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Abstract

Good air quality is a critical determinant of public health, influencing life expectancy, respiratory health, work
productivity, and the prevention of chronic diseases. This study presents a novel approach to classifying the Air
Quality Index (AQI) using deep learning techniques, specifically convolutional neural networks (CNNs). We
collected and curated a dataset comprising 11,000 digital images from three distinct regions in Indonesia—Jakarta,
Malang, and Semarang—ensuring uniformity through standardized acquisition settings. The images were categor-
ized into four air quality classes: good, moderate, unhealthy for sensitive groups, and unhealthy. We designed and
implemented a CNN architecture optimized for AQI classification. The model achieved an impressive accuracy of
99.81% using K-fold cross-validation. In addition, the model’s interpretative capabilities were examined using
techniques such as Grad-CAM, providing valuable insights into how the CNN identifies and classifies air quality
conditions based on image features. These findings underscore the effectiveness of CNNs for AQI classification and
highlight the potential for future work to incorporate a more diverse set of digital images captured from various
perspectives to enhance dataset complexity andmodel robustness. The dataset is publicly accessible at https://doi.org/
10.5281/zenodo.15727522.

Impact Statement

This article addresses a pressing global issue: the assessment of air quality, a vital determinant of public health
and environmental management. By introducing AQI-Net, a specialized Convolutional Neural Network
model, this study pioneers the use of deep learning to classify the Air Quality Index (AQI) from digital
images. This collaborative effort between experts in computer vision, environmental data analysis, and
software development guarantees a multidisciplinary perspective. The study not only provides a comprehen-
sive and publicly accessible dataset but also enhances model explainability through Grad-CAM, offering
valuable insights into the decision-making process of Artificial Intelligence models for broader scientific and
public health applications.
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1. Introduction

Air is amixture of gases, primarily nitrogen, oxygen, and carbon dioxide, that are essential for the survival of
living organisms.Oxygen, in particular, is vital for respiration, a process that sustains life. Consequently, the
quality of air is directly linked to public health. Good air quality supports longer life expectancy, healthier
respiratory systems, improvedwork productivity, and a reduced incidence of chronic diseases. However, the
natural composition of air can be disrupted by the introduction of harmful substances, leading to air
pollution. This disruption often results from various human activities, such as industrial emissions, vehicle
exhaust, cigarette smoke, deforestation, and large-scale agricultural practices like the burning of crop
residues (Maharani andAryanta, 2023).As air pollution intensifies, it poses significant risks to public health,
making the assessment and monitoring of air quality increasingly important.

The assessment of air quality typically involves measuring a set of parameters, including the levels of
ozone (O3), carbonmonoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter (PM),
and other pollutants (Huboyo et al., 2020). Thesemeasurements are used to determine theAir Quality Index
(AQI), a standardized index that categorizes air quality into different classes, each reflecting the associated
health risks of various pollution levels. Traditionally, the AQI is determined using sophisticated sensors that
detect pollutant concentrations in the air (Yu et al., 2018). While accurate, these sensors are expensive and
often limited to major urban areas, restricting their accessibility. To overcome these limitations, alternative
approaches to estimating the AQI have been explored, including the use of digital images. By capturing the
visual appearance of the sky or surroundings, these images can be analyzed using deep learning techniques,
specifically convolutional neural networks (CNNs). This method offers a cost-effective and accessible
solution for monitoring air quality, particularly in regions where sensor deployment is not feasible.

Deep learning, a branch of machine learning, is particularly effective for tasks that involve large
datasets and complex patterns. Unlike traditional machine learning models, which often require manual
feature extraction, deep learning architectures, such as CNNs, are designed to automatically discover
intricate patterns through hierarchical feature extraction. This makes CNNs highly suitable for analyzing
visual data, including digital images used for air quality assessment.

A CNN is composed of several types of layers, each serving a distinct function. The three primary types
of layers are convolutional layers, pooling layers, and fully connected layers. Convolutional layers apply
kernels (or filters) to the input image, performing operations that detect various features, such as edges,
textures, and shapes. These features are then transformed into feature maps that capture the essential
characteristics of the image. The pooling layers downsample these feature maps, reducing their spatial
dimensions while retaining the most important information, making the model more computationally
efficient. Finally, the fully connected layers process the extracted features to produce the final output, such
as a classification label or probability distribution (Popescu et al., 2009).

One practical application of CNNs is in determining the AQI based on digital images. The AQI is a
globally recognized index used to communicate the current or forecasted level of air pollution. It is
typically divided into six categories: good, moderate, unhealthy for sensitive groups, unhealthy, very
unhealthy, and hazardous (Agista et al., 2020). Each category has specific characteristics and health
implications. For example, the “good” category (green) with a PM2.5 value of 0–12 indicates ideal
conditions for outdoor activities and suggests that people can enjoy fresh air by opening windows. In
contrast, the “hazardous” category (maroon) reflects severe air pollution levels that can lead to serious
health consequences, including an increased risk of cardiovascular disease (Zhao et al., 2020).

However, existing image-based AQI models primarily focus on daytime imagery under well-lit
conditions, limiting their applicability to 24-h monitoring.

By leveraging CNNs to classify digital images according to the AQI, we can develop tools that provide
a cost-effective means of public health monitoring and environmental management, particularly in areas
lacking extensive sensor networks.

CNNs have already demonstrated success in various applications beyond image classification,
including voice emotion recognition, food composition analysis, and sentiment analysis (Yu et al.,
2022). This makes them a promising approach for addressing the challenges of air quality assessment.
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2. Dataset

Choosing suitable locations for image capture in Indonesia requires careful consideration due to the
country’s vast size and geographical diversity. Indonesia spans an area of ~1.905 million km2, making it
challenging to collect data that adequately represents the entire nation. In addition, validating the AQI
labels used in classifying digital images necessitates reliance on pollutant detection sensors, which are not
uniformly distributed across the country. As a result, data collection was concentrated in regions with
reliable AQI observations and sufficient sensor coverage.

Given Indonesia’s size and diversity, we selected regions that are representative of the country’s
various environmental conditions. These regionswere chosen based on factors such as population density,
industrial activity, geographical features, and the availability of pollutant detection sensors. For instance,
Sumatra Island is prone to forest fires during the dry season (Yusuf et al., 2019), while Kalimantan Island
is experiencing rapid industrial growth, largely due to the expansion of oil palm plantations (Huda et al.,
2021). Java Island, the most populous and industrialized island in Indonesia, was chosen as the primary
focus of this study due to its extensive sensor network and diverse environmental conditions (Mardiansjah
and Rahayu, 2019).

To ensure comprehensive coverage, Java Island was divided into three regions: western Java,
represented by Jakarta; central Java, represented by Semarang; and eastern Java, represented by Malang.
Jakarta, the capital city, was selected not only for its high population density but also for its status as an
economic and political hub, which contributes to its varied air quality challenges.

The datasets used in this study were collected from Central Jakarta, Semarang, and Malang. Data
collection was conducted using the POCO X3 Pro device, with images captured throughout March and
April. The air quality at the time of image capture was verified using the IQAir website at https://
www.iqair.com/id/, which provides real-time AQI data. These images were collected specifically for this
study (not sourced from any existing online database), ensuring that each image’s label corresponds to the
actual measured AQI at the time of capture. This dataset serves as a valuable resource for training CNN
models to classify air quality based on visual data, offering a cost-effective alternative to traditional
sensor-based methods. By capturing a wide range of environmental conditions across multiple locations
and times, this dataset provides a robust foundation for developingmodels that can generalize well to new,
unseen data.

Based on Table 1, we can see that the AQI can be categorized based on a predefined range of values.
Therefore, we labeled our dataset according to this reference table, ensuring that each image’s AQI value
falls within the correct category (Attaallah andKhan, 2022). The dataset taken from the city on Java Island
was only able to capture four classes, which were labeled as “good,” “moderate,” “unhealthy for some
people,” and “unhealthy.”

Figure 1 displays the sample images representing each of the four AQI classes. Each image taken at the
same place has three different angles to add variety and complexity to the data collected. Another reason
for requiring multiple angles is to maximize the objects contained in the image so that the model does not
misrecognize the pattern.

Table 1. Air Quality Index class (Li et al., 2017)

AQI color Range value Description

Green 0–50 Good
Yellow 51–100 Moderate
Orange 101–150 Unhealthy for sensitive groups
Red 151–200 Unhealthy
Purple 201–300 Very unhealthy
Maroon 301 and higher Hazardous
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To ensure that we have enough variety of the data gathered, image collection was conducted at three
distinct locations across three different cities. This variation in data is necessary to represent all relevant
aspects of the observed scene (Barbedo, 2018).

Figure 2 illustrates the locations in Jakarta, Semarang, and Malang where images were captured (red
dots mark the AQI sensor points). These locations were identified using the AQI dashboard feature
provided by IQAir (IQAir). The data collection strategy was to take photographs in the vicinity of each
AQI sensor so that the measured AQI corresponds directly to the scene captured in the image.

3. Data acquisition

Images were taken by dividing the shooting times into three sessions: morning, afternoon, and evening.
The morning shooting session was conducted from 8 to 11 A.M., the afternoon session from 12 to 2 P.M.,
and the evening session from 3 to 5 P.M. Thus, no images were captured after 5 P.M. (i.e., under nighttime
or low-light conditions). After that, there is the image capture process, which is used to capture images and
label them based on the AQI detection results around the image capture location. Finally, there is the
image-cleaning phase. This phase is used to clean the image from unnecessary noise, such as foreign
objects appearing during image capture, poor capture results, or blur (Pal and Sudeep, 2016).

4. AQI-Net

After completing the data collection, the digital image data are processed using a deep learning
architecture known as CNNs. In this article, the modified CNN is referred to as AQI-Net. The AQI-
Net architecture comprises three convolutional blocks. The first and second blocks each consist of one
convolutional layer, one activation function, and one max pooling layer. The final block includes a linear

Figure 1. Examples of datasets collected clockwise, ranging from good, moderate, unhealthy for some
people, and unhealthy air quality.
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layer that serves as the classification layer. Designing the architecture involves careful consideration of the
design complexity, training time, and accuracy achieved during testing. After arranging and researching
the necessary layers, the following architecture was developed.

As shown in Table 2, the complete architecture of the modified CNN, named AQI-Net, used for AQI
classification is depicted. This architecture will be trained and tested to assess its performance in
classifying data into four different AQI categories. The model employs an input shape of 224 × 224 with
three channels, which is processed through the first convolutional block for spatial reduction. This block
summarizes the information in the digital image, condensing multiple pieces of information into a single
representation. In the first convolutional layer, a 5 × 5 kernel with a stride of 1 is used. Spatial reduction
also helps accelerate training time. The max-pooling operation in the convolutional Block 1 uses a 2 ×
2 kernel with a stride of 2.

Subsequently, the data progress to the second convolutional block for additional spatial reduction. This
blockmirrors the structure of the first, consisting of a convolutional layer with a 5 × 5 kernel and a stride of
1, and a max-pooling layer with a 2 × 2 kernel and a stride of 2. Finally, the third convolutional block
includes a linear (or flattening) layer that converts the data into a one-dimensional vector. At this stage, the
output from the second convolutional block is a feature map of size 53× 53×N (whereN is the number of
featuremaps in Block 2). The flattening layer converts this into a one-dimensional vector of 53× 53×N ¼
140,145 features. These features are then reduced to 300 via a fully connected layer with a ReLU
(Rectified Linear Unit) activation function. In the final layer, these 300 features are processed through
another fully connected layer, which classifies the data into predefined categories, completing the
supervised learning process. Having established the AQI-Net architecture and prepared the dataset, we
next trained the model and evaluated its performance, as presented in the following section.

Figure 2. Shooting locations in Jakarta, Semarang, and Malang, with red dots on the picture indicating
the exact shooting points and numbers representing the AQI sensors.
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5. Results

We evaluated the model using a fivefold cross-validation approach (with K ¼ 5) on the combined image
dataset from Jakarta, Semarang, and Malang. The images were randomly divided into five equal folds
with approximately uniform class distributions. In each iteration of cross-validation, four folds (80% of
the data) were used for training, and the remaining one fold (20%) was used for validation. This process
was repeated five times so that each fold was used exactly once as the validation set. Using this strategy,
the proposed AQI-Net achieved an average validation accuracy of 99.81% (with the highest single-fold
accuracy reaching 99.97%) across the five folds, demonstrating the model’s strong generalization
performance. All accuracy values reported in this section correspond to validation results from the
cross-validation.

A comparative analysis of various architectures offers valuable insights into the suitability of the
collected dataset for classification tasks. The architectures evaluated for performance comparison include
ResNet50 (He et al., 2015), VGG16 (Simonyan and Zisserman, 2015), ColorNet (Zhang et al., 2017), and
the proposed AQI-Net. This comparative study aims to assess whether AQI-Net achieves comparable or
superior performance relative to the benchmark architectures. ResNet50 and VGG16 were selected as
representative deep CNN models due to their proven performance in image classification, providing
strong baselines for comparison. We also included a colorization-based network (ColorNet) to examine
whether modeling color distributions in images can aid air quality classification, since atmospheric color
(e.g., haziness or sky tint) can be an indicator of pollution levels. The performance metrics for these
models are summarized in Table 3.

Table 2. Architecture of the proposed AQI-Net

Layer (type) Output shape
Kernel size/

stride Details

Input layer (224, 224, 3) – Input shape of 224 × 224 × 3
Conv2D (Block 1) (220, 220, numChannels) 5 × 5/1 Spatial reduction, 5 × 5 kernel,

stride 1
MaxPooling2D (Block 1) (110, 110, numChannels) 2 × 2/2 MaxPooling with 2 × 2 kernel,

stride 2
Conv2D (Block 2) (106, 106, numChannels) 5 × 5/1 Spatial reduction, 5 × 5 kernel,

stride 1
MaxPooling2D (Block 2) (53, 53, numChannels) 2 × 2/2 MaxPooling with 2 × 2 kernel,

stride 2
Flatten (Block 3) (140, 145) – Flattening layer
Dense (Block 3) (300) – Fully connected, ReLU

activation
Output layer (Dense) (4) – Fully connected, four output

classes

Table 3. Performance comparison of models

Architecture Accuracy Pretrained? Training time (s) Total parameters

ResNet50 100% Yes (ImageNet) 2486.3 23,516,228
VGG16 100% Yes (ImageNet) 10263.7 134,276,932
ColorNet 99.88% Yes (ImageNet) 5260.1 423,085,767
AQI-Net 99.97% No (Scratch) 2068.6 42,163,074
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As shown in Table 3, all models demonstrate exceptional performance on the validation data, with
ResNet50, VGG16, and AQI-Net each achieving near-100% validation accuracy. ColorNet’s accuracy is
slightly lower but still excellent. AQI-Net is particularly noteworthy for its efficiency, achieving high
accuracy with the shortest training time. In contrast, while VGG16 is highly accurate, it requires
significantly more training time compared to the other models, which may be a consideration when
computational resources are limited. The table also lists each model’s total number of parameters,
highlighting differences in model complexity. We observe that VGG16 and ColorNet have substantially
more parameters (~134 million and 423 million, respectively) compared to AQI-Net (42 million) and
ResNet50 (23 million). AQI-Net’s parameter count, while much lower than those of VGG16 and
ColorNet, is still relatively high—this is primarily due to its large fully connected layer (flattening
roughly 140k features into 300 nodes), which contributes the majority of its 42 million parameters. We
have double-checked these values for accuracy.

Based on Figure 3, we can evaluate the performance of the architectures trained using the Indonesian
dataset. Initially, ColorNet exhibits a significant gap between training and validation accuracies, indi-
cating overfitting, where training accuracy surpasses validation accuracy. However, the model stabilizes
in subsequent epochs and eventually converges. In contrast, AQI-Net demonstrates a minimal difference
between validation and training accuracy and loss, reflecting stable performance and effective recognition
of the dataset. VGG16 and ResNet50 also show stable performance, although ResNet50 does not initially
achieve the best results compared to AQI-Net and VGG16.

The graph displays the progression of training accuracy for each model over 15 epochs. All models
show a steady increase in accuracy, with some models, such as AQI-Net and ColorNet, reaching near-
perfect accuracy by the end of the training period. Validation accuracy is also plotted over the same
epochs, with all models maintaining high validation accuracy. Notably, ResNet50 and VGG16 achieve
100% validation accuracy, indicating excellent generalization on the validation dataset (Novak et al.,
2018).

5.1. AQI-Net model explanation via Grad-CAM

Grad-CAM visualizes which parts of the image the model focuses on to make its classification decision,
providing insight into the model’s reasoning (Selvaraju et al., 2017). In the test results using Grad-CAM
forAQI-Net, we can observe how themodel determines the class of a digital image. For instance, when the
model classifies an image as belonging to the “good” class, Grad-CAMhighlights the regions of the image
associated with features relevant to the “good” label. This visualization demonstrates that the model’s

Figure 3. Comparison of several architectures on the Indonesian dataset.
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classification decision is based on these significant structures or features. When we track Grad-CAM
visualizations using the true class label as the target, the highlighted regions tend to align intuitively with
features a humanmight also consider relevant, such as the sky in the context of air quality. However, when
Grad-CAM is computed using an incorrect or nontrue class label, the resulting heatmaps often focus on
less meaningful or even unrelated parts of the image, making them less sensible from a human
interpretability standpoint. This contrast can serve as a qualitative sanity check on the model’s internal
reasoning.

Figure 4 presents Grad-CAM visualizations that elucidate the AQI-Net model’s interpretative focus
across different air quality labels: “good,” “moderate,” “unhealthy for some,” and “unhealthy.” For the
image labeled “unhealthy for some,” the model predominantly highlights the sky region, which corres-
ponds to human perceptual tendencies, where the sky is often indicative of air quality. In contrast, the
heatmap for the “good” label reveals a focus on structural elements, such as buildings, which is less
intuitive, since we generally associate good air quality with clear skies rather than man-made structures.
This mismatch further illustrates how Grad-CAM responses for nontrue classes may not always make
sense from a human interpretability standpoint.

6. Conclusion

This research demonstrates the effectiveness of CNNs for classifying air quality into four categories:
good, moderate, unhealthy for sensitive groups, and unhealthy. Using real-time AQI data from Jakarta,
Malang, and Semarang, the proposed AQI-Net model achieved near-perfect accuracy in Jakarta and
Semarang, with slightly lower performance in Malang due to data variability. Compared to ResNet50,

Figure 4. Testing the AQI-Net model with Grad-CAM on an image labeled “Unhealthy for Some”: Each
row in the figure corresponds to a different target class from the dataset, starting from the top: “good,”
“moderate,” “unhealthy for some,” and “unhealthy.”
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VGG16, and ColorNet, AQI-Net stands out for its efficiency, requiring significantly less training time
while maintaining high accuracy.

Grad-CAM analysis revealed that AQI-Net focuses on structural elements like buildings and skies for
classification, although its reliance on less intuitive features (e.g., buildings) suggests room for improve-
ment. Overall, these visualizations provide useful explanations of themodel’s focus (e.g., highlighting the
sky region for poorer air quality). However, they largely confirm the expected cues rather than uncovering
fundamentally new insights into the model’s decisions. Despite this, AQI-Net’s stable performance and
fast convergence make it a robust and efficient solution for air quality classification.

AQI-Net offers a balance of accuracy and efficiency, making it a valuable tool for environmental
monitoring. However, the currentmodel is limited to daytime scenarios because no nighttime imageswere
included in the training. Future work should address this by incorporating low-light (evening/night)
images or applying image enhancement for low-light conditions, thereby extending the approach to 24-h
monitoring. In addition, future studies should focus on expanding the dataset diversity (for instance, by
including nighttime imagery) and further improving model interpretability to better align the system with
the human perception of air quality.
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