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Abstract

An increasing number of disaster relief programs rely on weather data to trigger automated
payouts. However, several factors can meaningfully affect payouts, including the choice of data
set, its spatial resolution, and the historical reference period used to determine abnormal
conditions to be indemnified. We investigate these issues for a subsidized rainfall-based
insurance program in the U.S. using data averaged over 0.25° x 0.25° grids to trigger payouts.
We simulate the program using 5x finer spatial resolution precipitation estimates and evaluate
differences in payouts from the current design. Our analysis across the highest enrolling state
(Texas) from 2012 to 2023 reveals that payout determinations would differ in 13% of cases,
with payout amounts ranging from 46 to 83% of those calculated using the original data. This
potentially reduces payouts by tens of millions annually, assuming unchanged premiums. We
then discuss likely factors contributing to payout differences, including intra-grid variation,
reference periods used, and varying precipitation distributions. Finally, to address basis risk
concerns, we propose ways to use these results to identify where mismatches may lurk, in turn
informing strategic sampling campaigns or alternative designs that could enhance the value of
insurance and protect producers from downside risks of poor weather conditions.

Keywords: Agricultural insurance; gridded weather; precipitation; PRF; spatial resolution

JEL codes: Q54; G22; Q18

Introduction

Pasture, rangeland, and forage areas extend over half of the total land area in the United
States and provide a range of ecosystem services, including serving as a feed supply for
livestock (Sanderson et al. 2012; USDA 2017; Teague and Kreuter 2020). However, adverse
weather can reduce the feed supply on these predominantly rainfed lands and harm the
livelihoods of livestock producers (UGA 2017; Volesky 2021). To help protect producers
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against such adverse conditions, the U.S. Department of Agriculture’s Risk Management
Agency (RMA) launched a pilot rainfall index insurance program in 2007 for pasture,
rangeland, and forage areas in the continental U.S. that indemnifies agricultural producers
against the financial risks of the single peril of anomalously low rainfall (Willis 2019). In
contrast to insurance programs that pay producers based on loss claims, the Pasture,
Rangeland, and Forage Rainfall Index (henceforth PRF) program pays producers when
observed rainfall (ie., the index) in the covered region falls below a predetermined
threshold value (the coverage or ‘strike’ level). A key benefit of indexed programs is that
they can provide quick payouts based on an observable and verifiable proxy of poor
conditions. However, a frequently noted challenge with index insurance is the mismatch
between the chosen index and the actual losses experienced by the insured, known as basis
risk (Clarke 2016; Jensen et al. 2016; Jensen et al. 2018; Clement et al. 2018; Yu et al. 2019;
Keller and Saitone 2022). Although basis risk can arise from many factors, this manuscript
focuses on potential design errors associated with spatial basis risk. In short, spatial basis
risk refers to how weather conditions can vary across a given area, meaning a single index
may fail to adequately capture conditions and experiences over a large space (Clement et al.
2018).! For instance, an insurance policy based on regional rainfall levels may obscure sub-
regional variations, leaving some policyholders with losses but without corresponding
payouts. This scenario results in a policyholder being worse off than without insurance — as
the policyholder both pays the premium to purchase insurance but does not receive the
expected cushion against downside conditions. Similarly, payouts can occur among those
who are not suffering losses, rendering the program more expensive overall as well as
potentially affecting perceptions of program performance. However, recent changes in
data availability and innovations in geospatial processing techniques have unlocked the
ability to resolve conditions at a finer scale than before. A key premise of our work is that
employing spatially explicit approaches to evaluate datasets with different abilities to detect
perils - e.g., with varying spatial resolution - offers the potential to help policy designers
identify opportunities to reduce spatial basis risk. In particular, highlighting areas with
greatest uncertainty across measures could help identify areas for strategic ground
sampling or exploring new, more spatially targeted policy design options.

In particular, this paper examines the case of two different precipitation measures — one
at coarser resolution used by the current PRF program and another at finer spatial
resolution increasingly used by other relief programs throughout the world - to quantify
the frequency and magnitude of differences emerging from the use of such newer, more
finely resolved precipitation estimates. We represent such differences spatially as well as
translate them into estimated dollar amounts corresponding to what would have happened
if the finer spatial resolution data were applied to observed enrollment for the years 2012 to
2023 in the state of Texas, intentionally selected as the state with the largest number of
policies and payouts since the program’s launch. Specifically, this work examines three
questions associated with changing input datasets used to estimate what is, nominally, the
same underlying weather condition (i.e., rainfall):

1. How much rainfall variation does finer spatial resolution data reveal in the current
program?

2. How much do payout determinations differ?

3. How would the magnitude of payouts differ?

ISee Norton et al. (2012) for a sample quantification of spatial basis risk across rainfall stations in the U.S.
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Related work and contributions

This work seeks to contribute to three main literatures: (1) the design and implementation
of index-based insurance, particularly in the context of weather and spatial variability,
(2) the quantification and management of basis risk in agricultural index insurance, and
(3) the evaluation and application of alternative indicators for evaluating index insurance
outcomes.

The literature on the design and implementation of index-based insurance has long
emphasized the potential of using environmental indicators to provide a low-cost way to
mitigate production risks, with early conceptual models based on rainfall originating in
India in the early twentieth century (Chakravarti 1920). Most modern applications of
index insurance emerged in the late 1990s, often relying on weather-based indices such as
rainfall or proxies for biomass growth to indemnify producers (Benami et al. 2021). Such
index-based designs are often especially valuable where a claims-based system would be
prohibitively costly to administer, such as in developing country smallholder contexts
(Carter et al. 2017; Benami and Carter 2021) or where coverage extends over large
expanses that make on-site production assessment infeasible, such as the now many
programs focused on grasslands or other livestock feed production areas (Vroege et al.
2019; Benami et al. 2021). In the U.S,, the PRF program exemplifies this latter use case
while also illustrating challenges in managing spatial variability. For instance, from the
vantage point of service as a former RMA administrator, Willis (2019) highlights
limitations in the station-based design of the PRF: Especially for areas with highly varying
topography - regions in which grazing may be one of the few suitable productive land uses
- he argues that the use of sparse high-altitude weather stations to estimate rainfall results
in insurance coverage gaps and warrants an alternative.

Another related literature on the quantification and management of basis risk has
frequently shown that payouts in index-based insurance programs often do not align well
with realized losses, resulting in substantial residual risks to policyholders. For example, Yu
et al. (2019) compared PRF rainfall index values against local precipitation and historical
forage yield data from three university-managed ranches located across the states of
Nebraska and Kansas, finding that the PRF program would not have paid out 26-43% of
the losses experienced in those example ranches. Similarly, Keller and Saitone (2022)
examine an alternative production estimate in California against the PRF payouts,
concluding that up to 39% of production losses have likely been uncompensated. These
works emphasize the importance of identifying and using indices that capture more of the
spatial and environmental variability producers experience to reduce basis risk.

The potential for changing the choice of rainfall indicators is considered by Coble et al.
(2020), who in an RMA-contracted review of the PRF program, provided some graphical
evidence of differences between the program’s precipitation data and other potential
datasets. However, the authors focused on differences in aggregate across the program and
did not evaluate the spatial element of the program, and, in particular, whether some
differences among datasets reflect systematic or persistent deviations that may warrant
attention. Several other papers on agricultural index insurance consider alternatives to
precipitation-based indices, including drought indices (Williams and Travis 2019),
ensembles of remotely sensed rainfall data (Black et al. 2016), satellite-derived vegetation
metrics (Carter et al. 2017; Benami et al. 2021), and water capacity-based or soil moisture
related measures (Kellner and Musshoff 2011; Vroege et al. 2021) to improve payout
accuracy, reduce basis risk, and enhance insurance design overall.

Our work builds on this literature by focusing on how variations in the input data
source can affect payout decisions over space. Our approach is closely aligned with
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Williams and Travis (2019), who evaluated a series of alternative drought indices against
forty years of production data from the U.S. Forest Service’s Rangeland Vegetation
Simulator (Reeves and Frid 2016) and wheat production estimates from USDA (NASS
2017). However, unlike Williams and Travis (2019), who examined alternative drought
indicators, our analysis emphasizes the potential of an alternative dataset on the same
nominal phenomenon (rainfall) but resolved at a finer spatial scale to identify patterns
suggestive of spatial basis risk or potential misrating that can be improved.

Institutional context

The study focuses on the PRF program administered by the United States Department of
Agriculture’s Risk Management Agency (USDA RMA). Launched in selected areas of the
U.S. in 2007 and expanded across the continental U.S. in 2016 (RMA 2015),? the program
offers insurance coverage to livestock producers and hay growers for forage losses due to
low rainfall.®> This program contrasts with many other Federal Crop Insurance Program
initiatives and programs that rely on (largely self-reported) farm actual production
histories to determine crop losses. The program also differs from the Livestock Forage
Disaster Program that compensates livestock producers for grazing losses due to droughts
as determined by U.S. Drought Monitor assessments. Across the continental U.S., the PRF
program uses an estimate of precipitation across 0.25° grids (i.e., ~28 by 28 km, or ~17 by
17 miles at the equator) in size, which corresponds to the grid size used in the dataset with
one of the longest records of precipitation estimates in the U.S. (described more in the Data
and Methods). Notably, RMA announced they will use a 0.05° grid (i.e., ~5 km x 5 km
grid at the equator) for estimating precipitation in the 2024 expansion of the PRF program
to Hawaii (Risk Management Agency 2024a), further justifying our choice of using an
alternative precipitation dataset at the same 5x finer spatial resolution to compare with the
current program.

Key program and producer policy choices

Producers must make several important decisions — mostly focused on selecting a relevant
time period (“index interval”) and extent of coverage - in order to purchase a PRF policy.
We highlight three of the most relevant decisions below that are also inputs for our
subsequent analyses (elaborated further in each of the relevant methods sections). First,
producers must select at least two non-overlapping index intervals to insure. Each index
interval represents a consecutive two-month period (e.g., January-February or November—
December) over which precipitation estimates are totaled.*

Second, producers must select the rainfall index threshold (the “coverage level”) that
triggers an indemnity payment, which ranges from 70 to 90% relative to the historical
average for that given interval and that particular area (called a “grid”). Third, producers
can also vary the extent of their protection through adjusting a “productivity factor”

’The program excludes grids crossing international borders.

A PRF vegetation index pilot was launched in 2007 but canceled by 2016 due to low enrollment.

“Policyholders must also allocate coverage across their chosen intervals, adhering to a minimum of 10%
and a maximum of 50-70% per interval. Although individual policy allocations are not publicly available,
changes in aggregate selections over time are observable in county-level data and discussed further in
Appendix Section A.5.
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intended to reflect the producer’s perceived monetary value of their insured operation
relative to others in the same county (Campiche and Jones 2017).> Producers can access
historical estimates of payouts in their grid, tailored to different decisions on all of the
above choices, through a USDA decision support tool (USDA 2024).

Methods and data

We analyze two precipitation datasets to examine their differences over space. We then
compare payout determinations and magnitudes across Texas from 2012 to 2023,
emphasizing results in 2021, which was a record year for enrollment and payouts at the
time of this study’s inception.

Study area
Our study area focuses on the U.S. state of Texas. Spanning 695,663 sq. km (268,597 sq.
miles), Texas possesses an economically significant cattle industry that heavily depends on
pasture, forage, and rangelands distributed across the state, with notable concentrations of
beef cattle operations in its northwest and southeast (NASS 2017). The state is also of
interest given its varying climatic conditions that can be broadly divided into arid and
temperate areas. The western third of the state near the Trans-Pecos region exhibits desert-
like, semi-arid conditions with less than 16 inches (~400) of annual average rainfall. In
contrast, the eastern two thirds exhibit more temperate patterns consistent with Humid
Subtropical or Oceanic Koppen-Geiger classifications, with highly variable rainfall
typically totaling at least 30 inches (~750 mm) throughout the year (PRISM 2022). For our
historical baseline analyses, we categorize East and West Texas using Koppen-Geiger
climate classifications (Godfrey and Molnau 1999). Specifically, West Texas is
predominantly classified as arid (“B” group) and East Texas as temperate (“C” group),
based on the majority classifications within a 0.5 x 0.5° grid cell (CPC grid) (Figure A.3).
Corresponding to the large size of the state, economic significance of the livestock
sector, and the wide climatic variation within the state, Texas was the state with the single
highest enrollment (~36% share of all policies, Figure A.1) and most substantial payouts
($1.69 billion) in the PRF program since its inception (Figure A.2). The state also has one
of the highest loss ratios across the country for the PRF program (Coble et al. 2020),
reflecting a high magnitude of payouts relative to premia collected. In this analysis, we
investigate and simulate payout determinations across all 254 Texas counties from 2012 to
2023. We then compare how finer and coarser estimates of precipitation compare across
space and examine the differences in the determinations and the magnitude of payouts
that would arise using each resolution across Texas, with a focus on 2021. Figure 1 shows a
summary of the key questions posed, methods employed, and data used in this study,
which we then elaborate in the subsequent text.

Data

To examine differences between the current precipitation estimates and more finely
resolved ones, we primarily use three sources of data.

These values range from 60% to 150% of the county base value for hazing or grazing operations, as
established by the RMA. Higher (lower) productivity factors increase (decrease) premia.
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Figure 1. Overview of primary research questions, methods, and data sources for analysis.

Current precipitation data: NOAA CPC
The PRF program uses the Climate Prediction Center’s Unified Gauge-Based Analysis of
Global Precipitation from the National Oceanic and Atmospheric Administration (2023)
to compute the rainfall index that, in turn, determines whether payouts (indemnities) are
due. The gridded CPC data has a spatial resolution of 0.25° latitude by 0.25° longitude
(~17 x 17 miles/28 x 28 km at the equator), and the rainfall index represents observed
rainfall within a grid-interval divided by its historical average from 1948 until two years
prior to the policy year (RMA 2022).

Alternatively stated, the rainfall index is the ratio of the observed rainfall (x) in interval-
year (i, t) to the mean of the rainfall (%) in the same interval (i) across all years (t) since the
baseline start until two years before the policy year:

Xt

Index(x,-_’t) =

Xit—2

1

We extract CPC precipitation data for 1948-2023 using the rnoaa package (rOpenSci
2025). To align with the first year of data availability for our alternative dataset, we use
1981 as the start of the historical reference period — henceforth, the baseline start year - in
our main analysis.®

Alternative precipitation data: CHIRPS

The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) dataset,
developed and maintained by The Climate Hazards Group at the University of California,
Santa Barbara, provides an alternative gridded rainfall estimate. CHIRPS combines
satellite imagery and ground station observations to provide daily rainfall and snowfall

Using a CPC baseline start of 1948 aligns with current practices but has limited impact on our results
(Appendix Section C) while introducing the notable drawback of one more source of variation when
comparing to CHIRPS.
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Table 1. County size and number of grid cells per county.

Characteristic Value
Number of counties 254
Mean county size (km 2) 2,742
Mean grids per county (CPC) 10
Mean grids per county (CHIRPS) 128

estimates across the globe at a 0.05° (~3 x 3 miles/5 x 5 km at the equator) spatial
resolution. CHIRPS data span 1981 to the present, and the methods for their collection are
elaborated in Funk et al. (2015). Briefly, in contrast to the CPC dataset, which focuses on
interpolating data from thousands of stations throughout the U.S., CHIRPS focuses on
estimates of cold cloud duration extracted from geostationary weather satellites to generate
precipitation estimates that are then calibrated using station records. We extract CHIRPS
data over the relevant time frame from Google Earth Engine (Gorelick et al. 2017) and use
the same methods we did for CPC to calculate variation in rainfall relative to historical
averages, with precipitation baselines starting in 1981 (Equation 1).

County-level data

Using the prior two datasets allows us to evaluate differences in precipitation estimates and
payout determinations. To go one step further and generate payout estimates, we draw
upon two USDA Risk Management Agency datasets. First, the USDA RMA Summary of
Business data provide information on the number of policies sold, indemnities, acreage,
premia, and subsidies on a per county basis, among other characteristics relevant for
evaluating the magnitude of payouts for PRF. We use the Summary of Business data files
disaggregated to the state-county-crop-coverage level-type-practice-unit structure so as to
distinguish between different use types (e.g., haying/grazing, irrigated or not (Figure A.7)).
In addition to the Summary of Business data, we also extract parameters needed to
calculate payout magnitudes - e.g., county productivity (base) values — from the Pasture,
Rangeland, Forage Decision Support Tool API (USDA 2024).” We associate all of these
data to vector files that outline the borders of Texas counties, downloaded from the Texas
Department of Transportation (2023). To conduct our analysis, we map county-level data
from USDA Summary of Business (RMA 2024b) to intersecting CPC or CHIRPS grids,
procedures that are detailed in Section 3.3 and for which the resulting descriptive results
are in Table 1.

Evaluation approaches

This section elaborates on the approaches used to evaluate the research questions outlined
in the Introduction, reflected in the Summary Figure 1, and discussed sequentially in the
Results.

"The data from this support tool were current as of 2023.
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Intra-grid variation in estimated rainfall
As noted in the Data section, the PRF program uses CPC gridded precipitation data
(0.25° x 0.25°) to determine payouts. We seek to compare payout estimates from the
CPC data set with estimates derived from the more finely resolved CHIRPS dataset
(0.05 ° x 0.05°). Using this more finely resolved data offers the advantage of being able
to examine how much variation exists within a given CPC grid, which starts to address
the concerns of spatial basis risk implied by Willis (2019).8

To characterize variation exhibited within each NOAA CPC grid used in the PRF
program, we first partition each CPC grid into 25 smaller grids equivalent in size to each
constituent CHIRPS observation. For each index interval between January 2012 and
December 2023, we calculate the total rainfall measured in each CHIRPS grid and estimate
the coefficient of variation (CV) across the 25 CHIRPS grids contained within a given CPC
grid in a given interval and year. These calculations produce maps showing intra-grid
(CPC) variation for each year and interval, which we then average over all years to identify
which areas exhibit more consistent patterns of intra-grid variation and during which
intervals.

The CV is calculated as the ratio of the standard deviation (o) to the mean (i), or
CV = £. In this context, using the CV is more appropriate than the standard deviation

alone because it normalizes by the time series mean, shedding insight into relative
variability. The emphasis on place-specific relative variability aligns well with the goals and
payout construction of PRF, which compare current index values against local
historical means.

Evaluating differences in payout determinations

To evaluate the implications of using more finely resolved precipitation estimates, we first
examine how frequently the intra-grid variation we observe results in changes to payout
determinations. Calculating this value requires selecting coverage levels to use as the
threshold for triggering payouts. We start our analysis by using the most typical coverage
level of 90% (Figure A.6) — reflecting that 90% of the historical average rainfall in a given
grid-interval would trigger a payout — and evaluate when a CHIRPS-based grid would
trigger payouts at that coverage level compared against when the corresponding CPC-
based grid would. There are 27,705 CHIRPS grids in our analysis, since typically twenty-
five CHIRPS observations fall within any given CPC grid.’ The total number of
observations we evaluate in our comparison is 304,755, which corresponds to 27,705
CHIRPS-sized grids across the 11 intervals in 2021.

Translating differences in payout determinations to magnitudes, in dollars

We also estimate the magnitude of payouts derived from using either precipitation
datasets, which first requires a few assumptions for tractability.

First, in contrast to our prior assessments, our unit of analysis now shifts from the grid
level to the county level, as counties are the primitive unit recorded in the USDA Summary
of Business data. Making this shift requires making an assumption about how many
policies reported within each (irregularly shaped) county are associated with each

8The two datasets differ in spatial resolution but also in their methods for estimating rainfall and their
historical reference period. We examine these differences further in Supplemental Sections A.3 and C.
Except for CPC grids overlapping water bodies, which have a fewer number of CHIRPS observations.
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uniformly spaced grid. To do this, we calculate how much of a county’s total area intersects
with a given grid, and we then weight the value observed in the given grid correspondingly.
For example, Rockwall County, Texas, spans two NOAA CPC grids that account for 8%
and 92% of the county area, respectively. Therefore, we weight the observations in the
corresponding CPC grid with 0.08 and 0.92 to generate an overall Rockwall County
estimate. We calculate CHIRPS weights similarly.'?

We also use county-type-practice-unit reports for the PRF program (RMA 2024b) to
determine the distribution of coverage levels and interval selections we apply in our
analysis. We use the expected production value for the county (“county base value”), and
we assume that the productivity factor (elaborated in the discussion of key program and
producer policy choices) matches the standard county base value, i.e., equals one. We also
assume the producer share is one, corresponding to full insurable interest in the insured
crop. Removing the productivity factor and producer share from the equation for
simplicity - since they are set to one — we can thus estimate the protection for each county
as:

Protection = Acres - County Base Value - Coverage Level Allocation - Interval Allocation
)

Obtaining county protection values (the insured coverage amount) allows us to
calculate the magnitude of payouts by multiplying the protection values by the payment
calculation factor (PCF). The PCF represents the percentage of “loss” experienced in a
given grid-interval relative to its historical normal and the producer-selected coverage
level, i.e.,

PCF = (Coverage Level — Index) /Coverage Level (3)

To examine the importance of the choice of precipitation data set, the main results from
our analysis stem from swapping out the rainfall index. All other factors, including the
reported county-level policies and acreage, remain the same between our simulations.
Although PRF covers multiple intended use types, our analysis focuses on the two use
types of grazing and haying (non-irrigated, non-organic) that account for 98-99% of
liabilities since the program’s start (Figure A.7).

To examine the robustness of our payout estimates to plausible alternative assumptions,
we perform a series of sensitivity analyses that include evaluating alternative baseline start
years for CPC (1948 vs. 1981), using the amount of area in relevant land cover types to
apportion county-level data across grids, aggregating (“coarsening”) the CHIRPS
resolution to the CPC resolution (both with the 1981 baseline), and generating our
aggregate comparisons over multiple years. These results are outlined separately in the
Sensitivity Analyses in Appendix Section C.

Results

Opverall, our analyses reveal notable intra-grid variation that translates to differences in
payout determinations and magnitudes on the order of ~$50M for the year 2021 alone,
with payouts using CHIRPS data estimated at 65% of those stemming from using CPC
data and grid sizes.

'We also examine an alternative county-to-grid weighting based on area in PRF-relevant land cover
types, finding minimal impact on our results (Appendix Section A.3).
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Figure 2. Typical yearly intra-grid variation by coefficient of variation (CV) of CHIRPS precipitation
estimates, averaging year-interval CVs across all year-intervals from 2012 to 2023.

Precipitation CV (%)

Intra-grid variation

Our evaluation reveals considerable intra-grid variation of changing intensity across the
state and throughout the year. In particular, the 5th and 95th percentiles of the typical
intra-grid CV range from 3% to 13% (Figure 2). On average, the CV across Texas is highest
during the three intervals from January to April (mean CV ~7.8%). In contrast, May—June
exhibits the lowest average intra-grid variation (~5.7%). The areas and intervals exhibiting
the highest intra-grid variation are not consistent across the state. The southeastern (Gulf)
coast, where more annual rainfall is expected, frequently exhibits some of the most
pronounced intra-grid variation across multiple index intervals, with the highest
variability in the January-February and February-March intervals (mean CV ~9.5%
for grid cells within 100 km of the coast). In West Texas (defined per Figure A.3), the
March-April and April-May intervals have the highest variation (mean CV ~8.7%).

Differences in payout determinations

Our analysis of payout determinations in 2021 uncovers aggregate differences as well as
similarities across the two input data sources. Although the indices agree in nearly 87% of
determinations (calculated as the sum of the total bolded numbers in Table 2 divided by
the total number of observations, assessed at a 90% coverage level), this also implies that in
~13% of cases, CHIRPS and CPC would have made different payout determinations.
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Table 2. Payout determinations for CHIRPS data (CHIRPS)-sized (n=27,705) grids, using calculated
CHIRPS and CPC values across all 11 intervals in 2021, using a 90% coverage level. Bold indicates
agreement.

CPC Triggers CPC - No Trigger
CHIRPS Triggers 147,109 18,814
CHIRPS - No Trigger 21,121 117,711
(A) CHIRPS Only % (B) CPC Only % (C) Total Disagreement %
i e i
. - = .. ' . B : ..
0-10% 20-30% [ 40-50%

10-20% 30-40% . 50-60%

Figure 3. Percent of fine-scale pixels where payouts are triggered solely when using (A) CHIRPS or (B)
CPC input datasets. (C) Areas where payout determinations between CHIRPS and CPC disagree (a grid-
wise sum of panels (A) and (B)). Payout determinations in all subfigures are based on the 90% coverage
level and all 11 intervals in 2021.

In particular, at the 90% coverage level, the CHIRPS index triggers more frequent
payouts in mid-Texas, and the CPC index triggers more frequent payouts in the eastern
and western portions of the state (Figure 3). Overall, however, using CPC data and grids
appears to trigger payouts more frequently than CHIRPS.

Differences in estimated magnitude of payouts

Turning to our evaluation of payouts over time and space, we first compare our estimates
using the CPC rainfall index (1981 start year) against the values recorded by USDA
(Table 3). Our estimates come especially close (90-103%) starting in 2018, following major
updates to county base values.!!

Second, we consider how our two primary datasets vary in the magnitude of total
estimated payouts across all counties in Texas. Using the CPC index amounts to

""'RMA has changed CBVs over time, likely influencing the gaps between our estimates and recorded
USDA payouts. Notably, in 2018, CBVs for grazing and non-irrigated hay changed from state-level to
substate-level pricing across all states (U.S. Department of Agriculture 2017). Other changes have been
noted in other years (e.g., Willis (2021)).
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Table 3. Estimated payouts, in millions of U.S. dollars, using CPC data (1981 baseline start year)
compared with values recorded in USDA’s Summary of Business for the state of Texas (2012-2023).

Year Estimated payouts ($M) Recorded payouts ($M) Estimated/recorded
2012 146.9 104.4 141
2013 104.6 70.3 1.49
2014 139.1 98.9 141
2015 39.7 30.9 1.28
2016 44.8 41.2 1.09
2017 69.0 51.1 1.35
2018 110.7 117.7 0.94
2019 115.4 112.3 1.03
2020 133.1 128.3 1.04
2021 165.5 173.4 0.95
2022 223.9 244.1 0.92
2023 197.8 219.5 0.90

$165.5 million compared to $108.3 million for CHIRPS, yielding a difference of
$57.2 million (Table 4).

These figures can be broken down further to discern where the major differences arise.
First, although both CPC and CHIRPS triggered payouts about as often as one another -
i.e., had similar numbers of payout determinations — in 2021 (Table 2), we consistently see
higher magnitudes of CPC payouts compared with CHIRPS. Second, the ratio of CHIRPS
and CPC payouts diverges most at lower coverage levels, i.e., 70%. Both of these
phenomena are due not only to differences in the determination of payouts but also their
magnitude, as driven by the Payment Calculation Factor (PCF). As described in the
Methods and Data Section, the PCF yields higher payouts for lower rainfall index values,
meaning that a precipitation dataset with more extreme low values will yield higher
payouts, even if both indices determine a payout is warranted. Examining the empirical
cumulative distribution functions for CPC and CHIRPS indices shows that CPC has a
larger share of low index values for almost all intervals from 2021 to 2023 (Figure A.5).!?
Of the $49.5 million higher estimated payments in 2021 for CPC compared to CHIRPS
(grazing only),
a net $47.4 million of payouts occur when both the corresponding CPC and CHIRPS
indices issue payouts (Table 5).

In 2021, the arid western and northern counties in Texas seem to exhibit the largest
differences in payouts (Figure 4). Some of the marked differences between CHIRPS and
CPC payouts in those areas could be due to higher enrollment potential in those large
counties. However, CPC payout magnitudes generally exceed those of CHIRPS. Several
central and southeastern counties show higher CHIRPS payouts, though the differences
there are smaller than the totals in the opposite direction where CPC dominates.'?

2We examine the effects of the index distributions on payouts in greater detail in Appendix Section A.3.
BEstimated payouts for CPC and CHIRPS, i.e., inputs for Figure 4, are shown in Appendix Figure A.11.
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Table 4. CPC and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) estimated
indemnities by coverage level for 2021, in millions of dollars. As the coverage level decreases, the ratio
between CHIRPS and CPC indemnities decreases, reflecting a higher relative gap in payouts. Percentages
may not total 100% due to rounding.

Coverage Level % Enrolled CHIRPS ($M) CPC ($M) CHIRPS/CPC
70% 0.6 $0.4 $0.7 0.54
75% 325 $25.6 $43.6 0.59
80% 2.3 $1.5 $2.6 0.58
85% 41.0 $46.1 $68.8 0.67
90% 23.7 $34.7 $49.8 0.70
Total 100% $108.3 $165.5 0.65

Table 5. Magnitude of estimated indemnities for CPC and CHIRPS indices (grazing only, 2021). Count
refers to unique combinations of county, coverage level, and interval. Totals are the product of these three
values since not every county has policies at all coverage levels and intervals.

Count CHIRPS ($M) CPC ($M) CHIRPS - CPC
Both do not pay 1,983 0 0 0
Both pay, CHIRPS higher 917 16.6 11.1 55
Both pay, CPC higher 2,998 73.9 126.8 —(52.9)
CHIRPS only pays 189 0.2 0.0 0.2
CPC only pays 698 0.0 2.3 -(2.3)
Total 6,785 90.8 140.3 ~(49.5)

Discussion

This study examines how choices about the input data details used for weather-based
insurance affect payout determinations in a large and growing insurance program in the
United States. We find that coverage intervals spanning the first months of the year
(January to April) exhibit the highest intra-grid variation in precipitation (an average
coefficient of variation of ~8%, with a maximum CV of ~36%) across the state of Texas,
though we also find regional differences. The CPC (current, coarser) and CHIRPS
(alternative, finer) rainfall indices yield different payout determinations in 13% of cases for
2021, translating to a simulated gap of over $57 million across the state for that year alone.
These gaps are most pronounced in the western, arid regions of the state (Figure 4).
Although we sought to align our simulations as closely to the USDA payout protocols
as possible, the publicly available information resolved at a county-level (rather than grid-
or policyholder-level) required us to make several assumptions that may affect the
magnitude of this gap. Our simulated payouts using the CPC data range from 83 to 134%
of reported payouts for grazing and non-irrigated, non-organic haying over the years
2012-2023, suggesting that our evaluation approximately but imperfectly replicates the
magnitude of PRF payouts. The residual gap would be more readily closed with access to
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(A) Difference (CHIRPS - CPC) (B) Ratio (CHIRPS/CPC)
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Figure 4. (A) Difference and (B) Ratio of estimated county-level payouts for CHIRPS and CPC in 2021. Orange
(blue) shades indicate higher (lower) CHIRPS payouts relative to CPC.

(anonymized) policyholder-level features that are critical inputs to the indemnity function
but are not publicly available, e.g., areas contained within each grid and policy-level
productivity factors.'* Furthermore, even if using a higher spatial resolution may more
accurately reflect producer conditions compared to coarser estimates, it may not address
other sources of basis risk, such as non-linear relationships between indexed weather
inputs and forage/rangeland conditions. For example, an interval precipitation of two
inches (~51 mm) may have different effects on forage growth if the rainfall occurs at the
beginning, the end, or is evenly spread throughout the two-month interval.

Premium rates would also likely change if using an alternative dataset like CHIRPS,
which in turn would likely affect enrollment decisions. Updating premiums would require
actuarial analysis of the likelihood of payouts and their magnitudes with the new dataset.
More specifically, rating for the PRF program has historically involved evaluating the
empirical burn rate and then bounding the final rates based on comparing estimates
emerging from evaluating lognormal, truncated normal, and a Gram Charlier expansion
distribution (Coble et al. 2020). Though rerating is a logical extension we would
recommend in future work, we do not recalculate premium rates here, as such an analysis
extends beyond the scope of this work that instead emphasizes the importance of
considering the spatial nature of input dataset choice.”” Importantly, recalibrating
premiums using the CHIRPS dataset could induce a number of important behavioral
changes among farmers. If premiums decrease in some regions due to potential improved
spatial accuracy, enrollment could rise. Alternatively, higher premiums in riskier areas

“We estimate productivity factors in Texas for 2021 based on USDA Statement of Business Data in
Appendix Section A.6.

15Another alternative approach in future work could involve matching the coverage levels in the CHIRPS
dataset so that they have same likelihood of occurring as the coverage levels used in the CPC-based RI
system, as done in Williams and Travis (2019).
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might deter participation. If the finer spatial resolution more accurately captures variation
in realized losses, payouts would more closely align with those losses and basis risk would
be reduced. However, poorly calibrated premiums could incentivize strategic enrollment
or suboptimal land use. Farmers may also adjust coverage levels based on affordability or
shift to alternative risk management strategies. Overall, each of these responses could alter
the program’s risk pool, patterns of geographic participation, and overall financial
sustainability, demanding careful evaluation.

Despite these constraints, our analyses contribute to the conversation on program
design by identifying intra-grid variation of a magnitude which raises the specter of spatial
basis risk to be of concern. Spatial basis risk — whether it reflects a positive or negative
mismatch for policyholders - can influence policyholder confidence in the relevance of the
program and its ability to serve as a reliable risk management strategy. Localized losses
within a grid may go uncompensated, for example, if a large share of the rest of the CPC
grid receives higher rainfall, in turn hurting those who are already suffering from adverse
weather. On the flip side, if the CPC grid pays out to producers when they are doing well,
for example, the (subsidized) program then incurs greater costs to the public, and one
could ostensibly use those funds for alternative productive uses. Intra-grid variation can be
used to identify where such misrating may likely occur and thus where targeted ground-
reference data collection could be especially valuable. Such variation may arise from
multiple factors, including topographical features and elevation changes that influence
precipitation patterns. Concerns of this type have been raised by prior administrators of
the RMA program (Williams and Travis 2019) and warrant further attention to enhance
the correspondence between program design and on-the-ground conditions.

Relatedly, crop condition ground-reference data are not available at scale across the
U.S. to confidently state which of these two input sources more closely approximates on-
the-ground experiences than the other. This is, after all, part of the rationale for index
insurance based on proxies — the sheer vastness of the territory in PRF-eligible areas would
require immense resources to develop wall-to-wall coverage from ground sensor networks
or field visits. While finer-resolution data may always seem preferable, this is not always
the case. Models that produce high-resolution estimates of a given on-the-ground
phenomenon can sometimes amplify local inaccuracies. This is particularly true in areas
with diverse topography or where ground observations — such as those used to calibrate
models like CHIRPS - are sparse, unreliable, or unrepresentative. Either way, such an
assessment of the relative merits of each input dataset would require some ground-
reference data that link estimated precipitation values against realized losses. Currently,
such data are scarce and are frequently only possible to obtain in limited circumstances
that may themselves reflect highly controlled environments rather than the “in-the-wild”
conditions covered by programs like PRF.

However, even without such ground-reference data, mapping differences in payout
determinations and magnitudes can help improve the design and performance of index
insurance programs like PRF. For example, areas where indicators generate markedly
different readings can be targeted for strategic sampling for ground-reference data
collection. For example, if two indices produce highly divergent readings, an alternative
design could consider drawing in additional factors such as temperature, soil moisture, or
composite drought indices (explored in other works including Kellner and Musshoff
(2011), Black et al. (2016), Williams and Travis (2019), Vroege et al. (2021), and Tsiboe
et al. (2023)) to assess deviations from typical growing conditions and provide relief.
Generating spatially explicit results can also inform where misrating may be occurring and,
thus, where policyholders and the public alike may benefit from re-evaluating how risk is
identified and priced.
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Overall, this type of analysis contributes to the literature and practice of weather-based
insurance design by dissecting the implications of adopting alternative, finer-grained
spatial resolution data to trigger payouts. Our particular study setting itself is important, as
it reflects a program with increasing enrollment and the potential to address the real
threats of erratic or otherwise anomalous weather patterns. As technological and
geoprocessing capabilities advance to resolve ever more finely-grained details about the
characteristics of the earth, the question of when and how to adopt new input sources that
are more spatially (or, in future work, temporally) resolved poses a practical problem and
opportunity for program administrators to reckon with. To the extent that using more
finely resolved data more closely approximates production losses on the ground, such use
could reduce the extent of spatial basis risk and, more generally, warrants further
examination for its potential to improve outcomes for policyholders and the public alike.
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