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Abstract
In this paper we study the class of optimal entropy-transport problems introduced by Liero, Mielke and Savaré in
Inventiones Mathematicae 211 in 2018. This class of unbalanced transport metrics allows for transport between
measures of different total mass, unlike classical optimal transport where both measures must have the same total
mass. In particular, we develop the theory for the important subclass of semi-discrete unbalanced transport prob-
lems, where one of the measures is diffuse (absolutely continuous with respect to the Lebesgue measure) and the
other is discrete (a sum of Dirac masses). We characterize the optimal solutions and show they can be written in
terms of generalized Laguerre diagrams. We use this to develop an efficient method for solving the semi-discrete
unbalanced transport problem numerically. As an application, we study the unbalanced quantization problem, where
one looks for the best approximation of a diffuse measure by a discrete measure with respect to an unbalanced trans-
port metric. We prove a type of crystallization result in two dimensions – optimality of a locally triangular lattice
with spatially varying density – and compute the asymptotic quantization error as the number of Dirac masses tends
to infinity.

1. Introduction

In this paper we study semi-discrete unbalanced optimal transport problems: What is the optimal way
of transporting a diffuse measure to a discrete measure (hence the name semi-discrete), where the two
measures may have different total mass (hence the name unbalanced)? As an application, we study the
unbalanced quantization problem: What is the best approximation of a diffuse measure by a discrete
measure with respect to an unbalanced transport metric?

1.1. Unbalanced optimal transport

Classical optimal transport theory asks for the most efficient way to rearrange mass between two given
probability distributions. Its origin goes back to 1781 and the French engineer Gaspard Monge, who
was interested in the question of how to transport and reshape a pile of earth to form an embankment
at minimal effort. It took over 200 years to develop a complete mathematical understanding of this
problem, even to answer the question of whether there exists an optimal way of redistributing mass.
Since the mathematical breakthroughs of the 1980s and 1990s, the field of optimal transport theory has
thrived and found applications in crowd and traffic dynamics, economics, geometry, image and signal
processing, machine learning and data science, PDEs and statistics. Depending on the context, mass
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may represent the distribution of particles (people or cars), supply and demand, population densities,
etc. For thorough introductions see, e.g., [27, 58, 61, 69].

In classical optimal transport theory the initial and target measures must have the same total mass.
In applications this is not always natural. Changes in mass may occur due to creation or annihilation of
particles or a mismatch between supply and demand. Therefore so-called unbalanced transport prob-
lems, accounting for such differences, have recently received increased attention [18, 25, 39, 45]. Brief
overviews and discussions of various formulations can be found, for instance, in [19, 64]. Further the-
oretical properties are examined in [41, 46], examples for applications in data analysis can be found in
[17, 42, 66]. In this article, we study the class of unbalanced transport problems called optimal entropy-
transport problems from [45]; see Definition 2.4. In particular, we develop this theory for the special
case of semi-discrete transport.

1.2. Semi-discrete transport

Semi-discrete optimal transport theory is about the best way to transport a diffuse measure, μ ∈ L1(�),
�⊂R

d, to a discrete measure, ν =∑M
i=1 miδxi . These type of problems arise naturally, for instance, in

economics in computing the distance between a population with density μ and a resource with distribu-
tion ν =∑M

i=1 miδxi , where xi ∈� represent the locations of the resource and mi > 0 represent the size or
capacity of the resource. The classical semi-discrete optimal transport problem, whereμ and ν are prob-
ability measures, has a nice geometric characterization. For example, for p ∈ [1,∞), the Wasserstein-p
metric Wp is defined by

Wp(μ, ν)=min

{
M∑

i=1

∫
T−1(xi)

|x− xi|pμ(x) dx

∣∣∣∣ T :�→{xi}Mi=1,
∫

T−1(xi)

μ(x) dx=mi

}1/p

where
∑M

i=1 mi =
∫
�
μ(x) dx= 1. This is an optimal partitioning (or assignment) problem, where the

domain� is partitioned into the regions T−1(xi) of mass mi, i ∈ {1, . . . , M}, and each point x ∈ T−1(xi) is
assigned to point xi. For example, in two dimensions,� could represent a city, μ the population density
of children, xi and mi the location and size of schools, T−1(xi) the catchment areas of the schools, and
Wp(μ, ν) the cost of transporting the children to their assigned schools. If p= 2, it turns out that the
optimal partition {T−1(xi)}Mi=1 is a Laguerre diagram or power diagram, which is a type of weighted
Voronoi diagram: There exist weights w1, . . . , wM ∈R such that

T−1(xi)= {x ∈� | |x− xi|2 −wi ≤ |x− xj|2 −wj ∀ j ∈ {1, . . . , M}}.
The transport cells T−1(xi) are the intersection of convex polytopes (polygons if d= 2, polyhedra if d= 3)
with �. The weights w1, . . . , wM ∈R can be found by solving an unconstrained concave maximization
problem. If p= 1, the optimal partition {T−1(xi)}Mi=1 in an Apollonius diagram. See, e.g., [3, Sec. 6.4], [27,
Chap. 5], [37, 52], [58, Chap. 5], and Section 2.3 below, where we summarize the main results from
classical semi-discrete optimal transport theory. Applications of semi-discrete transport include fluid
mechanics [28, 29], microstructure modelling [10, 15], optics [53] and the Lagrangian discretization of
Wasserstein gradient flows [43] and mean field games [63].

In Section 3, we extend these results to unbalanced transport, where μ and ν no longer need to
have the same total mass, and the Wasserstein-p metric is replaced by the unbalanced transport metric
W from Definition 2.4. We prove that, also in the unbalanced case, the optimal partition is a type of
generalized Laguerre diagram, and it can be found by solving a concave maximization problem for a set
of weights w1, . . . , wM; see Theorems 3.1 and 3.3. This problem is natural from a modelling perspective,
for example to describe a mismatch between the demand of a population μ and the supply of a resource
ν and to model the prioritization of high-density regions at the expense of areas with a low population
density.

For unbalanced transport, there is no one, definitive transport cost, but many models are conceivable.
As a first application of our theory of semi-discrete unbalanced transport, in Examples 3.14 and 3.15,

https://doi.org/10.1017/S0956792525100144 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100144


European Journal of Applied Mathematics 3

we use it to compare different unbalanced transport models. As a second application, in Section 4, we
apply it to the quantization problem.

1.3. Quantization

Quantization of measures refers to the problem of finding the best approximation of a diffuse measure
by a discrete measure [32], [35, Sec. 33]. For example, the classical quantization problem with respect to
the Wasserstein-p metric, p ∈ [1,∞), is the following: Given μ ∈ L1(�), �⊂R

d,
∫
�
μ(x) dx= 1, find a

discrete probability measure ν =∑M
i=1 miδxi that gives the best approximation of μ in the Wasserstein-p

metric,

QM
p (μ)=min

{
Wp

p (μ, ν)

∣∣∣∣∣ ν =
M∑

i=1

miδxi , x1, . . . , xM ∈�, mi > 0,
M∑

i=1

mi = 1

}
. (1.1)

We call QM
p the quantization error. Problems of this form arise in a wide range of applications including

economic planning and optimal location problems [7, 8, 14], finance [57], numerical integration [21,
Sec. 2.2], [57, Sec. 2.3], energy-driven pattern formation [11, 40] and approximation of initial data for
particle (meshfree) methods for PDEs. An approach to quantization using gradient flows is given in [16,
36]. We mention a few important variations on the classical quantization problem. The case where the
masses m1, . . . , mM are fixed and the minimization in (1.1) is only taken over x1, . . . , xM is considered for
example in [10, 51, 70]. The case where μ is a discrete measure, with support of cardinality N	M, has
applications in image and signal compression [22, 31] and data clustering (k-means clustering) [49, 65].
If ν is a one-dimensional measure (supported on a set of Hausdorff dimension 1), then the quantization
problem is known as the irrigation problem [48, 55]. In this paper, we consider the variation where the
Wasserstein-p metric in (1.1) is replaced by an unbalanced transport metric.

It can be shown that the quantization problem (1.1) can be rewritten as an optimization problem in
terms of the particle locations {xi}Mi=1 and their Voronoi tessellation:

QM
p (μ)=min {J(x1, . . . , xM) | x1, . . . , xM ∈�} (1.2)

where

J(x1, . . . , xM)=
M∑

i=1

∫
Vi(x1,...,xM )

|x− xi|pμ(x) dx

and where {Vi}Mi=1 is the Voronoi diagram generated by {xi}Mi=1,

Vi = Vi(x1, . . . , xM)= {
x ∈� ∣∣ |x− xi| ≤ |x− xj| for all j ∈ {1, . . . , M}} .

If (x1, . . . , xM) is a global minimizer of J, then
∑M

i=1

(∫
Vi
μ dx

)
δxi is an optimal quantizer of μ with

respect to the Wasserstein-p metric. See for instance [11, Sec. 4.1], [38, Sec. 7] and Theorem 4.2. In the
vector quantization (electrical engineering), literature J is known as the distortion of the quantizer [31].

The quantization problem with respect to the Wasserstein-2 metric is particularly well studied. In this
case, it can be shown that critical points of J are generators of centroidal Voronoi tessellations (CVTs)
of M points [21]; this means that ∇J(x1, . . . , xM)= 0 if and only if xi is the centre of mass of its own
Voronoi cell Vi for all i,

xi =

∫
Vi(x1,...,xM )

xμ(x) dx∫
Vi(x1,...,xM )

μ(x) dx
, i ∈ {1, . . . , M}. (1.3)

In general, there does not exist a unique CVT of M points, as illustrated in Figure 1, and J is non-convex
with many local minimizers for large M. Equation (1.3) is a nonlinear system of equations for x1, . . . , xM.
A simple and popular method for computing CVTs is Lloyd’s algorithm [21, 24, 47, 60], which is a fixed
point method for solving the Euler–Lagrange equations (1.3).
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Figure 1. Two (approximate) centroidal Voronoi tessellations (CVTs) of 10 points for the uniform den-
sity μ= 1 on a unit square. The polygons are the centroidal Voronoi cells Vi and the circles are the
generators xi. The CVTs were computed using Lloyd’s algorithm. The CVT on the left has a lower energy
J than the CVT on the right. The corresponding quantizer ν =∑10

i=1 miδxi of μ is reconstructed from the
CVT by taking mi as the areas of the centroidal Voronoi cells and xi as their generators.

In Sections 4.1 and 4.2 we extend these results to unbalanced quantization, where the Wasserstein-p
metric in (1.1) is replaced by the unbalanced transport metric W (defined in equation (2.6)), and where
μ and ν need not have the same total mass. In Theorem 4.2 we prove an expression of the form (1.2),
which states that the unbalanced quantization problem can be reduced to an optimization problem for
the locations x1, . . . , xM of the Dirac masses. This optimization problem is again formulated in terms
of the Voronoi diagram generated by x1, . . . , xM. In Section 4.2 we solve the unbalanced quantization
problem numerically, which includes extending Lloyd’s algorithm to the unbalanced case.

We conclude the paper in subsection 4.3 by studying the asymptotic unbalanced quantization prob-
lem: What is the optimal configuration of the particles x1, . . . , xM as M→∞ and how does the
quantization error scale in M? Consider for example the classical quantization problem (1.1) with p= 2,
|�| = 1, μ= 1 (i.e., μ is the Lebesgue measure on �), and M fixed. From above, we know that an opti-
mal quantizer ν corresponds to an optimal CVT of M points, where optimal means that the CVT has
lowest energy J amongst all CVTs of M points. Gersho [30] conjectured that, as M→∞, the Voronoi
cells of the optimal CVT asymptotically have the same shape, i.e., asymptotically they are translations
and rescalings of a single polytope. In two dimensions (d= 2), various versions of Gersho’s Conjecture
have been proved independently by several authors [7, 33, 54, 56, 67, 68]. Roughly speaking, it has been
shown that the hexagonal tiling is optimal as M→∞. In other words, arranging the seeds x1, . . . , xM

in a regular triangular lattice is asymptotically optimal. This crystallization result can be stated more
precisely as follows: If � is a convex polygon with at most 6 sides, then

J(x1, . . . , xM)≥ 5
√

3

54

1

M
(1.4)

where the right-hand side is the energy of a regular triangular lattice of M points such that the Voronoi
cells Vi are regular hexagons of area 1/M. In general, this lower bound is not attained for finite M (unless
� is a regular hexagon and M= 1), but it is attained in limit M→∞:

lim
M→∞

M ·QM
2 (1)= lim

M→∞
M ·min

xi∈�
J(x1, . . . , xM)= 5

√
3

54
. (1.5)
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See the references above or [12, Thm. 5]. We generalize (1.4) and (1.5) to the unbalanced quantization
problem in Theorem 4.7 and Theorem 4.12, respectively. Roughly speaking, we show that again for μ=
1 the triangular lattice is optimal in the limit M→∞. For generalμ ∈ L1(�), it is asymptotically optimal
for the particles to locally form a triangular lattice with density determined by a nonlocal function of μ.

While our quantization results are limited to two dimensions, this is also largely true for the classical
quantization problem. In three dimensions, it is not known whether Gersho’s conjecture holds, although
there is some numerical evidence for the case p= 2 that optimal CVTs of M points tend as M→∞ to
the Voronoi diagram of the body-centered cubic (BCC) lattice, where each Voronoi cell is congruent to
a truncated octahedron [23]. See also [20]. For p= 2, it has been proved that, amongst lattices, the BCC
lattice is optimal [5].

For general p, d and μ, the scaling of the quantization error is known even if the optimal quantizer is
not; Zador’s theorem [71], [35, Cor. 33.3] states that

lim
M→∞

M
p
d ·QM

p (μ)= c(p, d) ‖μ‖
L

d
d+p (�)

(1.6)

where the constant c(p, d) is characterized by

c(p, d)= lim
M→∞

M
p
d ·QM

p (L�[0, 1]d),

and where L is the d-dimensional Lebesgue measure. For a modern proof using �-convergence see [9]
and [62, Proposition 7.21]. For generalizations to quantization on Riemannian manifolds see [34], [38,
Thm. 1.2] and [4]. It is an open problem to compute the optimal constant c(p, d) except for d= 1 and
d= 2, where

c(p, 1)=
∫ 1/2

−1/2

|x|p dx, c(p, 2)=
∫

H(1)

|x|p dx, (1.7)

where H(1) is a regular hexagon of area 1 centred at the origin 0. We recover Zador’s theorem for the
case d= 2, along with the optimal constant c(p, 2), as a special case of Theorem 4.12; see Example 4.18.

1.4. Outline and contribution

Section 2 collects relevant results from classical, unbalanced and semi-discrete transport, which will be
generalized in Section 3 to the case of semi-discrete unbalanced transport. Finally, Section 4 considers
the unbalanced quantization problem.

In more detail, the contributions of this article are the following.

• Section 3.1: We extend semi-discrete transport theory to the unbalanced case, most importantly
a simple, geometric tessellation formulation (Theorem 3.1), optimality conditions that fully char-
acterize primal and dual solutions (Theorem 3.3) and additional different primal and dual convex
formulations. Unlike in the balanced case, the dual potentials associated with the discrete mass loca-
tions do not only determine the tessellation of the continuous measure but also the density of the
optimal transport plan. Particular attention needs to be paid to areas where the ground transport
cost function becomes infinite. Special cases of these results were derived in [43, 63] to study a
Lagrangian discretization of Wasserstein gradient flows and variational mean field games.

• Section 3.2: We develop numerical algorithms for solving the semi-discrete unbalanced transport
problem and numerically illustrate novel phenomena of unbalanced transport (Example 3.14). In par-
ticular, we show qualitative differences between different unbalanced transport models and examine
the effect of changing the length scale, which typically is intrinsic to unbalanced transport models.

• Sections 4.1 and 4.2: We extend the theory of optimal transport-based quantization of mea-
sures to unbalanced transport, deriving in particular an equivalent Voronoi tessellation problem
(Theorem 4.2), which turns out to be a natural generalization of the known corresponding for-
mulation in classical transport. The interesting fact here is that the simple geometric Voronoi
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tessellation structure survives when passing from balanced to unbalanced transport, but the mass
of the generating points now depends in a more complex way on the mass within their cells. We
also illustrate unbalanced quantization numerically, extending the standard algorithms (including
Lloyd’s algorithm) to the unbalanced case.

• Section 4.3: In two spatial dimensions, where crystallization results from discrete geometry are avail-
able, we derive the optimal asymptotic quantization cost and the optimal asymptotic point density
for quantizing a given measure μ using unbalanced transport (Theorem 4.12). Our result includes
Zador’s theorem for classical, balanced quantization as a special case; see Example 4.18. As is com-
mon in asymptotic quantization, we consider a spatial rescaling of the domain as the number of
points increases and the most interesting regime is where the rescaled point density converges to a
non-zero, finite limit. While in the balanced case the rescaled asymptotic cost only depends on the
growth behaviour of the transport ground cost function, in the unbalanced setting we now observe
an interplay between the rescaled point density and the intrinsic length scale of unbalanced trans-
port. An interesting, novel effect in this unbalanced setting is that the optimal point density depends
nonlocally on the global mass distribution in such a way that whole regions with positive measure
may be completely neglected in favour of regions with higher mass.

1.5. Setting and notation

Throughout this article we work in a domain �=U for U ⊂R
d open. (In principle, the results could

be extended to more general metric spaces such as Riemannian manifolds.) The Euclidean distance on
R

d is denoted d(·, ·), and we will write πi :�×�→� for the projections πi(x1, x2)= xi, i= 1, 2. The
(d-dimensional) Lebesgue measure of a measurable set A⊂R

d will be indicated byL(A) or |A| for short,
its diameter by diam(A).

By M+(�) we denote the set of nonnegative Radon measures on �, and P(�)⊂M+(�) is the
subset of probability measures. The notation μ� ν for two measures μ, ν ∈M+(�) indicates absolute
continuity ofμwith respect to ν, and the corresponding Radon–Nikodym derivative is written as dμ

dν . The
restriction of μ ∈M+(�) to a measurable set A⊂R

d is denoted μ�A, and its support is denoted sptμ.
For a Dirac measure at a point x ∈Rd we write δx. The pushforward of a measure μ under a measurable
map T is denoted T#μ.

The spaces of Lebesgue integrable functions on U or of μ-integrable functions with μ ∈M+(�) are
denoted L1(U) and L1(μ), respectively. Continuous functions on � are denoted by C(�).

2. Background

The purpose of this section is a short introduction to classical, unbalanced and semi-discrete transport.

2.1. Optimal transport

Here we briefly recall the basic setting of optimal transport. For a thorough introduction we refer, for
instance, to [61, 69]. For μ, ν ∈P(�) the set

�(μ, ν)= {γ ∈P(�×�) | π1#γ =μ, π2#γ = ν} (2.1)

is called the couplings or transport plans between μ and ν. A measure γ ∈ �(μ, ν) can be interpreted
as a rearrangement of the mass of μ into ν where γ (x, y) intuitively describes how much mass is taken
from x to y. The total cost associated to a coupling γ is given by∫

�×�
c(x, y) dγ (x, y) (2.2)
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where c :�×�→ [0,∞] and c(x, y) specifies the cost of moving one unit of mass from x to y. The
optimal transport problem asks for finding a γ that minimizes (2.2) among all couplings �(μ, ν),

WOT(μ, ν)= inf

{∫
�×�

c dγ

∣∣∣∣∣ γ ∈ �(μ, ν)

}
. (2.3)

Under suitable regularity assumptions on c, existence of minimizers follows from standard compactness
and lower semi-continuity arguments.

Theorem 2.1 ([69, Thm. 4.1]). If c :�×�→ [0,∞] is lower semi-continuous, then minimizers of
(2.3) exist. The minimal value may be +∞.

2.2. Unbalanced transport

The optimal transport problem (2.3) only allows the comparison of measures μ, ν with equal mass.
Otherwise, the feasible set �(μ, ν) is empty. Therefore, so-called unbalanced transport problems have
been studied, where mass may be created or annihilated during transport and thus measures of different
total mass can be compared in a meaningful way. See Section 1 for context and references.

Throughout this article we consider unbalanced optimal entropy-transport problems as studied in
[45]. The basic idea is to replace the hard marginal constraints π1#γ =μ, π2#γ = ν in (2.1) with soft
constraints where the deviation between the marginals of γ and the measures μ and ν is penalized by a
marginal discrepancy function. This allows more flexibility for feasible γ . We focus on a subset of the
family of marginal discrepancies considered in [45].

Definition 2.2 (Marginal discrepancy). Let F : [0,∞)→ [0,∞] be proper, convex and lower semi-
continuous with lims→∞

F(s)
s
=∞. For a given measure μ ∈M+(�), the function F induces a marginal

discrepancy F( · |μ) : M+(�)→ [0,∞] via

F(ρ|μ)=
⎧⎨
⎩
∫
�

F

(
dρ

dμ

)
dμ if ρ�μ,

+∞ otherwise.
(2.4)

Note that the integrand is only defined μ-almost everywhere. F is (sequentially) weakly-∗ lower semi-
continuous [1, Thm. 2.34].

We extend the domain of definition of F to R by setting F(s)=∞ for s< 0. The Fenchel–Legendre
conjugate of F is then the convex function F∗ : R→ (−∞,+∞] defined by

F∗(z)= sup
s∈R

(z · s− F(s))= sup
s≥0
(z · s− F(s)) .

Example 2.3 (Kullback–Leibler divergence). The Kullback–Leibler divergence is an example of
Definition 2.2 for the choice FKL : [0,∞)→ [0,∞),

FKL(s)=
⎧⎨
⎩

s log s− s+ 1 if s> 0,

1 if s= 0.

The Fenchel–Legendre conjugate is given by F∗KL(z)= ez − 1.

Definition 2.4 (Unbalanced optimal transport problem). Let F be as in Definition 2.2 and let F be the
induced marginal discrepancy. Let μ, ν ∈M+(�) and c :�×�→ [0,∞] be lower semi-continuous.
The corresponding unbalanced transport cost E : M+(�×�)→ [0,∞] is given by

E(γ )=
∫
�×�

c dγ +F(π1#γ |μ)+F(π2#γ |ν) (2.5)

and induces the optimization problem

W(μ, ν)= inf
{E(γ )

∣∣ γ ∈M+(�×�)
}

. (2.6)
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The interaction between the terms in (2.5) that penalize transport and mass change introduces an
intrinsic length scale for transport that you do not see in classical balanced transport. This is discussed
in Example 3.15.

Theorem 2.5 ([45, Thm. 3.3]). Minimizers of (2.6) exist. The minimal value may be +∞.

Remark 2.6. Observe that F(ρ|μ)=∞ whenever ρ ��μ and F(ρ|ν)=∞ whenever ρ �� ν. This
guarantees that π1#γ �μ and π2#γ � ν for all feasible γ , where feasible means that E(γ )<∞. Thus,
when μ�L and ν is discrete, as in the semi-discrete setting (which will be discussed in the following
section), then the first and second marginal of any feasible γ will share these properties.

Remark 2.7. For simplicity we assume that the same marginal discrepancy is applied to both marginals
in (2.5), but of course in some cases it may be more appropriate to consider two different discrepancies.
All results in this article generalize to this case in a canonical way.

In this article we focus on cost functions c that can be written as increasing functions of the distance
between x and y.

Definition 2.8 (Radial cost). A cost function c :�×�→ [0,∞] is called radial if it can be written as
c(x, y)= 	(d(x, y)) for a strictly increasing function 	 : [0,∞)→ [0,∞], continuous on its domain with
	(0)= 0.

Note that the cost c need not be twisted (twistedness means that y �→ ∇xc(x, y) is injective for all x, see
[61, Definition 1.16]), which leads to some technical complications. The following examples shall be
used throughout for illustration. They all feature a radial transport cost c in the sense of Definition 2.8.

Example 2.9 (Unbalanced transport models).

(a) Standard Wasserstein-2 distance (W2). Classical balanced optimal transport can be recovered
as a special case of Definition 2.4 by choosing F(ρ|μ)= 0 if ρ =μ and ∞ otherwise. This
corresponds to

F(s)= ι{1}(s)=
⎧⎨
⎩

0 if s= 1,

∞ otherwise,
F∗(z)= z .

Then E(γ )<∞ only if γ ∈ �(μ, ν), and therefore (2.6) reduces to (2.3). In particular, the
Wasserstein-2 setting is obtained for c(x, y)= d(x, y)2, and the Wasserstein-2 distance is defined
by W2(μ, ν)=√W(μ, ν).

(b) Gaussian Hellinger–Kantorovich distance (GHK). This distance is introduced in [45, Thm. 7.25]
using

F(s)= FKL(s)=
⎧⎨
⎩

s log s− s+ 1 if s> 0,

1 if s= 0,
F∗(z)= ez − 1 , c(x, y)= d(x, y)2 .

(c) Hellinger–Kantorovich distance (HK). This important instance of unbalanced transport was
introduced in different formulations in [18, 39, 45] whose mutual relations are described in [19].
In Definition 2.4 one chooses

F(s)= FKL(s) , F∗(z)= ez − 1 ,

c(x, y)= cHK(x, y)=
⎧⎨
⎩
−2 log

[
cos

(
d(x, y)

)]
if d(x, y)< π

2
,

∞ otherwise,

and the HK distance is defined by HK(μ, ν)=√W(μ, ν). The distance HK is actually a geodesic
distance on the space of non-negative measures over a metric base space. From cHK(x, y)=∞
for d(x, y)≥ π

2
, we learn that mass is never transported further than π

2
in this setting.
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(d) Quadratic regularization (QR). The Kullback–Leibler discrepancy FKL used in both previous
examples has an infinite slope at 0, which in Definition 2.4 leads to a strong incentive to achieve
π1#γ 	μ and π2#γ 	 ν. The following mere quadratic discrepancy does not have this property,

F(s)= (s− 1)2 , F∗(z)=
⎧⎨
⎩

z2

4
+ z if z≥−2,

−1 otherwise,
c(x, y)= d(x, y)2 .

Unsurprisingly, the structure of the function F has a great influence on the behaviour of the unbal-
anced optimization problem (2.6). Often it is helpful to analyse corresponding dual problems where the
conjugate function F∗ appears. We gather some properties of F∗, implied by the assumptions on F in
Definition 2.2 and on some additional assumptions that we will occasionally make in this article.

Lemma 2.10 (Properties of F∗). Let F satisfy the assumptions given in Definition 2.2. Then

(i) F∗(z)>−∞ for z ∈R;
(ii) F∗ is increasing;
(iii) F∗(z)≤ 0 for z≤ 0;
(iv) F∗(z)<∞ for z ∈ (0,∞);
(v) F∗ is real-valued and continuous on R;
(vi) if F is strictly convex on its domain, then F∗ is continuously differentiable on R;
(vii) F∗(z)≥−F(0) for all z ∈R;
(viii) if inf{x≥ 0|F(x)<∞}= 0 (which holds in particular when F(0)<∞), then

lim
z→−∞

min ∂F∗(z)= lim
z→−∞

max ∂F∗(z)= 0.

Proof. (i) Since F is proper, we can find s ∈ (0,∞) with F(s)<∞. Then for all z ∈R, F∗(z)= supx≥0 (z ·
x− F(x))≥ z · s− F(s)>−∞.

(ii) Let z1 ≤ z2. Then F∗(z2)= supx≥0 (z2 · x− F(x))≥ supx≥0 (z1 · x− F(x))= F∗(z1).
(iii) Let z≤ 0. Since F ≥ 0, then F∗(z)= supx≥0 (z · x− F(x))≤ supx≥0 z · x= 0.
(iv) Let z ∈ (0,∞). Since F ≥ 0, F∗(z)=∞ is only possible if any maximizing sequence x1, x2, . . .

for F∗(z)= supx≥0 (z · x− F(x)) diverges to∞. However, limn→∞ (z · xn − F(xn))= limx→∞ x
(
z− F(x)

x

)=
−∞ since lims→∞

F(s)
s
=∞. So F∗(z)<∞.

(v) (i), (iv) and (iii) imply dom(F∗)=R. By convexity, F∗ is therefore continuous.
(vi) This is a special case of a classical result in convex analysis, which can be found, for instance, in

[59, Thm. 26.3].
(vii) Let z ∈R. Then F∗(z)= supx≥0 (z · x− F(x))≥−F(0).
(viii) Let z1, z2, . . . and u1, u2, . . . be sequences with zn→−∞ as n→∞ and un ∈ ∂F∗(zn). By mono-

tonicity of F∗, (ii), we have un ≥ 0. By (iii) and convexity one finds for any a≥ 0 with F(a)<∞ that
0≥ F∗(0)≥ F∗(zn)+ un · (0− zn)≥ a · zn − F(a)+ un · |zn|, which implies that un ≤ F(a)/|zn| + a. This
implies that lim supn un ≤ a. Sending now a→ 0 yields the claim.

Remark 2.11 (Feasibility for finite F(0)). Note that for F(0)<∞ the trivial transport plan γ = 0 leads
to a finite cost in (2.5) so that W(μ, ν)<∞ for all μ, ν ∈M+(�).

2.3. Semi-discrete transport

An important special case of the classical balanced optimal transport problem (2.3) is the case where μ
is absolutely continuous with respect to the Lebesgue measure,

μ�L , (2.7a)
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and ν is a discrete measure,

ν =
M∑

i=1

miδxi , (2.7b)

with mi > 0, xi ∈� and xi �= xj for i �= j. See Section 1 for context and references. In this section we
review the special structure of problem (2.3) that follows from (2.7). For instance, optimal couplings for
(2.3) turn out to have a very particular form: the domain � is partitioned into cells, one cell for each
discrete point xi, and mass will only be transported from each cell to its corresponding discrete point.
The shape of the cells is determined by μ, ν and the cost function c and can be expressed with the aid
of Definition 2.12. Problem (2.3) can be rewritten explicitly as an optimization problem in terms of the
cells. This tessellation formulation is given in Theorem 2.14, and its optimality conditions are described
in Theorem 2.16.

Definition 2.12 (Generalized Laguerre cells). Given a transportation cost c and points x1, . . . , xM ∈�,
we define the generalized Laguerre cells corresponding to the weight vector w ∈RM by

Ci(w)= {
x ∈� ∣∣ c(x, xi)<∞, c(x, xi)−wi ≤ c(x, xj)−wj for all j ∈ {1, . . . , M}} (2.8)

for i ∈ {1, . . . , M}. The residual of �, the set not covered by any of the cells Ci, is defined by

R= {
x ∈� ∣∣ c(x, xi)=∞ for all i ∈ {1, . . . , M}} . (2.9)

Note that R can also be written as R=� \ (⋃M
i=1 Ci(w)

)
, which does not depend on w ∈RM. Note also

that, if a= λ(1, 1, . . . , 1) ∈RM is a vector with all components equal, then Ci(w+ a)=Ci(w) for all
i ∈ {1, . . . , M}.
Example 2.13 (Generalized Laguerre cells [3]).

(a) Voronoi diagrams. If c is radial (see Definition 2.8) and finite, then the collection of generalized
Laguerre cells with weight vector 0 ∈RM, {Ci(0)}Mi=1, is just the Voronoi diagram generated by the
points x1, . . . , xM. The residual set R=∅.

(b) Laguerre diagrams or power diagrams. If c(x, y)= |x− y|2, then the collection of generalized
Laguerre cells {Ci(w)}Mi=1 is known as the Laguerre diagram or power diagram generated by the
weighted points (x1, w1), . . . , (xM, wM). The cells Ci are the intersection of convex polytopes with
�. The residual set R=∅.

(c) Apollonius diagrams. If c(x, y)= |x− y|, then the collection of generalized Laguerre
cells {Ci(w)}Mi=1 is known as the Apollonius diagram generated by the weighted points
(x1, w1), . . . , (xM, wM). The cells Ci are the intersection of star-shaped sets with �, and in two
dimensions, the boundaries between cells are arcs of hyperbolas. Again, R=∅.

Theorem 2.14 (Dual tessellation formulation for semi-discrete transport). Assume that μ and ν satisfy
(2.7) and μ(�)= ν(�). Let the cost function c be radial (see Definition 2.8) and WOT(μ, ν)<∞. Then

WOT(μ, ν)= sup

{
M∑

i=1

∫
Ci(w)

c(x, xi) dμ(x)+
M∑

i=1

(
mi −μ(Ci(w))

) ·wi

∣∣∣∣∣ w ∈RM

}
. (2.10)

Remark 2.15 (Existence of optimal weights). Maximizers for (2.10) do not always exist, even when
WOT(μ, ν)<∞. A simple sufficient condition for existence is that c is bounded from above on �×�.
More details can be found, for instance, in [69, Thm. 5.10].

Theorem 2.16 (Optimality conditions). Under the conditions of Theorem 2.14, a coupling γ ∈ �(μ, ν)
and a vector w ∈RM are optimal for WOT(μ, ν) in (2.3) and (2.10) respectively, if and only if

γ =
M∑

i=1

(
μ�Ci(w)⊗ δxi

)
, μ(Ci(w))=mi for i ∈ {1, . . . , M}. (2.11)

https://doi.org/10.1017/S0956792525100144 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100144


European Journal of Applied Mathematics 11

Proofs of Theorem 2.14 and Theorem 2.16 can be found below and for example in [37] and [52,
Section 4] for twisted costs c. We provide proofs of Theorems 2.14 and 2.16 for two reasons. They serve
as preparation for the proof of Theorems 3.1 and 3.3 in the case of semi-discrete unbalanced transport,
which generalize Theorems 2.14 and 2.16. In addition, they deal with the technical aspect that our cost
function c is not necessarily twisted and may take the value+∞ at finite distances. In particular, c does
not satisfy the assumptions in [37, 52]. We rely on the following lemma, which essentially provides the
existence of a Monge map in the semi-discrete setting (Corollary 2.18). For twisted costs, this result can
be found in [52, Proposition 37].

Lemma 2.17 (Laguerre cell boundaries). Let the cost function c be radial in the sense of Definition 2.8
and let {xi}Mi=1 be M distinct points in�. The induced generalized Laguerre cells satisfy |Ci(w)∩Cj(w)| =
0 for i �= j and any w ∈RM.

Proof. Fix i �= j and w ∈RM and recall that c(x, y)= 	(d(x, y)). We have

Ci(w)∩Cj(w)=
⋃
n∈N

An for An = {x ∈� | c(x, xi)−wi = c(x, xj)−wj, c(x, xi)≤ n} ,

and we will show that the d-dimensional Hausdorff measure of each An is zero, Hd(An)= 0, which
implies |An| = 0 and thus also |Ci(w)∩Cj(w)| = 0. Indeed, abbreviating f = d(·, xi) and noting that the
Jacobian of f equals 1 almost everywhere, the coarea formula [1, Thm. 2.93] yields

Hd(An)=
∫

An

1 dHd =
∫
R

Hd−1(An ∩ f −1(t)) dt=
∫ 	−1(n)

0

Hd−1(An ∩ f −1(t)) dt .

Now, for t ∈ [0, 	−1(n)],

An ∩ f −1(t)= {x ∈� | d(x, xi)= t and d(x, xj) ∈ 	−1(	(d(x, xi))+wj −wi)},
where 	−1(	(d(x, xi))+wj −wi) is either empty or single-valued due to the strict monotonicity of 	.
Hence, An ∩ f −1(t) is contained in the intersection of two non-concentric (d− 1)-dimensional spheres
and thus is Hd−1-negligible.

Proof of Theorem 2.14. By Kantorovich duality [69, Thm. 5.10] we can write

WOT(μ, ν)= sup

{∫
�

φ dμ+
∫
�

ψ dν

∣∣∣∣∣ φ ∈ L1(μ), ψ ∈ L1(ν),

φ(x)+ψ(y)≤ c(x, y) ∀ (x, y) ∈�×�
}

. (2.12)

Since ν is discrete, L1(ν) is isomorphic to R
M under the isomorphism I:L1(ν)→R

M, ψ �→
(ψ(x1), . . . ,ψ(xM)). The above dual problem thus becomes

WOT(μ, ν)= sup

{∫
�

φ dμ+
M∑

i=1

wi mi

∣∣∣∣∣ φ ∈ L1(μ), w ∈RM,

φ(x)+wi ≤ c(x, xi) ∀ x ∈�, i ∈ {1, . . . , M}
}

.

Next, for fixed w, one can explicitly maximize over φ, which corresponds to pointwise maximization
subject to the constraint. We denote the maximizer by φw to emphasize the dependency on w,

φw(x)=min
{
c(x, xi)−wi | i= 1, . . . , M

}
. (2.13)
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Since∞>WOT(μ, ν)−∑M
i=1 wi mi ≥

∫
�
φw dμ and φw is bounded from below (as c is so in our setting)

one must have φw ∈ L1(μ) for all w ∈RM, and we find

WOT(μ, ν)= sup{ESD(w) |w ∈RM} with ESD(w)=
∫
�

φw(x) dμ(x)+
M∑

i=1

wi mi . (2.14)

Since φw ∈ L1(μ) for any w ∈RM, the residual set R must be μ-negligible; likewise, the intersection of
generalized Laguerre cells is μ-negligible by Lemma 2.17. Consequently,

ESD(w)=
M∑

i=1

∫
Ci(w)

φw(x) dμ(x)+
M∑

i=1

wi mi =
M∑

i=1

∫
Ci(w)

[c(x, xi)−wi] dμ(x)+
M∑

i=1

wi mi ,

which leads to the desired result.

Proof of Theorem 2.16. The condition γ ∈ �(μ, ν) implies that γ can be written as γ =∑M
i=1 γi ⊗ δxi

where γi ∈M+(�), γi(A) := γ (A× {xi}). Observe that
∑M

i=1 γi =μ and γi(�)=mi. We obtain

WOT(μ, ν)≤
∫
�×�

c dγ =
M∑

i=1

∫
�

c(x, xi) dγi(x) , (2.15)

where the inequality is an equality if and only if γ is optimal. Let w ∈RM. From (2.14) with φw given
by (2.13), we find

WOT(μ, ν)≥
∫
�

φw(x) dμ(x)+
M∑

i=1

wi mi =
M∑

i=1

∫
�

[φw(x)+wi] dγi(x) , (2.16)

where the inequality is an equality if and only if w is optimal. Subtracting (2.16) from (2.15) yields

0≤
M∑

i=1

∫
�

[c(x, xi)−wi − φw(x)] dγi(x) (2.17)

with equality if and only if γ and w are optimal. By definition of φw, the integrand in each term of
the sum is nonnegative and strictly positive for x /∈Ci(w). Therefore (2.17) is an equality if and only
if γi is concentrated on Ci(w) for all i ∈ {1, . . . , M}. Combining absolute continuity with respect to the
Lebesgue measure of μ and γi and Lemma 2.17 implies that the unique choice is γi =μ�Ci(w). Due to
the second marginal constraint, this implies μ(Ci(w))= γi(�)=mi.

The above results imply the existence of an optimal Monge map for the semi-discrete problem.

Corollary 2.18 (Existence of Monge map). If a maximizer w ∈RM of (2.10) exists (cf. Remark 2.15),
then the optimal coupling γ in (2.3) is induced by a transport map T :�→{xi}Mi=1 ⊂�, γ = (Id× T)#μ,
defined by T(x)= xi when x ∈Ci(w). By virtue of Lemma 2.17 and since μ�L, T is well defined μ-
almost everywhere.

Example 2.19 (Optimal tessellations for Wasserstein distances). Let μ and ν satisfy (2.7).

(a) Wasserstein-2 distance. Let c(x, y)= |x− y|2. If T is an optimal Monge map, then the optimal
transport cells T−1({xi}) are the Laguerre cells (or power cells) Ci(w) with weight vector w=
(ψ(x1), . . . ,ψ(xM)), where ψ :�→R is an optimal Kantorovich potential for the dual transport
problem (2.12).

(b) Wasserstein-1 distance. Let c(x, y)= |x− y|. If T is an optimal Monge map, then the
optimal transport cells T−1({xi}) are the Apollonius cells Ci(w) with weight vector w=
(ψ(x1), . . . ,ψ(xM)), where ψ is an optimal Kantorovich potential.
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3. Semi-discrete unbalanced transport

In this section we consider semi-discrete unbalanced transport. That is, we study (2.6) for the cases
where μ is absolutely continuous with respect to the Lebesgue measure and ν is discrete, as stated
in (2.7), and we do not require that μ(�)= ν(�). Semi-discrete unbalanced transport models the sit-
uation where there is a mismatch between the capacity of a discrete resource ν and the demand of a
population μ.

3.1. Tessellation formulation

The main results of this Section are Theorems 3.1 and 3.3, which generalize Theorems 2.14 and 2.16 to
the unbalanced setting. Furthermore, in Corollary 3.6, we state a ‘primal’ counterpart of Theorem 3.1,
which is somewhat pathological in the classical, balanced optimal transport setting, but quite natural in
the unbalanced case.

The following result generalizes Theorem 2.14 to unbalanced transport.

Theorem 3.1 (Tessellation formulation for semi-discrete unbalanced transport). Let the cost function c
be radial (see Definition 2.8). Given μ, ν ∈M+(�) satisfying (2.7), define G : RM→ (−∞,∞] by

G(w)=−
M∑

i=1

(∫
Ci(w)

F∗
(−c(x, xi)+wi

)
dμ(x)+ F∗(−wi) ·mi

)
+ F(0) ·μ(R) (3.1a)

with the convention∞· 0= 0. Then the unbalanced optimal transport distance can be obtained via

W(μ, ν)= sup
{G(w)

∣∣ w ∈RM
}

. (3.1b)
This is a concave maximization problem.

Proof. In analogy to the Kantorovich duality (2.12) for the classical optimal transport problem (2.3),
we make use of a corresponding duality result for the unbalanced transport problem (2.6),

W(μ, ν)= sup

{
−

∫
�

F∗(−φ(x)) dμ(x)−
∫
�

F∗(−ψ(x)) dν(x)

∣∣∣∣∣ φ,ψ ∈ C(�),

φ(x)+ψ(y)≤ c(x, y) ∀ (x, y) ∈�×�
}

.

This follows from [45, Thm. 4.11 and Cor. 4.12], where the former establishes the duality formula with φ
andψ ranging over all lower semi-continuous simple functions and the latter allows us to use continuous
functions instead, exploiting the fact that F∗ is continuous on R by Lemma 2.10 (v). Analogously to the
proof of Theorem 2.14 (dual tessellation formulation), we now parameterize the function ψ on the set
{xi}Mi=1 by a vector w ∈RM, wi =ψ(xi), and obtain

W(μ, ν)= sup

{
−

∫
�

F∗(−φ(x)) dμ(x)−
M∑

i=1

miF
∗(−wi)

∣∣∣∣∣ φ ∈ C(�), w ∈RM,

φ(x)+wi ≤ c(x, xi) ∀ x ∈�, i ∈ {1, . . . , M}
}

. (3.2)

Next, given w ∈RM we would like to optimize for φ as we did in (2.13). Note though that φw =∞ on
the residual set R, which in unbalanced transport may be nonnegligible despite finite W(μ, ν). For this
reason we argue by truncation: For given w ∈RM and n ∈N, the function φ = φw,n with

φw,n :�→R, φw,n(x)=min{n, min{c(x, xi)−wi | i ∈ {1, . . . , M}}}
lies in C(�) and is feasible in (3.2). Moreover, for fixed w, the sequence (φw,n)n∈N is a maximizing
sequence for the maximization over φ, and it converges pointwise monotonically to the function φw
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defined in (2.13). By Lemma 2.10 (ii) and (v), z �→−F∗(−z) is real-valued, continuous, and increas-
ing. Since φw,n(x)≥−maxi wi, −F∗(−φw,n(x)) is uniformly bounded from below with respect to n and
x. Consequently, also φw is bounded from below. Therefore, the monotone convergence theorem implies
that

lim
n→∞
−

∫
�

F∗(−φw,n(x)) dμ(x)=−
∫
�

F∗(−φw(x)) dμ(x),

where by convention F∗(−∞)= limz→−∞ F∗(z)=−F(0) (see Lemma 2.10). With this, (3.2) finally
becomes

W(μ, ν)= sup

{
−

∫
�

F∗(−φw(x)) dμ(x)−
M∑

i=1

miF
∗(−wi)

∣∣∣∣∣ w ∈RM

}
. (3.3)

Note that this objective is >−∞ for all w ∈RM by the lower bound on φw and the monotonicity and
real-valuedness of F∗. Now we decompose the integration domain � into {Ci(w)}Mi=1 and R (using once
more μ�L and Lemma 2.17; it is only here that we use the radiality of the cost function c so that the
cells Ci(w) are well defined with negligible overlap). For x ∈Ci(w) one finds φw(x)= c(x, xi)−wi, while
for x ∈ R one obtains φw(x)=∞ and therefore F∗(−φw(x))=−F(0). This leads to expression (3.1a) and
also implies that G(w)>−∞.

For fixed x ∈� the map w �→ φw(x) is concave (since it is a minimum over affine functions). Moreover,
the map z �→−F∗(−z) is concave and increasing (cf. Lemma 2.10 (ii)). Therefore, the objective function
in (3.3) and consequently G are concave functions of w.

Remark 3.2 (Finiteness of G). G �≡∞ if and only if G is finite everywhere. Indeed, the last summand in
(3.1a) is independent of w, and −∑M

i=1 F∗(−wi) mi is finite by Lemma 2.10 (v). Finally, if G̃(w)<∞ for
some w ∈RM, where G̃(w)=−∑M

i=1

∫
Ci(w)

F∗
(−c(x, xi)+wi

)
dμ(x), then for gi(x) ∈ ∂F∗(−c(x, xi)+wi)

and g̃i ∈ ∂F∗(wi) we have

G̃(w̃)≤−
M∑

i=1

∫
Ci(w̃)

F∗
(−c(x, xi)+wi

)+ gi(x)(w̃i −wi) dμ(x)

≤ G̃(w)+
M∑

i=1

|w̃i −wi|
∫

Ci(w)

g̃i dμ(x)<∞

for all w̃ ∈RM by the convexity and monotonicity of F∗ from Lemma 2.10 (i).
G �≡∞ is for instance ensured by F(0)<∞ or by boundedness of 	 (which implies R=∅). Indeed,

the former implies boundedness of F∗ from below by Lemma 2.10 (vii), while the latter implies uniform
boundedness of −c(x, xi)+wi from below so that in either case the integrand of G̃ is uniformly bounded
from below.

The following result generalizes the optimality conditions of Theorem 2.16 to unbalanced transport.

Theorem 3.3 (Optimality conditions). Let γ ∈M+(�×�), w ∈RM, and set ρ = π1#γ . If W(μ, ν)<∞
and γ and w are optimal for W(μ, ν) in (2.6) and (3.1), respectively, then

γ =
M∑

i=1

ρ�Ci(w)⊗ δxi , (3.4a)

dρ

dμ
(x) ∈ ∂F∗(−c(x, xi)+wi) for μ-a.e. x ∈Ci(w),

dρ

dμ
(x)= 0 for x ∈ R, (3.4b)

ρ(Ci(w))

mi

∈ ∂F∗(−wi) for i ∈ {1, . . . , M}. (3.4c)

Conversely, if γ and w satisfy (3.4), then they are optimal in (2.6) and (3.1), respectively.

Proof. Let γ ∈M+(�×�) be such that E(γ ) in (2.5) is finite. This implies that γ can be written as
γ =∑M

i=1 γi ⊗ δxi for γi ∈M+(�),
∑M

i=1 γi = π1#γ = ρ�μ and ρ(R)= 0. (Note that the same holds
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true if (3.4) is assumed instead of E(γ )<∞.) We obtain

E(γ )=
∫
�×�

c dγ +F(ρ|μ)+F(π2#γ |ν)

=
M∑

i=1

∫
�\R

c(x, xi) dγi(x)+
∫
�\R

F

(
dρ
dμ

(x)

)
dμ(x)+ F(0) ·μ(R)+

M∑
i=1

F

(
γi(�)

mi

)
·mi

so that the duality gap between the primal and dual formulations (2.6) and (3.1) reads

E(γ )− G(w)=
M∑

i=1

∫
�\R

c(x, xi) dγi(x)+
∫
�\R

[
F

(
dρ
dμ

(x)

)
+ F∗(−φw(x))

]
dμ(x)

+
M∑

i=1

(
F

(
γi(�)

mi

)
+ F∗(−wi)

)
·mi .

Using the Fenchel–Young inequality, which states that F(s)+ F∗(z)≥ s · z with equality if and only if
z ∈ ∂F(s) or equivalently s ∈ ∂F∗(z) [6, Prop. 13.13 and Thm. 16.23], we obtain the lower bound

E(γ )− G(w)≥
M∑

i=1

∫
�\R

c(x, xi) dγi(x)−
∫
�\R
φw(x) dρ(x)−

M∑
i=1

wi · γi(�)

=
M∑

i=1

∫
�\R

[c(x, xi)−wi − φw(x)] dγi(x)≥ 0 ,

where the first inequality is an equality if and only if dρ
dμ (x) ∈ ∂F∗(−φw(x)) for μ-almost every x ∈� \ R

and γi(�)
mi
∈ ∂F∗(−wi) for i= 1, . . . , M, and where the second inequality is an equality if and only if

spt γi ⊂Ci(w) and thus γi = ρ�Ci(w) for i= 1, . . . , M. As a consequence, we have E(γ )− G(w)= 0 if
and only if (3.4) holds.

Now let W(μ, ν)<∞ and γ and w be optimal in (2.6) and (3.1) so that W(μ, ν)= E(γ )= G(w)<∞.
Then necessarily E(γ )− G(w)= 0 and so (3.4) holds. Conversely, if (3.4) holds, then if E(γ )<∞ or
G(w)<∞ (so that the difference E(γ )− G(w) is well defined), the above argument shows that E(γ )−
G(w)= 0, which due to E(γ )≥W(μ, ν)≥ G(w) implies W(μ, ν)= E(γ )= G(w) and thus the optimality
of γ and w. If on the other hand E(γ )= G(w)=∞, then W(μ, ν)=∞ so that γ and w are trivially
optimal.

Corollary 3.4 (Uniqueness of coupling). Let W(μ, ν)<∞ and w be optimal for (3.1). Then the unique
minimizer γ for (2.6) is given by (3.4a), where ρ is uniquely determined by (3.4b) and automatically
satisfies (3.4c).

Proof. We first show that (3.4b) fully specifies ρ. Let S be the set where ∂F∗ is not a singleton. By
convexity, S is countable. In analogy to Lemma 2.17, for any s ∈ S, the set {x ∈R | − c(x, xi)+wi = s}
is Lebesgue-negligible. Since S is countable, the set {x ∈R | − c(x, xi)+wi ∈ S} is Lebesgue-negligible
and thus also μ-negligible. Consequently, dρ

dμ is uniquely defined by (3.4b) on � up to a μ-negligible
set.

For W(μ, ν)<∞, conditions (3.4) are necessary and must therefore be satisfied by any minimizer
γ (which exists by Theorem 2.5). Therefore, as ρ is uniquely determined by (3.4b), so is γ by (3.4a).
Optimality of γ and w ensures that (3.4c) also holds.

To gain some intuition, we will illustrate the previous results with numerical examples in the next
section. Here we just spell out consistency with the balanced transport setting.
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Remark 3.5 (Balanced transport). For classical optimal transport with F= ι{1} (such as the
Wasserstein-2 distance from Example 2.9 (a)) one obtains −F∗(−z)= z. Then (3.1) becomes (2.10)
(and finiteness of WOT(μ, ν) implies that μ(R)= 0). Furthermore, with ∂F∗(z)= 1 for all z, equation
(3.4b) implies ρ =μ�(� \ R)=μ. Then (3.4a) and (3.4c) become (2.11).

From the derivation of (3.1) we learned that it can be interpreted as a variant of the dual problem
to (2.6), where one of the dual variables is parametrized by w. Given the form of primal optimizers γ
according to Theorem 3.3, we can formulate a corresponding variant of the primal problem.

Corollary 3.6 (Primal tessellation formulation of semi-discrete unbalanced transport). Assume
W(μ, ν)<∞ and that optimizers of the unbalanced primal and dual problems (2.6) and (3.1) exist.
Then

W(μ, ν)=min

{
M∑

i=1

∫
Ci(w)

c(x, xi) dρ(x)+F(ρ|μ)

+
M∑

i=1

F

(
ρ(Ci(w))

mi

)
·mi

∣∣∣∣∣ w ∈RM, ρ ∈M+(�), ρ�R= 0

}
. (3.5)

If γ and w are optimal in (2.6) and (3.1), respectively, then w and ρ = π1#γ are optimal in (3.5).
Conversely, if w and ρ are optimal in (3.5), then (3.4a) defines an optimal γ for (2.6).

Proof. For any w ∈RM and ρ ∈M+(�) with ρ�R= 0, the objective function in (3.5) is equal to E(γ )
for γ =∑M

i=1 ρ�Ci(w)⊗ δxi . Therefore, minimizing (3.5) corresponds to minimizing E over a particular
subset of M+(�×�), which implies that the right-hand side of (3.5) is no smaller than W(μ, ν). Now,
if γ and w are a pair of optimizers for (2.6) and (3.1), then by (3.4), the objective function in (3.5) for w
and ρ = π1#γ becomes E(γ )=W(μ, ν) so that the right-hand side of (3.5) actually equals W(μ, ν) and
w and ρ are minimizers of (3.5).

Conversely, if w and ρ minimize (3.5), the induced γ must minimize E .

Remark 3.7 (Optimality of dual variable). The converse conclusion that optimal w in (3.5) are optimal
in (3.1) is in general not true. Indeed, (3.5) only depends on w via the cells {Ci(w)}Mi=1 and therefore is
invariant with respect to adding the same constant to all components of w, which does not change the
cells. In the balanced case, when F∗(z)= z, then (3.1) is also invariant under such transformations (as
long as μ(�)=∑M

i=1 mi). However, for general F, F∗ is nonlinear, and the objective function of (3.1) is
no longer invariant.

Similarly, when the support of the optimal ρ in (3.5) is bounded away from the boundary of some
Ci(w) (see Fig. 3, right), then slightly changing the corresponding wi will not affect the value of (3.5),
whereas (3.1) will usually not exhibit this invariance.

Finally, if c(x, xi) becomes infinite for sufficiently small d(x, xi), then there exists an isolated cell
Ci(w) that is strictly bounded away from any other cell (see Fig. 2, right). In that case, none of the cells
{Cj(w)}Mj=1 depend on wi, and so neither does (3.5). However, the objective function of (3.1) in general
still depends on wi via F∗.

Remark 3.8 (Primal tessellation formulation for classical optimal transport). For classical optimal
transport with F= ι{1}, the term F(ρ|μ) in (3.5) is finite (and zero) if and only if ρ =μ. Likewise,∑M

i=1 F
(
ρ(Ci(w))

mi

) ·mi is finite (and zero) if and only if ρ(Ci(w))=mi. These are the optimality conditions
given in Theorem 2.16. Thus, the objective function in (3.5) is finite only where it is optimal, making it
somewhat pathological.

Even though (3.5) is less pathological for more general unbalanced transport problems, we focus on
(3.1) for numerical optimization.
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ε = 1 ε = 1/2 ε = 1/4 ε = 1/5 ε = 1/8

Figure 2. Semi-discrete Hellinger–Kantorovich transport on�= [0, 1]2 (using the same values for xi/L
and mi/|�| as in Figure 3) for different length scales ε. Top row: optimal cells {Ci(w)}Mi=1; the residual
set R is represented by white; location of the discrete points (x1, . . . , xM) is indicated with red dots.
Bottom row: optimal marginal ρ (using the same colour scale for all images). For large ε, the behaviour
is similar to that of the standard semi-discrete Wasserstein-2 distance. As ε decreases, the effects of
unbalanced transport become increasingly prominent.

3.2. Numerical examples and different models

Depending on the choice of the cost function c and the marginal discrepancy F , the semi-discrete unbal-
anced transport problem exhibits several qualitatively different regimes, which we will illustrate in this
section. The discussion will be complemented with numerical examples.

Problem (3.1) is an unconstrained, finite-dimensional maximization problem over a concave objec-
tive. For simplicity, throughout this section we shall assume that the cost c is radial and F∗ is
differentiable or equivalently F is strictly convex (those assumptions are satisfied for the models from
Example 2.9). This allows us to derive the objective function gradient in Theorem 3.10 and to treat the
optimization problem with methods of smooth (as opposed to nonsmooth) optimization. A simple dis-
cretization scheme is given in Remark 3.12. The resulting discrete problem is solved with an L-BFGS
quasi-Newton method [72]. As stated in Remark 3.13, the quality of the obtained solution can easily be
verified via the primal-dual gap between (3.1) and (3.5). The special case of balanced optimal transport
is discussed in Remark 3.11. Afterwards, we provide numerical illustrations for several examples of
different unbalanced models.

To calculate the gradient of G we make use of the following lemma.

Lemma 3.9 (Derivative of integral functionals). Let f :�×R
M→R be uniformly Lipschitz in its

second argument, and let μ ∈M+(�) and u ∈RM be such that RM � ũ �→ f (x, ũ) is differentiable at
ũ= u for μ-almost all x ∈�. Define H:RM→R by H(ũ)= ∫

�
f (x, ũ) dμ(x). If |H(u)|<∞, then H is

differentiable at ũ= u with

∂H
∂ ũ

(u)=
∫
�

∂f

∂ ũ
(x, u) dμ(x) .

Proof. This is similar to the proof of Theorem 2.27 in [26], which however only covers the case where
M = 1 and f (x, ·) is differentiable for all x ∈�. We show that the directional derivative of H in an
arbitrary direction û ∈RM exists and is of the desired form. Indeed, let L> 0 be the Lipschitz constant
of f in its second argument. By assumption, there exists S⊂� Lebesgue-negligible such that f (x, ·) is
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differentiable at u for all x ∈� \ S. Now for t �= 0,

H(u+ tû)−H(u)

t
=

∫
�\S

f (x, u+ tû)− f (x, u)

t
dμ(x) .

Since the integrand is bounded in absolute value by L‖û‖ and since it converges pointwise to ∂f
∂u

(x, u) · û
as t→ 0, by the Dominated Convergence Theorem, we have

lim
t→0

H(u+ tû)−H(u)

t
=

∫
�\S

∂f

∂ ũ
(x, u) · û dμ(x)=

∫
�

∂f

∂ ũ
(x, u) dμ(x) · û .

The arbitrariness of û, the linearity of the directional derivative, and the Lipschitz continuity of H imply
that H is differentiable and has the desired form.

Note that one may also replace the Lipschitz condition by a convexity or concavity condition, in
which case dominated convergence would be replaced with monotone convergence; such a procedure
would allow one to treat different examples in the later application Lemma 4.5.

Theorem 3.10 (Gradient of dual tessellation formulation). If F is strictly convex and G from Theorem
3.1 is finite (e.g., if F(0) is finite or 	 is bounded, see Remark 3.2) then G is differentiable with

∂G
∂wi

(w)= (F∗)′(−wi) ·mi −
∫

Ci(w)

(F∗)′(−c(x, xi)+wi) dμ(x) . (3.6)

Proof. Define

f (x, w)=min{−F∗(−c(x, xj)+wj) | j= 1, . . . , M}.
Since F∗ is increasing by Lemma 2.10 (ii), then f (x, w)=−F∗(−c(x, xi)+wi) for x ∈Ci(w). If 	 is
bounded, the residual set R is empty; otherwise, we have f (x, w)=−F∗(−∞)= F(0) for x ∈ R. Therefore

G(w)=
∫
�

f (x, w) dμ(x)−
M∑

i=1

F∗(−wi) ·mi.

By Remark 3.2, G(w) is finite for all w ∈RM. Thus, there exists �̃⊂� with μ(� \ �̃)= 0 such
that f (x, w) is finite for all x ∈ �̃ and w ∈RM. Now consider the function �×R � (x, v) �→ fi(x, v)=
−F∗(−c(x, xi)+ v), where i ∈ {1, . . . , M}. Furthermore, by Lemma 2.10 (vi) the strict convexity of F
implies continuous differentiability of its conjugate F∗ so that fi(x, ·) is differentiable for any x ∈� with
fi(x, ·) finite. Moreover, since F∗ is convex and increasing, ∂fi/∂v is nonpositive and decreasing so that
fi(x, ·) (if finite) is Lipschitz on (−∞,ω] for anyω ∈Rwith Lipschitz constant L≤− ∂fi

∂v
(x,ω)≤ (F∗)′(ω).

Consequently, (−∞,ω]M � ŵ �→ f (x, ŵ) is Lipschitz with constant
√

M(F∗)′(ω) for all x ∈ �̃ and differ-
entiable in ŵ for all x ∈ �̃ \ S, where S=⋃M

i=1 ∂Ci(w) is Lebesgue-negligible and thus alsoμ-negligible.
Thus, by the previous Lemma, G is differentiable with

∂G(w)

∂wi

= (F∗)′(−wi) ·mi +
∫
�

∂f

∂wi

(x, w) dμ(x) ,

where ∂f
∂wi

(x, w)=−(F∗)′(−c(x, xi)+wi) for μ-almost all x ∈Ci(w) and ∂f
∂wi

(x, w)= 0 for μ-almost all
x /∈Ci(w).

Remark 3.11 (Balanced transport). For classical optimal transport with F= ι{1} as in Remark 3.5,
Theorem 3.10 reduces to well-known results. In particular, (3.6) becomes

∂G(w)

∂wi

=mi −μ(Ci(w)) . (3.7)
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For more details we refer, for example, to [37, Thm. 1.1] or [52, Thm. 40]. For marginals μ= μ̃L with
μ̃ ∈ C(�) the Hessian

∂2G(w)

∂wi∂wj

=−∂μ(Ci(w))

∂wj

(3.8)

can also be computed explicitly in terms of face integrals (see, for instance, [37, Thm. 1.3] and [52, Thm.
45]). Therefore (2.10) lends itself to efficient numerical optimization [2, 37, 44, 50]. For special cost
functions, most prominently for the squared Euclidean distance, the gradient (3.7) and Hessian (3.8)
can be evaluated numerically efficiently and with high precision, allowing the application of Newton’s
method [37].

The semi-discrete unbalanced problem (3.1) is more complicated due to the influence of the marginal
fidelity F and since we are often interested in non-standard cost functions such as cHK. Generalizing the
above methods for balanced transport to the unbalanced case is therefore beyond the scope of this article.

Remark 3.12 (Discretization). Problem (3.1) is already finite-dimensional. We must however evaluate
the integrals over Ci(w). For classical optimal transport and special cost functions c, these integrals can
be evaluated essentially in closed form (see Remark 3.11). For simplicity, in this section, we approximate
(�,μ) with Dirac masses on a fine Cartesian grid. The cells {Ci(w)}Mi=1 are approximated using brute
force by computing c(x, xi)−wi for each point x in the Cartesian grid for each i ∈ {1, . . . , M}. Points
x on the common boundaries of several cells {Ci(w)}Mi=1 are arbitrarily assigned to one of those cells.
(An efficient GPU-implementation of this brute force method can be found in [15].) Note that for the
special cost c(x, y)= |x− y|2, the Laguerre diagram {Ci(w)}Mi=1 can be computed exactly, up to machine
precision, and much more efficiently using, e.g., the lifting method [3, Sec. 6.2.2], which has complexity
O(M log M) in R

2 and O(M2) in R
3. Our discretization yields an approximation of G(w) from (3.1a)

and of ∇G(w) from (3.6), as required for the quasi-Newton method. In the numerical examples below,
we use �= [0, L]2 for some L> 0 and approximate it by a regular Cartesian grid with 1000 points
along each dimension.

Remark 3.13 (Primal-dual gap). The sub-optimality of any vector w ∈RM for (3.1) can be bounded
by the primal-dual gap between (3.1a) and the objective of (3.5). We avoid the remaining optimization
over ρ in (3.5) by generating a feasible candidate via (3.4b). Corollaries 3.4 and 3.6 guarantee that the
primal-dual gap vanishes for optimal w.

In the remainder of the section, we illustrate semi-discrete unbalanced transport by numerical exam-
ples. In particular, we showcase qualitative differences between different models as well as phenomena
due to model-inherent length scales, which do not occur in classical, balanced transport.

Example 3.14 (Comparison of unbalanced transport models). The structure of the optimal unbalanced
coupling γ in (2.6) and its first marginal ρ = π1#γ can vary substantially, depending on the choices for
c and F. Below we discuss the models from Example 2.9 with a corresponding numerical illustration in
Fig. 3.

(a) Standard Wasserstein-2 distance (W2, Fig. 3(a)). Since this is an instance of balanced transport,
necessarily we have ρ =μ. Furthermore, the cells {Ci(w)}Mi=1 are standard, polygonal Laguerre
cells and R=∅.

(b) Gaussian Hellinger–Kantorovich distance (GHK, Fig. 3(b)). The cells are still standard polyg-
onal Laguerre cells with R=∅. This time, however, we usually have ρ �=μ. Nevertheless, we
find spt ρ = sptμ since (3.4b) with (F∗KL)′(z)= ez > 0 implies dρ

dμ
> 0. This behaviour essentially

originates from the infinite slope of FKL in 0. Since c(x, y)= d(x, y)2, the density dρ
dμ

is piecewise
Gaussian.

(c) Hellinger–Kantorovich distance (HK, Fig. 3(c)). This time, the generalized Laguerre cells have
curved boundaries, and also R is in general no longer empty, as cHK(x, y)=+∞ for d(x, y)≥ π

2
.

Thus, ρ = 0 on R by (3.4b), independent of μ. However, similarly to (b) we have dρ
dμ

(x)> 0 on the
complement of R, the union of all generalized Laguerre cells.
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W2 GHK HK QR scaled QR

(a) (b) (c) (d) (e)

Figure 3. Semi-discrete transport between the Lebesgue measure on �= [0, L]2, L= 5 and a dis-
crete measure with M = 4 Dirac masses of locations (x1, x2, x3, x4)= L · ((0.375, 0.375), (0.75, 0.35),
(0.65, 0.75), (0.25, 0.8)) and weights (m1, m2, m3, m4)= |�| · (0.38, 0.29, 0.19, 0.14). Top row: optimal
cells {Ci(w)}Mi=1; the residual set R is represented by white; location of the discrete points (x1, . . . , xM)
is indicated with red dots. Bottom row: optimal marginal ρ (identical colour scale in all figures;
regions with dρ

dμ
(x)= 0 are white for emphasis) and boundaries of cells {Ci(w)}Mi=1 (red) are shown

for models (a)–(b) from Examples 2.9 and 3.14. Figure (e) shows the same model as (d), only with
c(x, y)= [d(x, y)/2]2 instead of c(x, y)= d(x, y)2; on some cells spt ρ is now strictly bounded away from
the boundaries of Ci(w).

(d) Quadratic regularization (QR, Fig. 3(d)-(e)). Since c(x, y)= d(x, y)2, once more the cells are
polygonal Laguerre cells and R=∅. However, (3.4b) together with (F∗)′(z)= 0 for z≤−2 implies
dρ
dμ

(x)= 0 whenever φw(x)=min
{
c(x, xi)−wi | i= 1, . . . , M

}≥ 2, even on � \ R. Intuitively, this
is possible since F and its right derivative are finite at z= 0 so that, for large transport costs
c(x, xi), mass removal may be more profitable than transport.

We emphasize that the reasons for dρ
dμ

(x)= 0 between models (c) and (d) are different: In the
Hellinger–Kantorovich case, c(x, xi)=∞ for x ∈ R prohibits any transport. In the quadratic case,
despite finite transport cost and R=∅, it may still be cheaper to remove and create mass via the fidelity
F, due to its behaviour at z= 0. Also the slope at which dρ

dμ
approaches zero is different for both models,

as can be seen in the one-dimensional slice visualized in Fig. 4.

Example 3.15 (Varying transport length scales). As illustrated in the previous comparison of different
models, unbalanced transport models typically have an intrinsic length scale that determines how far
mass is optimally transported. Varying this length scale for fixed μ and ν changes the behaviour of
the semi-discrete transport. For illustration, we concentrate on the Hellinger–Kantorovich distance and
vary its intrinsic length scale by replacing c(x, y)= cHK(x, y) with

c(x, y)= cεHK(x, y)= cHK

(
x

ε
,

y

ε

)
=

⎧⎨
⎩
−2 log

[
cos

(
d(x, y)/ε

)]
if d(x, y)< π

2
ε,

∞ otherwise,

that is, we set

HKε(μ, ν)2 = inf

{∫
�×�

cεHKdγ +
∫
�

FKL

(
dπ1#γ

dμ

)
dμ+

∫
�

FKL

(
dπ2#γ

dν

)
dν

∣∣∣∣∣ γ ∈M+(�×�)

}
.
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Figure 4. One-dimensional slices of computational results from Figure 3 along [0, L]× {0.375 L} with
L= 5. Left: φw for optimal w ∈RM. For models (a), (b), and (d), φw is piecewise quadratic; for (c) the
profile is determined by cHK and φw =∞ on R �= ∅. Right: Optimal density dρ

dμ
, where dρ

dμ
= (F∗)′(−φw)

on � \ R and 0 elsewhere by (3.4b). For (a) the density is constant, for (b) it is piecewise Gaussian,
for (c) it is piecewise given by cos (d(y, xi))2 on � \ R and 0 on R, and for (d) it is given by truncated
paraboloids.

Note that this is equivalent to rescaling the domain � by the factor 1
ε

and simultaneously replacing the
measures μ and ν by their pushforwards under x �→ x

ε
.

For large ε, transport becomes very cheap relative to mass changes and thus asymptotically, as
ε→∞, one recovers the Wasserstein-2 distance: limε→∞ εHKε(μ, ν)=W2(μ, ν) by [45, Thm. 7.24]. In
particular, the distance diverges when μ(�) �= ν(�). Conversely, as ε↘ 0, transport becomes increas-
ingly expensive and mass change is preferred. Asymptotically one obtains limε↘0 HKε(μ, ν)=Hell(μ, ν)
[45, Thm. 7.22], where Hell denotes the Hellinger distance

Hell(μ, ν)2 =
∫
�

(√
dμ

dσ
−

√
dν

dσ

)2

dσ

for σ ∈M+(�) an arbitrary reference measure withμ, ν� σ (for instance |μ| + |ν|with | · | indicating
the total variation measure). By positive one-homogeneity of the function (m1, m2) �→ (

√
m1 −√m2)2,

the value of Hell(μ, ν) does not depend on the choice of σ . In our semi-discrete setting, μ and ν are
always mutually singular so that Hell(μ, ν)2 =μ(�)+ ν(�).

Figure 2 illustrates the optimal cells {Ci(w)}Mi=1 and marginal densities ρ = π1#γ between the uniform
volume measure μ=L on�= [0, 1]2 and a discrete measure ν =∑M

i=1 mi δxi for M = 4, using different
values of the intrinsic length scale ε (the same experiment with M= 128 discrete points is shown in
Fig. 5). As expected, for large ε the cells {Ci(w)}Mi=1 look very similar to standard, polygonal Laguerre
cells for the squared Euclidean distance c(x, y)= d(x, y)2, and the residual set R is empty. The optimal
ρ is essentially equal to μ, as dictated by balanced transport. As ε decreases, the boundaries between
the cells become curved. Eventually, R becomes non-empty, and finally, the cells start to decompose
into disjoint discs. In accordance, the density of the optimal marginal ρ is given on each cell Ci(w) by
cos (d(x, xi)/ε)2 · ewi . The interpolatory behaviour of HKε between the Wasserstein-2 distance W2 and
the Hellinger distance Hell for ε→∞ and ε↘ 0 is numerically verified in Fig. 6.

4. Unbalanced quantization

In this section we study the unbalanced quantization problem: we aim to approximate a given Lebesgue-
continuous measure μ ∈M+(�) by a discrete, quantized measure ν =∑M

i=1 mi · δxi with at most M ∈N
Dirac masses, where the unbalanced transport cost serves as a measure of approximation quality. To be
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ε = 4/5 ε = 2/5 ε = 1/5 ε = 1/10 ε = 1/20

Figure 5. Semi-discrete Hellinger–Kantorovich distance on�= [0, 1]2 for different length scales ε, as
in Figure 2, but for M= 128. The evolution of one cell Ci(w) for fixed i is highlighted in red (top row).
For large ε, Ci(w) is essentially the standard Wasserstein-2 Laguerre cell, not necessarily containing xi.
For small ε, Ci(w) becomes (a fraction of) the open ball Bεπ/2(xi).
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Figure 6. HKε(μ, ν)2 for different length scales ε for the setup from Figure 2. Left: as ε↘ 0, HKε(μ, ν)2

tends to Hell(μ, ν)2 = 2. Right: as ε→∞, ε2HKε(μ, ν)2 tends to W2(μ, ν)2.

precise, we consider the optimization problem

min

{
W(μ, ν)

∣∣∣∣∣ ν =
M∑

i=1

miδxi , x1, . . . , xM ∈�, m1, . . . , mM ≥ 0

}
. (4.1)

Existence of minimizers will be established in Theorem 4.2. Applications include optimal location prob-
lems (economic planning), information theory (vector quantization) and particle methods for PDEs
(approximation of continuous initial data by particles). We first characterize optimal particle config-
urations in terms of Voronoi diagrams, then consider a corresponding numerical scheme, and finally
prove the optimal energy scaling of the quantization problem in terms of M for the case d= 2. The pro-
cedure essentially follows the one known for classical optimal transport; the important fact is that the
Voronoi tessellation structure survives if mass changes are allowed.

The quantization cost will essentially depend on the function −F∗ ◦ (− 	) for 	 from Definition 2.8
(see Theorem 4.2), which is why we briefly list a few of its relevant properties. We will mention below
when these properties are assumed or used.
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Lemma 4.1 (Properties of −F∗ ◦ (− 	)). Let 	 define a radial cost and F a marginal discrepancy and
consider the following conditions on them,

F(0)<∞ or 	(s)<∞∀ s ∈ [0,∞), (4.2)

F(0)> 0 , (4.3)

F(1)= 0 , (4.4)

lim
s→∞

	(s)=∞ , (4.5)

	 is Lipschitz on [0, diam(�)] or on [0,∞) when � is unbounded. (4.6)

Under these conditions, −F∗ ◦ (− 	) satisfies the following properties:

(P1) −F∗ ◦ (− 	) is nondecreasing (increasing before it potentially reaches its maximum),
(P2) −F∗ ◦ (− 	) is continuous,
(P3) −F∗ ◦ (− 	)<∞ on (0,∞),
(P4) −F∗ ◦ (− 	)> 0 on (0,∞),
(P5) −F∗ ◦ (− 	)(0)= 0,
(P6) lims→∞ −F∗ ◦ (− 	)(s)= F(0),
(P7) −F∗ ◦ (− 	) is Lipschitz on [0, diam(�)] or on [0,∞) when � is unbounded.

More specifically, (P1) and (P2) hold by properties of F and 	 according to Definitions 2.2 and 2.8,
(4.2)⇒ (P3), (4.3)⇒ (P4), (4.4)⇒ (P5), (4.5)⇒ (P6), and (4.6)⇒ (P7).

We leave the proof as a straightforward exercise, it essentially being a direct consequence of
Lemma 2.10 and Definitions 2.2 and 2.8. Note that the conditions are not necessary for the properties
(P1)-(P7) to hold, which is why in the remainder of the section we will solely refer to these proper-
ties rather than to conditions on F and 	. However, the above conditions on F and 	 are natural: (4.2)
expresses that it is always possible to either completely remove or transport mass at any given location
with finite cost (W(μ, ν) may still be infinite, if F(0)=∞, supz 	(z)=∞, and μ has strong tails), (4.3)
expresses that complete mass removal has a positive cost, (4.4) expresses that there is zero cost for not
changing the mass, (4.5) expresses that the transport cost becomes infinite for infinite distances, and
(4.6) ensures that the transport cost does not increase superlinearly. Of course (4.6) is not necessary for
(P7), since the growth of 	 can be compensated by a sufficiently slow increase of−F∗(−·), which corre-
sponds to F growing only slowly (or being bounded) near zero. Examples for this are the GHK and HK
distances; see Example 4.3. Throughout this section, we will assume that zero mass change induces zero
cost, i.e. (4.4). This is the natural choice for approximating μ, as it implies a preference for π1#γ =μ in
the first marginal fidelity term F of (2.5). Since F(z)≥ 0 by Definition 2.2, a consequence is

0 ∈ ∂F(1) ⇔ 1 ∈ ∂F∗(0) and F∗(0)= 0. (4.7)

Also note that for the quantization problem only the behaviour of F on [0, 1] is relevant since by a
simple comparison argument one can see that any minimizer ν in (4.1) and any associated coupling γ
in Definition 2.4 satisfy π2#γ = ν and π1#γ ≤μ.

4.1. Unbalanced quantization as a Voronoi tessellation problem

The following theorem shows that the quantization problem can equivalently be formulated as an opti-
mization of the points x1, . . . , xM with a functional depending on the Voronoi tessellation induced by
(x1, . . . , xM).
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Theorem 4.2 (Tessellation formulation of quantization problem). For F satisfying (4.4), the unbalanced
quantization problem (4.1) is equivalent to the minimization problem

min
{
J(x1, . . . , xM)

∣∣ x1, . . . , xM ∈�
}

(4.8)

where

J(x1, . . . , xM)=
M∑

i=1

∫
Vi(x1,...,xM )

−F∗(−c(x, xi)) dμ(x)

and where Vi(x1, . . . , xM)= {x ∈� | d(x, xi)≤ d(x, xj) for j= 1, . . . , M } is the Voronoi cell associated
with xi, and we adopt the convention −F∗(−∞)= F(0) and ∂F∗(−∞)= {0} (cf. Lemma 2.10). Indeed,
the minimum values coincide and, if (x1, . . . , xM) minimizes (4.8) and the minimal value is finite, then
(x1, . . . , xM, m1, . . . , mM) minimizes (4.1) for

mi =
∫

Vi(x1,...,xM )

∂F∗(−c(x, xi)) dμ(x) , i= 1, . . . , M. (4.9)

(By the proof of Corollary 3.4 the subgradient ∂F∗(−c(x, xi)) contains a unique element for μ-almost
every x and so the mi are well defined.) Furthermore, the optimal transport plan γ associated with
W(μ, ν) only transports mass from each Voronoi cell Vi(x1, . . . , xM) to the corresponding point xi.

Example 4.3 (Tessellation formulation for unbalanced transport models). The cost functional in (4.8)
and the masses in (4.9) for the models from Example 2.9 are

W2:

⎧⎪⎨
⎪⎩

J =
M∑

i=1

∫
Vi

d(x, xi)
2 dμ(x) ,

mi =μ(Vi) ,

GHK:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J =
M∑

i=1

∫
Vi

[
1− e−d(x,xi)2

]
dμ(x) ,

mi =
∫

Vi

e−d(x,xi)2
dμ(x) ,

HK:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J =
M∑

i=1

∫
Vi

sin2
(

min
{

d(x, xi),
π

2

})
dμ(x) ,

mi =
∫

Vi

cos2
(

min
{

d(x, xi),
π

2

})
dμ(x) ,

QR:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J =
M∑

i=1

∫
Vi∩B√2(xi)

[
d(x, xi)

2 − d(x, xi)4

4

]
dμ(x)+μ(Vi \ B√2(xi)) ,

mi =
∫

Vi

max

{
1− d(x, xi)2

2
, 0

}
dμ(x).

Remark 4.4. An intuitive strategy for proving Theorem 4.2 could be as follows. One starts from the
primal tessellation formulation in Corollary 3.6 and in addition minimizes over masses (m1, . . . , mM)
and positions (x1, . . . , xM). By (4.4) we find that minimizing masses are given by mi = ρ(Ci(w)). Next,
only the transport term depends on the weights w, and since the cost c is a strictly increasing function
of distance, the term is minimized for w= 0, thus essentially reducing the generalized Laguerre cells
Ci(w) into (truncated) Voronoi cells. Finally, the remaining minimization over ρ can be handled with
arguments from convex analysis, similar to those of Theorem 3.3, thus arriving at (4.8). We give a
shorter proof, using results from the dual tessellation formulation and its optimality conditions.

Proof of Theorem 4.2. First we consider minimization over the masses (mi)i for fixed positions (xi)i.
Let ν =∑M

i=1 mi · δxi be any admissible measure for (4.1). From (3.1b) we find W(μ, ν)≥ G(0) for any
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positions x1, . . . , xM and masses m1, . . . , mM. Note that G(0) does not depend on m1, . . . , mM since we
assume F∗(0)= 0, (4.7). Consider now the case where G(0)<∞ (and hence G is finite for all values of
w, see Remark 3.2). We now show W(μ, ν)= G(0) for a particular choice of m1, . . . , mM, which therefore
must be optimal (for given locations x1, . . . , xM). We first define ρ via (3.4b) and then γ via (3.4a) for
w= 0 (ρ and γ are fully determined, see Corollary 3.4). Furthermore, since 1 ∈ ∂F∗(0) by (4.7), equation
(3.4c) is satisfied by the choice mi = ρ(Ci(0)). (Note that had we chosen F(ẑ)= 0 instead of F(1)= 0,
one would simply use mi = ρ(Ci(0))/ẑ so that (4.9) would change by the factor ẑ.) By Theorem 3.3
(optimality conditions), γ and w are optimizers of E and G for these mass coefficients, which implies
that W(μ, ν)= G(0). Using F∗(0)= 0 from (4.7), we have

min
(m1,...,mM )

W(μ, ν)= G(0)=−
M∑

i=1

∫
Ci(0)

F∗
(−c(x, xi)

)
dμ(x)+ F(0) ·μ(R) .

Since c(x, y) is a strictly increasing function of the distance d(x, y), for w= 0 we find Ci(0)⊂
Vi(x1, . . . , xM). With the convention−F∗(−∞)= F(0) (cf. Lemma 2.10), the term F(0) ·μ(R) becomes∫

R
−F∗(−φ0(x)) dμ(x), where φ0 was defined in equation (2.13). Since μ�L, integrating over R and

� \ R is equivalent to integrating over all Voronoi cells {Vi(x1, . . . , xM)}Mi=1, and we arrive at

min
(m1,...,mM )

W(μ, ν)=−
M∑

i=1

∫
Vi(x1,...,xM )

F∗
(−c(x, xi)

)
dμ(x) , (4.10)

which establishes equivalence between (4.1) and (4.8).
Finally, with mi = ρ(Ci(0)) and ρ given by (3.4b) one obtains (4.9), where the integral runs over

Ci(0) instead of Vi(x1, . . . , xM). If the minimum is finite, then either μ(R)= 0 or F(0) is finite, which
implies the convention (F∗)′(−∞)= 0 (cf. Lemma 2.10 (viii)). In both cases we can extend the area
of integration to Vi(x1, . . . , xM) without changing its value. Equation (3.4a) implies that mass is only
transported from each Voronoi cell Vi(x1, . . . , xM)⊃Ci(0) to the corresponding point xi.

If on the other hand G(0)=∞, then by (3.1b) for all ν concentrated on the positions (xi)i one has
W(μ, ν)=∞. This establishes the equality of the minimal values in both the finite and infinite cases.

Now we consider minimization over the positions (xi)i. We merely need to consider the case where
the minimal value is finite, as otherwise any configuration is optimal. Let ((xk

i )
M
i=1)k∈N be a minimizing

sequence of points for the right-hand side of (4.10). After selection of a subsequence and relabelling the
order of the points, there will be an integer N ∈ {0, . . . , M} and points (xi)N

i=1 such that limk xk
i = xi for

i ∈ {1, . . . , N} and limk |xk
i | =∞ for i>N. Let (ρk)k∈N be the sequence induced via (3.4b) from ((xk

i )i)k

(for w= 0). Using non-negativity of c, convexity of F∗ and the fact that 1 ∈ ∂F∗(0), we get that ρk ≤μ
for all k and hence the sequence is tight, allowing extraction of a weak (i.e. in duality with bounded
continuous functions) cluster point ρ. Let mk

i = ρk(Vi((xk
j )j)) be the corresponding optimal masses, as

above, and let mi = ρ(Vi((xj)N
j=1)) be the masses induced by ρ for i ∈ {1, . . . , N}. Using weak convergence

of ρk→ ρ and absolute continuity of ρ one finds that mk
i →mi for i ∈ {1, . . . , N} and mk

i → 0 for i>N.
One then has that νk := ∑M

i=1 mk
i · δxk

i
converges weakly to ν := ∑N

i=1 mi · δxi . By [45, Lemma 3.9], W is
weakly lower-semicontinuous and therefore the points (xi)N

i=1 are candidates for a minimizer in (4.10).
However, if N <M, they are too few. But adding arbitrary points on the right-hand side of (4.10) will
not increase the objective, and thus any such extension must yield a minimizer.

4.2. A numerical method: Lloyd’s algorithm and Quasi-Newton variant

Formulation (4.8) has the advantage over (4.1) that it does not contain an inner minimization to find
the optimal transport coupling. Thus, we aim to solve (4.8) numerically. To this end, we compute the
gradient ∂xj J (see also analogous derivatives for similar functionals as for instance in [13]).
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Lemma 4.5 (Derivative of the cost functional J). Let μ ∈M+(�) be absolutely continuous, and let
(P1) and (P7) hold. Then for j= 1, . . . , M,

∂xj J(x1, . . . , xM)=
∫

Vj(x1,...,xM )

r(d(x, xj))(xj − x) dμ(x)

where

r(s)= [− F∗ ◦ (− 	)]′(s)

s
(note that−F∗ ◦ (− 	) is differentiable for almost every s ∈ [0, diam(�)] so that r and r(d(·, xj)) are well
defined almost everywhere).

Example 4.6 (Cost derivative for unbalanced transport models). For the models from Example 2.9 one
can readily check

W2: r(s)= 2 ,

GHK: r(s)= 2e−s2
,

HK: r(s)= sin (2s)/s if s≤ π
2

and 0 otherwise,

QR: r(s)=max{2− s2, 0} .

Note that W2 only satisfies assumption (P7) on bounded domains.

Proof of Lemma 4.5. Note that J(x1, . . . , xM)= ∫
�

f (x, (x1, . . . , xM)) dμ(x) with

f (x, (x1, . . . , xM))=min{−F∗(− 	(d(x, xi))) | i= 1, . . . , M}
since −F∗ ◦ (− 	) is nondecreasing by (P1). By the Lipschitz assumption (P7) on F∗ ◦ (− 	), f is
Lipschitz in its second argument. Furthermore, F∗ ◦ (− 	) is differentiable almost everywhere, and
d(x, xi) is differentiable in its second argument for all x �= xi. Therefore, f is differentiable in its second
argument at (x1, . . . , xM) for almost all x ∈� (thus for μ-almost all x ∈�) with

∂xj f (x, (x1, . . . , xM))=
⎧⎨
⎩

r(d(x, xj))(xj − x) if x ∈ Vj(x1, . . . , xM),

0 otherwise.

Lemma 3.9 now implies the desired result.

To find a minimizer of J and thus a solution to the optimality condition ∂xj J = 0 for j= 1, . . . , M, one
can perform the following fixed point iteration associated with the optimality conditions,

x(k+1)
i =

∫
Vi(x

(k)
1 ,...,x(k)

M )

xr(d(x(k)
i , x)) dμ(x)∫

Vi(x
(k)
1 ,...,x(k)

M )

r(d(x(k)
i , x)) dμ(x)

, i= 1, . . . , M,

starting from some initialization x(0)
1 , . . . , x(0)

M ∈�. This iteration is well defined as long as the denomi-
nator is nonzero, for instance if μ is strictly positive on � (recall that −F∗(− 	(s)) is strictly increasing
for small s by (P1)). This is a generalization of Lloyd’s algorithm for computing centroidal Voronoi
Tessellations [21], which are critical points of the function

J̃(x1, . . . , xM)=
M∑

i=1

∫
Vi(x1,...,xM )

|x− xi|2 dμ(x) .

Its convergence has been proven in a number of settings [13, 24, 60], which also cover many possible
choices for ourμ, c, and F. Since the algorithm is based solely on the first variation one can expect linear
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Figure 7. Quantization energy decrease of Lloyd’s algorithm and a BFGS method versus number of
iterations (left) and function evaluations (centre; for the BFGS method function evaluations differ from
iterations due to additional evaluations in the stepsize control) for the example shown on the right.
Right: Input density μ and optimal locations (x1, . . . , xM) for M= 100, where μ is population den-
sity in Germany 2015 (published by the Federal Statistical Office of Germany in the “Regional Atlas”
http://www.destatis.de/regionalatlas). The computations use the Hellinger–Kantorovich model.

W2 GHK HK QR

(a) (b) (c) (d)

Figure 8. Quantization results for μ= (1+ exp (− |x|2
2(4π )2 )) ·L�� and�= [− 4π , 4π ]2, M= 16 on the

same models as in Figure 3. Top row: optimal locations x1, . . . , xM and Voronoi cells {Vi(x1, . . . , xM)}Mi=1.
Bottom row: optimal marginal ρ = π1#γ (identical colour scale in all figures; regions with dρ

dμ
(x)= 0 are

white for emphasis). For (a) we have ρ =μ.

convergence. To achieve faster convergence one may use a quasi-Newton method for the minimization
of J instead, which seems particularly well suited since the optimization is performed over a finite-
dimensional space.

Our numerical implementation is performed in Matlab. The integrals over a Voronoi cell
Vi(x1, . . . , xM) are evaluated using Gaussian quadrature on the triangulation that is obtained by connect-
ing each vertex of Vi(x1, . . . , xM) with xi. The Voronoi cells themselves are computed using the built-in
function voronoin. Figure 7 shows a slightly faster convergence of the BFGS method compared to
Lloyd’s algorithm, while Figure 8 shows quantization results for the same models as in Figure 3, result-
ing in different point distributions. Similarly, Figure 9 shows quantization results for the same input
marginal μ and the Hellinger–Kantorovich model, but for varying length scales.
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ε = 15.391 ε = 8.886 ε = 4.867 ε = 2.591

ε = 1.650 ε = 1.106 ε = 0.770 ε = 0.541

Figure 9. Quantization results for the Hellinger–Kantorovich model and different length scales, show-
ing the optimal Laguerre cells Ci(0) (which coincide with the optimal Voronoi cells up to the set R from
(2.9)) and the optimal marginals ρ = π1#γ (same domain and μ as in Figure 8; identical colour scale
in all figures).

4.3. Crystallization in two dimensions

In this section we consider the asymptotic behaviour of the unbalanced quantization problem in the limit
of infinitely many points, M→∞, in two dimensions,�⊂R

2, in which case crystallization results from
discrete geometry are available.

To simplify the exposition in this section we assume (P3) so that the unbalanced transport cost is
always finite. Additionally we assume (P4), which simply ensures that the quantization problem is not
trivially degenerate. The situation without these conditions can in principle be treated similarly, but
requires a number of technical case distinctions (such as whether the domain of (−F∗ ◦ (− 	)) is open
or closed).

As we increase M, the average distance between points of � and their nearest discrete point xi

decreases so that the (balanced) transport cost from μ onto ν vanishes in the limit, whereas the cost
for changing mass remains unchanged. Therefore, in the limit M→∞, the interplay of transport and
mass change in unbalanced transport would not be visible. To avoid this, we will rescale the metric on the
domain� as M grows and study the resulting different regimes, depending on the scaling. Consequently,
in this section, we consider the scaled cost

JM
ε

(x1, . . . , xM)=
M∑

i=1

∫
Vi(x1,...,xM )

−F∗
(
−	

(
d(x, xi)

ε

))
dμ(x) (4.11)

for M ∈N, ε ∈ (0,∞).
We first prove a lower bound on the quantization cost JM

ε
for the Lebesgue measure, which corre-

sponds to a perfect triangular lattice. Then a corresponding upper bound is derived. Finally, for μ with
Lipschitz continuous Lebesgue density, we show that these two bounds imply that asymptotically a
locally regular triangular lattice becomes an optimal quantization configuration, where the local density
of points depends on the density of μ.

Theorem 4.7 (Lower bound for quantization of the Lebesgue measure). Let�⊂R
2 be a convex polygon

with at most six sides, let μ be the Lebesgue measure on �, and let (P1) hold. A lower bound on (4.11)
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is given by

min
x1,...,xM∈R2

JM
ε

(x1, . . . , xM)≥M
∫

H(|�|/M)

−F∗
(
−	

(
d(x, 0)

ε

))
dx , (4.12)

where H(|�|/M) is a regular hexagon of area |�|/M=L(�)/M centred at the origin 0.

Remark 4.8 (Cost of the triangular lattice). Comparing with Theorem 4.2, the lower bound is exactly
the unbalanced transportation cost W(μ, ν) from a regular triangular lattice ν of M Dirac measures of
mass

m=
∫

H(|�|/M)

∂F∗
(
−	

(
d(x, 0)

ε

))
dx ,

whose Voronoi cells are translations of H(|�|/M), onto μ the Lebesgue measure on the union of these
Voronoi cells.

Proof of Theorem 4.7. Since −F∗(− 	( · /ε)) is increasing by (P1), for x1, . . . , xM ∈�, we have

JM
ε

(x1, . . . , xM)=
M∑

i=1

∫
Vi(x1,...,xM )

−F∗
(
−	

(
d(x, xi)

ε

))
dx

=
∫
�

min
i=1,...,M

−F∗
(
−	

(
d(x, xi)

ε

))
dx ,

and the result follows immediately from L. Fejes Tóth’s Theorem on Sums of Moments [33] (see also
[54, 68]).

Remark 4.9 (Degeneracy of minimizers). As opposed to the quantization problem for classical optimal
transport, the set of minimizers in the unbalanced transport case can exhibit strong degeneracies. As an
example, consider the case of Hellinger–Kantorovich transport with M� 4 |�|/(π 3ε2). Let x1, . . . , xM

be any arrangement of the point masses such that the balls Bε π/2(xi) are pairwise disjoint and included
in � (which necessarily implies M ≤ 4 |�|/(π 3ε2)). Then (x1, . . . , xM) achieves the lower bound since

JM
ε

(x1, . . . , xM)=
M∑

i=1

∫
Vi(x1,...,xM )

−F∗
(
−	

(
d(x, xi)

ε

))
dx

=
M∑

i=1

∫
Vi(x1,...,xM )

sin2
(

min
{

d(x, xi)/ε,
π

2

})
dx

= |�| −Mε2 π 3/4+
M∑

i=1

∫
Bε π/2(xi)

sin2
(d(x, xi)/ε) dx

=M
∫

H(|�|/M)

−F∗(− 	(d(x, 0)/ε)) dx ,

where we used H(|�|/M)⊃ Bε π/2(0). Indeed, the energy does not discriminate between different
solutions because −F∗ ◦ (− 	) is constant for distances larger than επ

2
.

Theorem 4.10 (Upper bound for quantization of the Lebesgue measure). Let �⊂R
2 be a square

domain, let μ be the Lebesgue measure, and let (P1) hold. Let x1, . . . , xM be a regular triangular
arrangement of points in the following sense: Let G⊂R

2 be a regular triangular lattice with lattice
spacing

√
2 |�|√

3 M
, such that the corresponding Voronoi cells are regular hexagons with area |�|/M and

side length L=
√

2 |�|
3
√

3M
. Let {x1, . . . , xM̂} ⊂G be those points for which the corresponding hexagon Hi is
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M = 16, εM = 1.000 M = 32, εM = 0.707 M = 64, εM = 0.500 M = 128, εM = 0.354

Figure 10. Quantization results for the Hellinger–Kantorovich model using different length scales and
numbers of discrete points, with constant total point density ε2

MM. The optimal marginals ρ = π1#γ are
shown (same domain and μ as in Figure 8; identical colour scale in all figures).

fully contained in �. Assume that M is sufficiently large so that M̂ ≥ 1. If M̂<M, pick {xM̂+1, . . . , xM}
arbitrarily from �. Then

JM
ε

(x1, . . . , xM)≤M
∫

H( |�|M )

−F∗
(
−	

(
d(x, 0)

ε

))
dx− |∂�|

√
8|�|

3
√

3M
F∗
(
−	

(√
CQ |�|
ε2M

))
, (4.13)

where CQ = 2(2
√

2+ 1)2/(3
√

3), |∂�| denotes the one-dimensional Hausdorff measure of ∂� and |�| =
L(�).

Proof. Let S=� \⋃M̂
i=1 Hi be those points in � that are not covered by any hexagon Hi. Note that all

x ∈ S lie no further away from ∂� than the diameter of a hexagon, 2L=
√

8 |�|
3
√

3M
. Since � is convex, we

thus have |S| ≤ |�∩⋃
x∈∂� B2L(x)| ≤ 2 L |∂�|. Likewise, any point x ∈ S lies no further away from the

union of all hexagons Hi than 2
√

2L and thereby no further away from {x1, . . . , xM} than (2
√

2+ 1)L,
thus mini d(x, xi)≤ (2

√
2+ 1)L.

Note that Vi(x1, . . . , xM) \ S⊆Hi for i= 1, . . . , M̂ and that −F∗ ◦ (− 	) is monotonously increasing
so that we find

JM
ε

(x1, . . . , xM)≤
M̂∑

i=1

∫
Hi

−F∗
(
−	

(
d(x, xi)

ε

))
dx+

∫
S

−F∗
(
−	

(
mini d(x, xi)

ε

))
dx

≤M ·
∫

H(|�|/M)

−F∗
(
−	

(
d(x, 0)

ε

))
dx− |S|F∗

(
−	

(
(2
√

2+ 1)L

ε

))
.

Substituting the value of L and the above bound for |S| proves the claim.

Remark 4.11 (A priori estimate). From (P1) we also have the estimate

min JM
ε
≤

∫
�

−F∗(−	(diam(�)/ε)) dμ≤μ(�) · (−F∗(− 	(diam(�)/ε))),

whose right-hand side may be further bounded by the potentially infiniteμ(�)F(0)=W(μ, 0) (the latter
bound is directly obtained by choosing ν = 0 as a quantization candidate in (4.1)).

Let now (εM)M∈N be a positive, decreasing sequence of scaling factors. We use Theorems 4.7 and
4.10 to study the asymptotic quantization behaviour of the sequence of functionals (JM

εM
)M as M→∞

for a non-uniform mass distribution μ with Lipschitz Lebesgue density m. We identify three different
regimes, depending on the behaviour of the sequence ε2

M M (the quantity ε2
M M indicates something like

the average point density). A corresponding numerical illustration for the case of constant average point
density is provided in Figure 10.

Theorem 4.12 (Asymptotic quantization). Let �⊂R
2 be a closed Lipschitz domain (a domain whose

boundary is locally the graph of a Lipschitz function with the domain lying on one side) and μ=m ·
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(L��) for L the Lebesgue measure and m :�→ [0,∞) a Lipschitz-continuous density. Let (P1)-(P4)
hold. For any sequence ε1, ε2, . . . > 0 with εM↘ 0 as M→∞ the following holds:

1. If lim
M→∞

ε2
MM=∞, then lim

M→∞
min JM

εM
=−F∗(−	(0)) ·μ(�), which under (P5) equals 0.

2. If lim
M→∞

ε2
MM= 0, then lim

M→∞
min JM

εM
=μ(�) lim

s→∞
−F∗(−	(s)), which under (P6) equals

μ(�)F(0)=W(μ, 0).
3. If lim

M→∞
ε2

MM= P ∈ (0,∞), then

lim
M→∞

min JM
εM
=

[
κ �→

∫
�

B∗(κ/m(x)) dμ(x)

]∗
(P),

where B:(−∞,∞)→ (0,∞],

B(z)= z ·
∫

H(1/z)

−F∗(− 	(d(x, 0))) dx for z> 0,

B(0)= lims→∞ −F∗(− 	(s)), and B(z)=∞ for z< 0. Furthermore, there exists a unique constant
λ< 0 and some measurable function D :�→ [0,∞) such that

lim
M→∞

min JM
εM
=

∫
�

B(D(x)) dμ(x),

and

D(x) ∈ ∂B∗(λ/m(x)) for almost all x ∈�, P=
∫
�

D(x) dx (4.14)

(by convention, for m(x)= 0 we set D(x)= 0). That is, D can be interpreted as (being proportional
to) the spatially varying point density of the asymptotically optimal local triangular grid.

Remark 4.13 (Limit cases). Theorem 4.12 (1) and (2) can in fact be recovered as the special cases
P=∞ and P= 0 of Theorem 4.12 (3) if we set (λ, D)≡ (0,∞) or (λ, D)≡ (−∞, 0), respectively.
However, it is simpler to treat them separately.

Before stating a few more remarks and proving the asymptotic result, we analyse the function B,
which represents the cell problem of quantizing a hexagon by a single Dirac mass.

Lemma 4.14 (Properties of the cell problem). Assume (P1)-(P4). On (0,∞), the function B from
Theorem 4.12 is finite, positive, decreasing and convex with continuous derivative

B′(z)= 1

z

[
B(z)− 1

|∂H(1/z)|
∫
∂H(1/z)

−F∗(− 	(d(x, 0))) dx

]
=: G(z).

Further, B(z)→ B(0) as z↘ 0, G(z)→ 0 as z→∞, and there exists some Z ≥ 0 such that G is constant
on (0, Z] and strictly increasing on (Z,∞), where Z > 0 if −F ◦ (− 	) achieves a maximum. With r=
limz↘Z B′(z) ∈ [−∞, 0) we can summarize r<G(z)< 0 for z> Z and

∂B(z)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∅ for z< 0,

(−∞, r] for z= 0,

{r} for z ∈ (0, Z],

{G(z)} for z> Z,

∂(B∗)(s)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{0} for s< r,

[0, Z] for s= r,

{G−1(s)} for s ∈ (r, 0),

∅ for s≥ 0.

Example 4.15 (Balanced quantization). We consider the case of the standard Wasserstein-2 distance,
where 	(t)= t2, F∗(z)= z and F(0)=∞. Then for z> 0,

B(z)= z
∫

H(1/z)

|x|2dx= 5
√

3

54

1

z
, B′(z)=G(z)=−5

√
3

54

1

z2
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and so Z = 0, r=−∞. For s< 0,

B∗(s)=−2

√
−5
√

3

54
s, (B∗)′(s)=

√
−5
√

3

54

1

s
=G−1(s).

Remark 4.16 (Bounds in terms of cell problem). B(z) can be interpreted as the energy density associ-
ated with a regular triangular lattice with point density z (that is, each Voronoi cell occupies an area
of 1/z). The energy of such a lattice with M cells with total area |�| will be given by B(M/|�|) · |�|.
Taking into account the scaling factor ε, we can restate the bounds (4.12) and (4.13) as

min
x1,...,xM∈�

JM
ε

(x1, . . . , xM)≥ |�| · B
(
ε2 M

|�|
)

and

JM
ε

(x1, . . . , xM)≤ |�| · B
(
ε2 M

|�|
)
− |∂�|

√
8|�|

3
√

3M
F∗

(
−	

(√
CQ |�|
ε2M

))
.

Proof of Lemma 4.14. By (P4), B(z)> 0 for z> 0. Likewise, B(z)<∞ by (P1) and (P3). Now observe
that B yields the average value of−F∗(−	(d(·, 0))) over H(1/z). Hence, the monotonicity (P1) of−F∗ ◦
(−	) implies that B is decreasing. Further,

lim
z↘0

B(z)= lim
z↘0

∫
H(1)

−F∗(−	(d(y/
√

z, 0))) dy=−F∗(−	(∞))= B(0).

Since −F∗ ◦ (−	) is continuous by (P2), the integral in the definition of B is differentiable with respect
to z by the Leibniz integral rule, and we have

B′(z)= d
dz

[
z
∫

H(1/z)

−F∗(−	(d(x, 0))) dx

]

=
∫

H(1/z)

−F∗(−	(d(x, 0))) dx+ z
∫
∂H(1/z)

−F∗(−	(d(x, 0)))vn(z) dx ·
(
−1

z2

)
,

where vn(z)= 1/|∂H(1/z)| is the normal velocity of the hexagonal boundary as the area of the hexagon
is increased at rate 1. This coincides with the formula provided in the statement. To check convexity, we
first assume that −F∗ ◦ (−	) is differentiable. In the following we use the notation

−
∫
∂H(1/z)

f dx= 1

|∂H(1/z)|
∫
∂H(1/z)

f dx

and calculate

B′′(z)=

=− 1

z2

[
B(z)−−

∫
∂H(1/z)

−F∗(−	(d(x, 0))) dx

]

+ 1

z

[
1

z

(
B(z)−−

∫
∂H(1/z)

−F∗(−	(d(x, 0))) dx

)
− d

dz

(
−
∫
∂H(1/z)

−F∗(−	(d(x, 0))) dx

)]

=−1

z

d
dz

(
−
∫
∂H(1/z)

−F∗(−	(d(x, 0))) dx

)

≥ 0

since −F∗ ◦ (−	) is nondecreasing. Therefore B is convex. By (P1) there exists some R ∈ (0,∞] such
that −F∗ ◦ (−	) is strictly increasing on [0, R) and constant on [R,∞). Thus we see B′′ > 0 on (Z,∞)
for some Z ≥ 0 and B′′(z)= 0 for z< Z. The monotonicity properties of B′ without assuming differ-
entiability of −F∗ ◦ (−	) now follow by a standard approximation argument. Note that positivity and
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monotonicity of B imply B′(z)→ 0 as z→∞. We leave it as an easy exercise in convex analysis to check
the expressions for the subdifferentials ∂B and ∂(B∗).

Remark 4.17 (Calculation of asymptotic density). Given a density m, the asymptotically optimal point
density D can be computed numerically based on the function B using

D(x) ∈ ∂B∗(λ/m(x))=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{0} if λ/m(x)< r,

[0, Z] if λ/m(x)= r,

{(B′)−1(λ/m(x))} if λ/m(x) ∈ (r, 0),

∅ otherwise,

where r was defined in Lemma 4.14.

Example 4.18 (Zador’s Theorem is a special case of Theorem 4.12). We show that Zador’s Theorem
[34, 71] in two dimensions (see equation (1.6) with d= 2) can be recovered from Theorem 4.12 by taking
	(t)= tp and F(s)= ι{1}(s). In this case, min JεM is just the standard (balanced) optimal quantization error
with respect to the Wasserstein-p distance. Note that F(0)=+∞ but the transport cost 	 is finite and so
assumption (4.2) is satisfied. We have F∗(z)= z and

B(z)= c6(p)z−
p
2 for z> 0 and +∞ otherwise,

where

c6(p)=
∫

H(1)

|y|p dy.

Therefore, for z> 0, s< 0,

B′(z)=−p

2
c6(p)z−

p
2−1, (B′)−1(s)=

(
−pc6(p)

2s

) 2
p+2

.

Assume that we are in Regime 3: limM→∞ ε2
MM = P. Note that B′ is nowhere constant and so Z = 0 and

r= limz→0 B′(z)=−∞. By Remark 4.17, if m(x)> 0,

D(x)= (B′)−1(λ/m(x))=
(
−pc6(p)m(x)

2λ

) 2
p+2

(4.15)

where λ< 0 is the constant given by Theorem 4.12. Then

P=
∫
�

D(x) dx=
(
−pc6(p)

2λ

) 2
p+2

∫
�

m(x)
2

p+2 dx. (4.16)

We can eliminate λ from (4.15) and (4.16) to write D in terms of P:

D(x)= Pm
2

p+2

(∫
�

m(x)
2

p+2 dx

)−1

.

Therefore, by Theorem 4.12,

lim
M→∞

ε
−p
M min
{xi}Mi=1

M∑
i=1

∫
Vi

|x− xi|p m(x)dx= lim
M→∞

min JM
εM

=
∫
�

B(D(x)) m(x)dx

= P−
p
2 c6(p)

(∫
�

m(x)
2

p+2 dx

) p+2
2

.
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Since limM→∞ ε2
MM = P, we can rewrite this as

lim
M→∞

M
p
2 min
{xi}Mi=1

M∑
i=1

∫
Vi

|x− xi|p m(x)dx= c6(p)

(∫
�

m(x)
2

p+2 dx

) p+2
2

which is exactly Zador’s Theorem in two dimensions; see equations (1.6) and (1.7).

Proof of Theorem 4.12. Regime 1: limM→∞ ε2
MM=∞. We can pick a sequence of radii rM such that

rM/εM→ 0, but still r2
MM→∞ (for instance pick rM = ε1/2

M /M1/4). Since � is a Lipschitz domain, for
M large and thus rM small enough, � can be covered with KM ≤ 2|�|/r2

M squares of side length rM (for
instance cover � with a regular square grid of lattice spacing rM). Now position the points x1, . . . , xM

arbitrarily with the only condition that each square contains at least one point (this is possible for M large
enough, since KM/M→ 0 as M→∞). Obviously,� is covered by the balls B2rM (xi) of radius 2rM centred
at the xi, as B2rM (xi) includes the whole square containing xi. Thus, we find Vi(x1, . . . , xM)⊂ B2rM (xi) for
i= 1, . . . , M. Then

min JM
εM
≤ JM

εM
(x1, . . . , xM)=

M∑
i=1

∫
Vi(x1,...,xM )

−F∗
(
−	

(
d(x, xi)

εM

))
dμ(x)

≤−F∗
(
−	

(
2rM

εM

))
·μ(�)→−F∗(−	(0)) ·μ(�) as M→∞

since [0,∞) � z �→−F∗(−	(z)) is continuous in z= 0 by (P2). JM
εM
≥−F∗(−	(0)) ·μ(�) follows from

(P1), the monotonicity of −F∗ ◦ (−	).
Regime 2: limM→∞ ε2

MM= 0. Remark 4.11 yields min JM
εM
≤μ(�) · lims→∞ −F∗(−	(s)) (which may

be infinite). Let now r1, r2, . . . be a positive sequence such that r2
M ·M→ 0 and rM/εM→∞ as M→∞.

Let x1, . . . , xM be arbitrary distinct points in� and set S=�∩⋃M
i=1 BrM (xi). Note that, since r2

M ·M→ 0
and μ�L, μ(S)→ 0 as M→∞. Clearly,

min
i∈{1,...,M}

−F∗
(
−	

(
d(x, xi)

εM

))
≥

⎧⎨
⎩
−F∗

(
−	

(
rM
εM

))
for x ∈� \ S,

0 for x ∈ S.

Therefore,

JM
εM

(x1, . . . , xM)≥−F∗
(
−	

(
rM

εM

))
·μ(� \ S)→ lim

s→∞
−F∗(−	(s)) ·μ(�) as M→∞.

Regime 3: limM→∞ ε2
MM = P ∈ (0,∞). Part 3.1: lower bound. For δ ∈ (0, 1) cover � by a regular

grid of squares with edge length δ+ δ2. Denote by {Si}Ni=1 the N squares that are fully contained in �.
For each Si denote by Ŝi the square of edge length δ that lies centered within Si such that dist(Ŝi, Sj)≥
δ2/2 for i �= j (the boundary layers of width δ2 will be necessary to control the interaction between
neighbouring squares). Denote the union of all Ŝi by Ŝ=⋃N

i=1 Ŝi. Since � is a Lipschitz domain and
μ�L, μ(� \ Ŝ)→ 0 as δ→ 0.

Let x1, . . . , xM be M points from � and denote by Mi the number of points in a square Si (points
on the square boundaries are assigned to precisely one square). Obviously,

∑N
i=1 Mi ≤M. Now pick an

arbitrary η > 0 (we will later send η→∞; it has the role to regularize the integrand and thus the cell
problem function B). Note that for x ∈ Ŝi and M large enough (depending on δ), we have

min
j

d(x, xj)≥min

{
min
j:xj∈Si

d(x, πŜi
(xj)),

δ2

2

}
≥min

{
min
j:xj∈Si

d(x, πŜi
(xj)), εMη

}

where πŜi
denotes the orthogonal projection onto Ŝi. By the nonnegativity and monotonicity of

−F∗(−	( · )), one thus obtains
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JM
εM

(x1, . . . , xM)=
∫
�

min
j
−F∗

(
−	

(
d(x, xj)

εM

))
m(x) dx

≥
N∑

i=1

mi

∫
Ŝi

min
j:xj∈Si

−F∗
(
−	

(
min

{
d(x, πŜi

(xj))

εM

, η

}))
dx

with mi := infx∈Si m(x). Next introduce

φη(t)=−F∗ (−	( min{t, η})) .

One can readily verify that actually φη =−F∗
η
◦ (−	), where Fη is the lower semi-continuous convex

envelope of a modification of F,

Fη = F̃∗∗ with F̃(s)=
⎧⎨
⎩

F(s) if s �= 0,

−F∗ (−	 (η)) else.

Let

M̂i = #{πŜi
(xj) : xj ∈ Si} ≤Mi

be the number of points in Si that are distinct after projecting onto Ŝi. We can now apply Theorem 4.7
(lower bound for quantization of the Lebesgue measure) or Remark 4.16 on each square Ŝi separately (the
boundary layers of width δ2 are necessary to control the interaction between neighbouring squares),

JM
εM

(x1, . . . , xM)≥
N∑

i=1

mi

∫
Ŝi

min
j:xj∈Si

φη
(
d(x, πŜi

(xj))/εM

)
dx

≥
N∑

i=1

mi M̂i

∫
H(|Ŝi|/M̂i)

φη (d(x, 0)/εM) dx

=
N∑

i=1

mi |Ŝi|Bη

(
ε2

M M̂i

|Ŝi|

)

where Bη is defined as in Lemma 4.14, only with −F∗ ◦ (−	) replaced by φη or equivalently F by Fη.
Now set

E(x) :=
⎧⎨
⎩

ε2
M M̂i

|Ŝi| for x ∈ Ŝi,

0 otherwise,

and let Lm denote the Lipschitz constant of the density m. Then∫
�

Bη(E(x)) dμ(x)=
N∑

i=1

∫
Ŝi

Bη

(
ε2

M M̂i

δ2

)
m(x) dx+

∫
�\Ŝ

Bη(0)m(x) dx

=
N∑

i=1

∫
Ŝi

Bη

(
ε2

M M̂i

δ2

)
mi dx

+
N∑

i=1

∫
Ŝi

Bη

(
ε2

M M̂i

δ2

)
(m(x)−mi) dx+μ(� \ Ŝ) · Bη(0)

≤
N∑

i=1

mi|Ŝi|Bη

(
ε2

M M̂i

δ2

)
+ Lm ·

√
2 δ · Bη(0) · |�| +μ(� \ Ŝ) · Bη(0)
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where in the last step we used Bη(z)≤ Bη(0)<∞ for z≥ 0. Abbreviate the last two summands (that do
not depend on M) as CδBη(0) and note that Cδ→ 0 as δ→ 0, then in summary we have arrived at

JM
εM

(x1, . . . , xM)≥
∫
�

Bη(E(x)) dμ(x)−CδBη(0). (4.17)

The function E satisfies
∫
�

E(x) dx= ε2
M

∑N
i=1 M̂i ≤ ε2

MM. By minimizing over all such functions, we
thus obtain a lower bound for the minimum,

min JM
εM
≥ inf

{∫
�

Bη(E(x)) m(x) dx

∣∣∣∣∣ E ∈ L1(�; [0,∞)),
∫
�

E(x) dx≤ ε2
M ·M

}
−CδBη(0).

Since Bη is nonincreasing, the estimate can be rewritten as

min JM
εM
≥ inf

{∫
�

Bη(E(x)) m(x) dx

∣∣∣∣∣ E ∈ L1(�; [0,∞)),
∫
�

E(x) dx= ε2
M ·M

}
−CδBη(0).

Now denote by LB the Lipschitz constant of Bη on [0,∞) (which exists by Lemma 4.14). If
E ∈ L1(�; [0,∞)) satisfies

∫
�

E(x) dx= ε2
M ·M, then Ẽ := P

(ε2
M M)

E satisfies
∫
�

Ẽ(x) dx= P and∣∣∣∣
∫
�

Bη(Ẽ(x)) dμ(x)−
∫
�

Bη(E(x)) dμ(x)

∣∣∣∣≤ LB

∫
�

|E(x)− Ẽ(x)| dμ(x)

≤ LB|ε2
MM− P|max

x∈�
m(x) =: cM,

which converges to zero as M→∞. Summarizing, we obtain

min JM
εM
≥ inf

{∫
�

Bη(E(x)) dμ(x)

∣∣∣∣∣ E ∈ L1(�; [0,∞)),
∫
�

E(x) dx= P

}
−CδBη(0)− cM.

Now let first M→∞ and then δ→ 0. Introducing a Lagrange multiplier λ for the constraint on E, we
thus find

lim inf
M→∞

min JM
εM
≥ inf

E∈L1(�;[0,∞))
sup
λ∈R

∫
�

[
Bη(E(x)) m(x)− λ E(x)

]
dx+ λ · P

≥ sup
λ∈R

inf
E∈L1(�;[0,∞))

∫
�

[
Bη(E(x)) m(x)− λ E(x)

]
dx+ λ · P

≥ sup
λ∈R

∫
�

inf
E≥0

[
Bη(E) m(x)− λ E

]
dx+ λ · P

= sup
λ∈R

∫
�

[−m(x) · B∗
η
(λ/m(x))

]
dx+ λ · P.

Now as η→∞ one has the pointwise convergence φη↗−F∗ ◦ (−	) and thus Bη↗ B pointwise by the
monotone convergence theorem. In fact, φη(r)=−F∗(−	(r)) for all r<η and therefore Bη(z)= B(z)
for all z> 2/(3

√
3η2). Consequently, also B∗

η
↘ B∗ monotonously so that one obtains sharper bounds

with increasing η. Thus, using again the monotone convergence theorem,

lim inf
M→∞

min JM
εM
≥ sup

η>0
sup
λ∈R

∫
�

[−m(x) · B∗
η
(λ/m(x))

]
dx+ λ · P

= sup
λ∈R

sup
η>0

∫
�

[−m(x) · B∗
η
(λ/m(x))

]
dx+ λ · P

= sup
λ∈R

∫
�

[−m(x) · B∗(λ/m(x))
]

dx+ λ · P.
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By evaluating the supremum over λ, we finally obtain

lim inf
M→∞

min JM
εM
≥

[
κ �→

∫
�

B∗(κ/m(x)) dμ(x)

]∗
(P) .

Part 3.2: optimal limit density. Observe that B∗(z)=∞ for z> 0, B∗ is convex, lower semi-
continuous, nondecreasing, satisfies limz→−∞ B∗(z)/|z| = 0 (which follows from s · z− B∗(z)≤ B(s)<∞
for all s> 0, z< 0) and has infinite left derivative at 0 (by Lemma 4.14). Therefore the map

R � λ �→
∫
�

[−m(x) · B∗(λ/m(x))
]

dx+ λ · P

is concave and there exists a maximizing λ< 0 satisfying the necessary and sufficient optimality
condition

0 ∈ ∂
[
κ �→

∫
�

m(x) · B∗
(

κ

m(x)

)
dx− κ · P

]
(λ) ⇐⇒

P ∈ ∂
[
κ �→

∫
�

m(x)B∗
(

κ

m(x)

)
dx

]
(λ).

We next aim to find a function Dξ :�→ [0,∞) satisfying Dξ (x) ∈ ∂B∗(λ/m(x)) as well as∫
�

Dξ (x) dx= P. To this end, recall Z and r from Lemma 4.14 and define

Dξ (x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(B∗)′(λ/m(x)) if m(x)>λ/r,

ξ ∈ [0, Z] if m(x)= λ/r,

0 otherwise.

Since m is continuous, its superlevel sets are Lebesgue measurable. Dξ is constructed by assigning new
values to the level sets of m in a monotone way (by the monotonicity of (B∗)′, see Lemma 4.14); hence it is
also Lebesgue measurable. We now pick ξ (P) ∈ [0, Z] such that

∫
�

Dξ (P)(x) dx= P. (Note that necessarily
ξ (P)= 0 if Z = 0, and the choice of ξ is irrelevant if {x ∈� |m(x)= λ/r} is a nullset. The following
argument still applies in these cases.) Such a ξ (P) exists due to

∫
�

D0(x) dx≤ P and
∫
�

DZ(x) dx≥ P, as
we now show. Indeed, note by Lemma 4.14 that for all x ∈� the function D0(x) equals the left derivative
of B∗ at λ/m(x) (which by convention shall be 0 for m(x)= 0), while DZ(x) equals the right derivative.
Beppo Levi’s monotone convergence theorem thus yields

∫
�

D0(x) dx=
∫
�

lim
λ̃↗λ

m(x)B∗
(

λ̃

m(x)

)
−m(x)B∗

(
λ

m(x)

)
λ̃− λ dx

= lim
λ̃↗λ

∫
�

m(x)B∗
(

λ̃

m(x)

)
dx−

∫
�

m(x)B∗
(

λ

m(x)

)
dx

λ̃− λ
≤ P (4.18)

since P ∈ ∂
[
κ �→ ∫

�
m(x)B∗

(
κ

m(x)

)
dx

]
(λ) and since (4.18) is the left derivative of λ �→∫

�
m(x)B∗

(
λ

m(x)

)
dx. The inequality

∫
�

DZ(x) dx≥ P follows analogously. Writing D=Dξ (P), we
finally obtain (4.14) and

https://doi.org/10.1017/S0956792525100144 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100144


38 D. P. Bourne et al.

lim
M→∞

min JM
εM
≥

∫
�

−m(x)B∗(λ/m(x)) dx+ λP

=
∫
�

λ

m(x)
D(x)− B∗(λ/m(x)) dμ(x)

=
∫
�

B(D(x)) dμ(x) ,

where the last equality follows from the Moreau–Fenchel identity [6, Prop. 16.9], which states that
B(s)+ B∗(t)= st ⇐⇒ s ∈ ∂B∗(t) ⇐⇒ t ∈ ∂B(s).

Part 3.3: upper bound. Finally, we derive the corresponding upper bound, essentially by con-
structing a piecewise triangular point configuration with point density approximating the expected
point density D from the above lower bound proof. Fix M ∈N, δ > 0, and η ∈ (0, 1). Denote the 1-
neighbourhood of � by �=�+ B1(0) and extend the mass density m and the expected point density
D to � \� by zero. Cover � with a tessellation of squares of side length δ (we will later send δ→ 0).
We keep the squares {Si}Nδi=1 that intersect �. We may assume δ to be small enough such that all squares
lie within �.

Define Dη :�→ (0,∞) to be a slight modification of the expected point density D,

Dη = (1− η)D+ η P

2|�| .

The main role of the regularization parameter η is to ensure that we distribute particles throughout the
whole domain �, even in regions where m= 0. We will send η→ 0 at the very end of the proof. For
i ∈ {1, . . . , Nδ}, define the point number Mi =Mi(M, δ, η) associated with square Si by

Mi =
⌈

1

ε2
M

∫
Si

Dη(x) dx

⌉
.

Note that

Nδ∑
i=1

Mi ≤M if M is sufficiently large.

Indeed, we have

ε2
M

Nδ∑
i=1

Mi ≤ ε2
M

Nδ∑
i=1

(
1

ε2
M

∫
Si

Dη(x) dx+ 1

)

<

(
(1− η)

∫
�

D(x) dx+ ηP

2

)
+ ε2

MNδ =
(

1− η
2

)
P+ ε2

MNδ

so that

ε2
M

(
Nδ∑
i=1

Mi −M

)
<

(
1− η

2

)
P− ε2

MM + ε2
MNδ −−−→

M→∞
−η

2
P< 0.

Next, on each Si we choose Mi quantization points as in Theorem 4.10 (upper bound for quantization
of the Lebesgue measure) and distribute the remaining M−∑Nδ

i=1 Mi points arbitrarily in� (which does
not increase the cost). By Remark 4.16 we thus obtain
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JM
εM

(x1, . . . , xM)≤
Nδ∑
i=1

∫
Si

min
k∈{1,...,M}:xk∈Si

−F∗
(
−	

(
d(x, xk)

εM

))
dμ(x)

≤
Nδ∑
i=1

max
Si

m
∫

Si

min
k∈{1,...,M}:xk∈Si

−F∗
(
−	

(
d(x, xk)

εM

))
dx

≤
Nδ∑
i=1

max
Si

m

[
|Si| · B

(
ε2

M Mi

|Si|
)
− |∂Si|

√
8|Si|

3
√

3Mi

F∗
(
−	

(√
CQ |Si|
ε2

MMi

))]
.

Exploiting the continuity of B and finiteness and monotonicity of −F∗ ◦ (−	) on (0,∞) as well as

lim
M→∞

ε2
MMi =

∫
Si

Dη(x) dx> 0

we thus obtain

lim sup
M→∞

JM
εM

(x1, . . . , xM)≤
Nδ∑
i=1

max
Si

m |Si| · B
(

1

|Si|
∫

Si

Dη(x) dx

)
.

Define Eδ :�→ [0,∞), mδ :�→ [0,∞) by

Eδ(x)= 1

|Si|
∫

Si

Dη(x) dx if x ∈ Si and Eδ(x)= ηP

2|�| else ,

mδ(x)=max
Si

m if x ∈ Si and mδ(x)= 0 else .

Then we can rewrite the previous inequality as follows:

lim sup
M→∞

min JM
εM
≤ lim sup

M→∞
JM
εM

(x1, . . . , xM)≤
∫
�

B
(
Eδ(x)

)
mδ(x) dx. (4.19)

Next we pass to the limits δ→ 0 and η→ 0 in that order. By the Lebesgue Differentiation Theorem,
limδ→0 Eδ =Dη pointwise almost everywhere. Since m is upper semi-continuous, then limδ→0 mδ =m
pointwise. Moreover, Eδ ≥ ηP/2|�| and B is nonincreasing on (0,∞). Hence

B
(
Eδ(x)

)
mδ(x)≤ B

(
ηP

2|�|
)

max
�

m.

Therefore, by the Dominated Convergence Theorem,

lim
δ→0+

∫
�

B
(
Eδ(x)

)
mδ(x) dx=

∫
�

B
(
Dη(x)

)
m(x) dx. (4.20)

Finally, by the convexity of B,∫
�

B
(
Dη(x)

)
m(x) dx≤ (1− η)

∫
�

B (D(x))m(x) dx+ ηB

(
P

2|�|
) ∫

�

m(x) dx. (4.21)

By taking the limits δ→ 0, then η→ 0 in (4.19) and using (4.20)-(4.21), we obtain the matching upper
bound

lim sup
M→∞

min JM
εM
≤

∫
�

B (D(x))m(x) dx

as required.

Remark 4.19 (Lipschitz condition). Inspecting the proof we see that the Lipschitz condition on m can
actually be replaced by mere continuity; then all estimates based on the Lipschitz constant have to be
replaced using the modulus of continuity of m.

Remark 4.20 (�-convergence for unbalanced quantization). We conjecture that Theorem 4.12 can
be expanded into a �-convergence result in the spirit of [62, Proposition 7.18] for balanced optimal
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transport. For given M ∈N, define the functional

J M(ν) :=
⎧⎨
⎩

JM
εM

(x1, . . . , xM) if ν = ε2
M

∑M
i=1 δxi ,

+∞ otherwise,

and let the limit functional be given by

J (ν) :=
⎧⎨
⎩
∫
�

B
( dν

dL (x)
)

dμ(x) if ν ≥ 0,

+∞ otherwise.

In the definition of J , the part of ν that is singular with respect to L is simply discarded. It seems
plausible that J M �-converges to J with respect to the weak topology. Theorem 4.12 (2) describes the
special case of this result where the limit measure ν is 0. Theorem 4.12 (3) describes the special case
of ν =D ·L �= 0 that are minimizing for a prescribed mass P. In the regime of Theorem 4.12 (1), the
sequence of measures is diverging and thus not described by such a �-convergence.

Part 3.1 of the proof of Theorem 4.12 establishes the lim-inf inequality for minimizing sequences.
Part 3.2 identifies the optimal density D of the limit functional J . Part 3.3 essentially derives the lim-sup
condition for limit measures ν =D ·L, i.e. without a Lebesgue-singular part. The optimality of D is not
leveraged in this part of the proof, and it applies to general densities. A complete �-convergence result
would require an extension of the first part to configurations (xi)M

i=1 that are not (approximately) minimal
and to include the Lebesgue-singular part of ν in both the lower and upper bounds. Given that the proof
for the lower bound is already rather technical, we choose to not provide this extension here.

Remark 4.21 (Quantization regimes). The proof shows that the set of near- or asymptotically opti-
mal point distributions for limM→∞ ε2

MM ∈ {0,∞} is quite degenerate. Indeed, if the limit is zero, then
arbitrarily placed points x1, . . . , xM ∈� were shown to asymptotically achieve the optimal energy. The
interpretation is that in the limit M→∞ no transport takes place between μ and its discrete quanti-
zation approximation so that the quantization energy equals the cost for changing mass distribution μ
to zero. If on the other hand the limit is infinite, then Dirac masses can be distributed over � in such
a dense fashion that all transport distances and thus transport costs become negligibly small. Thus,
to achieve the asymptotic cost 0, it suffices for instance to have a more or less uniform distribution of
x1, . . . , xM ∈�, but otherwise the point arrangement does not matter. The case limM→∞ ε2

MM ∈ (0,∞)
seems to be more rigid; here the optimal asymptotic cost is achieved by a construction which locally
looks like a triangular lattice.

Example 4.22 (Hellinger–Kantorovich). The function B from Lemma 4.14 and its derivative B′ can
be computed numerically for different unbalanced transport models; we here consider the Hellinger-
Kantorovich setting. In this case, computing the integral just on one triangular segment of H( 1

z
), we

obtain

B(z)= z

(
6
∫ π/6

−π/6

∫ L(α,z)

0

sin2
(

min
{

r,
π

2

})
r dr dα

)

= 3
∫ π/6

−π/6
z max

{
1

4
+ L(α, z)2

2
− cos (2L(α, z))

4
− L(α, z) sin (2L(α, z))

2
,

1

2
− π

2

8
+ L(α, z)2

}
dα

for L(α, z)= 1/(
√

2
√

3z cos α) the length of the ray starting from the hexagon centre at angle α. The
resulting B′ (computed numerically) is shown in Figure 11. Thus, for a given mass distribution μ=
mL��, we can compute the asymptotically optimal point density D of the quantization problem from
Theorem 4.12 and Remark 4.17. Figure 11 shows computed examples for such asymptotic densities. One
can see that the variations of μ are reduced for large values of P, but amplified for small values of P (in
particular, large areas of � have zero point density).
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B
′ (
z
)

z

P = 2.4 P = 0.69 P = 0.28 P = 0.12 P = 0.049 P = 0.013

input P = 0.90 P = 0.25 P = 0.093 P = 0.035 P = 0.0075 P = 0.0015

input 

Figure 11. Top row: B′ from Lemma 4.14 for Hellinger–Kantorovich transport. Middle and bottom row:
input distribution μ (a Gaussian and same data as in Figure 7) as well as asymptotically optimal point
densities D for different values of P= limM→∞ ε2

MM (colour-coding from blue for 0 to red for maximum
value).
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