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THE CLASS OF KRASNER HYPERFIELDS IS NOT ELEMENTARY

PIOTR KOWALSKI AND PIOTR BŁASZKIEWICZ

Abstract. We show that the class of Krasner hyperfields is not elementary. To show this, we determine
the rational rank of quotients of multiplicative groups in field extensions. We also discuss some related
questions.

§1. Introduction. The notion of a hyperfield (hypercorps) was introduced first
by Marc Krasner in [13] as a tool to study valued fields. In his later paper [14],
he introduced the quotient construction of a hyperfield from a given field and a
subgroup of its multiplicative group (see Theorem 2.2).

The question whether all hyperfields come from this quotient construction has
been an open problem until the example of Massouros, who showed in [18] that it is
not the case. Nevertheless, the class of Krasner hyperfields (i.e., hyperfields obtained
by this quotient construction) contains a lot of known examples of hyperfields.
Among them, there are the hyperfields known as RV-sorts, which were studied in
the model theory of valued fields under the name of leading term structures (see,
e.g., [8, 19]) as a tool to obtain (relative) quantifier elimination for valued fields.
Joseph Flenner proved in [8] that RV-sorts are bi-interpretable with amc-structures
(three sorted structures) introduced by Franz-Viktor Kuhlmann in [15]. Currently,
hyperfields in the form of RV-sorts are one of the main objects used to study model
theory of valued fields (see, e.g., [3, 16, 23, 24]).

In view of the usefulness of Krasner hyperfields for the model theory of valued
fields discussed above, we were motivated to study model-theoretical properties of
Krasner hyperfields themselves. Since the definition of Krasner hyperfields is purely
algebraical, the first question we faced was: “Is the class of Krasner hyperfields
elementary?”. Based on the results of Alain Connes and Caterina Consani from [4],
we show in this article that this class is not elementary.

The article is organized as follows. In Section 2, we collect the necessary facts
and results about hyperfields. In Section 3, we use the notion of a rational rank
to show that the class of Krasner hyperfields is not elementary (Theorem 3.5).
In Section 4, we discuss some model-theoretical problems related with hyperfields
and the algebraic methods used in this article (Question 4.1 and Conjecture 4.2)
and also answer a question of the referee which fits very nicely to the topic of this
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2 PIOTR KOWALSKI AND PIOTR BŁASZKIEWICZ

article (Remark 4.3). In the Appendix, we discuss different approaches to the main
algebraic result (Theorem 3.3) needed for the proof of Theorem 3.5.

§2. Preliminaries. In this section, we introduce the necessary notions we are
going to use throughout this article (or we cite the necessary sources). Further we
will present the results from the paper of Alain Connes and Caterina Consani [4],
where (among other things) they studied connections between Krasner hyperfields
and projective geometries.

Not everything from this section is directly needed for the arguments in Section 3,
e.g., Theorem 2.13, Facts 2.15 and 2.16, or Remark 2.18 will not be used directly.
However, we hope that these extra results provide a greater picture and they also
show how to avoid possible “wrong paths” in the main argument.

2.1. Hyperfields. The notion of a hyperfield, as one could expect, generalises the
one of a field. The twist is that the addition is a multivalued operation (called
hyperaddition), so instead of an element, it returns a nonempty set.

Definition 2.1. A hyperfield is a tuple (H,+, ·, 0, 1), where (H \ {0}, ·, 1) is an
abelian group and

+ : H×H → P(H) \ {∅}

satisfies the following axioms, where x, y, z ∈ H and +, · are naturally extended to
subsets of H:

• x + y = y + x (commutativity),
• (x + y) + z = x + (y + z) (associativity),
• for each x ∈ H, there is a unique – x ∈ H such that 0 ∈ x + (– x) (unique

inverse),
• z ∈ x + y ⇒ y ∈ z + (– x) (reversibility),
• x + 0 = {x} (neutral element),
• z · (x + y) = z · x + z · y (distributivity).

Note that every field can be viewed as a hyperfield in the obvious way. For more
details and preliminary notions concerning hyperfields (such as homomorphisms,
hyperideals, etc.), we direct the reader to [5, 11, 17].

We state now the theorem of Krasner, which was mentioned in the introduction.

Theorem 2.2. Let K be a field and G a subgroup of K×. The quotient K×/G
together with an extra element 0 and +, · defined as:

• aG · bG := abG ,
• aG + bG := {(x + y)G | x ∈ aG, y ∈ bG}

forms a hyperfield, where 1 = G .

Notation 2.3. We will abbreviate (K×/G) ∪ {0} from Theorem 2.2 as K/G .

Definition 2.4. If a hyperfield H is isomorphic to K/G (as in Notation 2.3),
then we call it a Krasner hyperfield.
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THE CLASS OF KRASNER HYPERFIELDS IS NOT ELEMENTARY 3

2.2. Projective geometries and characteristic one hyperfields. The material of this
section comes from [4]. We introduce first the definition of characteristic one
hyperfields.

Definition 2.5. We call a hyperfield (H,+, ·, 0, 1) a characteristic one hyperfield, if

∀x ∈ H x + x = {x, 0}.

Example 2.6.

(1) The simplest characteristic one hyperfield is the Krasner hyperfield K, which
is a two-element hyperfield {0, 1} with the usual multiplication, and the
hyperaddition defined as follows:

0 + 0 = {0}, 0 + 1 = {1}, 1 + 1 = {0, 1}.

(2) Proposition 2.10 below identifies characteristic one hyperfields with certain
projective geometries.

(3) Any commutative group H of order at least 4 expands to the multiplicative
group of a characteristic one hyperfield, where the hyperaddition is “trivial”
(see [4, Proposition 3.6]), that is, for x, y ∈ H ∪ {0}, we have:

x + y =

⎧⎪⎨
⎪⎩

x if y = 0,
{0, x} if y = x,
H \ {x, y} if |{0, x, y}| = 3.

These hyperfields are definable just from their multiplicative structure. Such
a phenomenon is impossible for fields and this is the base of our proof of the
main result of this article (Theorem 3.5).

(4) There is an interesting example (see [4, Example 4.7]) of a characteristic one
hyperfield whose multiplicative group is infinite cyclic and the corresponding
projective geometry is two-dimensional and not Desarguesian (see Defini-
tion 2.9). This example will be used later in Remark 4.3.

Remark 2.7. The name “characteristic one hyperfield” was suggested to us by the
referee as a more suggestive choice comparing to the one we made in the previous
version of this article (“CC-hyperfield”). The name used in [4] is quite technical
(“hyperfield extensions of the Krasner hyperfield K”), however the characteristic
one context is mentioned in the Introduction to [4].

There is the following nice description of Krasner characteristic one hyperfields.

Proposition 2.8 (Proposition 2.7 in [4]). Let K be a field and G be a subgroup of
K×. Assume thatG �= {1}. Then the hyperfieldK/G is a characteristic one hyperfield
if and only if {0} ∪G is a subfield of K.

The class of characteristic one hyperfields is also closely related to projective
geometries in the sense of incidence geometry, we give below the necessary definitions
coming from [2]. For visualisations of these notions, we refer the reader to the
pictures on pages 10 and 11 of [2].

Definition 2.9. Let P be an arbitrary set which will be thought of as the set of
points and L be a fixed subset of P(P) which will be thought of as the set of lines.
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4 PIOTR KOWALSKI AND PIOTR BŁASZKIEWICZ

(1) We call the pair (P,L) a projective geometry if the following holds.
(a) Every line contains at least two points.
(b) Every pair of distinct points a and b is contained in a unique line L(a, b).
(c) For any pairwise distinct points a, b, c, d, e such that

L(a, b) = L(a, c) �= L(a, d ) = L(a, e),

the set L(b, d ) ∩ L(c, e) is non-empty.
(2) The projective geometry (P,L) is called Desarguesian if (we take this definition

verbatim from page 11 of [2]) given ten distinct points,

a, b, c, d, e, f, g, h, i, j,

such that the following trios are collinear on distinct lines:

(a, b, c), (a, d, e), (a,f, g), (b, d, h), (c, e, h), (b,f, z), (c, g, z), (d,f, j), (e, g, j),

it follows that h, i, j are collinear.
(3) The dimension of a projective geometry (P,L) is the smallest number n such

that there is a set p0, ... , pn ∈ P with the property that there is no proper
V ⊂ P containing p0, ... , pn and “closed under lines”, that is for any distinct
x, y ∈ V , we have L(x, y) ⊆ V .

The next result explains the connection between characteristic one hyperfields
and projective geometries.

Proposition 2.10 (Proposition 3.5 in [4]). If H is a characteristic one hyperfield,
then there is a unique projective geometry on H \ {0} such that for distinct x, y ∈
H \ {0}, the unique line through x and y coincides with {x, y} ∪ x + y and for any
a ∈ H \ {0}, the map

H \ {0} � x 
→ a · x ∈ H \ {0}

takes lines to lines.
Conversely, if G is a commutative group with the structure of a projective geometry

such that translations by elements of G preserve lines and each line has at least four
points, then G can be expanded to a hyperfield, where the hyperaddition on G ∪ {0} is
defined by the rule:

x + y := L(x, y) \ {x, y}.

Notation 2.11. For a characteristic one hyperfield H, we will denote the above
projective geometry by PH.

Remark 2.12. If H is a Krasner characteristic one hyperfield, then the
corresponding projective geometry PH is the classical one, which we will see
below. By Proposition 2.8, H = L/K×, where K is a subfield of L. Then we can
view L as a vector space over K and consider the classical projective geometry
associated with this vector space. This geometry happens to be exactly the projective
geometry associated with the characteristic one hyperfieldL/K×. In particular, such
a projective geometry is always Desarguesian (see Definition 2.9(3)) and we have

dim (PH) + 1 = [L : K ].
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THE CLASS OF KRASNER HYPERFIELDS IS NOT ELEMENTARY 5

We finish this section with a result from [4] which will tell us later that we need
to focus on Krasner characteristic one hyperfields of dimension one, where by the
dimension of a characteristic one hyperfield, we always mean the dimension of its
associated projective geometry.

Theorem 2.13 (Theorem 3.8 in [4]). Let H be a characteristic one hyperfield.
Assume that the projective geometry PH is Desarguesian and of dimension at least 2.
Then there exists a unique pair (L,K), where L is a field, and K is its subfield such that

H = L/K×.

2.3. Model theory. In this section, we specify the model-theoretical set-up which
is needed to work with hyperfields. We also show several reduction results.

We start with specifying the first-order language of hyperfields.

Definition 2.14. Let us set the language of hyperfields as the tuple
(⊕,�,�,–1 , 0, 1), where:

• � is a binary function symbol interpreted as a multiplication,
• –1 is unary function symbol interpreted as a multiplicative inverse,
• ⊕ is a ternary relation symbol encoding the hyperaddition (so, in a hyperfield,

we will have: ⊕(x, y, z) if and only if z ∈ x + y),
• � is a unary function symbol encoding the additive inverse (so, ⊕(x,�x, 0)

holds in a hyperfield),
• 1 and 0 are constant symbols corresponding to the neutral elements of the

multiplication and the hyperaddition, respectively.

Clearly, the class of hyperfields can be first-order axiomatized in the language
above. Let us state the following well-known result.

Fact 2.15. The class C of structures (in a fixed language) is elementary if and only
if C is closed under elementary equivalence and under ultraproducts.

As a simple consequence of Łoś’s theorem, one obtains the following.

Fact 2.16. The class of Krasner hyperfields is closed under ultraproducts.

Therefore, we will aim to show that the class of Krasner hyperfields is not closed
under elementary equivalence. We see below that we can restrict ourselves to the
class of Krasner characteristic one hyperfields.

Lemma 2.17. If the class of Krasner hyperfields is elementary, then the class of
Krasner characteristic one hyperfields is elementary.

Proof. It is obvious, since the condition (∀x)(x + x = {0, x}) is clearly definable
in the language from Definition 2.14. �

Remark 2.18. All the assumptions from Theorem 2.13 can be expressed
as first-order sentences in the language of hyperfields introduced above (using
Definition 2.9 and the explicit definition of the associated projective geometry from
Proposition 2.10). Hence, we obtain that the class of Krasner characteristic one
hyperfields of dimension at least 2 is elementary.
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6 PIOTR KOWALSKI AND PIOTR BŁASZKIEWICZ

Because of Remark 2.18, we need to focus on one-dimensional Krasner
characteristic one hyperfields. For convenience, we give names to the following
two classes.

Notation 2.19.

(1) Let K denote the class of Krasner characteristic one hyperfields of dimension
one.

(2) Let K× denote the class of groups which are of the form L×/K×, whereK ⊆ L
is a field extension of degree 2.

The next observation explains why the class of groups from Notation 2.19(2) is
important for us.

Fact 2.20. Let H ∈ K. Then we have the following.
(1) H is isomorphic to L/K×, where L is a field, K is its subfield, and [L : K ] = 2.
(2) The hyperaddition in H is the same as in Example 2.6(3), so it is definable in

the language {0} ( just one constant symbol ).

Proof. Item (1) follows from Remark 2.12, since dim(PH) = 1 if and only if H
comes from a field extension of degree 2.

Item (2) follows again from Remark 2.12 (and Proposition 2.10), since
dim(PH) = 1 implies that there is only one line in the projective geometry PH
and this line is the whole space. �

We directly obtain the following.

Lemma 2.21. If the class of Krasner characteristic one hyperfields is elementary,
then the class K is elementary.

Proof. It follows from Definition 2.9(3) that being of dimension one is a definable
property. �

The following easy results outline the further connections between the classes K
and K×.

Lemma 2.22. Let G and H be commutative groups and HG,HH be the correspond-
ing hyperfields as in Example 2.6(3). If G and H are elementarily equivalent (as
groups), then HG and HH are elementarily equivalent (as hyperfields).

Proof. Assume that (G, ·) ≡ (H, ·). By the uniform definition of the monoid
operation in HG,HH , we get that (HG, ·) ≡ (HH , ·). Since the hyperaddition in
HG,HH is defined by the same formula in the monoid language (we actually only
need the extra constant as in Fact 2.20), we get that (HG,+, ·) ≡ (HH ,+, ·). �

Lemma 2.23. If the class K is elementary, then the class K× is closed under
elementary equivalence.

Proof. Assume that the class K is elementary. Let us take G ∈ K×, so there is a
hyperfieldH ∈ K such that G is the multiplicative group ofH. By Example 2.6(3) and
Fact 2.20, we get that H = HG (as hyperfields, see the notation from Lemma 2.22).
We also take a group H such thatG ≡ H . By Lemma 2.22, we get that HH ≡ HG =
H. Since the class K is elementary, we obtain that HH ∈ K. Therefore, H ∈ K×,
which we needed to show. �
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THE CLASS OF KRASNER HYPERFIELDS IS NOT ELEMENTARY 7

We finish this section with stating a result of Szmielew about elementary
equivalence of commutative groups (see [21]). We will use the formulation from
[6, Theorem 1].

Theorem 2.24 (Szmielew [21]). If A and B are abelian groups, then A is
elementarily equivalent to B if and only if

A is of finite exponent ⇔ B is of finite exponent;

and for each prime p and integer n � 0:

dimFp

(
pnA[p]/pn+1A[p]

)
= dimFp

(
pnB[p]/pn+1B[p]

)
,

lim
n→∞

dimFp

(
pnA/pn+1A

)
= lim
n→∞

dimFp

(
pnB/pn+1B

)
,

lim
n→∞

dimFp (pnA[p]) = lim
n→∞

dimFp (pnB[p]) ,

where

pnG = {pnx | x ∈ G}, G [p] = {x ∈ G | px = 0}.

§3. Main result. In this section, we prove the main result of this article
(Theorem 3.5). We need the following notion (see [7, Section 3.4]).

Definition 3.1. The rational rank of a commutative group A is the cardinality of
a maximal Z-linearly independent subset of A. Following [7], we denote it by rr(A).

Remark 3.2. Let A be a commutative group.

(1) It is easy to see that we have (see [7, Section 3.4]):

rr(A) = dimQ (A⊗Z Q) .

(2) If A0 � A, then we have (see [7, Section 3.4]):

rr(A) = rr(A0) + rr (A/A0) .

(3) Other names as “rank” or “Prüfer rank” or “torsion-free rank” are sometimes
used in this context as well.

We will use the following algebraic result (see Notation 2.19).

Theorem 3.3. The rational rank of any A ∈ K× is either 0 or infinite.

The proof and history of this result will be discussed in the Appendix. We still
include one example here which may be used as a basic illustration of the methods
needed to show Theorem 3.3.

Example 3.4. We will show that

rr(Q[i ]×/Q×) = ℵ0.

Let us recall that a prime number p ∈ Z splits (equivalently in this case: splits
completely) in Z[i ] if and only if p ≡ 1(mod 4) and that there are infinitely many
such primes, which is a very special case of Chebotarev’s density theorem (see
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8 PIOTR KOWALSKI AND PIOTR BŁASZKIEWICZ

[9, Theorem 6.3.1]). Let us take an infinite sequence p1, p2, ... of prime numbers
which split in Z[i ].

We have pi = ri ri , where ri is a prime element of Z[i ] and ri is the complex
conjugate of ri . Then r1, r1, r2, r2, ... is a sequence of pairwise non-associated prime
elements of Z[i ]. We will show that the cosets r1Q×, r2Q

×, ... are Z-independent in
Q[i ]×/Q×.

Assume not, so there is a non-zero tuple (n1, ... , nk) ∈ Zk such that rn1
1 ... r

nk
k ∈

Q× (witnessing that r1Q×, ... , rkQ
× are not Z-independent in Q[i ]×/Q×). We have:

r
n1
1 ... r

nk
k = r1

n1 ... rk
nk ,

which contradicts the unique factorization in Z[i ].

Our main model-theoretic result is below.

Theorem 3.5. The class of Krasner hyperfields is not elementary.

Proof. If the class of Krasner hyperfields is elementary, then the class K×

of groups (see Notation 2.19(2)) is closed under elementary equivalence by
Lemmas 2.17, 2.21, and 2.23. We will show that this is not the case.

Since C× is divisible, we have:

K× � C×/R× ∼= A⊕
⊕
p

Cp∞ ≡ Q⊕
⊕
p

Cp∞ ,

where Cp∞ is the Prüfer p-group and A is a vector space over Q of dimension
continuum. The isomorphism above follows from the classification of divisible
commutative groups (see [12, Theorem 5 in Section 4]) and the elementary
equivalence follows from Theorem 2.24, since for any positive integer n, we have

Q[n] = {0}, nQ = Q.

However, the rational rank of Q⊕
⊕
p Cp∞ is 1, so this group does not belong to

K× by Theorem 3.3. �

§4. Related questions and conjectures. In this section, we discuss some model-
theoretical problems related with hyperfields. By Theorem A.3 (as in the proof of
Theorem 3.5), the following class of groups:

{K× | K is a field}

is not elementary. Interestingly, a similar phenomenon appeared in [10] where the
authors consider model completeness of groups of rational points of algebraic
groups. One can ask the following.

Question 4.1. Let G be a group scheme over Z. Are the following two conditions
on G equivalent?

(1) The class

{G(K) | K is a field}

is elementary.
(2) If K is a model complete field, then G(K) is a model complete group.
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THE CLASS OF KRASNER HYPERFIELDS IS NOT ELEMENTARY 9

The multiplicative group scheme Gm fails both items (1) and (2) above. On
the other hand, semisimple or unipotent algebraic groups seem to satisfy both
these items, which is work in progress related to [10]. Therefore, we do not have
counterexamples to the equivalence in Question 4.1. Actually, if item (1) holds,
then (as in [10]) it is usually an important step for proving that item (2) holds.
The fact that item (1) holds for certain simple algebraic groups follows from
[20, 22].

While trying to understand hyperfields (or any other structures) model-
theoretically, it is natural to ask first what are the “model-theoretically simplest”,
that is strongly minimal, hyperfields. We propose the following.

Conjecture 4.2. A hyperfield is strongly minimal if and only if it is either a
strongly minimal field (i.e., an algebraically closed field) or a hyperfield, where
the hyperaddition is definable in the structure of its multiplicative group, which is
strongly minimal.

Since any infinite commutative group can be expanded to a hyperfield where the
hyperaddition is definable just from one constant symbol (see Example 2.6) there
are plenty of hyperfields as after “or” in the conjecture above.

Remark 4.3. The referee asked an interesting question whether there is an
elementary statement which is true of all Krasner hyperfields but not of all
hyperfields. We answer (in the affirmative) and discuss this question below.

(1) By Fact 2.16 and basic model theory, the referee’s question is equivalent
to asking whether each hyperfield is elementarily equivalent to a Krasner
hyperfield.

(2) It is rather easy to answer this question in the finite case, however our answer
is still not so obvious. By Theorem A.1, any finite Krasner hyperfield of
characteristic one has cyclic multiplicative group, but this is not true for
arbitrary finite hyperfields of characteristic one using Example 2.6(3). So,
for example, we can use the following elementary statement to answer the
referee’s question in the affirmative:

“if the multiplicative group of a characteristic one hyperfield has four
elements, then this group is cyclic”.

(3) In the infinite case, we use the fact that the projective geometry of any Krasner
hyperfield of characteristic one is Desarguesian (being the classical projective
geometry, see Remark 2.12), but there are hyperfields of characteristic one
with a non-Desarguesian projective geometry (see Example 2.6(4)). One
should also notice that being Desarguesian is a first-order property by
Definition 2.9(3). Having all this, one can produce a (rather long) sentence
which is true of all infinite Krasner hyperfields but not of all infinite
hyperfields.

We would like to point out that the existence of such non-Desarguesian
hyperfields of characteristic one which are moreover finite is an open problem
related with the open problem of the existence of primes of the form p =
n2 + n + 1 (see [4, Remark 3.12]).

https://doi.org/10.1017/jsl.2025.10127 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.10127


10 PIOTR KOWALSKI AND PIOTR BŁASZKIEWICZ

Appendix. In the previous version of this article, we showed Theorem 3.3 and
then sketched a proof of its generalization to arbitrary field extensions. However,
the referee pointed out to us the following result from 1960s (see [1]).

Theorem A.1. If K is an infinite field and K ⊂ L is a proper extension of fields,
then the group L×/K× is not finitely generated.

Remark A.2. We discuss here how Theorem 3.3 is related with Theorem A.1.

(1) On the very formal level, neither result implies the other one, since not being
finitely generated does not imply having infinite rational rank, and there are
groups of rational rank zero which are finitely generated.

(2) However, it is rather clear that the proof of Theorem A.1 also gives the
statement of Theorem A.3 below (which clearly generalizes Theorem 3.3).

(3) As the referee pointed out, our proof from the previous version of this article
was almost identical to the proof of Theorem A.1.

To give the reader an idea of the proof, we include below a shortened sketch of
the argument from the previous version of this article. A reader interested in the
full argument is referred to the previous version of this article, which is available on
ArXiv or to the aforementioned article [1] (in German).

Theorem A.3. Let F ⊆ K be an arbitrary field extension. Then both rr(F×) and
rr(K×/F×) are 0 or infinite.

Sketch of Proof. We consider the more difficult case of rr(K×/F×) only. If
the extension F ⊆ K is not algebraic, we take a transcendental t ∈ K and then
rr(F (t)×/F×) is infinite by a similar argument as in Example 3.4.

If the extension F ⊆ K is purely inseparable or K is contained in the algebraic
closure of a finite field, then it is easy to see that rr(K×/F×) = 0.

Therefore, we can assume that F ⊆ K is a finite extension which is not contained
in the algebraic closure of a finite field and which is also not purely inseparable. We
aim to show that rr(K×/F×) is infinite. Let us take the field tower F ⊆ K0 ⊆ K ,
where the first extension is separable and non-trivial and the second one is purely
inseparable. We have the following exact sequence:

1 → K×
0 /F

× → K×/F× → K×/K×
0 → 1

and we know that rr(K×/K×
0 ) = 0. Using Remark 3.2(2), we obtain that

rr(K×
0 /F

×) = rr(K×/F×),

so we can moreover assume that F ⊆ K is finite, separable, and F = Fp(X ) or F is
a number field. Let F ⊆ L be the normal closure of F ⊆ K and n := [K : F ] > 1.
By Chebotarev’s density theorem (see [9, Theorem 6.3.1]), there are infinitely many
prime ideals P1, P2, ... of OF , which split completely in OL. Therefore, for each i, we
also have

PiOK = Qi1 ... Qin,
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where Qij ’s are maximal ideals in OK . We take a1, a2, ... ∈ OK such that for each i,
we have:

ai ∈ Qi1 \

⎛
⎝
i–1⋃
j=1

Qj1 ∪
i⋃
j=1

l⋃
k=2

Qjk

⎞
⎠ .

Then, we can finish in a similar way as in Example 3.4. �
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