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Amenability and Fixed Point Properties of
Semitopological Semigroups in Modular
Vector Spaces

Khadime Salame

Abstract. In this paper, we initiate the study of ûxed point properties of amenable semitopological
semigroups in modular spaces. Takahashi’s ûxed point theorem for amenable semigroups of nonex-
pansive mappings, and T. Mitchell’s ûxed point theorem for reversible semigroups of nonexpansive
mappings in Banach spaces are extended to the setting of modular spaces. Among other things, we
also generalize another classical result due to Mitchell characterizing the le� amenability property of
the space of le� uniformly continuous functions on semitopological semigroups by introducing the
notion of a semi-modular space as a generalization of the concept of a locally convex space.

1 Introduction

Finding conditions ensuring the existence of a ûxed point for a nonexpansive map-
ping or more generally for a semigroups of nonexpansive mappings on a bounded
subset of a Banach space have been studied since the early sixties with the work of
DeMarr [5] who proved in 1963 that any commutative semigroup of nonexpansive
mappings on a nonempty compact convex set in a Banach space possesses a common
ûxed point. In 1969, Takahashi improved DeMarr’s result by showing that it remains
true even for le� amenable semigroups. A�erwards, Mitchell [16] established in 1970
that the le� amenability condition required by Takahashi can be weakened to le� re-
versibility. However, if we consider nonexpansive mappings on weakly compact sets,
the situation is totally diòerent, and DeMarr’s result is no longer true even for a single
map. In fact, Alspach [2], has constructed a ûxed point free nonexpansive mapping
on a non-empty weakly compact convex subset of L1([0, 1]). herefore, it follows that
a commutative (or even amenable) semigroup of nonexpansive mappings on a non-
void weakly compact convex subset of a Banach space need not have a common ûxed
point. Hence, when we deal with weak topologies, one has to make either some re-
strictions on the spaces, or put additional conditions on the mappings or on the given
set. In the former case, Browder [4] showed that DeMarr’s result is true for weakly
compact convex sets if the underlying Banach space is assumed to be uniformly con-
vex. he author [20] extended Browder’s result for commuting families to amenable
semigroups. Independently of Browder, Kirk [9] in 1965 proved that a nonexpansive
mapping on a non-empty weakly compact convex subset (of a Banach space) possess-
ing a normal structure (i.e., contains a non-diametral point) has a ûxed point.
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he aim of this paper is to extend the study of ûxed point properties of semitopo-
logical semigroups in Banach spaces to a more general class of spaces called modular
spaces. Among other things, we generalize most of the results cited above to this new
framework, and by introducing the concept of a semi-modular space, we extend a
classical ûxed point theorem in locally convex spaces. he concept of a modular ûnds
its origin in the work of Orlicz [19] published during the early 30s. However the for-
mal deûnition of a modular is due to Nakano [18] in connection with the theory of
ordered linear spaces. In this paper we aim to extend the study of ûxed point prop-
erties of semigroups to this setting. For references in ûxed point theory in modular
spaces, refer to [8, 11, 19].

2 Preliminaries and Notation

Let E be a vector space over the ûeld of all real numbers. A modular function on E is
a mapping ρ ∶ E → [0,∞] with the following properties:
(1) ρ(x) = 0 if and only if x = 0.
(2) ρ(α.x) = ρ(x) for all α ∈ R with ∣α∣ = 1.
(3) ρ(α.x + (1 − α).y) ≤ ρ(x) + ρ(y) for all α ∈ [0, 1] and x , y ∈ E.
A modular ρ is said to be convex if it satisûes the property:

ρ(α.x + (1 − α).y) ≤ αρ(x) + (1 − α)ρ(y)
for every pair of points x , y ∈ E and every α ∈ [0, 1]. If property (1) is replaced by the
weaker condition x = 0⇒ ρ(x) = 0, then we will call ρ a semi-modular.

To a given modular function ρ on the vector space E, we assign the space

Eρ ∶= {x ∈ E ∶ lim
α→0

ρ(α.x) = 0}

called a modular space associated with ρ. As readily checked, Eρ is a vector subspace
of E. Since ρ can take the value +∞, then it does not deûne a norm on Eρ in general.
In the case where ρ is a convex modular, it is then possible to make Eρ into a normed
space by letting

∥x∥ρ = inf {α > 0 ∶ ρ(x
α
) ≤ 1} for all x ∈ Eρ .

From a modular function one can deûne a kind of topology on the modular space
that resembles to a topology induced by a metric.
(1) (xα)α∈J in Eρ is said to converge to x, if we have limα ρ(xα − x) = 0.
(2) A subset C of Eρ is said to be ρ-closed, if whenever (xα)α∈J is a net of elements

of C converging to some x ∈ Eρ , then x ∈ C.
(3) C is said to be ρ-compact if each net in C possesses a convergent subnet.
(4) We say that C is ρ-bounded if its diameter δρ(C) ∶= sup

x ,y∈C ρ(x − y) < ∞.
(5) ρ is said to be lower semi-continuous if: ρ(x− y) ≤ lim inf α ρ(x− yα)whenever

x ∈ Eρ , and yα → y is a convergent net in Eρ .
(6) Finally we say that ρ satisûes the ∆2-condition if there is a positive constant k ≥ 2

such that: ρ(2x) ≤ kρ(x) for all x ∈ Eρ .
For more details about the ∆2-condition, see [8, 10, 17].

Given a semigroup S (i.e., a set with an associative binary operation), if it is
equipped with a separated topology such that for every a ∈ S, the mappings s ↦ as
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and s ↦ sa are continuous from S into itself, then we say that S is a semitopological
semigroup. From now on, we will assume that S is a semitopological semigroup. Let
Cb(S) denote the Banach algebra of all bounded continuous functions on S equipped
with the sup norm topology given by ∥ f ∥ = sup

s∈S ∣ f (s)∣ for all f ∈ Cb(S). To each
s ∈ S, we assign a bounded operator of Cb(S) deûned by ℓs f (t) ∶= f (st) called le�
translation operator induced by s. Let LUC(S) be the subset of Cb(S) consisting of
those functions f for which the mapping s ↦ ℓs f ∶ S → Cb(S) is norm continuous.
It is a well-known fact that LUC(S) is a translation invariant closed sub-algebra of
Cb(S) containing constant functions (see [3] for more details). A mean on LUC(S)
is a member m of the continuous dual LUC(S)∗ with the properties m(1) = 1 = ∥m∥.
If in addition, we have m(ℓs f ) = m( f ) for all f ∈ LUC(S), then m is called a le�
invariant mean, and we say that S is le� amenable if LUC(S) possesses a le� invariant
mean. Let AP(S) denote the subspace of Cb(S) of those functions f for which the
le� orbit L( f ) ∶= {ℓs f ; s ∈ S} is relatively compact (i.e., has a compact closure) with
respect to the sup norm topology of Cb(S). It is known that AP(S) is a translation
invariant closed sub-algebra of Cb(S) containing constant functions. S is called le�
reversible, if for all s, s′ ∈ S, we have sS ∩ s′S ≠ ∅. Here, sS stands for the closure in S

of sS ∶= {st; t ∈ S}. Relationships between AP(S), LUC(S), and le� reversibility can
be summarized as follows:

● AP(S) ⊂ LUC(S) ⊂ Cb(S) for all semitopological semigroup S.
● AP(S) = LUC(S) ⊂ Cb(S) if S is compact.
● AP(S) = LUC(S) = Cb(S) if S is a compact topological semigroup (i.e., the op-
eration of S is jointly continuous).

● AP(S) ⊂ LUC(S) = ℓ∞(S) if S is discrete.

It is known that if S is le� reversible, then AP(S) has a le� invariant mean; see [12].
However, the converse is not true. For example, the partially bicyclic semigroup
S2 = ⟨e , a, b, c ∶ ab = ac = e⟩ generated by an identity e with three elements a, b, and
c is not le� reversible, whereas AP(S) has an invariant mean, which is a result due to
T.Mitchell during a 1984 conference on analysis on semigroups inVirginia. When S is
discrete, it is straightforward that S is le� reversible if it is le� amenable, and the con-
verse of this fact is not true; by considering the free group on two generators. Further,
the implication does not hold for the semitopological case, and even when the whole
Cb(S) has a le� invariant mean. Indeed, there is a regular topological space S such
that the continuous real-valued functions are precisely given by the constant maps;
see [7]. If we let a.b = a for all a, b ∈ S, then we deûne a semitopological semigroup
structure. Furthermore, it is easy to check that given s ∈ S the point mass f ↦ f (s)
deûnes a le� invariant mean on Cb(S); however, S is not le� reversible.

Let S be a semitopological semigroup, and let E be an arbitrary non-trivial real
vector space. Given a modular function ρ on E, and a non-empty subset K ⊂ Eρ ,
an action of S on K is a mapping . ∶ S × K → K subject to the condition (ss′).x =
s.(s′ .x) for all s, s′ ∈ S, and x ∈ K. We say that the action is jointly continuous
if, it is continuous when S × K is given the product topology. he action is called
k-Lipschitzian if it satisûes the following property:

ρ(s.x − s.y) ≤ k.ρ(x − y) for all s ∈ S , and x , y ∈ K .
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In particular, a 1-Lipschitzian is precisely a nonexpansive action in themodular sense.
We will say that a point x ∈ K is a common ûxed for S, if it has the property for all
s.x = x for all s ∈ S, and a subset X of K is said to be S-invariant if we have s.X ⊂ X

for all s ∈ S.

3 Main Results

In this section, we establish our main results.

heorem 3.1 Let S be a semitopological semigroup. Assume that it satisûes either one

of the following conditions:

(i) LUC(S) has a le� invariant mean.

(ii) S is le� reversible.

hen S possesses the following nonlinear ûxed point property:

(F1) Whenever S × K → K is a jointly continuous
2
k
-Lipschitzian action on a non-

empty ρ-compact convex ρ-bounded subset K of a modular space Eρ induced by a lower

semi-continuous convex modular ρ with the ∆2-condition with constant k, there exists

in K a common ûxed point for S. Moreover, the ûxed point set of S in K is a singleton

when k > 2.

Remark 3.2 It may seem strange to assume a boundedness condition in the pres-
ence of compactness. Since ρ is allowed to take the value +∞, a ρ-compact set may
fail to be bounded. In fact, let us ûx x ∈ Eρ such that ρ(x) = +∞ and put K = {0, x}.
hen K is ρ-compact because given a net (x j) j∈J in K, we have:

Case 1 here is jo ∈ J such that x j = x for all j ≥ jo or x j = 0 for all j ≥ jo . In both
cases the net (x j) j∈J is ρ-convergent.

Case 2 For all j ∈ J, there exist j′ ≥ j and j
′′ ≥ j′ with x j′ = x and x

j
′′ = 0. So there

are subnets converging to x and 0. However, K is ρ-unbounded as it has an inûnite
ρ-diameter. Case 2 For all j ∈ J, there exist j′ ≥ j and j

′′ ≥ j′ with x j′ = x and x
j
′′ = 0.

So there are subnets converging to x and 0. However, K is ρ-unbounded as it has an
inûnite ρ-diameter. Cas 2 For all j ∈ J, there exist j′ ≥ j and j

′′ ≥ j′ with x j′ = x and
x

j
′′ = 0. So there are subnets converging to x and 0. However, K is ρ-unbounded as

it has an inûnite ρ-diameter.

he following lemma will be crucial in proving this result.

Lemma 3.3 If the conditions of the theorem are satisûed, then there exist two non-

empty sets Γ∗ ⊂ K∗ ⊂ K with the following properties:

(i) Γ∗ and K∗ are minimal with respect to being non-empty, ρ-compact, and

S-invariant with in addition K∗ being convex.
(ii) s.Γ∗ = Γ∗ for all s ∈ S.

(iii) If δρ(Γ∗) > 0, then there exists a point u∗ ∈ co(Γ∗) (convex hull of Γ∗) such that:

(a) ρ(x − u∗) < δρ(Γ∗) for all x ∈ Γ∗.

(b) sup
x∈Γ∗ ρ(x − u∗) < k

2 .δρ(Γ∗).
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Proof Put

C ∶= {C ∶ C ⊂ K ,C ≠ ∅, ρ-closed, convex, and S-invariant}.
ordered by reverse inclusion (i.e., C ≤ C′ ⇔ C′ ⊂ C). hen C is inductive. In fact,
given a simply ordered sub-family (C j) j∈J of elements of C , then for all j1 , . . . , jn ∈ J,
we have C ∋ ⋂n

i=1 C j i = C jq for some q. So C has the ûnite intersection property.
Now let F(J) denote the set of all non-void ûnite subsets of J ordered by inclusions.
Using the axiom of choice, consider a family (xσ)σ∈F(J) of elements of K such that
xσ ∈ ⋂ j∈σ C j for all σ . By ρ-compactness, we can assume without loss of generality
(by taking a ρ-convergent subnet if necessary) that xσ → x for some x ∈ K. We assert
that x ∈ ⋂ j C j . Indeed, if it is not the case, then let x ∉ C j for some j. Since for all
σ ≥ { j}, we have xσ ∈ C j and C j is ρ-closed, by passing to the limit it follows that
x ∈ C j , which is absurd. herefore, ⋂ j C j ∈ C is an upper bound in C for the C′

j
s,

which shows that our claim is true. Hence by Zorn’s lemma,C has amaximal element
which we denote by K∗. For the existence of Γ∗ we shall consider the following cases:

● Case 1: LUC(S) has a le� invariant mean. Let

τρ ∶= {F c ∩ K∗; F ⊂ K and F being ρ-closed}
with F c standing for the complement of F in K. hen it is readily checked that τρ

deûnes a topology on K∗. Note that if F1 , . . . , Fn are non-void ρ-closed subsets of
K, then their union is also ρ-closed. In fact, let F = ⋃ j F j and xt → x be a conver-
gent net of points of F. By contradiction, let us assume that x ∉ F. hen we have
d(x , F j) = inf y∈F j ρ(x − y) > 0 for all j = 1, . . . , n, because by ρ-compactness of each
F j , we have d(x , F j) = ρ(x − a j) > 0 (for some a j ∈ F j). Let 0 < є < min j d(x , F j)
and an index t such that ρ(x − xt) < є. hen the element xt does not lie in F which
is impossible. herefore, τρ is closed under ûnite intersections, and since arbitrary
intersections of ρ-closed sets are ρ-closed, τρ is also closed under arbitrary unions.
Hence, τρ is a well deûned topology on K∗. Furthermore, as readily checked a net
in K∗ is τρ-convergent whenever it is ρ-convergent. Hence (K∗ , τρ) is a compact
Hausdorò space (separateness following from the convexity and the ∆2-condition
of ρ). Hence, if we consider the restriction of the action on K∗, together with the joint
continuity assumption it follows (see [21, Lemma 2.2]) that for all f ∈ C(K∗) and
x ∈ K∗, the mapping fx ∶ s ↦ f (s.x) from S into R lies in LUC(S). Hence, together
with the existence of a le� invariant mean on LUC(S), the existence of a non-void
τρ-compact and S-invariant subset ω of K∗ such that s.ω = ω for all s ∈ S follows
from [21, Lemma 2.12]. hen it is obvious to let Γ∗ ∶= ω.

● Case 2: S is le� reversible. Since S × K∗ → K∗ is a jointly continuous action and K∗
is compact, the existence of Γ∗ follows by applying [13, Lemma 3.4].

So it remains to prove (iii). Let us assume that the ρ-diameter of Γ∗ is positive and
ûx k ≥ 2 provided by the ∆2 condition. We will follow an idea of DeMarr in [5] in the
case of Banach spaces. Let us introduce

E ∶= {E ∶ E ⊂ Γ∗ , E ≠ ∅, ρ(x − y) ∈ [2
k
.δρ(Γ∗), δρ(Γ∗)] if x , y ∈ E and x ≠ y}.

We claim that E is non-void. In fact, for all j ∈ N let us pick (x j , y j) ∈ Γ2
∗ such that

δρ(Γ∗) − 1
j
≤ ρ(x j − y j). From the ρ-compactness of Γ∗, let (x jα , y jα) → (x , y) be a
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convergent subnet. hen by lower semi-continuity of ρ it follows that

ρ(x − y) ≤ lim inf
α

ρ(x jα − y jα) ≤ δρ(Γ∗)

by deûnition of E . On the other hand, from the ∆2 condition, it follows for all α that

δρ(Γ∗) −
1
jα

≤ ρ(x jα − y jα)

= ρ(2
x jα − y jα

2
)

= ρ(
2(x jα − y jα − x + y)

2
+ 2(x − y)

2
)

≤ k

2
(ρ(x jα − y jα − x + y) + ρ(x − y)).

herefore, by passing to the limit, it follows δρ(Γ∗) ≤ k

2 .ρ(x − y). Hence, the two
inequalities yield E = {x , y} ∈ E , which shows that our claim is true. Now let us
order E upwards by inclusions (i.e., E ≤ E′⇔ E ⊂ E′). hen it is straightforward that
(E , ≤) is inductive. So let Eo be a maximal element of E . We assert that Eo is a ûnite
set. Indeed, Eo is ρ-totally bounded (i.e., covered by ûnitely many sets with arbitrary
small ρ-diameters), because if not, then there would be є > 0 and a sequence (x j) j of
elements of Eo such that for all j ≥ 2, we have

x j ∉
j−1
⋃
i=1

{x ∶ ρ(x − x i) ≤ є}.

We can assume that x j → x (for some x), because if it does not converge, we take a con-
vergent subnet whose existence is guaranteed by the ρ-compactness of Γ∗. hen for all
i , j ∈ N with i ≠ j, we have by construction x i ≠ x j , and therefore as before, we have

2
k
.δρ(Γ∗) ≤ ρ(x2 j − x2 j+1)

≤ k

2
(ρ(x2 j − x) + ρ(x2 j+1 − x))

ÐÐ→
j→∞

0.

hus, δρ(Γ∗) = 0 which leads to a contradiction. Hence our assertion is right. Now let
r ∶= 1

k
.δρ(Γ∗). By pre-compactness of Eo , let Eo ⊂ ⋃n

i=1{x ∶ ρ(x−u i) < r}with u i ∈ Eo

due to the convexity and the ∆2-condition. hen wemust have Eo = {u1 , . . . , un}, be-
cause if x ∈ Eo and x ≠ u i for all i, then for some j we have ρ(x − u j) < r (since Eo is
covered by ρ-balls centred at those points); then it follows that

2
k
.δρ(Γ∗) ≤ ρ(x − u j) <

1
k
.δρ(Γ∗)

which is absurd. Hence, Eo = {u1 , . . . , un}. Put u∗ = 1
n
∑n

i=1 u i ∈ co(Γ∗). hen given
x ∈ Γ∗ we have two possibilities:

● First possibility: x = u j for some j. hen by convexity we have

ρ(x − u∗) ≤,
1
n

n

∑
i=1

ρ(u i − u j) =
1
n

n

∑
i=1, i≠ j

ρ(u i − u j) ≤
n − 1
n

.δρ(Γ∗) < δρ(Γ∗).
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● Second possibility: x ≠ u j for all j. hen for some j, we have ρ(x − u j) < 2
k
.δρ(Γ∗)

because if not, then we would have Eo < E′o = Eo ∪ {x} ∈ E contradicting the maxi-
mality of Eo . hus,

ρ(x − u∗) ≤
1
n

n

∑
i=1

ρ(x − u j) =
1
n

n

∑
i=1, i≠ j

ρ(x − u i) +
ρ(x − u j)

n
< δρ(Γ∗).

Hence, (a) holds. For (b), let us ûx a sequence (x j) j of elements of Γ∗ such that
sup

x∈Γ∗ ρ(x − u∗) ≤ ρ(x j − u∗) + 1
j
for all j. Due to the compactness of Γ∗, we can

assume (by taking a convergent subnet if necessary) that x j → x (for some x ∈ Γ∗).
hen it follows that sup

x∈Γ∗ ρ(x −u∗) ≤ k

2 (ρ(x − x j)+ ρ(x j −u∗))+ 1
j
for all j. hus,

taking the limit yields sup
x∈Γ∗ ρ(x − u∗) ≤ k

2 .ρ(x − u∗), which shows that (b) holds
as well. Hence, the proof is completed. ∎

We are now ready to proceed to the proof of the theorem.

Proof Let K∗ and let Γ∗ be as in the lemma, and k be the ∆2-condition constant. We
have the following cases:

● Case 1: k > 2. Let us ûx s ∈ S. hen the Lipschitz condition together with (ii) of the
lemma yield:

δρ(Γ∗) = δρ(s.Γ∗) = sup
x ,y∈Γ∗

ρ(s.x − s.y)

≤ 2
k
. sup
x ,y∈Γ∗

ρ(x − y)

= 2
k
.δρ(Γ∗).

Consequently, δρ(Γ∗) = 0, and it follows that Γ∗ = {x∗} for some x∗ ∈ K that is for
sure a common ûxed point for S, since Γ∗ is S-invariant. Note that, when k > 2, due
to the Lipschitz condition there is a unique common ûxed point.

● Case 2: k = 2. If δρ(Γ∗) = 0, then we are done. Otherwise, by (b), we have

sup
x∈Γ∗

ρ(x − u∗) < δρ(Γ∗) for some u∗ ∈ co(Γ∗).(3.1)

Let ρ ∶= sup
x∈Γ∗ ρ(x − u∗). hen as readily checked

K
∗
∗ ∶= ⋂

γ∈Γ∗
{x ∈ K∗ ∶ ρ(x − γ) ≤ ρ}

sits in C (see beginning of proof Lemma 3.3). hus, by minimality, we have K∗
∗ = K∗.

But by (3.1), there are some points γ, γ′ ∈ Γ∗ such that ρ(γ − γ′) > ρ, which implies
that γ′ ∉ {x ∈ K∗ ∶ ρ(x − γ) ≤ ρ} ⊃ Γ∗ which is absurd. Hence, if Case 2 happens,
then we must have δρ(Γ∗) = 0 and therefore Γ∗ contains only a single point, which is
certainly a common ûxed point for S. ∎

From the proof of Lemma 3.3, we derive the following useful proposition.
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Proposition 3.4 Let Eρ be a modular space induced by a lower semi-continuous

convex modular function ρ satisfying the ∆2-condition with constant k. hen for all

ρ-compact subset K of E containing at least two points, there exists a point u∗ in the

convex hull of K such that:

(i) ρ(x − u∗) < δρ(K) for all x ∈ K;

(ii) sup
x∈K ρ(x − u∗) < k

2 .δρ(K).

Remark 3.5 Proposition 3.4 generalizes [5, Lemma 1] to the setting of modular
spaces.

Our main theorem yields the following known classical results.

Corollary 3.6 ((DeMarr’s theorem) [5, Main theorem]) Let B be a Banach space

and let X be a nonempty compact convex subset of B. If F is a non-empty commutative

family of nonexpansive mappings of X into itself, then the family F has a common ûxed

point in X.

Proof In fact, since a commutative family generates a commutative semigroup that
is well known to be le� amenable, DeMarr’s result follows from heorem 3.1 upon
letting E = B, ρ = ∥ ⋅ ∥, and k = 2. ∎

In connection, Takahashi has proved that DeMarr’s theorem remains true if F is re-
placed with a le� amenable (discrete) semigroup (i.e., a semigroup S such that ℓ∞(S)
has a le� invariant mean). hen heorem 3.1 yields.

Corollary 3.7 (Takahashi’s theorem [22,Main theorem]) Let K be a non-empty com-

pact convex subset of a Banach space B and S be an amenable semigroup of nonexpansive

mappings of K into K.hen there exists an element z in K such that s.z = z for each s in S.

Mitchell improved Takahashi’s result by weakening the condition “F be a com-
muting family” to “F being a le� reversible semigroup”, and established the following
corollary.

Corollary 3.8 (Mitchell’s theorem [16,Main theorem]) Let S be a le� reversible semi-

group of nonexpansive mappings on a non-empty compact convex subset K of a Banach

space B. hen there exists an element z in K such that s.z = z for all s ∈ S.

If we let FPT stand for an abbreviation of “Fixed Point heorem”, then in summary
the following implications hold:

heorem 3.1Ô⇒Mitchell FPTÔ⇒ Takahashi FPTÔ⇒ DeMarr FPT.

Next we will show that heorem 3.1 remains true if the action is assumed to be sepa-
rately continuous, and the amenability condition is imposed on some (suitable)
smaller space sitting inside LUC(S). We ûrst let C(Γ) denote the Banach algebra of
all τρ-continuous real-valued functions on Γ. Or equivalently, the collection of those
f ∶ Γ → R such that: whenever ρ(xα − x) → 0, f (xα) → f (x). he topology τρ is as
in the proof of Lemma 3.3. We have the following theorem.
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heorem 3.9 Let S be a semitopological semigroup. If AP(S) has a le� invariant

mean, then for all k ≥ 2, the semigroup S possesses the following ûxed point property:

F(k)∶ S × K → K is a separately continuous
2
k
-Lipschitzian action on a non-empty

ρ-compact convex ρ-bounded subset K of a modular space Eρ , induced by a lower semi-

continuous convex modular ρ satisfying the ∆2-condition with constant k; then there

exists in K a common ûxed point for S.

Conversely, if S has ûxed point property F(2), then AP(S) possesses a le� invariant

mean.

Remark 3.10 In the theorem we have dropped the le� reversibility condition as-
sumed in heorem 3.1, because as shown in [12], if a semitopological semigroup S is
le� reversible, then AP(S) has a le� invariant mean.

he following lemma will be needed for the proof of this result.

Lemma 3.11 For any non-empty S-invariant ρ-closed subset Γ of K, the mapping

ϕx ∶ S → R given by ϕx(s) = ϕ(s.x) sits inside AP(S) for all x ∈ Γ, and ϕ ∈ C(Γ).

Proof Let Γ ⊂ K be a non-empty S-invariant ρ-closed subset. Fix x ∈ Γ and ϕ ∈
C(Γ). Consider Ψ ∶ Γ → Cb(S) given by Ψ(y) = ϕy . We assert that Ψ is continuous
when Cb(S) is given the sup norm topology. Let xα → x be a convergent net in Γ.
First we will need to show that ϕ is ρ-uniformly continuous. By contradiction, let us
assume that it is not. hen let δ > 0 and (an)n , (bn)n such that

ρ(an − bn) ≤
1
n

and ∣ϕ(an) − ϕ(bn)∣ ≥ δ for all n ∈ N.

By ρ-compactness of Γ, there is a subnet (nλ)λ such that anλ → a and bnλ → b for
some a, b ∈ Γ. On the one hand, by using the ∆2-condition, we also have anλ − bnλ →
a − b as well, and on the other the diòerence converges to 0; thus, a = b. By pass-
ing to the limit, it follows ∣ϕ(a) − ϕ(b)∣ = 0 ≥ δ, which is impossible. So ϕ must be
ρ-uniformly continuous. Now let us ûx є > 0 and δє > 0 such that ρ(x − y) ≤ δє ⇒
∣ϕ(x)−ϕ(y)∣ ≤ є. Fix αє with the property that α ≥ αє implies ρ(xα − x) ≤ k

2 δє . hen
given s ∈ S, we have

ρ(s.xα − s.x) ≤ 2
k
ρ(xα − x) ≤ δє Ô⇒ ∣ϕ(s.xα) − ϕ(s.x)∣ ≤ є.

hus, it follows, ∥Ψ(xα) − Ψ(x)∥ = sup
s∈S ∣ϕ(s.xα) − ϕ(s.x)∣ ≤ є whenever α ≥ αє ,

which shows that Ψ is continuous. Next, consider the compact set S .x
τρ the closure

of S .x ∶= {s.x; s ∈ S}. So by continuity, Ψ(S .xτρ) is a norm compact subset of Cb(S).
On the other hand, given s ∈ S it is easy to check that we have rsϕx = Ψ(s.x); where
rs denotes the right translate by s deûned by rs f (t) = f (ts). It is a known fact (see
[3] for details) that ϕx ∈ AP(S) ⇔ R(ϕx) = {rsϕx ; s ∈ S} is relatively compact in
the sup norm topology of Cb(S). As R(ϕx) ⊂ Ψ(S .xτρ) it then follows that R(ϕx) is
relatively norm compact that means that ϕx lies in AP(S). ∎

Now we can proceed to the proof of the theorem.
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Proof he necessary condition follows using method of heorem 3.1 with in
Lemma 3.3 the space AP(S) substituted for LUC(S), which can be done by virtue
of Lemma 3.11. For the suõciency condition, let us assume that S has ûxed point
property F(2). By virtue of [6], it is enough to show that for all f ∈ AP(S) we have
co

p(R( f )) (closure of the convex envelope of the right orbitR( f ) = {rs f ; s ∈ S} of f
in the topology of pointwise convergence) contains a constant function. So let
f ∈ AP(S) be ûxed. hen R( f ) is relatively norm compact in Cb(S); see [3]. here-
fore, K ∶= co∥ ⋅ ∥(R( f )) is norm compact too. Let S act on K through s.g = rs g for all
s ∈ S, and g ∈ K. By letting E = Cb(S), ρ = ∥ ⋅ ∥, and k = 2, then all the conditions
in F(2) are met. herefore, by assumption there is g ∈ K such that s.g = g for all
s ∈ S. Without loss of generality we may assume that S has a unit say e, because if
it is not the case, we adjoin a unit as in the proof of [21, heorem 2.15]. herefore,
we have g(s) = rs g(e) = g(e) for all s ∈ S. Hence the constant c = g(e) ≡ g lies in
K ⊂ cop(R( f )). Hence by arbitrariness of f it follows that AP(S) has a le� invariant
mean. ∎

Now our next purpose is to provide a linear version of heorem 3.1 characteriz-
ing le� amenability property of the space LUC(S) on a semitopological semigroup S

extending [15, heorem 1] to more general spaces introduced here. We ûrst need to
introduce the following deûnitions.

Let E be a vector space and let ρ = {ρ i ; i ∈ I} be a collection of semi-modular func-
tions on E. Let Eρ i be the semi-modular space generated by ρ i . he semi-modular
space Eρ associated with ρ is deûned by:

Eρ ∶= ⋂
i∈I
Eρ i .

Eρ is said to be separated, if it has the property: for all x ∈ Eρ

ρ i(x) = 0 for all i ∈ I implies x = 0.

We will say that a property (P) holds for ρ, if it does for each ρ i , e.g., a net (xα)α is
said to be ρ-convergent, if and only if ρ i(xα − x) → 0 for all i ∈ I. If K ⊂ Eρ is a
non-empty convex subset of Eρ , then a mapping f ∶ K → (R or K) is said to be aõne,
if f (tx + (1 − t)y) = t f (x) + (1 − t) f (y) for all x , y ∈ K and t ∈ [0, 1]. An action
S × K → K is said to be an aõne action if for all s ∈ S, x ↦ s.x from K into itself is an
aõne mapping. Put

A(K) ∶= { f ∶ K → R such that f is aõne and ρ-continuous}.
IfK is ρ-compact and convex, thenwewill say thatK is ρ-admissible ifA(K) separates
points of K (i.e., whenever x , y ∈ K and f (x) = f (y) for all f ∈ A(K), then x = y).

Semi-modular spaces include trivially modular spaces, and the class of all locally
convex spaces.

We are now ready to state our next result.

heorem 3.12 Let S be a semitopological semigroup. henLUC(S) has a le� invariant

mean if and only if S has the following ûxed point property:

(F3) Whenever . ∶ S ×K → K , (s, x) ↦ s.x is a jointly continuous aõne action on a

non-empty ρ-admissible ρ-compact convex subset K of a semi-modular space Eρ , then

there exists in K a common ûxed point for S.
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Proof Let us assume that LUC(S) has a le� invariant mean m. Let τρ be as in the
proof of heorem 3.1. As we have already shown, τρ deûnes a compact Hausdorò
topology on K with the property that a net (xα)α is ρ-convergent if and only if it is
with respect to τρ . It is known (see [21]) that if LUC(S) has a le� invariant mean, then
there exists Ψ ∈ co(βK)

τw∗
such that Ψ( f ○ s) = Ψ( f ) for all f ∈ C(K) and s ∈ S;

where co(βK) denotes the convex hull of the Stone-Čech compactiûcation βK of K,
and the closure is taken in the weak* topology of C(K)∗. Let (Ψα)α∈J be a a net in
co(βK ≃ K) converging weak* to Ψ. Set

Ψα =
nα

∑
i=1

t
α
i δxαi

, xαi ∈ K , tαi ≥ 0 with ∑
i

t
α
i = 1.

For all α ∈ J deûne xα ∶= ∑nα
i=1 t

α
i x

α
i ∈ K. By taking a convergent subnet if necessary,

we may assume that xα → x for some x ∈ K by compactness of K. Let f ∈ A(K) and
s ∈ S be ûxed. Let σs denote the mapping x ↦ s.x. hen f ○ σs ∈ A(K) and

f (s.x) = lim
α

( f ○ σs)(
nα

∑
i=1

t
α
i x

α
i ) = lim

α

nα

∑
i=1

t
α
i ( f ○ σs)(xαi )

= lim
α

Ψα( f ○ σs) = Ψ( f ○ σs) = Ψ( f ) = lim
α

Ψα( f )

= lim
α

nα

∑
i=1

t
α
i f (xαi ) = lim

α
f (

nα

∑
i=1

t
α
i x

α
i )

= lim
α
f (xα) = f (x).

hus, f (s.x) = f (x) for all f ∈ A(K) and s ∈ S. So by separateness, it follows that
s.x = x for all s ∈ S; which means that x is a common ûxed point for S.
For the converse, let us assume that S possesses the ûxed point property (F3). Let

E=LUC(S)∗. For all f ∈ LUC(S), let us assign the modular function (that is actually
a semi-norm) ρ f ∶ E → [0,∞) deûned by ρ f (ϕ) ∶= ∣ϕ( f )∣; and put

ρ = {ρ f ; f ∈ LUC(S)}.

Put K= collection of all means on LUC(S), and deûne a jointly continuous action on
K by letting s.m( f ) = m(ℓs f ) for all s ∈ S, and m ∈ K. he ρ-admissibility condition
of K is automatic, since {ev f ; f ∈ LUC(S)} ⊂ A(K) separates points of Eρ = E,
because Eρ f = E for all f ∈ LUC(S). Hence, by assumption, there exists m ∈ K such
that s.m = m for all s ∈ S, which implies that m is a le� invariant mean. ∎

Corollary 3.13 ([15, heorem 1]) Let S be a semitopological semigroup. hen the

following properties are equivalent:

(P2) LUC(S) has a le� invariant mean.

(F2) Whenever S acts aõnely on a compact convex subset Y of a locally convex linear

topological space, where the map S×Y → Y is jointly continuous, then Y contains

a common ûxed point of S.

Proof Indeed, if E is a separated locally convex space with family Q of semi-norms
deûning its topology, then EQ = E. he corollary follows from heorem 3.12 by
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taking ρ = Q. As the continuous dual E∗ separates points, each non-empty compact
convex set in Eρ = E is ρ-admissible. ∎

In the previous theorem if we let (F4) denote the ûxed point property obtained
from (F3) with the phrase “separately continuous and equicontinuous” substituted
for “jointly continuous”, then while proving the necessary condition, one can only
assume the existence of a le� invariant mean on AP(S) instead of on the whole of
LUC(S), and in fact, (F4) turns out to imply le� amenability of AP(S). We recall that
an action S × K → K is termed ρ-equicontinuous if, for all є > 0, there corresponds
δє > 0 such that for every pair x , y of points of K, we have

ρ(x − y) ≤ δє Ô⇒ sup
s∈S

ρ(s.x − s.y) ≤ є.

More generally, if K is a subset of a semi-modular space Eρ induced by a family ρ =
{ρ i ; i ∈ J} ofmodular functions on E, an action of S on K is termed ρ-equicontinuous
if, it is ρ i-equicontinuous for all i ∈ J.

hen we have the following result.

heorem 3.14 Let S be a semitopological semigroup. hen AP(S) has a le� invariant

mean if and only if S has the following property.

(F4) Whenever . ∶ S×K → K , (s, x) ↦ s.x is a separately continuous ρ-equicontinuous

aõne action on anon-empty ρ-admissible ρ-compact convex subset K of a semi-modular

space Eρ , there is a common ûxed point for S in K.

Remark 3.15 We point out that Lemma 3.11 is still valid if the Lipschitz condition
of the action is replaced by a ρ-equicontinuity.

Proof of Theorem 3.14 henecessary condition follows from a similar argument as
in the proof of heorem 3.12 by taking into account of the previous remark. ∎

Open Problems

he ∆2-condition has played a crucial role while proving heorem 3.1 and 3.9. So it is
natural to raise.

Problem 1 Is the ∆2-condition removable in either one of the theorems?

It would be interesting to have ûxed point properties dealing with weak modular
topologies, but it is very diõcult to determine the conjugate space associated with a
given modular space. We do not even know if such a space exists.

Problem 2 Does any modular vector space have a modular conjugate (i.e., a sub-
space of the algebraic dual consisted by linear forms ϕ such that ϕ(xα) → 0 whenever
ρ(xα) → 0)?

If the answer to this question is positive, then we will let E∗ρ denote the continuous
dual of a modular space Eρ . hen we can ask the following questions.
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Problem 3 Is heorem 3.1 still valid if K is compact with respect to the weak topol-
ogy τ = σ(Eρ , E∗ρ )?

Problem 4 Doesheorem 3.12 still hold if we remove the ρ-admissibility condition?
In other words, is this theorem still true for any non-empty compact convex set?

Acknowledgement he author would like to thank the referee for his/her very care-
ful reading of the manuscript with useful comments and suggestions.

References

[1] A. A. N. Abdou and M. A. Khamsi, Fixed point theorems in modular spaces. J. Nonlinear Sci. Appl.
10(2017), 4046–4057. https://doi.org/10.22436/jnsa.010.08.01

[2] D. Alspach, A ûxed point free nonexpansive map. Proc. Amer. Math. Soc. 82(1981), 423–424.
https://doi.org/10.2307/2043954

[3] J. F. Berglund, H. D. Junghenn, and P. Milnes, Analysis on semigroups. Function spaces,

compactiûcations, representations. Canadian Mathematical Society Series of Monographs and
Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1989.

[4] F. E. Browder, Nonexpansive nonlinear operators in a Banach space. Proc. Nat Acad. Sci. USA
54(1966), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041

[5] R. DeMarr, Common ûxed points for commuting contraction mappings. Paciûc J. Math. 13(1963),
1139–1141.

[6] E. Granirer and A. T. Lau, Invariant means on locally compact groups. Illinois J. Math. 15(1971),
249–257.

[7] E. Hewitt, On two problems of Urysohn. Ann. of Math. 47(1946), 503–509.
https://doi.org/10.2307/1969089

[8] M. A. Khamsi and W. M. Kozlowski, Fixed point theory in modular function spaces.
Birkhäuser/Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-14051-3

[9] W. A. Kirk, A ûxed point theorem for mappings which do not increase distances. Amer. Math.
Monthly 72(1965), 1004–1006. https://doi.org/10.2307/2313345

[10] W. M. Kozlowski,Modular function spaces. Monographs and Textbooks in Pure and Applied
Mathematics, 122, Marcel Dekker, Inc, New York, 1988.

[11] P. Kumam, Fixed point theorems for nonexpansive mappings in modular spaces. Arch. Math.
40(2004), 345–353.

[12] A. T.-M. Lau, Invariant means on almost periodic functions and ûxed point properties. Rocky
Mountain J. Math. 3(1973), 69–76. https://doi.org/10.1216/RMJ-1973-3-1-69

[13] A. T.-M. Lau and Y. Zhang, Fixed point properties of semigroups of non-expansive mappings.
J. Funct. Anal. 254(2008), 2534–2554. https://doi.org/10.1016/j.jfa.2008.02.006

[14] A. T.-M. Lau and Y. Zhang, Fixed point properties for semigroups of nonlinear mappings and

amenability. J. Funct. Anal. 263(2012), 2949–2977. https://doi.org/10.1016/j.jfa.2012.07.013
[15] T. Mitchell, Topological semigroups and ûxed points. Illinois J. Math. 14(1970), 630–641.
[16] T. Mitchell, Fixed point of reversible semigroups of non-expansive mappings. Kodai Math. Sem. Rep.

22(1970), 322–323.
[17] J. Musielak, Orlicz spaces and modular spaces. Lecture notes in Mathematics, 1034, Springer-Verlag,

Berlin, 1983. https://doi.org/10.1007/BFb0072210
[18] H. Nakano,Modular semi-ordered spaces. Maruzen, Tokyo, 1950.
[19] W. Orlicz, Über konjugierte exponentenfolgen. Studia Math. 3(1931), 200–211.
[20] K. Salame, Amenable semigroups of nonlinear operators in uniformly convex Banach spaces. Bull.

Aust. Math. Soc. 99(2019), 284–292. https://doi.org/10.1017/S0004972718001077
[21] K. Salame, A characterization of σ-extremely amenable semitopological semigroups. J. Nonlinear

Convex Anal. 19(2018), 1443–1458.
[22] W. Takahashi, Fixed point theorem for amenable semigroups of nonexpansive mappings. Kodai Math.

Rep. 21(1969), 383–386.

Diourbel, Senegal

e-mail : khadime.salame1313@gmail.com

K. Salame704

https://doi.org/10.4153/S000843951900078X Published online by Cambridge University Press

https://doi.org/10.22436/jnsa.010.08.01
https://doi.org/10.2307/2043954
https://doi.org/10.2307/2043954
https://doi.org/10.1073/pnas.54.4.1041
https://doi.org/10.2307/1969089
https://doi.org/10.2307/1969089
https://doi.org/10.1007/978-3-319-14051-3
https://doi.org/10.2307/2313345
https://doi.org/10.1216/RMJ-1973-3-1-69
https://doi.org/10.1016/j.jfa.2008.02.006
https://doi.org/10.1016/j.jfa.2012.07.013
https://doi.org/10.1007/BFb0072210
https://doi.org/10.1017/S0004972718001077
mailto:khadime.salame1313@gmail.com
https://doi.org/10.4153/S000843951900078X



