
Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10217

Identifying the needs for a Requirements Authoring
Design Enabler

Shanae Edwards, Oredola Adebayo and Joshua Summers ,

University of Texas at Dallas, USA

joshua.summers@utdallas.edu

ABSTRACT: Requirements engineering is in the design process, translating stakeholder needs into actionable and
well-defined specifications. While existing design enablers and tools provide partial solutions, they often fall short
in addressing essential aspects such as real-time feedback, lifecycle management, and the use of controlled
vocabularies. To bridge these gaps, the Requirements Authoring Design Enabler (RADE), a macro-enabled Excel
tool, is presented to support requirement authoring, tracking, and management. RADE integrates features like
automated feedback, a dual-mode interface, robust change tracking, and controlled vocabularies. The tool was
tested with pre-service engineers with user feedback informing iterative refinements. RADE addresses key
challenges in requirements engineering, demonstrating its potential to enhance design outcomes across various
domains.

KEYWORDS: requirements, design process, computer aided design (CAD), design education

1. Motivation: The need for a new requirements authoring tool
Requirements engineering is a cornerstone of the design process, transforming stakeholder needs into
actionable, well-defined specifications (McLellan et al., 2011; Shankar et al., 2012). Effective
requirements authoring ensures alignment between project goals and outcomes, while incomplete
requirements often result in project delays and cost overruns (Shankar et al., 2012). Despite
advancements in computational tools for requirements engineering, significant gaps remain in supporting
requirement prioritization, lifecycle management, and authoring using controlled vocabularies (Bao
et al., 2022; Dai et al., 2013; Jain et al., 2009; Stoller, 1988; Wali & Nordin, 2024). This paper outlines
the need for a comprehensive Requirements Authoring Design Enabler (RADE) to address these gaps by
integrating features like real-time feedback, controlled vocabularies, and robust change tracking. Design
enablers such as the Requirements Boilerplate Sanity Checker (RUBRIC) and the Tracing and Control of
Engineering Requirements (TRACER), offer functions like boilerplate conformance and traceability
(Arora et al., 2013; Stoller, 1988). However, these tools lack features for iterative refinement or
educational support to improve authoring practices. As engineering projects grow increasingly complex,
there is a need for a unified tool that bridges these gaps, ensuring high-quality requirements authoring and
lifecycle management. For this design enabler, the initial stakeholder set includes capstone design
students with limited formal instruction in requirements authoring. The specific requirements on the
design enabler are extracted from the following literature review.

2. Elicited requirements for RADE
Engineering requirements serve as a bridge between stakeholder needs and project execution, guiding
teams through the design and development process (Mattson & Sorensen, 2020; Ullman et al., 2024).
These requirements must be clear, complete, and actionable to ensure project success. Incomplete or
poorly written requirements often result in misaligned goals, increased costs, and delays (Mullis et al.,
2024). A well written requirement, at a minimum, includes a subject, verb, and modality (Joshi &

ICED25 2033

https://doi.org/10.1017/pds.2025.10217
https://orcid.org/0000-0002-6129-2663
mailto:joshua.summers@utdallas.edu

Summers, 2015a). Additional elements, such as an object and adjuncts, enhance clarity and specificity
(Joshi & Summers, 2015a). Consider the requirement: “The tool must have a controlled vocabulary with
no synonyms”. “The tool” is the subject; “must” is the modality; “[to] have” is the verb; “a controlled
vocabulary” is the object; and “with no synonyms” is the adjunct describing the object. Without the
object, the requirement lacks meaning while the adjunct adds details. Requirements can also be
reformulated in multiple ways to convey the same information such as:

1. The tool must have a controlled vocabulary.
2. The controlled vocabulary must not include synonyms.

Requirements evolve throughout the project lifecycle, with changes such as splitting, refining, adding, or
deleting requirements impacting project outcomes (Morkos et al., 2012). Capturing these changes is
critical for understanding the relationship between requirement evolution and project health (Asgher-
Nadeem et al., 2024). For instance, tracking changes helps identify the propagation of requirement
modifications and their influence on cost and timelines.
To address these challenges, 28 specific requirements justified with relevant literature were elicited for
the development of RADE (Table 1). These requirements ensure that users write complete requirements
while also supporting future project management and reasoning.

Table 1. Elicited requirements for RADE

Serial
No. Requirement Justification Literature

1 The tool should support requirement
authoring.

To capture well written
requirements

(Carrillo De Gea et al.,
2012)

2 The tool must track requirement
completeness.

To ensure well written
requirements
documents

(Dos Santos Soares &
Vrancken, 2007)

2.1 The tool should influence users to include a
subject in each requirement.

To ensure well written
requirement statements

(Hähnle et al., 2002)

2.2 The tool should influence users to include a
verb in each requirement.

To ensure well written
requirement statements

(Hähnle et al., 2002)

2.3 The tool should influence users to include a
predicate phrase in each requirement.

To ensure well written
requirement statements

(Hähnle et al., 2002)

2.4 The tool should influence users to include a
modality in each requirement

To ensure well written
requirement statements

(Hähnle et al., 2002)

3 The tool must link the components of a
requirement into a single statement.

To ensure well written
requirements
documents

(Dos Santos Soares &
Vrancken, 2007)

4 The tool must ensure good requirement
authoring.

To ensure well written
requirement statements

(Carrillo De Gea et al.,
2012)

5 The tool must track the date of requirement
generation.

To capture historical data (DelSpina et al., 2018)

6 The tool must ensure that changes in
requirements are captured.

To capture historical data (Morkos et al., 2019)

7 The tool should be used throughout the
design process.

To capture historical data (Ullman et al., 2024)

8 The tool must track whether a requirement
is functional or non-functional.

To support reasoning (Morkos et al., 2019)

9 The tool must implement a criticality for
each requirement.

To support reasoning (Carrillo De Gea et al.,
2012)

10 The tool must implement a test method for
each requirement.

To support reasoning (Ullman et al., 2024)

(Continued)

2034 ICED25

3. Comparative analysis of existing tools
Table 2 presents a comparative analysis of 15 existing tools alongside RADE to illustrate identified
gaps and feature support. Requirements engineering involves critical activities such as elicitation,
modelling, analysis, validation, verification, and management, all of which shape the success of a
design project (Barcelos et al., 2024; Umar & Lano, 2024). Requirements play a significant role in the
design process by establishing a clear understanding between stakeholders and project teams (Ullman
et al., 2024).

Table 1. Continued

Serial
No. Requirement Justification Literature

11 The tool must implement a stakeholder for
each requirement.

To support reasoning (Mullis et al., 2024)

12 The tool must implement a justification for
each requirement.

To support reasoning (Carrillo De Gea et al.,
2012)

13 The tool must implement risk for each
requirement.

To support reasoning (Ullman et al., 2024)

14 The tool must provide feedback immediately
after an error in requirement writing.

To enforce complete
requirement writing

(Hähnle et al., 2002)

15 The tool must have a controlled vocabulary
with no synonyms.

To enforce complete
requirement writing

(Caldwell et al., 2011)

16 The tool should incorporate numeric objects
in the predicate phrase field.

To encourage user
interaction

(Joshi & Summers, 2015b)

17 The tool must incorporate a user updated
subject list.

To encourage user
interaction

(Ullman et al., 2024)

18 The tool must incorporate a user updated
stakeholder list.

To encourage user
interaction

(Carrillo De Gea et al.,
2012)

19 The tool must incorporate a user updated
testing list.

To encourage user
interaction

(Patel et al., 2022)

20 The tool should be available to users 24
hours a day.

To encourage user
interaction

(Hoffmann et al., 2004)

21 The tool must implement free response in
the predicate phrase field.

To encourage user
interaction

(Hoffmann et al., 2004)

22 The tool must incorporate a user updated
owner list.

To encourage user
interaction

(DelSpina et al., 2018)

23 The tool must support reasoning. To classify requirement
statements

(Morkos et al., 2019)

24 The tool must display requirements in
multiple views

To allow for database
and document views

(Hoffmann et al., 2004)

Table 2. Comparative analysis of requirements modelling tools

Tools
Feedback
(R.14) Boilerplate

Tracking
Changes Prioritization

Lifecycle
Management Documentation

Controlled
Vocabulary

TRACER (Stoller, 1988) X X X X
Telelogic DOORS1 X X X
Starbase Caliber-RM (Sud, 2003) X X X X X
LOLITA (Mich & Garigliano, 2000) X X
OmniVista On YourMark Pro (Sud,
2003)

X X X

QuARS (Fabbrini et al., 2001) X X
RTM Workshop 5.0 (Sud, 2003) X X X

(Continued)

1 https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors (accessed
2024.11.25)

ICED25 2035

https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors

A robust requirements management tool must facilitate these activities throughout the project lifecycle,
enabling users to track changes, prioritize requirements, and ensure clarity and consistency. Despite the
availability of various requirements modelling tools, significant gaps persist. Many existing tools excel in
specific areas, such as documentation or tracking changes, but fail to integrate all essential features (Bao
et al., 2022; Dai et al., 2013; Jain et al., 2009; Mich & Garigliano, 2000; Stoller, 1988; Sud, 2003; Wali &
Nordin, 2024). RADE was developed to fill this void, providing comprehensive support for feedback,
boilerplate guidance, change tracking, prioritization, lifecycle management, and controlled vocabulary.
Existing requirements modelling tools provide valuable but fragmented support for requirements
engineering. RADE integrates critical functionalities; real-time feedback, boilerplate guidance, change
tracking, prioritization, lifecycle management, and controlled vocabularies—into a single, user-friendly
platform. By doing so, RADE positions itself as a holistic solution to modern requirements engineering
challenges.

3.1. Feedback
Providing real-time feedback helps users refine their requirements while writing (Wang et al., 2024).
Tools like LOLITA and QuARS provide limited feedback, primarily focused on detecting ambiguities
(Fabbrini et al., 2001; Mich & Garigliano, 2000). For instance, LOLITA identifies lexical and sentence
ambiguities, offering guidance to improve clarity (Mich & Garigliano, 2000). Similarly, QuARS detects
defects such as vagueness and under specification (Fabbrini et al., 2001). However, these tools lack the
ability to ensure compliance with boilerplate structures or provide actionable error messages. RADE
enhances this capability by offering immediate feedback for incomplete requirements.

3.2. Boilerplates guidance
Boilerplates provide standardized templates for writing requirements, which ensures consistency across
requirement documents (Ibrahim et al., 2014). By guiding authors through predefined structures,
boilerplates simplify the process of creating requirements that are clear, actionable, and aligned with
industry standards (Antoniou et al., 2024; Lim et al., 2024). Tools like RCT and RUBRIC adopt
established templates, such as those from the International Requirements Engineering Board (IREB), to
support this standardization (Arora et al., 2013; Wang et al., 2024). However, these tools often rely on
static templates that may not be easily customizable or user-friendly. RADE advances this functionality
by incorporating dynamic boilerplates directly into its interface, using structured columns that guide
users through the requirement-writing process. This approach ensures that every requirement includes
critical components—such as subject, verb, and modality—while allowing flexibility for user-specific
needs, such as custom object or adjunct fields.

3.3. Change tracking
Requirements often evolve during a project due to shifting stakeholder needs, unforeseen constraints, or
technological advancements (Morkos et al., 2019). Effective change tracking allows teams to document
these modifications and analyse their impact on project goals (Stoller, 1988). Tools like TRACER and

Table 2. Continued

Tools
Feedback
(R.14) Boilerplate

Tracking
Changes Prioritization

Lifecycle
Management Documentation

Controlled
Vocabulary

Rational Suite AnalystStudio2 X X X X
RDT 3.0 (Sud, 2003) X X X
RAT (Jain et al., 2009) X X X
RUBRIC (Arora et al., 2013) X X X
TRC Requirements Quality Suite
(RQS)3

X X

RM2Doc (Bao et al.,2022) X
RCT (Wali & Nordin, 2024) X X
DRed (Dai et al., 2013) X X X
Requirements Authoring Design
Enabler

X X X X X X X

2 https://public.dhe.ibm.com/software/rational/web/datasheets/2003/d801f-analyst-studio.pdf (accessed 2024.11.25)
3 https://www.reusecompany.com/ (accessed 2024.11.25)

2036 ICED25

https://public.dhe.ibm.com/software/rational/web/datasheets/2003/d801f-analyst-studio.pdf
https://www.reusecompany.com/

Telelogic DOORS provide hierarchical tracing of requirements, enabling users to follow the propagation
of changes from parent to child requirements (McLellan et al., 2011; Stoller, 1988; Sud, 2003). This
feature is particularly useful for impact assessments, as it highlights dependencies and potential conflicts
(Sud, 2003). These tools can be complex to set up and require significant manual effort to maintain
traceability. RADE simplifies change tracking by integrating dedicated columns for adding, modifying,
or deleting requirements. Each change is date-stamped, ensuring a complete history of requirement
evolution. This functionality not only supports traceability but also enables teams to monitor trends in
requirement modifications, such as frequent additions or deletions.

3.4. Prioritization
Prioritization is a critical feature for managing competing requirements, particularly in resource-
constrained projects (Berntsson Svensson & Torkar, 2024). Existing tools like Starbase Caliber-RM and
Rational Suite AnalystStudio use attributes such as cost, value, or risk to rank requirements (Sud, 2003).
These rankings help teams focus on high-impact requirements that deliver the greatest value to
stakeholders. However, prioritization in these tools is often subjective, relying heavily on user inputs
without standardized criteria. RADE addresses this challenge by introducing a criticality scale, where
requirements are classified into three levels of importance: low, medium, and high. This scale is intuitive
and aligns with common project management frameworks, allowing teams to quickly identify critical
requirements and allocate resources accordingly (Ullman et al., 2024).

3.5. Project lifecycle management
The lifecycle of a requirement extends from its initial elicitation to its validation, implementation, and
eventual retirement (Sud, 2003). Effective lifecycle management ensures that requirements remain
relevant, aligned with project goals, and adequately documented at each stage (Halbleib, 2003;
Hoffmann et al., 2004). Tools like Telelogic DOORS offer multi-level traceability, assigning states (e.g.,
“new,” “in review,” or “approved”) to requirements, while Starbase Caliber-RM maintains version
histories for easy comparison of changes over time (Sud, 2003). While these features are valuable, they
often operate in silos, requiring manual effort to integrate with other project management tools. RADE
enhances lifecycle management by combining tracking with date-stamped documentation, ensuring that
every change is logged and visible. RADE’s integration with prioritization and controlled vocabulary
features allows users to manage requirements holistically, ensuring consistency and relevance throughout
the design process.

3.6. Documentation
Documentation is essential for managing requirements across diverse stakeholders and project phases
(Behutiye et al., 2022). Tools such as RDT 3.0 and Starbase Caliber-RM, provide basic documentation
features like traceable links and version control (Sud, 2003). However, these tools often lack flexibility in
organizing and presenting requirements, which can hinder accessibility and usability. RADE addresses
this limitation by offering multiple views: a database view for granular analysis and a document view for
higher-level summaries. Requirements in RADE are organized using serialized numbering and structured
fields, making it easy to track relationships and dependencies. Additionally, RADE’s integration of
documentation with change tracking and lifecycle management ensures that every requirement is not
only well-documented but also kept up-to-date as projects evolve.

3.7. Controlled vocabulary
Controlled vocabularies standardize the language used in requirement statements, reducing ambiguity
and ensuring consistency across documents. Tools like Starbase Caliber-RM and RAT employ
predefined glossaries to define acceptable terms for specific industries or projects (Jain et al., 2009; Sud,
2003). Starbase Caliber-RM includes glossaries for industry-specific terms, while RAT offers entity and
action glossaries for system components and functionalities. However, these vocabularies are often static
and may not accommodate project-specific terminology. RADE improves on these features by
incorporating two controlled vocabularies. The verb vocabulary classifies requirements as functional or
non-functional, while the modality vocabulary captures criticality (e.g., “must,” “should”). Users can
also update these vocabularies to reflect unique project needs, providing both standardization and
flexibility.

ICED25 2037

4. RADE: development approach and system architecture
RADE was developed with a robust system architecture (Figure 1) to address the complexities of
requirement authoring, management, and lifecycle tracking. Its design prioritizes user accessibility, real-
time feedback, and structured documentation, leveraging a macro-enabled Excel workbook as its graphical
user interface (GUI). The architecture integrates multiple column types, controlled vocabularies, and
feedback mechanisms to ensure high-quality requirements and seamless user interaction.

4.1. System architecture
The RADE system architecture consists of automated, hybrid, controlled, and free-text columns, each
playing a distinct role in requirement authoring and management. These components are integrated into a
boilerplate structure, ensuring consistency and adaptability across projects.

4.1.1. Automated colums
Automated columns perform predefined functions without requiring user input, simplifying the
requirement authoring process. The Complete % column calculates the percentage completeness of a
requirement by assessing the presence of its components, ensuring users are aware of missing elements.
The Functional vs. Non-Functional (F vs NF) column categorizes requirements automatically as either
functional, such as actions the system must perform, or non-functional, such as performance criteria.
Additionally, the Integrated Requirement column combines key components, including the subject,
modality, verb, and predicate phrase into a single, comprehensive requirement statement.

4.1.2. Hybrid columns
Hybrid columns allow for limited user input while maintaining structured options for consistency. For
instance, the Subject, Test, Stakeholder, and Owner Lists can be customized by users to reflect project-
specific contexts, ensuring adaptability. Change tracking is facilitated by the Add, Modify, Delete, and
Restore columns, which capture updates to requirements throughout their lifecycle. These are
complemented by the Date column, which tracks changes to aid traceability and historical analysis.

4.1.3. Controlled columns
Controlled columns enforce uniformity by restricting inputs to predefined options derived from
controlled vocabularies or standard conventions. The Modality and Verb columns, as core elements of
RADE’s controlled vocabulary, ensure consistent phrasing across requirements. The Modality column
defines criticality levels, distinguishing between constraints such as “must” and criteria such as “should,”
while the Verb column classifies actions as either functional or non-functional. Other controlled columns
include the Serial Number, which assigns unique identifiers to each requirement, and the Target Value

Figure 1. RADE system architecture

2038 ICED25

and Criticality columns, which capture prioritization details, allowing requirements to be ranked based
on their importance.

4.1.4. Free-text columns
Free-Text columns provide users with the flexibility to elaborate on requirement details. The Predicate
Phrase column allows users to add essential context to a requirement statement, ensuring precision and
completeness. Similarly, the Justification column provides space to explain the rationale behind each
requirement, fostering transparency and aiding stakeholder understanding.

4.2. Controlled vocabulary
Controlled vocabularies are a fundamental element of RADE’s architecture, ensuring consistency,
clarity, and precision in requirement authoring. RADE incorporates two controlled vocabularies: verbs
and modalities, both developed through a systematic and rigorous process.
The Verb Vocabulary was created by analysing multiple sources, including a wind turbine requirements
repository, NASA’s NPR 7120, and academic studies on design vocabularies (Hirtz et al., 2002).
Overlapping terms from these sources were identified, redundancies removed, and synonyms
consolidated, resulting in a refined list of 64 standardized verbs. This vocabulary categorizes
requirements as functional or non-functional, aiding classification and analysis.
The Modality Vocabulary focuses on criticality, distinguishing between constraints and criteria. This
classification allows users to prioritize requirements based on their necessity and importance within the
project scope. By guiding users in selecting appropriate terms, the modality vocabulary ensures
uniformity and facilitates decision-making in requirement prioritization. Together, these controlled
vocabularies serve as essential tools for minimizing ambiguity, ensuring consistency, and maintaining
high standards in requirement documentation.

4.3. Real-time feedback mechanism
Real-time feedback is a critical feature of RADE, designed to enhance the accuracy and completeness of
requirement authoring. The system dynamically generates feedback based on the completeness and
correctness of user entries, helping to identify and rectify errors during the writing process. For example,
if key fields such as Subject, Verb, or Predicate Phrase are left blank, RADE triggers context-specific
prompts such as “The Requirement Needs a Subject” or “Please Complete the Requirement.”
Additionally, incomplete requirements are flagged in the Complete % column, providing users with a
visual cue to address gaps promptly. This feedback loop improves the quality of requirements and
functions as an educational tool. By exposing users to best practices in real-time, RADE helps users
develop a deeper understanding of structured requirement writing, making it especially valuable for
novice authors.

4.4. Change tracking and lifecycle management
RADE integrates change tracking and project lifecycle management features to support iterative and
dynamic design processes. These features ensure that requirement documents remain aligned with project
goals while adapting to changes over time. The Add, Modify, Delete, and Restore columns, combined
with date-stamped Date entries, create a detailed record of requirement evolution. This structured
tracking allows users to monitor the history of modifications, facilitating traceability and ensuring
accountability throughout the project lifecycle. Requirements are kept relevant and actionable from their
initial elicitation to their final documentation.

4.5. Dual-mode interface
RADE enhances usability through its dual-mode interface, catering to technical and non-technical users.
The Database View provides a comprehensive display of all requirement fields in a structured format,
ideal for detailed analysis, tracking, and technical review. TheDocument View summarizes requirements,
focusing on key elements and justifications, making it well-suited for stakeholder communication. This
dual-mode interface ensures accessibility for diverse audiences, allowing teams to seamlessly switch
between detailed technical insights and high-level summaries.

ICED25 2039

5. Implementation of the design enabler
RADE underwent extensive testing across diverse user groups, including pre-service engineers
(undergraduate students), the UTDesign-R lab, and the NASA Micro-g NExT team. These testing
environments offered valuable insights into the tool’s usability, effectiveness, and areas for
improvement. The iterative feedback gathered from these groups informed RADE’s development,
driving refinements that enhanced its functionality and overall user experience.
The feedback process was integral to RADE’s iterative development. Undergraduate students using
version 1.2 of RADE identified several issues that were addressed in subsequent updates. For instance,
inconsistencies in drop-down columns and malfunctions in the real-time feedback mechanism were
observed in some workbooks. Users also found certain column definitions unclear and deemed some
fields unnecessary. Additionally, the Integrated Requirement column, which concatenated key
components such as subject, modality, and predicate phrase, did not display correctly in all cases.
Another area of concern was the data validation setup required in version 1.2, which made updating
stakeholder, owner, and test columns time-consuming. To resolve this, version 1.3.1 automated data
validation on the back end, allowing users to directly update their options in the vocabulary sheet. These
adjustments, along with fixes to other inconsistencies, significantly improved RADE’s usability and
functionality. Feedback from the NASA team highlighted the tool’s practical utility but also underscored
the need for further enhancements to support large-scale, iterative projects.

6. Conclusions and future work
Requirement modelling tools play a critical role in optimizing the engineering design process, yet many
existing tools fail to address key needs such as prioritization, comprehensive lifecycle management, and
real-time feedback for requirement authors. RADE was developed to fill these gaps, incorporating
features like controlled vocabularies, automated feedback mechanisms, and robust tracking capabilities.
Its development involved creating a controlled vocabulary, implementing the authoring design enabler in
Excel, writing a user manual, and conducting usability studies.
While RADE has demonstrated significant promise, limitations remain. One challenge is the need to
unblock macros when accessing the tool on certain devices, such as tablets. Future work will involve
analysing the evolution of requirements authored with RADE in capstone industry sponsored projects.
The design enabler will be used to capture historical data, focusing on typology and the balance between
constraints and criteria based on (Joshi & Summers, 2014; Summers et al., 2014).

References
Antoniou, C., Kravari, K. & Bassiliades, N. (2024). Semantic requirements construction using ontologies and

boilerplates. Data & Knowledge Engineering, 152, 102323. https://doi.org/10.1016/j.datak.2024.102323
Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F. & Gnaga, R. (2013). RUBRIC: a flexible tool for automated

checking of conformance to requirement boilerplates. Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, 599–602. https://doi.org/10.1145/2491411.2494591

Asgher-Nadeem, M., Hasnain, M., Saleemi, M. M., Awais-Mohsin, M., Adeel-Ansari, M. & Essalah, W. (2024).
Challenges in Requirements Engineering for IoT Solutions | Journal of Computing & Biomedical Informatics.
6(2). https://doi.org/0.56979/602/2024

Bao, T., Yang, Y., Yang, J. & Yin, Y. (2022). RM2Doc: A Tool for Automatic Generation of Requirements
Documents from Requirements Models. 2022 IEEE/ACM 44th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), 188–192.

Barcelos, L. V., Antonino, P. O. & Nakagawa, E. Y. (2024). Requirements engineering in industry 4.0: State of the
art and directions to continuous requirements engineering. Systems Engineering, 27(5), 955–971. https://doi.
org/10.1002/SYS.21753

Behutiye, W., Rodríguez, P., Oivo, M., Aaramaa, S., Partanen, J. & Abhervé, A. (2022). Towards optimal quality
requirement documentation in agile software development: A multiple case study. Journal of Systems and
Software, 183, 111112. https://doi.org/10.1016/J.JSS.2021.111112

Berntsson Svensson, R. & Torkar, R. (2024). Not all requirements prioritization criteria are equal at all times: A
quantitative analysis. Journal of Systems and Software, 209, 111909. https://doi.org/10.1016/J.JSS.2023.
111909

Caldwell, B. W., Sen, C., Mocko, G. M. & Summers, J. D. (2011). An empirical study of the expressiveness of
the functional basis. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AI EDAM,
25(3), 273.

2040 ICED25

https://doi.org/10.1016/j.datak.2024.102323
https://doi.org/10.1145/2491411.2494591
https://doi.org/0.56979/602/2024
https://doi.org/10.1002/SYS.21753
https://doi.org/10.1002/SYS.21753
https://doi.org/10.1016/J.JSS.2021.111112
https://doi.org/10.1016/J.JSS.2023.111909
https://doi.org/10.1016/J.JSS.2023.111909

Carrillo De Gea, J. M., Nicolás, J., Fernández Alemán, J. L., Toval, A., Ebert, C. & Vizcaíno, A. (2012).
Requirements engineering tools: Capabilities, survey and assessment. Information and Software Technology,
54(10), 1142–1157. https://doi.org/10.1016/J.INFSOF.2012.04.005

Dai, W., Aurisicchio, M. & Armstrong, G. (2013). An IBIS Based Approach for the Analysis of Non-Functional
Requirements. Proceedings of the ASME Design Engineering Technical Conference, 7, 591–602. https://doi.
org/10.1115/DETC2012-71023

DelSpina, B., Gilliam, S., Summers, J. & Morkos, B. (2018). Corporate requirement culture in development of a
large scale medical system: A case study, 2621–2632.

Dos Santos Soares, M. & Vrancken, J. (2007). Requirements specification and modeling through SysML.
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 1735–1740.
https://doi.org/10.1109/ICSMC.2007.4413936

Fabbrini, F., Fusani, M., Gnesi, S. & Lami, G. (2001). The linguistic approach to the natural language requirements
quality: Benefit of the use of an automatic tool. 26th Annual NASA Goddard Software Engineering Workshop,
IEEE/NASA SEW 2001, 97–105. https://doi.org/10.1109/SEW.2001.992662

Hähnle, R., Johannisson, K. & Ranta, A. (2002). An Authoring Tool for Informal and Formal Requirements
Specifications. In G. Goos, J. Hartmanis & J. van Leeuwen (Eds.), International Conference on Fundamental
Approaches to Software Engineering (pp. 233–248). Springer.

Halbleib, H. (2003). Requirements management. Information Systems Management, 21(1), 8–14. https://doi.org/
10.1201/1078/43877.21.1.20041201/78982.2

Hirtz, J., Stone, R. B., McAdams, D. a., Szykman, S. & Wood, K. L. (2002). A functional basis for engineering
design: reconciling and evolving previous efforts. Research in Engineering Design, 13(2), 65–82. https://doi.
org/10.1007/s00163-001-0008-3

Hoffmann, M., Kühn, N., Weber, M. & Bittner, M. (2004). Requirements for requirements management tools.
Proceedings of the IEEE International Conference on Requirements Engineering, 301–308. https://doi.org/10.
1109/ICRE.2004.1335687

Ibrahim, N., Wan Kadir, W. M. N. & Deris, S. (2014). Documenting requirements specifications using natural
language requirements boilerplates. 2014 8th Malaysian Software Engineering Conference, MySEC 2014, 19–
24. https://doi.org/10.1109/MYSEC.2014.6985983

Jain, P., Verma, K., Kass, A. & Vasquez, R. G. (2009). Automated review of natural language requirements
documents: Generating useful warnings with user-extensible glossaries driving a simple state machine.
Proceedings of the 2nd India Software Engineering Conference, ISEC 2009, 37–45. https://doi.org/10.1145/
1506216.1506224

Joshi, S. & Summers, J. D. (2014, August 17). Tracking Project Health Using Completeness and Specificity of
Requirements: A Case Study. Volume 3: 16th International Conference on Advanced Vehicle Technologies;
11th International Conference on Design Education; 7th Frontiers in Biomedical Devices. https://doi.org/10.
1115/DETC2014-35020

Joshi, S. & Summers, J. D. (2015a). Requirements change: Understanding the type of changes in the requirements
document of novice designers. International Journal of Mechanical Engineering Education, 43(4), 286–304.
https://doi.org/10.1177/0306419015612348

Joshi, S. & Summers, J. D. (2015b). Requirements Evolution: Understanding the Type of Changes in Requirement
Documents of Novice Designers. ICoRD’15–Research into Design Across Boundaries Volume 2, 471–481.

Lim, J. W., Chiew, T. K., Su, M. T., Ong, S., Subramaniam, H., Mustafa, M. B. & Chiam, Y. K. (2024). Test case
information extraction from requirements specifications using NLP-based unified boilerplate approach.
Journal of Systems and Software, 211, 112005. https://doi.org/10.1016/j.jss.2024.112005

Mattson, C. A. & Sorensen, C. D. (2020). Product Development: Principles and Tools for Creating Desirable and
Transferable Designs (1st ed.). Springer.

McLellan, J. M., Morkos, B., Mocko, G. G. & Summers, J. D. (2011). Requirement Modeling Systems for
Mechanical Design: A Systematic Method for Evaluating Requirement Management Tools and Languages.
Proceedings of the ASME Design Engineering Technical Conference, 3(PARTS A AND B), 1247–1257.
https://doi.org/10.1115/DETC2010-28989

Morkos, B., Joshi, S. & Summers, J. D. (2019). Investigating the impact of requirements elicitation and evolution
on course performance in a pre-capstone design course. Journal of Engineering Design, 30(4–5), 155–179.

Morkos, B., Shankar, P. & Summers, J. D. (2012). Predicting requirement change propagation, using higher order
design structure matrices: an industry case study. Journal of Engineering Design, 23(12), 905–926. https://doi.
org/10.1080/09544828.2012.662273

Mullis, J., Chen, C., Morkos, B. & Ferguson, S. (2024). Deep Neural Networks in Natural Language Processing for
Classifying Requirements by Origin and Functionality: An Application of BERT in System Requirements.
Journal of Mechanical Design, 146(4). https://doi.org/10.1115/1.4063764/1169299

Patel, A. R., Murphy, A., Summers, J. D. & Tahera, K. (2022). Testing in Engineering Design: What Are We
Teaching. Proceedings of the Design Society, 2, 2363–2372. https://doi.org/10.1017/PDS.2022.239

ICED25 2041

https://doi.org/10.1016/J.INFSOF.2012.04.005
https://doi.org/10.1115/DETC2012-71023
https://doi.org/10.1115/DETC2012-71023
https://doi.org/10.1109/ICSMC.2007.4413936
https://doi.org/10.1109/SEW.2001.992662
https://doi.org/10.1201/1078/43877.21.1.20041201/78982.2
https://doi.org/10.1201/1078/43877.21.1.20041201/78982.2
https://doi.org/10.1007/s00163-001-0008-3
https://doi.org/10.1007/s00163-001-0008-3
https://doi.org/10.1109/ICRE.2004.1335687
https://doi.org/10.1109/ICRE.2004.1335687
https://doi.org/10.1109/MYSEC.2014.6985983
https://doi.org/10.1145/1506216.1506224
https://doi.org/10.1145/1506216.1506224
https://doi.org/10.1115/DETC2014-35020
https://doi.org/10.1115/DETC2014-35020
https://doi.org/10.1177/0306419015612348
https://doi.org/10.1016/j.jss.2024.112005
https://doi.org/10.1115/DETC2010-28989
https://doi.org/10.1080/09544828.2012.662273
https://doi.org/10.1080/09544828.2012.662273
https://doi.org/10.1115/1.4063764/1169299
https://doi.org/10.1017/PDS.2022.239

Shankar, P., Morkos, B. & Summers, J. D. (2012). Predicting Requirement Change Propagation using higher order
design structure matrices: an industry case study. Research in Engineering Design, 23(12), 905–926.

Stoller, R. L. (1988). TRACER: A tool for tracing and control of engineering requirements. IEEE International
Conference on Engineering Management, 27–36. https://doi.org/10.1109/IEMC.1988.34907

Summers, J. D., Joshi, S. & Morkos, B. (2014, August 17). Requirements Evolution: Relating Functional and Non-
Functional Requirement Change on Student Project Success. Volume 3: 16th International Conference on
Advanced Vehicle Technologies; 11th International Conference on Design Education; 7th Frontiers in
Biomedical Devices. https://doi.org/10.1115/DETC2014-35023

Ullman, D. G., Summers, J. D. & Fielding, J. (2024). Product Design Best Practices (1st ed.). BVT Publishing.
Umar, M. A. & Lano, K. (2024). Advances in automated support for requirements engineering: a systematic

literature review. Requirements Engineering, 29(2), 177–207. https://doi.org/10.1007/s00766-023-00411-0
Wali, S. S. A. S. & Nordin, A. (2024). The Design and Development of a Requirements Conformance Tool (RCT).

International Journal on Perceptive and Cognitive Computing, 10(2), 74–79. https://doi.org/10.31436/IJPCC.
V10I2.487

Wang, S., Mitchell, J. & Piech, C. (2024). A Large Scale RCT on Effective Error Messages in CS1. SIGCSE 2024 -
Proceedings of the 55th ACM Technical Symposium on Computer Science Education, 1, 1395–1401. https://
doi.org/10.1145/3626252.3630764

2042 ICED25

https://doi.org/10.1109/IEMC.1988.34907
https://doi.org/10.1115/DETC2014-35023
https://doi.org/10.1007/s00766-023-00411-0
https://doi.org/10.31436/IJPCC.V10I2.487
https://doi.org/10.31436/IJPCC.V10I2.487
https://doi.org/10.1145/3626252.3630764
https://doi.org/10.1145/3626252.3630764

	Identifying the needs for a Requirements Authoring Design Enabler
	1.. Motivation: The need for a new requirements authoring tool
	2.. Elicited requirements for RADE
	3.. Comparative analysis of existing tools
	3.1.. Feedback
	3.2.. Boilerplates guidance
	3.3.. Change tracking
	3.4.. Prioritization
	3.5.. Project lifecycle management
	3.6.. Documentation
	3.7.. Controlled vocabulary

	4.. RADE: development approach and system architecture
	4.1.. System architecture
	4.1.1.. Automated colums
	4.1.2.. Hybrid columns
	4.1.3.. Controlled columns
	4.1.4.. Free-text columns

	4.2.. Controlled vocabulary
	4.3.. Real-time feedback mechanism
	4.4.. Change tracking and lifecycle management
	4.5.. Dual-mode interface

	5.. Implementation of the design enabler
	6.. Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

