remains underexplored. In this work, we introduce the floating metaplate, a periodic
array of resonators on a floating plate that leverages locally resonant bandgaps to
effectively manipulate surface gravity waves. We employ the eigenfunction matching
method combined with Bloch’s theorem to solve the wave—structure interaction problem
and obtain the band structure of the floating metaplate. An effective model based on
averaging is developed, which agrees well with the results of numerical simulation,
elucidating the mechanism of bandgap formation. Both frequency- and time-domain
simulations demonstrate the floating metaplate’s strong wave attenuation capabilities.
Furthermore, by incorporating a gradient in the resonant frequencies of the resonators,
we achieve the rainbow trapping effect, where waves of different frequencies are reflected
at distinct locations. This enables the design of a broadband wave reflector with a tuneable
operation frequency range. Our findings may lead to promising applications in coastal
protection, wave energy harvesting and the design of resilient offshore renewable energy
systems.
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1. Introduction

The study of floating plates interacting with surface gravity waves has a long and rich
history, driven by its importance to fundamental fluid mechanics and practical applications
such as ocean engineering, wave energy conversion and coastal protection (Lamb 1997;
Meylan 1997; Balmforth & Craster 1999; Meylan 2002; Zhang & Schreier 2022). Floating
plates, often serving as simplified models for ice floes, very large floating structures and
engineered platforms, play a crucial role in advancing our understanding of wave—structure
interactions across various contexts. Recently, significant attention was directed toward
leveraging plate arrays and other floating plate-based structures for manipulating water
waves. For instance, Porter (2019) investigated the propagation of water waves through a
periodic rectangular array of floating plates, highlighting its potential for wave attenuation.
Wilks, Montiel & Wakes (2022) and Liang, Porter & Zheng (2024) demonstrated that
graded arrays of surface-piercing vertical barriers (or plates) can effectively achieve
the water wave rainbow trapping effect and broadband wave reflection, respectively.
Loukogeorgaki & Kashiwagi (2019) proposed a type of concentric annular floating elastic
plate to minimise wave drift forces. Subsequently, lida, Zareei & Alam (2023) discovered
that the same kind of annular floating composite plate could achieve omnidirectional
cylindrical cloaking for deep-water waves. More recently, Michele et al. (2024b) explored
rigid compound rectangular floating plates acting as efficient wave energy converters.
These findings underscore the versatility of plate-based floating structures in controlling
water waves.

On the other hand, over the past two decades, the use of phononic crystals and
metamaterials for manipulating acoustic and elastic waves has received tremendous
attention thanks to the exotic and extraordinary dynamic properties of these engineered
structures (Ma & Sheng 2016; Craster et al. 2023). In particular, the locally resonant
metamaterials (Liu et al. 2000, Zhou & Hu 2009; Zhou & Hu 2009), characterised
by their sub-wavelength periodic structures and low-frequency bandgaps, have spurred
significant advancements in areas such as vibration isolation, noise suppression and energy
harvesting (one can refer to Wu et al. 2021). Moreover, the success of local resonance
mechanisms in classical wave control has inspired researchers to explore analogous
approaches for water wave manipulation, leading to the burgeoning development of water
wave metamaterials based on local resonance (Zhu et al. 2024). For instance, Hu et al.
(2011) demonstrated that periodic arrays of bottom-mounted tubes in water, leveraging
low-frequency resonant bandgaps, can strongly block water waves; De Vita et al. (2021)
studied the arrays of submerged harmonic oscillators designed to absorb wave energy,
demonstrating significant attenuation when the wave and resonator frequencies are close.
Subsequently, Lorenzo et al. (2023) experimentally investigated an array of submerged
inverted cylindrical pendula, confirming the practical effectiveness of such configurations
in mitigating surface gravity waves. More recently, Euvé et al. (2023) numerically and
experimentally (Euvé et al. 2024) proposed a type of subwavelength resonant media
supporting negative refraction of water waves; Zeng et al. (2023) and Zhang et al. (2024)
demonstrated that floating periodic rigid resonators offer an efficient and straightforward
approach to attenuating water waves.

Despite these advancements, the application of locally resonant metamaterials to
control surface gravity waves, the most prevalent wave type in oceanic and coastal
environments, remains less explored. Locally resonant metamaterial plates exhibit
extraordinary performance in manipulating elastic waves and harvesting vibrational energy
(Rupin et al. 2014; Miranda et al. 2020; Sugino, Ruzzene & Erturk 2020; Jin et al. 2021),
nevertheless, their application in controlling surface gravity waves within the extensively
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studied field of floating plates is very limited. In this work, we investigate the wave—
structure interaction problem involving floating metamaterial plates (also referred to as
metaplates, see Wang et al. (2019)). We develop a fundamental computational framework
for analysing the scattering of water waves by a floating metaplate and explore its potential
applications in surface gravity wave control.

The proposed floating metaplate consists of a periodic arrangement of resonators
mounted on a floating plate. As a proof-of-concept investigation, we focus on two-
dimensional configurations, where one dimension of the plate is assumed to be infinitely
large (Farhat et al. 2021; Michele et al. 2024a). The resonators are modelled as mass—
spring systems, a widely adopted approach in the literature (Torrent, Mayou & Sanchez-
Dehesa 2013; Gusev & Wright 2014; Chen, Hu & Huang 2017). We develop a numerical
scheme for calculating the band structure of the periodic system. This scheme combines
the eigenfunction matching method, well established for its high accuracy and reliability
in solving wave scattering problems involving floating structures (Fox & Squire 1994;
Molin 2001; Meylan 2019; Zheng et al. 2020; lida et al. 2023), with Bloch’s theorem,
a foundational tool for analysing wave propagation in periodic structures (Chou 1998;
Toki¢ & Yue 2019; Mclver 2000). We study graded finite-size floating metaplates in both
frequency- and time-domain, highlighting their exceptional potential for achieving the
rainbow trapping effect in surface gravity waves and designing broadband water wave
reflectors. Unlike previous studies, where graded structures were designed by modifying
the overall configuration of submerged structures (Bennetts, Peter & Craster 2018) or
adjusting the spacing between the barriers piercing into water (Archer et al. 2020; Wilks
et al. 2022), our designed graded rainbow trapping structure relies on varying the resonant
frequencies of the resonators on the floating plate, making it more feasible for deep-sea
applications in ocean engineering.

This paper is organised as follows. The mathematical model and numerical scheme for
an infinite periodic floating metaplate are outlined in § 2. Band structure analysis, using
both the analytical model and the numerical scheme, is carried out in § 3. The frequency-
domain response together with time-dependent solutions for a finite-size floating metaplate
are illustrated in §4. The rainbow trapping effect for the surface water wave and the
broadband wave reflector enabled by graded floating metaplates are discussed in §5. A
conclusion is drawn in § 6.

2. A periodic floating metaplate
2.1. Governing equation and boundary conditions

We consider a thin elastic plate floating atop water. As illustrated in figure 1, the upper
surface of the plate is periodically attached with resonators, forming the so-called floating
metaplate. The plate is always in contact with the water surface and is thin enough such
that Kirchhoff’s thin plate theory is valid. We consider a Cartesian coordinate system
with the x-axis coinciding with the water surface and the positive z-axis pointing upward.
We assume that the fluid is incompressible, homogeneous and inviscid, and the flow is
irrotational. Under these assumptions, the linear potential theory is adopted. The velocity
potential @ (x, t) takes the form of the following Laplace equation (Fox & Squire 1994):

V2o =0 —H<z<0, .1)
where H is the depth of water. The seabed (no flow) boundary condition is given by

0D
8_:0 z=—H, —0c0<x <o0. (2.2)
z
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Figure 1. Schematic diagram of a floating plate, with periodic resonators attached on its surface, forming the
so-called floating metaplate. The plate is assumed thin and elastic. One unit cell spans from x =0 to x =a, in
which the resonator is attached at x = b. The velocity potential of the water wave and the deflection of the plate
are labelled by ¢ and 7, respectively. The inset depicts the force diagram related to the interaction between the
resonator and the plate.

The dynamic condition for the free surface reads

0P
E—i—gw:O ZZO, (23)

while that on the surface covered with the thin plate is

a*w 92w
D—+pph—5 = =0, 2.4
ot TPiGE =P R 24

where g is the acceleration due to gravity, w(x, t) is the displacement of the fluid surface
(which is also the vertical displacement of the plate), D = E h3/12(1 — v?) represents the
flexural rigidity, with E, v, h and p,, being the Young’s modulus, Poisson’s ratio, thickness
and density of the plate, respectively. The surface pressure p in (2.4) satisfies

P
p¥+pgw+p=0, (2.5)

where p is the density of water. It should be pointed out that the effect of the resonator is
embodied in boundary conditions to be described below, but not in the governing equation
(2.4). In addition, the kinematic boundary condition reads
0P dw
9z ot
Assuming that all motions are time-harmonic with angular frequency w, the velocity
potential of water waves @ and the displacement of the plate w can be expressed as

z=0. (2.6)

®(x,z,1) =Re{p(x, 2)e 7"}, (2.7a)
w(x, 1) = Re{n(x)e '}, (2.7b)

where the reduced velocity potential ¢ and plate deflection 7 are both complex valued.

1020 A50-4


https://doi.org/10.1017/jfm.2025.10635

https://doi.org/10.1017/jfm.2025.10635 Published online by Cambridge University Press

Journal of Fluid Mechanics

From (2.1)-(2.7), we can get the following boundary value problem in the frequency
domain:

_82</> + _82¢> 0 H < 0 (2.8a)
= —_ NS <V, .oa
x2 972 ¢
d¢
—=0 z=-H, (2.8b)
9z
together with the boundary conditions at z = 0, for the free surface, written as
a
% _ ap 7=0, (2.9)
0z
and for the surface covered with the plate as
a* A
- 41— - = =0, 2.10
<ﬁ8x4 + ayo) 3z ap z (2.10)
where o, 8 and yy are
2
w D pph
o =—, ﬁ:—, VO=L9 (211)
8 r8 1Y

respectively. Note that 8 and ygp, which represent the bending stiffness term and inertia
term, are two key parameters to characterise the physical properties of the plate.

2.2. Eigenfunction matching method and Bloch’s theorem

We derive the solution by the eigenfunction matching method (Fox & Squire 1994).
Using separation of variables, we can write the general solution to the velocity potential

¢(x, z)as

N
¢o(x,z)= Z X, (x)@n(z) under the free surface, (2.12)
n=0
or
M
o(x,2)= Z Zm(x)Ym(z) under the plate, (2.13)
m=—2

where ¢,(z) and v,,(z) correspond to the normalised vertical eigenfunction of the
potential under the free surface and the plate region, respectively, and can be expressed as

cos ¥,(z+ H)

== >0, 2.14
®n (Z) cos 0, H n ( )
H
V() = K G ) (2.15)
cos km H

in which the separation constant #, and «,, are solutions of the following two dispersion
equations, respectively:

Y tan( H) = —a  under the free surface, (2.16)

ktank H = A under the plate. 2.17)
Br* 41— you
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Note that the solutions of (2.16) are ¥, which is a purely negative imaginary number, and
¥, (n > 1) which is a positive real number. While the solutions of (2.17) are «,,, (m > —2),
in which x_» and «_| are complex with positive real parts, «q is purely negative imaginary,
and k,,, (m > 1) is purely positive real. Then, we can write X, (x) under the free surface in
(2.12) and Z,,(x) under the plate in (2.13) as

X (x) = 1,e" 4 rpe %, (2.18)
and
Zm(x) = ap € + bem* (2.19)

respectively, where /,,,r, (n=0,1,2,..., N) and a,,, b, (m=-2,—-1,0,..., M) are
undetermined coefficients. It is worth noting that, while there are an infinite number of
vertical modes (i.e. ¢(z) and ¥ (z)), we truncate (2.12) and (2.13) at the Nth and Mth
modes for numerical solutions.

From the kinematic boundary condition (2.6) and using (2.10), (2.13), (2.15) and (2.19),
the deflection of the plate can be obtained as

M .

1 o _

0= 2 o B T T yee e e (2.20)
=2 m

nx) = —_m)E)_z

Since the resonators are periodically arranged on the floating plate with periodicity a
in the x direction, it is possible to confine attention to one unit cell ranging from x =0 to
x = a that contains only a single resonator, as shown in figure 2(a). Bloch’s theorem states
that, under a discrete lattice translation na (n € Z), any physical field, e.g. the velocity
potential ¢ (x, z) or the plate deflection n(x), can be obtained from the one within this
unit cell being modulated by a plane wave (see Chou 1998), i.e.

¢(x +na, 2) = ¢ (x, 2)e"", n(x +na) =n(x)e*", (2.21)
where k is the Bloch wavenumber.

We segment the unit cell at the point x = b where the resonator is located, and express
the velocity potential underneath the two segments (see figure 1) as

M
$1(x.2)= Y (ame +bye ™) Y (z) 0<x <D, (2.22a)
m=-—2
M
$r(x, )= D (€ +due™ ) Yu(x) b<x<a, (2.22b)
m=-—2

where «,;, is the mth root of (2.17) and a,,, b,,, ¢ and d,;, are undetermined coefficients.
According to (2.21), we can write out the velocity potential that belongs to the left (i.e.
x < 0) and right (i.e. x > a) segments adjacent to this unit cell as

G1(x —a,2) =da(x, 2)e ¥ b<x<a, (2.23a)
br(x +a,z)=¢1(x, 2)e* 0<x <b. (2.23b)
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From (2.20) and applying Bloch’s theorem again, the deflection of the plate that belongs
to distinct segments (see figure 1) can be expressed as

M.
i o
nix)= —_————— (@ + b e ) 0L x < b, (2.24a)
;260,8/(,‘}14-1—)/005('" " )
M i o
n(x) = —_ (e +due ) b<x<a, (2.24b)
£ vt e
mx —a)=mxe ™ b<x<a, (2.24¢)
nr(x +a)=mx)e’ 0<x<b. (2.24d)

Identical spatial relations hold for other physical quantities such as the horizontal velocity
of the fluid d¢/dx, rotation angle d1/dx, bending moment Dd%n/dx> and shear force
— D335 /9x3 of the plate (Tida & Umazume 2020). It is worth noting that the wavenumbers
k in (2.23) and (2.24) need only be considered between —m /a < k < 7 /a, which is the first
Brillouin zone (BZ), as solutions with all other real values k can be obtained by adding or
subtracting a multiple of 27 /a.

2.3. Generalised eigenvalue problem

We seek non-trivial solutions of the unknown coefficients mentioned in the previous
section by considering the matching conditions associated with the potential and the
boundary conditions of the plate. Specifically, we solve for values of Bloch wavenumbers
k for a given angular frequency w.

For the unit cell we selected, we consider the matching conditions of the velocity
potential and its normal derivative across the boundary between distinct regions separated
by x =0, x = b and x = a. This gives

¢1(b, 2) =p2(b, 2), 1.e.,

M M
Z (amekmb 4 bme*Kmb)I//m (Z) — Z (Cmelfmb 4 dmeikmb)l/fm (Z), (225)
m=-—2 m=-2
#¢1(0,2) =¢1(0, 2), 1e.,
M _ M
D7 (cm€ A+ dne™ ) Y@ = D" (am + b)Y (2), (2.26)
m=-2 m=-2
and
dp1(x, 2) _ 0¢a(x, 2)
0x x=b 0x x=b
M M
Z Km (ameKmb - bme_Kmb)wm (2) = Z Km (Cmekmb - dme_Kmb)wm (), (227
m=-2 m=-2
dpi(x,2)|  _ 9¢1(x,2)
ax x=0 ax x=0"
M . M
D o (eme™™ = dne™ ) Y (D)6 = " kp(am —bw)¥m(2).  (2.28)
m=-2 m=-2
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It is worth noting that the matching conditions across the right boundary of the unit cell
(i.e. x = a) are exactly equivalent to (2.26) and (2.28). Since these relations must hold at
every depth z, we solve these equations by multiplying both sides of (2.25), (2.26), (2.27)
and (2.28) by the vertical eigenfunction ¢, (z) (see (2.14)) and integrating from z = —H to
z =0 to obtain

M M
> (ame " + bue™ ) Py = > " (cm€™” + dipe™ ") Py, (2.29)
m=-2 m=-2
M M
D (cm€™ + dpe™ ) Pume™ = 3" (am + bm) Pum. (2.30)
m=-2 m=-2
and
M M
> km(ame™” = bue ™) Py =" ki (cm€™” = dpe ") Py, (2.31)
m=-—2 m=—
M M
> km (cm€™ = dpe ™) Pupe™ = > Ky (am — bm) Pum. (2.32)
m=-— m=-2

where 0 <n < N, and Py, is the inner product of ¢,(z) and v, (z) Meylan 2019), i.e.

0
Py = / Yn(2)Ym(2)dz
H

Yy, sin ®, H cos k,, H — Ky cos O, H sink,, H

2.33
cos O, H cos ky H (92 — k2) (233)

Note that the total number of equations contained in (2.29)-(2.32) is 4(N + 1). It is also
worth noting that, by taking advantage of the completeness, the vertical eigenfunctions
¢n(z) of the free surface waves, instead of those ¥, (z) underneath the elastic plate, are
selected for the projection operations (Kohout et al. 2007; Meng & Lu 2017).

Then we consider the matching and boundary conditions of the plate. At x =0, the
deflection, the rotation angle, the bending moment and the shear force are continuous, i.e.

o

- (c eKma +d e—Kma e—ika
wﬂlcﬁ?—l—l—yoa(m " )

M
m(©0) =m(©),ie, Y

m=-—2
M.
= Z L (b (2.34)
S wBh e :
M.
m) - _9m ie. Z .« (cmen — dyye*n) e~k
ax lx=0  9x lx=0" " ® BKE +1— oo m (Cm i
m=-2
M.
w1 — o T :
3%y 9% L o . |
_— = _ , ',e_, - elm d e—Km(l e—]ka
a2 =0 ™ 0 o’ mz_:z”ﬁ"?ﬁl—yoalcm (eme™ + dye ™)
1020 A50-8
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= % i - K2 (am + bm) (2.36)
- -4 . 1 m m’» .
m:_zw'BKjl +1—ypa ™
33171 337]1 i o 3 .
-D—— —_p__1 , i.e., _ 3 e/cma —d e—Kma e—lka
9x3 lx=0 9x3 lx=0 —Z—z w Bt + 11—y “m (Cm " )

_ f: Y am—bw) (2.37)
m:_za)ﬁicﬁl-l—l—yoa mE

Note that the continuity conditions at x = a are equivalent to those at x = 0. Finally, at
the point where the resonator is located (x = b), the deflection, the rotation angle and the
bending moment are continuous, but there is a jump of F in the shear force, where F
comes from the dynamic force in the spring of the resonator (see the inset in figure 1) and
can be expressed as

F=5,(lx=p — B) = —m, &, (2.38)

where the assumption & = Fe i@ was used, and s, and m, are the stiffness of the
spring and the mass of the resonator, respectively. Note that the rightmost term in (2.38)
arises from applying Newton’s second law to the resonator. Equation (2.38) implies
E =5:0|x=p/ (S — myw?), so we have

F = Srn|x—b—~2a (2.39)
— W

where @ is the normalised angular frequency by the natural frequency of the resonator wy,
defined as

~ w Sr
o=—, wo=,—. (2.40)
wo n,

Consequently, the matching conditions at x = b read
1 o

—_ (a eK)nb+b e_Kmb
Za)ﬂlcf,;—l—l—yooz(m " )

M
n®d) =), ie, Y

M .
! o Kmb —kmb
- o eme™ - dye ), 2.41
Za)ﬁki-l—l—yoo{(m +dn ) ( )
m=-—2
M .
% =@ c Z i#,c (a eKmb_b e—/(mb)
0x lx=b Ax lx=p" ‘,m:_zwﬁ’(ﬁl_{—l_yoa m\dm m
M .
1 o
=) o km(eme ™ — dye™ ), 2.42
Za)ﬂxr‘,‘1+l—y0a m(m m ) ( )
m=—2
o] —82772 S o 2 Kb
- = ,1.e., - elm b, e Kmb
M .
! « 2 Kmb —kmb
= —— k(e +dye 7)), 2.43
mzza)ﬂ/c,j‘1+1—yoa m(m m ) ( )
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33 33 i o
0x° lx=b 0x° lx=b =, o By, + 1=y
~2 ~2
3, 5% @ Kimb 3_ S5 @ —kmb
X[("m+51_@z>“’"e ‘("m‘ﬁm)bfﬂe }
M i o
3 Kmb —Kkmb
= — Kk (cpem? —d, e m7), 2.44
mg:zwﬁlc;fz—i-l—yoa (e " ) (244

Combining (2.29)—(2.37) and (2.41)-(2.44), we have 4(N + 3) equations and 4(M + 3)
unknowns in total. Letting M = N and after some recombination, we get the following
homogeneous equation:

Kx =0, (2.45)
where x is the vector containing all the unknowns, i.e.
x=[a_p,a_1,....,ap,b_2,b_1,.... by, c_2,¢c_1,...,cp,d—p,d_1,...,dyl",
(2.46)

and K is the coefficient matrix, written as

A(w) e *B(w)

K(w) = |: Clw) D(w) , 2.47)

j|4(M+3)><4(M+3)

where submatrices \A, B, C and D can be found in Appendix A.
The condition of non-zero solutions requires Det[K]=0, which reduces to the
following generalised eigenvalue problem

Det[D(w) — AM(w)] =0, (2.48)

where 1 =e~*¢ and M(w) = C.A~'B. For any given angular frequency , we can solve
for eigenvalues A, and the non-trivial solutions which represent the propagating waves
correspond to the real values of k such that || = 1. This results in the dispersion relation
w (k) of the periodic floating metaplate.

3. Band structure analysis of the floating metaplate

In addition to the numerical method described above, we present a simple analytical model
to derive the dispersion relation and utilise it to elucidate the mechanism underlying the
bandgap. The results obtained from this model are compared with those calculated from
the numerical method. The applicable condition for the analytical model is also discussed
in the following.

3.1. Analytical model: uniform floating plate with effective medium

We refer to the model solved by the aforementioned numerical method as the real model,
shown in figure 2(a), in which each unit cell contains a single spring—mass resonator. Its
equivalent model is illustrated in figure 2(b), where a uniformly distributed spring—mass
layer across the unit cell is used to replace the single resonator in the unit cell of the real
model. It is ensured that the total mass and the total stiffness of the distributed spring—mass
layer in the equivalent model are identical to those of the resonator in the real model. The
underlying mathematical principle of this approximation is the use of a rectangular pulse
of width a to approximate the §-function within one unit cell (Haberman 2013). After this

1020 A50-10
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(b) (c)

x=0 m x=a

Figure 2. (a) One unit cell of the real model, i.e. floating plate attached with a resonator at a discrete
position. (b) The same unit cell of the equivalent model, where the discrete resonator is modelled by uniformly
distributed masses and springs. (c) The effective model, with the effective parameter y,z descried by (3.8).

discrete-to-continuous approximation, (2.4) should be modified as

9w 92w Sy
D— h—s = —(w—w =0, 3.1
8x4 + IO 14 a t2 P + a ( ) < ( )
where w(x, t) represents the vertical displacement of the distributed mass layer. Note that
the last term in (3.1) characterises the traction (or pressure) acting on the upper surface
of the plate, which reflects Hooke’s law. On the other hand, the governing equation with
respect to the displacement w(x, ¢) of the distributed mass layer reads
my %W sy N
—_—— = (W —Ww , 32
PEv Rl ( ) (3.2)

which reflects Newton’s second law. Assuming the harmonic solution, eliminating the
term w by substituting (3.2) into (3.1), and combining with (2.5) and (2.6), we get
pd LS S I U 3.3)
R —_ —_— w - = w ) M
oxt T P8 a1_<£)2 Pr 0z "
o

where wg can be found in (2.40). Plugging the basic solution ¢ (x, z) = ek cosh k(z + H),
which satisfies (2.1) and boundary condition (2.2), into (3.3), we obtain the dispersion
equation expressed as

1
Bk*+1—|y———— 4w |« ktanhkH =a, (3.4)
- (%)
where «,  and yp are given in (2.11), and

my

Vi 3.5)

:%.

Through (3.4) and (3.5), the dispersion relation w (k) can be explicitly solved. For the sake
of simplicity, it is listed in Appendix B.

Comparing (3.4) with the well-known dispersion equation for a bare plate floating atop
water, which can be recast from (2.17) and written as (Fox & Squire 1994)

(Bk* +1 — yoa)k tanh kH = a, (3.6)
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Parameter Description Value

g Acceleration due to gravity 9.8m s>
H Depth of water 10 m

P Density of water 1000 kg m—3
B Bending stiffness term 0.05 m*
Y0 Mass density term 0.0l m
a Periodicity of a unit cell I'm

b Location of the resonator 0.5a
my Mass of the resonator 10 kg
o Resonant frequency of the resonator 10 rads~!
N Truncation order in (2.12) 20

M Truncation order in (2.13) 20

Table 1. Values of the relevant parameters for solving the problem.

one can immediately recognise that (3.4) is nothing but the dispersion equation for a
floating plate with the same value of 8 but a modified yy term, expressed as

(Bk* +1 = yeyra)k tanh kH = a, (3.7)

where

1
Yeff =V1———— + 0. (3.8)

- ()

From this perspective, the floating metaplate shown in figure 2(a) can be regarded as a
uniform floating plate, represented by the effective model displayed in figure 2(c), with the
parameter 8 unchanged but yy replaced by y.;. We can notice that y,s characterises the
effective mass density of this effective-medium plate, embodying the inertia term of the
original bare plate, i.e. )y, and an additional mass density term, i.e. y;, contributed from
the resonator. This expression indicates that y, of the effective plate is highly dependent
on the ratio between the forcing frequency w and the resonant frequency wq, closely
resembling the effective dynamic mass defined in the literature on acoustic and elastic
metamaterials (Huang, Sun & Huang 2009; Fedele, Suryanarayana & Yavari 2023). In the
following, we show that the analytical dispersion relation (3.7), derived from this effective
model, provides valuable insights into the band structure characteristics of such a complex
system.

3.2. Band structure analysis

Unless otherwise specified, we will consider the values for the relevant parameters listed
in table 1. Note that the values of 8 and yy are chosen according to those reported earlier
(e.g. Meylan 2019; Zheng et al. 2020; Iida et al. 2023).

We first examine the dispersion curve for a bare plate floating on the water surface. To
numerically derive the dispersion relation w (k), using the numerical scheme described in
§ 2, we set the spring stiffness of the resonator, s,, to approach zero, causing the resonant
frequency wg to vanish. This limiting case of the metaplate exactly corresponds to a bare
plate. In figure 3(a), we plot the dispersion curve as s, — 0, alongside the analytical
dispersion relation for a floating bare plate given by (3.6). The results obtained from these
two approaches exhibit excellent agreement, validating our numerical scheme.
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Figure 3. (a) Comparison of dispersion curve for a floating bare plate, obtained from numerical method and
analytical formula. (b) Comparison of band structure for a floating metaplate, obtained from numerical method
and analytical formulas enabled by the equivalent model shown in figure 2. The grey shading indicates the
locally resonant bandgap obtained by numerical method. The inset shows a magnified view of the band structure
atk=rm/a.

Then we consider the floating metaplate with reasonably selected parameter values
shown in table 1. The band structures obtained from the numerical method are plotted
in figure 3(b), together with those obtained from the analytical model described by (3.7)
and (3.8) (see Appendix B for the explicit expression of w(k)). It is evident that a
bandgap forms between frequencies around 9.5-10 rad s~!, highlighted in grey, close to
the resonant frequency of the resonator, i.e. 10 rads~!. This bandgap is induced by the
local resonance rather than the Bragg scattering. We draw this conclusion based on the
following two considerations. First, for a periodic floating metaplate with periodicity a,
the frequency at which a bandgap arises due to the Bragg scattering can be estimated
using the condition 2rrn/k = 2a (n € N) (Lorenzo et al. 2023), i.e.

Bk +k
o [g——r
yok + 1

where the dispersion equation (3.6) has been used. For n = 1, the lowest Bragg bandgap
occurs at around 13.2 rads™!, which is higher than the bandgap presented. Second, this
bandgap exhibits the characteristic profile of a locally resonant bandgap (i.e. the lower
bound of the bandgap is dictated by the lower branch of the dispersion curve which is
flat at the first BZ edge k = 7 /a, while the upper bound is governed by the higher branch
which is flat at the first BZ centre k = 0). In the following, we provide explanations of the
resonance-induced bandgap obtained here by directly examining the behaviour as w — @y
in the original dispersion (3.4) (i.e. (3.7)), which can be fully expressed as

(3.9)

’
—nw
k= a

a)2 a)2
Bk'+1— | yi——— +w - ktanth:;. (3.10)
1- ()
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On the one hand, if w — wg_, i.e. ® = wy — Aw where Aw — 0, the term

1 Y100
~ — 00, 3.11
Y1 O (wO_Aw)Z A (3.11)

wo

which dominates the terms in [-], then, the dispersion (3.10) can be approximated as

3 2
, ,

Bkt 4+ 1— 2190} & anh ki = 20, 3.12)
2gAw g

Because the Bloch wavenumber k is confined within the first BZ (i.e. k € [—7/a, 7/a]),
the term Bk*+ 1 is positive and bounded by A(w/a)* + 1. Since k tanhkH is non-
negative, if B(m Ja)* +1 <y a)g /2g Aw, the left-hand side of (3.12) is non-positive, while
its right-hand side is positive, indicating no real solutions can be found for (3.12). This
means that when w is smaller than but very close to wy, there is a bandgap.

On the other hand, if w - wo4, i.e. w = wg + Aw where Aw — 0, the term

1 Y100

~— —00, 3.13
" 1 wo+Aw 2 2Aw oo ( )
- (=)
then, the dispersion (3.10) becomes
3 2
(ﬁk4 F14 2”% ) ktanh kH = 20 (3.14)
gAw g

Both sides of (3.14) are always positive if kK # 0, indicating it is possible to find real
solutions and therefore propagating bands exist when w is slightly larger than wy.

When o = wgp, to make (3.10) valid, k¥ must be zero. To check if (w =wqp, k =0) is a
solution, we re-examine the expression of w (k) derived from (3.4) (shown in Appendix B)
and found that it is indeed a solution.

These findings are clearly manifested in the band structure shown in figure 3(b), where
the bandgap occurs right below the resonator’s natural frequency wg, and the dispersion
branch above the bandgap starts from (@ = wg, k = 0). These features will be the basis in
the design a broadband water wave reflector with a customisable frequency range that will
be discussed in § 5.

3.3. Effect of key parameters on bandgap evolution

To demonstrate the generality of the features revealed by the band structure analysis in
§ 3.2, we investigate how the bandgap evolves as several key physical parameters are
varied. Specifically, we examine the influence of the normalised stiffness parameter 8, the
normalised mass term yj, the depth of the water H and the periodicity a of the metaplate
on the location and width of the bandgap.

First, by varying B, the variation of the bandgap is shown in figure 4(a). It can be seen
that the gap width decreases as 8 increases. Note that the bandgap’s upper edge always
occurs at wg = 10 rad s

Second, we consider the variation of the parameter y; = m, /ap, which characterises
the mass of the resonator. Increasing y; means increasing the mass of the resonator m,,
and consequently decreasing the resonant frequency as wg = +/s,/m,. This is shown in
figure 4(b), where the upper edge of the bandgap, determined by wy, indeed decreases as
y1 increases.
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Figure 4. Evolution of the bandgap on varying parameters (a) 8, (b) y1, (¢) H and (d) a. The four figures were
obtained by changing their respective parameters while keeping the other parameters unchanged as original
ones taken in figure 3, where 8 =0.05, y; =0.01, H=10and a = 1.

Third, we change H from its original value of 10 to 60 m, which means a deeper water
region is considered. The variation of the bandgap is shown in figure 4(c), indicating that
the bandgap is almost unchanged.

Last but not least, we change a from its original value of 1 to 0.5 m. The variation
of the bandgap is shown in figure 4(d), indicating that the bandgap size decreases as the
periodicity a decreases.

In a nutshell, although the frequency and the width of the bandgap may change when the
parameters are altered, the overall features of the band structure of the decorated floating
plate remain the same, i.e. there exists a resonance-induced bandgap located right below
the resonant frequency wy.

3.4. Error analysis and applicable criteria for the analytical model

As shown in figure 3(b), the band structure derived from the simplified analytical model
closely matches the numerical results across almost the entire wavenumber k range in the
first BZ, with noticeable discrepancies only near the first BZ edge. We will provide an
explanation for the origin of these discrepancies and give an brief error-analysis—based
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Figure 5. Variation of the relative error RE (3.15) between the frequency at k = 7 /a from the two models
with respect to the periodicity a.

discussion of when the analytical (equivalent) model remains reliably applicable, with a
focus on the unit cell periodicity a.

It is worth emphasising that the analytical model is derived by replacing discrete
resonators with uniformly distributed masses and springs (Chen et al. 2019), as shown
in figure 2. Mathematically, this averaging process can be regarded as using a rectangular
pulse function to approximate the Dirac delta function (Haberman 2013), which results in
the discrepancies observed in the band structures obtained from analytical and numerical
models. In this approximation, the rectangular pulse function better approximates the §-
function as a decreases, meaning the smaller the periodicity, the better the equivalent
model. The discrepancies at large wave vectors stem from this approximation.

We define the relative error (RE) between the frequency at k = 7 /a from the real model
(numerical) and the equivalent model (analytical) as

b1 /4
i = 1o @) e @00 %, (3.15)
wre (%)
where w;.(r/a) denotes the low-branch frequency at w/a from the real model, while
weq (7w/a) is that from the equivalent model (referring to the inset in figure 3(b) to clearly
visualise the discrepancy between them).

We evaluate the relative error RE for various values of a while keeping all other
parameters fixed as in table 1. Figure 5 presents the result, illustrating that, as the
periodicity a decreases, the relative error between the two models diminishes. This
indicates that the equivalent model can more accurately represent the real system when
the unit cell size of the periodic floating metaplate is relatively small, in agreement with
the conclusion derived above from mathematical viewpoint.

4. Frequency- and time-domain responses of a finite-size floating metaplate

We consider a finite-size floating metaplate consisting of N, unit cells, as depicted in
figure 6. We assume a monochromatic incident wave with unit elevation coming from the
right, travelling along the negative x-direction.

4.1. Frequency-domain analysis

We can separate the region into three parts: free surface on the left-hand side for
x <0 (labelled by subscript ‘I’, with transmitted wave), plate-covered region for 0 <
x < Nca (labelled by subscript ‘c’, with gravity flexural wave) and free surface on
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Figure 6. Schematic of a finite-size floating metaplate, consisting of N, unit cells. Waves are incident from
the positive x-direction. Resonators are located at x = b + (i — 1)a, where i ranges from 1 to N..

the right-hand side for x > N.a (labelled by subscript ‘r’, with incident and reflected
waves). By considering all equations and conditions mentioned in § 2.1 and employing
the eigenfunction matching method described in § 2.2, we obtain the velocity potential
underneath the three parts as follows (Kohout ez al. 2007; Meylan 2019; lida & Umazume
2020):

¢(~xa 2, t) = Re I:.igbl,c,re_iwt]’ (4-1)
1w
where
N
P1(x,2) =Y A" 0 (2), (4.2)
n=0
. M . .
(El)(x’ Z) = Z [B}g;)el(mx + C’gri)e—lcmx]wm(z)’ (43)
—
N
$r(x, ) =e""0p(2) + Y Due " 0 (2). 4.4)
n=0

Here, ¢,(z)(n > 0) and ¥, (z)(m > —2) are given in (2.14) and (2.15), respectively;
Y, and «,, are determined from (2.16) and (2.17); A,, B,(,i), C,(,i) and D, are unknown
coefficients. In (4.3), the superscript (i) (i =1, 2, ---, N + 1) indicates the ith segment
of the thin plate separated by the (i — 1)th and ith resonators on it. Specifically, for
i=1,0<x<b;fori=N.+1,b+ (N, —1)a <x < N.a; and for any other i except 1
and No+1, b+ (i —2)a <x <b+ (i — 1)a. Note that (4.2) and (4.4) are obtained by
taking into account the radiation conditions (lida & Umazume 2020), which stipulate
that the scattered waves (i.e. reflected and transmitted waves here) are outgoing to
the infinite far field. In addition, the first term of (4.4) represents incident waves, i.e.
@ = Re[(g/iw)e”* gy(z)e ). The factor g/iw is a normalising value to unify the wave
elevation of the free surface, which is calculated by the dynamic condition as

kL

-2 = Re[ ¢y, (x, 0)e '] 4.5)

z=0
And the harmonic deflection 7 of the plate (referring to (2.20)) can be written as

o_ | g dg
n=———
—lwiw 09z

i=1,2,...,N.+1. (4.6)

z=0
1020 A50-17


https://doi.org/10.1017/jfm.2025.10635

https://doi.org/10.1017/jfm.2025.10635 Published online by Cambridge University Press

H. Liu, M. Farhat, H. Bagci, S. Guenneau and Y. Wu

Other physical quantities, such as the horizontal velocity of the fluid d¢/dx, rotation angle
an/dx, bending moment Dd?%n/dx? and shear force —D331/9x3 of the plate, can also be
expressed by the velocity potential, as we did in § 2.

We use truncated summations of finite terms to approximate the solution of the velocity
potential. According to (4.2)—(4.4), there are (N +1)+2(M +3) x (N.+ 1)+ (N +
1)=2(N + 1)+ 2(N, + 1)(M + 3) unknowns in total. They are determined by matching
and boundary conditions, which will be explained in the following.

First, we consider the matching conditions for the velocity potential and its normal
derivative across the boundary between distinct regions underneath the free surface or
plate segments. This implies that

¢1(0,2) =90, 2), (4.7)
¢P b+ G —Da,2)=¢lTVb+G—Da,z) (=1,23,....N),  (48)
¢ NtV (Nea, 2) = ¢, (Nea, 2), (4.9)
and
o)
3 P
) _ 9% : (4.10)
ox lx=0 ox lx=0
(@) @@+
9 9
Pe = Pe (i=1,2,3,..., N, (4.11)
0x lx=b+@i—1a 0x Ix=b+(i—1Da
(Ne+1)
9 9
e _ 9 . (4.12)
0x x=Nca 0x lx=Nca

The detailed forms of the matching conditions listed above are given in Appendix C.
Following the approach used in § 2.3, we solve these equations by multiplying both
sides by the vertical eigenfunction ¢;(z) and integrating over the vertical domain from
z=—H to z =0. This process yields a total of (N + 1) x [2(N. + 2)] equations, which
are elaborated in Appendix C.

Then we consider the boundary and matching conditions for the plate. Free boundary
conditions are set for the two ends of the plate, i.e. the bending moments and the shear
forces at x =0 and x = N_a are zero. This implies that

52y
=0, 4.13
8)62 x=0 ( )
33y
=0, 4.14
ax3 lx=0 ( )
and
Fntethy (4.15)
8x2 x=N.a
8377(NC+1)
_ =0. 4.16
8x3 x=N.a ( )
At the point where the resonator is located (i.e. x=b+ (i — 1)a,i=1,2,..., N;), the

deflection, the rotation angle and the bending moment of the plate are continuous, but
there is a jump of force F in the shear force, where the dynamic force F' was detailed in
(2.38)—(2.40). This gives that
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® = pltD 4.17
1 x=b+(i—1a x=b+(i—-Da @.17)
an® 9+
7 = , (4.18)
0x lx=b+@i—1a 0x lx=b+@i—-1a
52 @ 52+
n _pdh - , (4.19)
9x2 lx=b+(i—-Da 9x2  lx=b+(i—a
0°n® — w —g.pn® __[02 (4.20)
ax3 lx=b+i-1a ax3  lx=b+(@i-1a x=b+Gi—Da 1l — @2’ '

where i =1,2, ..., N¢; @ can be found in (2.40). The detailed forms of (4.13)—(4.20) are
also presented in Appendix C.

Finally, we get a total of 2(N + 1)(N, +2) +4+4N. = (N, + 1)(2N +6) +2(N + 1)
equations. For the system to be well determined, this must exactly match the number of
unknowns, 2(N + 1) + 2(N. + 1)(M + 3). This condition is ensured by letting M = N.

4.2. Time-domain response

Using the procedure outlined above, the surface displacement in the frequency domain
can be determined. The time-dependent solution is then obtained through superposition,
leveraging the linearity of the system and applying the Fourier transform to transition from
the frequency domain to the time domain. The surface displacement is a function of w,
therefore, we denote the complex frequency-domain surface displacement by n(x, ®). We
assume that the incident wave is a Gaussian at ¢t = 0. The time-dependent displacement is
given by the following Fourier integral (Meylan 2019):

+oo
w(x, 1) =Re {% f f(@)n(x, a))e_i‘“tda)}, 4.21)
0

where f (w) 1s

~ S o2
f(w):\/;e s(@=wc)” (4.22)

Here, s is a scaling factor that controls the overall width of the Gaussian wave packet,
while w, represents the central frequency of the Gaussian.

4.3. Numerical results

We consider a finite-size floating metaplate consisting of N. =30 unit cells. All other
parameters remain identical to those listed in table 1. In the following, we will first present
the reflection and transmission coefficients obtained from the frequency-domain solutions
for each individual incident frequency. Then, we will provide animations demonstrating
the propagation and reflection of incident waves at various frequencies based on the time-
domain results.

In the frequency-domain response analysis, the characteristics of reflection and
transmission are evaluated based on the amplitude of the velocity potential in the far field
from the plate. The reflection and transmission coefficients, R and 7', are given as

R=Dy, T=Ay, (4.23)
which need to satisfy
IRI>+IT)* =1, (4.24)

as required by the energy conservation principle.
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Figure 7. (a) Transmittance of the finite-size floating metaplate with resonant frequency wo = 10 rads~!. The
grey shading indicates the locally resonant bandgap as shown in figure 3(b). (b) Value of IT|? + |R|? for
verifying the law of conservation of energy.

Figure 7(a) illustrates the transmittance, 20 log | T'|, of the finite-size floating metaplate
as a function of the incident wave frequency w. A sharp dip is observed within the
grey-shaded frequency range, corresponding to the locally resonant bandgap identified in
figure 3(b). This highlights the distinctive characteristic of the locally resonant bandgap,
namely, its pronounced attenuation effect on incident waves within this frequency range.
Figure 7(b) presents |R|? + |T|? as a function of w, providing a clear verification of the
energy conservation principle while also validating the accuracy and reliability of our
numerical calculations.

On the other hand, the time-domain response results can provide a clearer demonstration
of the blocking effect of the locally resonant bandgap on incident waves. We consider
incident waves centred at different frequencies, corresponding to the passband below the
bandgap, the stop band within the bandgap and the passband above the bandgap. The time-
dependent responses for these three cases are shown as animations in Movies 1-3 which
are given as supplementary material. From these results, we observe that for incident waves
with a central frequency within the passbands (both below and above the bandgap), a
significant portion of the wave energy propagates through the metaplate region. In contrast,
for incident waves with a central frequency within the bandgap, almost all the energy is
reflected. These results not only further validate our bandgap analysis but also highlight
the potential of the floating metaplate as an effective water wave reflector.

5. Graded floating metaplate: broadband wave reflector with customisable working
frequency range

Generally, the locally resonant bandgap exhibits a narrow width (Wu et al. 2021),
that sometimes may be too small to be detectable (Skelton et al. 2018). To design a
broadband wave reflector capable of working effectively in extremely challenging natural
environments, the concept of a graded floating metaplate is introduced here. In classical
wave systems (Cebrecos et al. 2014; Colombi et al. 2016; Bennetts et al. 2018; Wilks
et al. 2022), graded design was widely employed for achieving the rainbow trapping
or rainbow reflection effect, i.e. the spatial signal separation depending on frequency
(Tsakmakidis, Boardman & Hess 2007). In this section, we demonstrate that a floating
metaplate equipped with resonators featuring graded natural frequencies can exhibit a
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Figure 8. (a) Schematic representation of a graded floating metaplate, where the resonant frequencies of the
attached resonators vary linearly from the left to the right side of the array and are rendered by different colours.
(b) The second branch of dispersion curves for unit cells with different resonant frequencies for elucidating the
rainbow reflection mechanism. The vertical arrow indicates that the band edge frequency gradually decreases
from the left side to the right side, while the horizontal arrow represents an incident wave. (c¢) Evolution of the
locally resonant bandgap as the resonant frequency decreases along the array.

pronounced rainbow reflection effect for surface water waves. More importantly, it can
function as a broadband wave reflector, with its operating frequency range precisely
tailored by the preset frequency range of the resonators, offering significant flexibility
and performance customisability.

5.1. Rainbow reflection mechanism for the graded metaplate

We consider a finite-size metaplate consisting of N. = 30 unit cells, where the resonant
frequency wq of the resonator mounted in each unit cell gradually increases linearly from
8 rads~! at the right end to 11 rads™! at the left end, as illustrated in figure 8(a). To
enhance the practical feasibility of this set-up, we assume that the mass of the resonators
remains constant, while the gradient variation in the resonant frequency of the resonators
is achieved by altering the stiffness, i.e. s;, of the springs connecting the resonators to the
plate.

Unlike the conventional technique, which typically relies on the lower branch of the
dispersion curve below the bandgap to achieve rainbow reflection (e.g. Bennetts ef al.
2018; Wilks et al. 2022), here, we utilise the second branch of the dispersion curve located
above the bandgap in the metaplate structure. This choice is motivated by two key factors.
First, the second branch features a broad flat-band region (referring to figure 3b), which
facilitates the phenomenon where different frequency components of the incident wave are
effectively stopped at different positions within the structure. Second, as discussed in § 3.2,
the lower edge of the second branch is precisely determined by the resonant frequencies
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of the resonators. This property enables highly customisable operating frequencies for the
wave reflector, as will be elaborated later.

In order to reveal the rainbow reflection mechanism of this graded floating metaplate, the
second branch of dispersion curves corresponding to the 1st, Sth, 10th, 15th, 20th, 25th and
30th unit cells are plotted together, as shown in figure 8(b). Considering an incident wave
with a frequency of, for example, around 10 rads~!, indicated by the black dashed arrow,
as it propagates from the right end of the host plate into the graded region, it can pass the
first few unit cells since it lies within their passing band until it reaches the unit cell whose
band edge corresponds to 10 rads~!. The wave modes are gradually transferred along
the arrow from the dark blue curve to the yellow one, while the group velocity of the wave
gradually decreases until it reaches zero. Then the wave will be stopped here, and, because
the frequency of the incident wave is close to the resonant frequency of the resonator at
that location, a significant portion of the incident wave energy will be transferred into
the vibration of the resonator. This energy is subsequently converted into the bending
vibration of the plate and reflected back. In general, incident waves of different frequencies
reach zero group velocity at different unit cells. Since the lower edge of the flat band
is precisely determined by the resonant frequency of the resonators, waves are stopped
and reflected at the position where the resonant frequency of the local resonator matches
or is close to the incident frequency (beyond this position, the waves enter the bandgap
region, as shown in figure 8c¢), resulting in a spatial separation of incident water waves
with different frequencies, akin to the effect of a rainbow. Besides, owing to the locally
resonant mechanism, energy will be accumulated at the corresponding resonator, leading
to the energy localisation in this resonator. This mechanism explains the reflection process
of incident waves and provides an intuitive theoretical foundation for the implementation
of a broadband water wave reflector discussed in the following sections.

5.2. Frequency-domain response

To demonstrate the rainbow reflection phenomenon, we perform a frequency response
analysis on the graded metaplate. The numerical analysis procedure is almost the same
as that described in § 4.1, with the exception that the boundary conditions related to the
resonators must be modified to account for the fact that the resonant frequencies are no
longer identical but gradually vary. This requires rewriting (4.20) as follows:

3G 3,G+1 ~ ()72
G _pd b _ () —[0?] 5.1)
9x3 lx=b+(i-1a ax3  lx=b+i-1Da x=b+(i-Dal —[@D]2"
wherei=1,2,..., N.,o" =w / a)(()i), in which a)(()i) is the value of the resonant frequency

of the ith resonator (counting from the left end), and sr(’) =m, [a)(()’)]2 is the spring stiffness
of the ith resonator, where m, is the mass of the resonator. In the numerical calculations,
all other related parameters are consistent with those adopted in previous sections.

Figure 9 illustrates the amplitude of the reflection coefficient | R| for the graded floating
metaplate depicted in figure 8(a). The light cyan shaded region represents the frequency
range of the resonant frequencies, which spans from 8 to 11 rad s™!. It is evident that total
wave reflection occurs for incident waves with frequencies within this range. This result is
consistent with the previously explained rainbow effect: as the wave propagates along the
metaplate, it reaches the resonator whose resonant frequency matches that of the incident
wave, leading to reflection. Therefore, this graded floating metaplate can function as a
‘broadband wave reflector’, with its working frequency range entirely determined by the
graded frequency range of the resonators.
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Figure 9. Amplitude of the reflection coefficient | R| for the finite-size floating metaplate with the graded
resonant frequencies ranging from 8 to 11 rads~!.
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Figure 10. Displacement field of (a) the plate and (b) the resonators at different frequencies to demonstrate the
rainbow reflection effect. In (@), A and B represent two specific cases where incident waves coming from the
positive x-axis at different frequencies are completely stopped at distinct positions.

To illustrate the rainbow reflection and the broadband reflection phenomenon, figure 10
depicts the frequency response field for the graded metaplate. Figure 10(a) displays the
normalised displacement field of the plate. The dark black triangular region indicates
the behaviour within the graded resonant frequency range (8 to 11 rads™!), where the
incident wave propagates a certain distance through the array before being stopped at
a specific location. As the incident frequency w increases linearly within this range,
the stopping point shifts correspondingly in a linear manner, progressing from the right
end toward the left end. Figure 10(b) illustrates the normalised absolute displacement
of all resonators. One can observe that within the graded resonant frequency range of
the resonators, the amplitudes of the resonators near the stopping point of the incident
wave are significantly enhanced, and for different incident frequencies, the positions
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of the enhanced resonators vary accordingly. This unambiguously demonstrates the
rainbow trapping effect. Moreover, it validates the previously described rainbow reflection
mechanism, wherein the incident wave stops at a location where the resonant frequency of
the local resonator matches the frequency of the incident wave and, subsequently, part of
the wave’s energy is converted into the vibration of the resonator.

5.3. Time-dependent response

Following the procedure outlined in § 4.2 and based on the frequency-domain response
field given above, we now present the time-dependent response of the graded floating
metaplate under the excitation of an incident wave centred at a specific frequency.

Figure 11 shows the results in the form of waterfall plots for the transient displacement
field of the plate and resonators. For an incident Gaussian wave with central frequency
we =9rad s~ !, it impinges into the right end of the plate (x = 30 m) and propagates to a
position approximately one third of the plate’s total length from the right end (x ~ 20 m).
At this point, the group velocity of the wave decreases to zero, causing the wave to
stop (see figure 11b). A portion of the incident wave’s energy is then converted into
the vibrational energy of the resonators near this location (see figure 11¢). Over time,
the wave is reflected back, and this back-scattering process repeats multiple times before
gradually reaching a state of equilibrium. This continuous radiation of the wave signal is
a characteristic phenomenon observed in rainbow structures, akin to the time spreading of
reflected pulses in acoustics (Cebrecos et al. 2014). To visualise this result clearly, some
snapshots of the time-dependent responses of the plate and resonators are presented in
Appendix D, and the full animation can be found in Movie 4 as supplementary material.
For comparison, figure 11(d,e,f) displays the results for an incident wave centred at
we = 10rad s~'. In this case, the wave is trapped and reflected at a position approximately
one third of the plate’s total length from the left end (x &~ 10 m) (an animation illustrating
this phenomenon is provided in Movie 5). These two cases align precisely with markers
A and B in the frequency-domain wavefield shown in figure 10(a), which clearly indicates
that rainbow reflection occurs around x =20 m and x = 10 m, respectively. In a nutshell,
the characteristic behaviour of the rainbow trapping phenomenon manifests for incident
waves centred at frequencies within the range of the resonant frequencies of the graded
resonators, facilitating broadband total wave reflection.

To further substantiate our findings, we performed two additional time-domain
simulations using broadband Gaussian wave packets. One with central frequency w, =
9.5rad s~!, shown as figure 12(a), covers the entire frequency range of total reflection
(i.e. 8-11 rads~!). The corresponding time-domain displacement field of the water—
metaplate—water region, as shown in figure 12(c), indicates that the packet is almost
completely reflected, which confirms the broadband reflection of the graded floating
metaplate. An animation illustrating this result is provided in Movie 6. The other one with
spectrum centred at 8 rad s~!, as shown in figure 12(b), extends frequencies from 6 to 10
rads™!, covering the range both inside and outside total reflection. From the time-domain
displacement field shown in figure 12(d), it can be seen that a portion of the incident wave
is transmitted through the metaplate, confirming that the waves with frequencies outside
the total-reflection band cannot be blocked. The animation illustrating this phenomenon
can be found in Movie 7.

5.4. Customisable operating frequency range

As previously mentioned, thanks to the fact that the upper bound (i.e. cutoff frequency of
the graded structure) of the locally resonant bandgap is precisely determined by the reso-
nant frequency of the resonators (see § 3.2), rainbow reflection occurs for incident waves
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Figure 11. (a) An incident Gaussian wave centred at w, = 9 rad s71, corresponding to marker A in figure 10(a).
Waterfall plot representing the time-domain responses of (b) the plate and (c) the resonators to the incident
Gaussian wave coming from the positive x-axis. Snapshots at some different times are shown in figure 14 in
Appendix D. Panels (d), (¢) and (f) are the same as (a), (b) and (c), respectively, except that now the incident
wave is centred at &, = 10rad s~!, corresponding to marker B in figure 10(a). Hereafter, ‘FFT refers to the
magnitude of the fast Fourier transform of the Gaussian wave packet.

with central frequencies falling within the range that exactly matches the resonant frequen-
cy range of the graded resonators. In the following, we will briefly demonstrate that this
frequency range, in which the graded-metaplate-enabled wave reflector operates, can be
precisely customised by presetting the resonant frequency range of the graded resonators.

Now, we set the resonant frequency of the resonator to change, without the loss of
generality, from 5 rads~! at the right-most end unit cell to 8 rads~! at the left-most end
unit cell. Following the numerical procedure outlined previously, we obtain the reflection
coefficient and the frequency-domain wavefield for this case, as shown in figure 13. One
can clearly notice that the frequency range over which total reflection occurs (i.e. |R| — 1)
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Figure 12. (a) A broadband Gaussian wave centred at w, = 9.5 rad s~!, covering the total-reflection frequency
range. (b) A broadband Gaussian wave centred at @, = 8 rad s~!, spanning frequencies both inside and outside
the range of total reflection. (c¢) Waterfall plot showing the time-domain responses of the water—metaplate—water
region to the incident Gaussian wave in (@), coming from the positive x-axis. (d) Same as (c) but corresponding
to the incident Gaussian wave in (b).
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Figure 13. (a) Amplitude of the reflection coefficient | R| for the finite-size floating metaplate with the graded
resonant frequencies ranging from 5 to 8 rad s~ (b) Displacement field of the plate and (c) the resonators
at different frequencies, illustrating the rainbow reflection effect. Panels (b) and (c) are the same as figure 10,
execpt that the frequency range associated with the rainbow reflection shifted to the new frequency range of
the graded resonators.
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shifts to the new frequency range of the graded resonators, as indicated by the light cyan
region in figure 13(a). Once again, figures 13(b) and 13(c) illustrate that rainbow reflection
is observed for incident waves with frequencies precisely within the resonant range of the
resonators. In summary, the operating frequency range of this wave reflector, facilitated by
the graded floating metaplate, can be accurately tuned by adjusting the predefined resonant
frequency range of the resonators.

6. Conclusion

Inspired by the effective generation of low-frequency bandgaps by locally resonant
metamaterials in acoustic and elastic waves, we systematically investigate the wave
scattering by a floating plate decorated with local resonators. We obtain its band structure,
and its exceptional capabilities in controlling surface gravity waves, such as achieving
rainbow trapping and broadband wave reflection, are explored. Based on the linearised
potential flow theory, the eigenfunction matching method and Bloch’s theorem were
applied to calculate the band structure of an infinitely periodic floating metaplate system.
An effective model was proposed to analytically obtain the band structure, exhibiting
good agreement with numerical results. The analytical model provides a clear description
of the key features of the typical locally resonant bandgap. Additionally, the condition
under which the analytical model is applicable was revealed through a direct error
analysis. A numerical procedure was developed to analyse the wave interaction with the
finite-sized floating metaplate. By utilising Fourier integration on the frequency-domain
solutions, the time-domain responses were indirectly obtained, offering a more intuitive
visualisation of the interaction phenomena between the floating metaplate and incoming
surface waves. Furthermore, by designing the resonators on the metaplate with gradient
variations in their resonant frequencies, we achieved rainbow trapping and reflection
effects for incoming surface waves, thereby realising a broadband wave reflector. Most
intriguingly, the operating frequency range of this reflector can be precisely determined by
the resonant frequency range of the resonators on the plate. Although this work primarily
serves as a proof-of-concept study, it offers valuable insights into the manipulation of
water waves using metamaterials. These findings hold significant potential for applications
in offshore industries, coastal structure protection engineering and the design of innovative
wave energy converters.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10635.
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Appendix A.

In (2.47), we used the assumption that M = N, A, B, C and D are all square matrices of
dimension 2(M + 3) x 2(M + 3), and can be respectively written as follows:

Ao | Ao —Boy | —Bp-
A | —A —-Bi+ | B-
| a0 ap | —bo+ | —bo-
A= a, | —a; |’ B= —bi+ bi_ ’
a) a) —b2+ —bz_
as —as —b3+ b3_
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Cotr | Co- —Do+ | —Do-
Cii | —Ci_ D, | D
€0+ | €o— —dot | —do-
= D= . Al
¢ i+ | —¢c1— |’ —di+ | di- (AD)
4 | - —dyy | —dy-
€3+ | —€3- —ds; | d3_

Each of these matrices is formed by combining four submatrices (denoted by uppercase
letters) and eight row vectors (denoted by lowercase letters). Each submatrix can be
expressed as follows:

Pn:O,m:—Z Pn:O,m:—l te Pn:O,m:M

Pn:l,m:— Pn:l,m:—l te Pn:l,m:M
AO = . . . . ’

Pp=N.m=-2 Pn=Nm=—1 -+ Pn=Nm=m

where Poy = [° ) 04(2)¥m (2) dz (see 2.33),
Ay =Agdiag(k 2, k1, -+, Kpm),

By, = A diag(ef—29, ek-19, ..., ekmna)

Bo_ = Ao diag(e %29, e %19 ... ekmua) (A2)
By =By diag(k 2, k1, -+ Km),

Bi_ =By_diag(k—2, k—1, -, Kpm),

Coy = A diag(e“2?, e<-10 ... ekmby,

Co_ = Agdiag(e *2b e=*-1b ... e~xuby

Ci+ =Coy diag(k—2, k1, -+, kM),

Ci—=Co_diag(k_2,Kk_1, -, KpM)»

Doy =Cot, Do—-=Co—, D1+ =C14,D1—-=Ci_,

and for the row vectors, their mth element (m ranges from —2 to M) can be respectively
described as

g« e i@
0w +l—pa T oBkh+ 11—y
gm_ i e o m_ 1 ® 3
T RISy vy
oy _ 1 ae”? (m)=iﬂ,(m
. ‘f’ﬁ":i"‘ilK—aVOOl’ 1+ wﬁ./c,‘,*l+1—xy%a ’
SR L Y O B
2T B+ l—pa ™ T B+ -y ™ (A3)
m 1 aetKmb m i qetimb
¢ =1, ¢ = —— Ky,
0 ok + 1w F T 0Bkl +1- o
R A N S B o OF S 2
gt l-pa M T+ l-pa \ " T D1=0?)

i +Kkmb
4D ) _ e g _ e g0 e
0+ 0+ %1+ 1+£° %24 2+ > @34 a)ﬂK;tl_l_l_yOa p
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Appendix B.
The dispersion relation (3.7) from the analytical model reads

1 2 2
Bt +1— | s + 70 | = | ktanhkH = 2= (B1)
=0 8 8

Solving for w, we get two branches

, high branch, o > wy,

/%+%+m+@+@+m2
a1
w (k) =

(B2)

, low branch, o < wy,

\/—06+05+C74+03 + 07 + wp?
o1

where

o1 =2[yo ktanh (kH) + 1], 02 =y1 k wo® tanh (kH), 03 = yo k wo® tanh (kH)
o4 =B gk’ tanh (kH), o5=gktanh (kH), o6=+/%s,
Te=Bg ko1 +2B¢ kK 0128k’ wo’ o7 +2B gy1 k® wo’ o7
— Zﬂgkswoztanh(kH)—l—gzkzow—2gyok2w0207+2gy1k2w0207
— 2 gk w? tanh (kH) + y0° k> wo* 07 + 2 v y1 k* wo* 07 + 2 yo k wo® tanh (kH)
+ y12k2 a)o4 07+2y1ka)04 tanh (kH)+a)04,

o7 = tanh (kH)?. (B3)
Appendix C.
Detailed forms of (4.7)—(4.12) are
N M
D Awen@= ) [BY +ClYm (). 1)
n=0 m==2
M
Z [B(i)ekm[b-i-(i—l)a] + C(i)e_Km[b+(i_1)a]]$m(Z)
m m
m=-2
M
_ Z [B(i+1)e/<m[b+(i—1)a] + C(i+1)e_"’"[l’+(i_l)“]]x/fm (), (i=1,2 N.), (C2)
m m ) 9 Ly ey 5
m=-2
M
Z |:Br(nNc+l)eKmNca i Cr(nNc—i-l)e—KmNca] Y (2)
m=-—2
N
=e"Nel9y(2) + > Dpe " Neg, (2), (C3)
n=0
N M
Y Aapn@ =Y [kmnBY —knCY Y (2), (C4)
n=0 m=-2
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M
Z [KmBr(’;')exm[b—i-(i—l)a] _ chr(rf)e_xm[bHi_])a]]Wm )
m=-—2
M
= Y [rmBYTVemtbH=bal e, clitDewmlbt(=Dally, (), (i=1,2,..., Ne),
m=-=2
(C5)
M
Z [KmBlglNc-H)eKmNca _ chlslNc—H)e—KmNca]‘/Im 2)
m=-—2
N
= 90e”"N0y(2) = Y 9y Dye” " Neg, (2). (C6)
n=0

Multiplying both sides of these equations by the vertical eigenfunction ¢;(z) and
integrating from z = — H to z =0, one can get (similar to (2.29)-(2.32))

M
Ajlj= %" [B +C\]Pjm. (C7)
m=-=2
M
Z [Blgi)ekm[b—o—(t—l)a] +C,(,i)e_Km[b+(l_l)a]]ij
m=-2
M

— Z [Bl§i+1)elfm[b+(i71)a] + C’S;'+1)e*lcm[b+(i*1)a]]pjm’ (i=1,2,...,N), (C8)

m=—

M
Z [Br(nNc-i-l)eKmNca + C’§1Nv+l)e—xn1Nca]ij
m=-2
N
— eﬁONcaI()an + Z Dne—ﬂnNca P]m, (C9)
n=0
M
Aili= " (kB = kmCy ] Pjm. (C10)
m=—
M
Z [Km B}S;)ekm[bﬁ“(lfl)al _ chlgi)efkm[b+(zf1)a1]ij
m=—2
M
— Z [KmBIS;-i-l)eKm[b—l—(t—l)a] _ chr(ri-l-l)e—l(m[b-‘r(l—l)a]]ij’ (i=1,2,...,N,),
m=-2
(C11)
M
Z [KmB’glNc+l)eKmNca _ chr(nNc+l)e—KmNca]ij
m=-—2
N
= eV Iydo,; — Z Oy Dy VnNeap,, (C12)
n=0
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where 0 < j < N, the inner product of ¢;(z) and ¢, (z) reads
0
/ @i (D)pn(2)dz =18y, (C13)
-H
where
H tan9; H

) (C14)

I; = +
/7 2cos2 0 H 209;
and Pj,,, the inner product of ¢;(z) and v, (z), is the same as Py, in (2.33), except that
the dummy 7 is replaced by j. Since j has N 4 1 different values, there are a total of
(N 4+ 1) x [2(N; 4 2)] equations here.
Detailed forms of (4.13)—(4.20) are

M 2
K
2 a1yl TG0 c1s)
-2 m
ud K’ 1 1
2 G 1y B~ G l=0 (C16)
-2 m
M 2
Z m[BlgnNcﬁ‘l)eKmch + Cr(an"‘l)e—KmNCa] — O, (C17)
-2 m
M 3
Z L[B;N(,-+l)eKn1Nca _ Cr(nNc—Fl)e—KmN‘-a] — 0’ (C18)
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Figure 14. Snapshots of the time-dependent responses of a floating graded metaplate with the resonant
frequency of the resonators varies from 8 at the right end to 11 rads~! at the left end. The incident wave
is a Gaussian pulse centred at @, = 9 rad s~! with unit amplitude. The red line represents the plate while the
black squares are the resonators. As time progresses, the incident wave is precisely halted at a position one
third of the plate’s total length from the right end and then reflected back (as illustrated in figure 11). The full
animation can be found in Movie 4.
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In (C19)—(C22), i ranges from 1 to N,, hence there are a total of 4 + 4N, equations here.
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Appendix D.

To clearly visualise the time-dependent responses of the graded floating metaplate,
as illustrated by the waterfall plots shown in figure 11, we provide movies in the
supplementary material. Some snapshots from Movie 4 (considering an incident wave
centred at w, = 9 rad s~ ') are presented at different times in figure 14.
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