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Abstract

Background: Artificial intelligence (AI) technology is rapidly entering biomedical research, and
there is a need to assess and develop curricula that address trainees’ learning objectives and
interests. Studies of biomedical workforce development show that the prospective engagement
of students in formulating educational objectives and activities improves motivation and
learning outcomes. This study aimed to explore the educational applications of a novel AI-
powered technology in undergraduate education. Methods: A mixed-methods approach using
elicitation interviews and cultural domain analysis was applied to identify the salience of ideas
around the educational uses of Functional Unit State Identification & Navigation with Whole
Slide Images (FUSION), an AI-powered cell-visualization technology. Interviews from 21
students were reduced to learning application statements and assessed for cultural salience and
clustering for potential educational applications. Results: Saturation was reached after 11
interviews, and analysis resulted in eight clusters of 25 unique consensus-based statements.
Students thought of the technology as a tool for cell analysis and measuring, but they also
viewed applications for medical and K-12 education, public engagement, and note-keeping for
technology research. Methodologically, our study demonstrates the potential of cultural
consensus for learner-centered curriculum development. Conclusions: Our findings suggest
that trainees perceive many educational uses of FUSION, including those that fit traditional
biomedical research curricula and translational applications. Trainees should be engaged in co-
design to support and guide technology translation for educational use.

Introduction

As emerging artificial intelligence (AI) technology continues to drive healthcare and biomedical
education forward, there lies a significant challenge to translate innovative advancements into
practical tools that meet the needs of students with varying skill levels and backgrounds. Utilized
effectively, AI has the power to transform medical and biomedical education, providing
collaborative, tailored learning opportunities. However, educators may struggle to keep up with
the rapid pace of technological development and how best to incorporate AI-powered
technologies into undergraduate curricula.

Learning objectives are the anticipated knowledge and skills that students should obtain after
a period of learning [1–3] and are distinct from learning outcomes, which are the observed
knowledge and skills that students have obtained [17,18,20]. Engaging students in developing
learning objectives can help increase awareness of connections between classroom-acquired
knowledge and its real-world application when they become part of the biomedical workforce
[4]. Thus, engaging students in developing learning objectives for AI technologies can enhance
their competencies in using AI-powered applications and equip themwith the necessary skills to
navigate the AI-driven future of medicine. Additionally, students from different backgrounds,
disciplines, and stages will demonstrate different learning motivations and competencies. Thus,
participatory co-design efforts help ensure that curricula are tailored to their diverse needs.

Previous examples of the successful engagement of students in the development of learning
objectives include the involvement of medical students in incorporating informatics learning
objectives into medical school curricula [5] and the development of active learning components
in biomedical engineering courses across laboratory, classroom, simulation-based clinical, and
clinically immersive real-world settings. Student engagement in identifying learning outcomes
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was linked to enhanced learning and trainee perceptions of
adaptive, experiential learning environments [4]. Engaging
students in the development and articulation of learning objectives
thus ensures that the learning objectives are designed to meet
students’ self-perceived needs, helping them to achieve their
learning outcomes and setting them up for success in the
workforce.

Objectives

This study aimed to engage undergraduate students in the
development of learning objectives for Functional Unit State
Identification & Navigation withWhole Slide Images (FUSION), a
new AI-powered tissue visualization and analysis technology.
Specifically, we sought to enhance student-centered learning by
bridging the gap between FUSION’s AI-powered biomedical and
technological potential and its implementation into educational
environments. Through interviews with students, we expected to
identify multiple perceived uses of FUSION. Using cultural
domain analysis (CDA), we planned to organize these into clusters
of unique statements, which would then inform the development
of potential learning objectives. The study set out to answer the
following research questions:

RQ1:What applications for an AI-powered tissue visualization
and analysis technology are salient among undergraduate
students?

RQ2: What are trainee-centered learning objectives for
undergraduate training in an AI-powered tissue visualization
and analysis technology?

Materials and methods

Context

This study explored the usability of a new AI-powered technology,
FUSION, which was developed under the Human BioMolecular
Atlas Program (HuBMAP) [10,11]. HuBMAP is funded by the
Common Fund at the National Institutes of Health and includes
researchers across multiple U.S. and international institutions.
HuBMAP’s goal is to create a comprehensive spatial map of the
human body at the single-cell level to advance understanding of
how cells interact in the human body [10] To achieve this,
HuBMAP is entering its production phase for an infrastructure
capable of mapping functional tissue units across different organs
[10]. Under this initiative, the HuBMAP Infrastructure,
Visualization, and Engagement team implemented deep learning
algorithms, high-performance computing, and spatially resolved
molecular omics to create FUSION. Since 2021, HuBMAP has also
offered internships for undergraduate students to support
biomedical workforce development by creating a pipeline of
emerging graduates familiar with HuBMAP tools, data, and
processes.

FUSION is an innovative visualization tool for analyzing tissue
samples that automates the tracing of structural boundaries within
biopsies, enabling the precise measurements of the size, shape,
color, and texture of functional tissue units [11,12]. These
measurements correlate with gene expression data, allowing
researchers to map molecular information to specific areas in a
biopsy, bridging the gap between pathology and molecular biology
[11,12]. FUSION integrates AI by executing automated segmen-
tation algorithms to extract the boundaries and locations of
different structures in histological tissue. For kidney sections, these
include glomeruli, globally sclerotic glomeruli, tubules, arteries,

and arterioles. Of these structures, tubules are the most numerous,
as a single biopsy can contain upwards of 2,000 tubules of several
different sub-types. Also included in FUSION, though maybe not
traditionally thought of as AI, are a variety of clustering and
dimensional reduction algorithms that are used on high-dimen-
sional data to group similar samples under a single broad label.
Specifically, FUSION implements various cell deconvolution
methods wherein spatial transcriptomics measurements are
aligned with a single-nucleus RNA-sequencing reference object
and transformed to provide a relative “score” for approximately 72
different kidney cell sub-types. Furthermore, FUSION offers
several different methods for expert users (and non-computational
users) to generate annotations for different structures within slides
or for entire slides. This information can then be used to train
machine learning algorithms, which can be deployed as custom
components in FUSION.

Consensus-based needs assessment using cultural domain
analysis

To assess FUSION’s potential curricular applications and identify
salient ideas among biomedical and electrical engineering
undergraduate students, we employed CDA, a cognitive
anthropology method. CDA aims to “describe the contents,
structure, and distribution of knowledge in organized spheres of
experience, or cultural domains [13].”CDA is concerned with how
people with a shared experience think and talk about it [14]. CDA’s
primary purpose is to enable the systematic identification of shared
knowledge [15], and a “cultural domain” refers to knowledge
shared by a group. Identifying cultural domains involves eliciting
responses from interviewees or asking respondents to list items
that they associate with a domain of understanding in an
unconstrained way, called “free-listing [6,8,9].” Researchers then
look for shared patterns among respondents, indicating potentially
culturally learned domains [9]. Cultural domains can also be
understood as “categories,” for example, animals or illnesses, that
are shared and agreed among individuals and are about
“perceptions rather than preferences [6,7].”CDA’s mixed methods
approach makes it especially well-suited for generating hypotheses
in emerging areas, such as integrating new AI technologies in
biomedical education settings. As technology continues to play an
ever-increasing role in medical education, there is a growing need
to understand students’ shared knowledge and perceptions toward
these platforms. By assessing student perceptions, instructors can
develop learner-centered, rather than technology-centered, cur-
ricula. This assessment can also help map a module using research
technology, such as FUSION, into existing applications of
knowledge that are familiar to the students. This, in turn, can
support the development of skills that span across different
technology platforms and address higher-level learning objectives.

Participants

Participants were recruited through emails sent to the listservs of
the University of Florida’s biomedical and electrical engineering
departments. In addition, we invited undergraduate students who
participated in previous summer research experiences hosted by
the research team. The invitation email introduced the study’s
objectives, emphasized the voluntary nature of participation, and
provided details about the $25 incentive. Those who expressed
interest were provided further instructions for scheduling an
elicitation interview via Zoom. The inclusion of students from both
a general convenience sample and those with prior summer
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research experience was intended to capture a broader range of
student experiences, learning motivations, and competencies.
Given that students from different backgrounds, disciplines, and
stages of training demonstrate different competencies, including
students with differing levels of past research experience, it
supports the generalizability and real-world applicability of the
learning objectives developed in this study.

Procedure

Upon joining the interview session, participants were informed
that the interview would be recorded for transcription and analysis
and were asked to provide verbal consent before proceeding.
Participants received a brief overview of the study’s purpose,
procedures, confidentiality protocols, and their rights as partic-
ipants. The participants were then presented with a short 4-minute
video that introduced the capabilities and functionalities of
FUSION, ensuring all participants had the same level of under-
standing of the platform [16,17].

Following the video presentation, participants engaged in an
individual elicitation interview. Interviews were divided between
two interviewers, who asked interviewees the same three open-
ended questions detailed in Appendix A1 to main consistency. The
open-ended questions were designed to gather the participants’
thoughts, opinions, and perceptions of FUSION for undergraduate
biomedical training. Participants were asked each question with
intentionally varied wording multiple times to encourage deep
reflection on their perspectives and experiences. Examples of how
the questions were reframed are also detailed in Appendix A1.
Meaningful engagement was evaluated based on list length
(number of unique items provided by interviewees) and interview
duration. Subsequently, participants were asked to complete a
brief, anonymous demographic survey asking participants about
their. The survey collected data on the following participant
characteristics: race, ethnicity, gender identity, age, education level,
current major, and prior research involvement.

Analysis

Following the completion of the 21 interviews, transcripts were
generated and analyzed. Each transcript underwent a manual
review to identify unique statements representing individual
themes expressed by participants. Direct quotations from each
transcript were extracted, standardized based on the recurrence
and repetition of ideas [18], and organized into ordered lists based
on the order in which the participants mentioned them [6]. To
prepare the data for the analysis, each response was assigned a
unique ID, and ideas listed by each respondent were organized into
lists, maintaining the order in which they were mentioned. The
data was reviewed repeatedly for the consistency of wording and
normalized for capitalization and punctuation. Next, Free List
Analysis under R Environment using Shiny (FLARES) [19], an
open-source, cloud-based software was used to identify salient
learning objectives through systematic normalization and sub-
sequent quantitative analyses of elicited needs statements. FLARES
was used to conduct quantitative analyses of the cultural salience of
the unique statements identified from the interview transcripts.
The following metrics were assessed: the frequency of mention
(how many participants mentioned a particular item), the relative
frequency of mention (the proportion of participants who
mentioned the item), and Smith’s index (a measure of cultural
salience calculated using both the frequency of mention and the
rank order (how early on the item is listed by each participant).

The Smith Index was calculated using the following formula:

Sa ¼
P

N
i¼1 Li � Rai þ 1Li

N
;

where Sa is the cultural salience of item a; N is number of lists
(number of respondents), Li is the length of list i, and Rai is citation
rank of item a in list i [8,20]. In the context of this study, cultural
salience refers to the importance of the various use cases of
FUSION as perceived by undergraduate students.

Following this, hierarchical cluster analysis was performed to
generate a dendrogram illustrating how items were grouped into
clusters.

Results

Responses from 21 participants were analyzed. Table 1 reports the
participants’ demographic makeup, academic background, and
previous research experience.

In total, 92 items were generated, of which there were 25 unique
statements. The average list length, defined as the number of
unique statements per individual, was 4.4. Saturation was achieved
after 11 responses, at which point all 25 unique items had been
cited. The data saturation plot is provided in Appendix A2. The
average interview response length was 10 minutes and 52 s, the
maximum was 28 minutes and 21 s, and the minimum was
6 minutes and 2 s. Table 2 reports the frequency of mention, the
relative frequency of mention, and the Smith Index of the
educational uses statements identified from the interview
transcripts.

Salience of the educational uses of technology

To address RQ1, we measured the cultural salience of the potential
applications of FUSION among the undergraduate students we
interviewed. Cultural salience refers to how prominent, important,
or meaningful a particular item is among a specific group of
individuals. An item is considered to be culturally salient if it is
mentioned frequently across participants and tends to be
mentioned early on by participants. Among the 25 unique
statements provided by the 21 participants, the most frequently
mentioned was: “analyzing cells/structures,”which was mentioned
by 14 participants. Given that the data of 21 participants was
analyzed, this result directly translated to a relative frequency of
0.667 for “analyzing cells/structures,” with two-thirds of partic-
ipants mentioning this application. “Analyzing cells/structures”
also had the highest Smith Index (0.463), indicating that this idea
was the most salient within the students’ collective understanding
of the potential uses of FUSION. The next most frequently cited
statement was “visualizing cells/structures,” with 13 participants
highlighting this use of FUSION during their interview, a relative
frequency of mention of 0.619 (indicating that the idea was
brought up by 61.9% of students interviewed), and a Smith Index of
0.446, indicating that this idea was also highly salient among the
students interviewed. “Detecting diseases/causes” and “educating
students” were also each cited multiple times, receiving 10 and 6
mentions, respectively, from the 21 participants, with relative
frequencies of 0.476 and 0.286, and Smith Indices of 0.315 and
0.193, respectively. “Sharing data,” “learning about cells/struc-
tures,” and “counting cells/structures” were each mentioned 5
times, with Smith Indices of 0.139, 0.139, and 0.124, respectively. In
contrast, nine statements were each mentioned only once, with the
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lowest Smith Index of 0.010 generated for the statement “keeping
records.”

Clusters of learning objectives

Using FLARES, a dendrogram was created to illustrate the item-
by-item proximity for the 25 statements (Figure 1). This
dendrogram demonstrates that the 25 items, or statements, fell
into eight clusters, each containing at least one consensus item. In
doing so, the hierarchical relationships between the statements can
be evaluated, with each merge or split representing similarity or
dissimilarity between each statement, respectively.

To address RQ2, we used these clusters as a framework to
formulate potential learning objectives for FUSION. Table 3
presents a list of the items contained within each cluster, along with
an interpretative label for each cluster, that is, a description of the
common theme linking these items together, as well as a potential
learning objective based on each cluster.

Discussion

This mixed-methods study investigated the perspectives of
undergraduate students regarding the educational uses of a novel
AI-powered tissue visualization and analysis technology, FUSION.
Through learner-centered investigation, this study provided
insights about potential applications of FUSION across a variety
of educational, research, and clinical settings, and applied CDA to
identify and formulate learning interests and objectives for
students using this technology. Our analysis of the salience of
unique statements revealed that many students thought that
FUSION could be used for visualizing and analyzing cells and cell
structures in the traditional context of higher education courses;

Table 1. Demographics, academic background, and previous research
experience of the participants

Demographic
Percent
(%) N

Sex
Male
Female

38.1
61.9

8
13

Race
Asian
Black or African American
White
Other
More than one race
Prefer not to answer

28.6
4.8
47.6
9.5
4.8
4.8

6
1
10
2
1
1

Ethnicity
Hispanic or Latino
Not Hispanic or Latino

47.6
52.4

10
11

Age Group
18 to 24
25 to 34

95.2
4.8

20
1

Degree
Undergraduate

100 21

Major
Biomedical Engineering
Computer Science
Electrical Engineering
Business Law (Pre-Law Track)
Nanomedicine

61.9
9.5
19.0
4.8
4.8

13
2
4
1
1

Prior involvement in research
None / no involvement in research
Some involvement in research
Significant involvement in research

19.0
57.1
23.8

4
12
5

If you have been involved in research, please
select which areas of research you have been
involved in. Select all that apply [1].
Basic research
Preclinical research
Clinical research and clinical/behavioral trials
Other[2]

47.6
33.3
4.8
28.6

10
7
1
6

1Percentages do not sum to 100 for this question since participants could select more than
one response. 2Other responses were as follows: polymer synthesis (n = 1), electrical
engineering sensor fusion research (n = 1), environmental science (n = 1), solid-state physics
(n = 1), machine learning for electrical engineering (n = 1), and one unspecified (blank)
response.

Table 2. Cultural saliency metrics for the perceived uses of cell visualization
technology

Cited Items
Frequency
of Mention

Relative
Frequency of
Mention

Smith
Index

Analyzing cells/structures 14 0.667 0.463

Visualizing cells/structures 13 0.619 0.446

Detecting diseases/causes 10 0.476 0.315

Educating students 6 0.286 0.193

Sharing data 5 0.238 0.139

Learning about cells/
structures

5 0.238 0.139

Counting cells/structures 5 0.238 0.124

Educating medical students 3 0.143 0.118

Identifying/differentiating
features of cells/structures

3 0.143 0.098

Measuring cells/structures 3 0.143 0.084

Accessing data 3 0.143 0.043

Carrying out research 3 0.143 0.066

Collaborating with
researchers

3 0.143 0.066

Communicating between
patients and clinicians

3 0.143 0.062

Identifying abnormalities 2 0.095 0.052

Verifying information 2 0.095 0.041

Analyzing the effect of
drugs on cells/structures

1 0.048 0.048

Educating elementary and
high schoolers

1 0.048 0.048

Applying to medical
malpractice

1 0.048 0.040

Imaging (radiologic/
ultrasound)

1 0.048 0.032

Editing images 1 0.048 0.019

Troubleshooting a project 1 0.048 0.019

Educating the general
public

1 0.048 0.016

Applying to genomic
research

1 0.048 0.012

Keeping records 1 0.048 0.010
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these being the joint most frequently mentioned potential
applications of FUSION in the student interviews. Our study also
generated some potential applications of the software that were less
salient, with nine unique statements receiving only one mention
from the students we interviewed.

The learning objectives we formulated are applicable across
multiple educational settings, including research laboratories,
classrooms, and clinical settings. This finding is supported by
previous studies that have shown that new educational tools can be
implemented across various educational, research, and clinical
settings [4]. As with Singh et al [4]., we also found that the process
of engaging students in the development of learning objectives
revealed that the students we interviewed possessed an awareness
of the connections between classroom-acquired knowledge and
opportunities to apply that knowledge in the real world and in
cross-disciplinary learning environments. For example, students
recognized that FUSION could be used both for educating students
in the classroom as well as in real-world applications such as
medicolegal cases involving medical malpractice.

The findings presented in this study align with previous
research that has advocated for learner-centered approaches in
curriculum development, further emphasizing the importance of
tailoring educational content to student needs [21–25]. Many of
the learning objectives we formulated were focused on specific
applications of the FUSION software, such as visualizing and
analyzing cells and cell structures and identifying abnormal
features of cells. We used clusters generated in the CDA as a
framework for formulating specific learning objectives tailored to
address these specific learning outcomes. The clustering of
learning objectives reflects the clusters generated through the
hierarchical clustering analysis, as conducted using our CDA
methodology. Each cluster represents a set of learning objectives

that share similar cognitive characteristics, aligning with the
study’s aim to identify and organize meaningful groupings of
learning objectives. This clustering directly supports our goal of
understanding how students conceptually relate different learning
objectives together, a central focus of CDA. Our methodology,
therefore, provides a demonstration of how learning objectives for
new educational technologies can be developed and tailored to
support individuals in achieving their learning needs. Tailoring
learning objectives to the student is an approach that has
demonstrated success in multiple studies, giving rise to empower-
ing learning opportunities that also encourage collaboration with
others [25–28].

Students also saw the versatility of FUSION use as an
educational tool that could benefit learners from a spectrum of
educational levels and backgrounds, ranging from elementary and
high school students to medical students. Since some of the
students interviewed mentioned that FUSION could be used for
educating medical students, we formulated a learning objective
that centered on implementing FUSION into a medical school
curriculum as a tool to both educate medical students about tissues,
cells, and cell structures and to deepen their understanding as to
how an AI-powered software such as FUSION could be applied in
their future practice as physicians. Some students also mentioned
potential clinical applications of FUSION, such as to assist with
communication between clinicians and patients, while another
student mentioned that FUSION could be used in radiologic or
ultrasound imaging; these examples further illustrate that students
are cognizant of the connections between knowledge gained in the
classroom and how that knowledge may be applied in the real
world [4]. Our findings regarding the potential applications of
FUSION both as an educational tool for medical students as well as
in clinical practice are supported by previous studies that have

Accessing data

Analyzing cells/structures

Analyzing effect of drugs on cells/structures

Applying to genomic research

Applying to medical malpractice

Carrying out research

Collaborating with researchers

Communicating between patients 
and clinicians

Counting cells/structures

Detecting diseases/causes

Editing images

Educating elementary and high schoolers

Educating medical students

Educating students

Educating the general public

Identifying abnormalities

Identifying/differentiating features of 
cells/structures

Imaging (radiologic/ultrasound)

Keeping records

Learning about cells/structures

Measuring cell/structures

Sharing data

Troubleshooting a project

Verifying information

Visualizing cells/structures

cluster
a

a

a

a

a

a

a

a

1

2

3

4

5

6

7

8

Successive count − Freq. of citation of plotted items ranges from 0% to 100% − Ideal groups = 8 (with min k=5 & max k=8)
Dendrogram of item by item proximity

Figure 1. Dendrogram depicting item by item proximity for the cited items.
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emphasized the importance of incorporating such tools into
medical education, in order to equip students with the skills they
will need to thrive in the technology-driven future of medicine
[21,29–32].

Methodologically, this study demonstrates the utility of CDA in
a biomedical education context, where understanding shared
knowledge structures can guide the creation of learner-centered
educational objectives. The high cultural salience of specific
functionalities (e.g., cell analysis and visualization) reveals a clear
priority for these elements in educational design, highlighting their
potential to be focal points in curriculum planning and instruc-
tional materials. Additionally, usability data obtained from the
free-listing of applications enhances understanding of the user
experience, informing iterative software design tailored to educa-
tional needs. These insights support the co-design of training
modules that are not only technically accessible but also
pedagogically relevant, encouraging engagement across varied
skill levels. This study thus underscores the importance of
integrating student feedback into the development of educational
technology, fostering not only skill acquisition but also preparing
trainees for the increasingly technology-driven landscape of
biomedical research and healthcare.

Limitations

This study offers valuable insights into the educational applications
of cell-visualization AI technology from the student perspective;
however, several limitations should be acknowledged. First, the use
of a convenience sample drawn primarily from a single institution
limits the generalizability of the findings. While this approach
provided diverse perspectives within a controlled environment, a
broader, multi-institutional sample would strengthen the validity
of the results, particularly given potential differences in students’
backgrounds, prior knowledge, and exposure to similar technol-
ogies. Although the sample also included two students who had
previously participated in a research experience at the
Computational Microscopy Imaging Laboratory (CMIL), their
limited prior exposure to the FUSION technology was unlikely to
have significantly shaped their responses. Additionally, the
inclusion of students with different research backgrounds was
intended to enhance the generalizability of the findings.

Another important limitation was that participants were
exposed to FUSION through a video demonstration rather than
direct, hands-on interaction. This lack of hands-on experience
likely limited their perceptions of FUSION’s usability, as their
insights were shaped solely through passive observation.

Table 3. Summary of educational use clusters and sample learning objectives

Interpretative Label Cluster Items Sample Learning Objective

Cluster 1: Cell-level Technology in
Higher Education

Educating students
Accessing data
Carrying out research
Collaborating with
researchers

Detecting diseases/causes
Learning about cells/
structures

Sharing data
Verifying information
Visualizing cells/structures

Students will apply advanced technology to learn about cell structures and
visualize cell structures.

Cluster 2: Identification and Analysis in
Cell, and Clinical Translational Research

Analyzing cells/structures
Identifying abnormalities
Identifying/differentiating
features of cells/
structures

Measuring cell/structures

Students will identify, measure, and analyze cell structures with the use of AI-
powered technology.

Cluster 3: Record-Keeping and Drug
Evaluation

Analyzing the effect of
drugs on cells/structures
Keeping records

Students will identify practices in laboratory record-keeping for technology-
based research.

Cluster 4: Genomic Research Applying to genomic
research

Students will explore the use of cellular measurement technology for single-
cell genomics research.

Cluster 5: Medical Student Education Educating medical
students
Applying to medical
malpractice

Students will explore tissues, cells, and cell structures with the use of
advanced technology and discuss the potential applications of technology for
clinical practice.

Cluster 6: Public Education and Health
Communication

Communicating between
patients and clinicians
Educating the general
public

Imaging (radiologic/
ultrasound)

Students will be able to use FUSION to communicate scientific findings to the
public and enhance patient-provider communication.

Cluster 7: Image editing and
troubleshooting

Counting cells/structures
Editing images
Troubleshooting a project

Students will edit images of tissue samples and cells, and count cells and
structures within cells.

Cluster 8: Early STEM Education Educating elementary and
high schoolers

Students will use advanced technology to present biological concepts visually
and deliver accessible educational content to K-12 students.
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Additionally, while FUSION is an AI-based technology, deeper
engagement with AI-specific components to make more robust
claims about its educational value are needed. Finally, this study
did not include a formal validation phase.

Future research and validation of learning objectives

Future studies should provide students with hands-on experience
using FUSION to directly assess its usability, accessibility, and
integration within real-world educational settings, thereby
enhancing ecological validity (that is, the degree to which the
findings generalize to real-world educational contexts). This would
yield valuable insights into FUSION’s usability, accessibility, and
integration within active learning settings, potentially revealing
challenges and benefits not evident in passive demonstrations. In
addition to incorporating hands-on interaction with FUSION,
future studies should also include explicit comparisons to expert-
derived learning objectives to enhance the rigor of the findings and
their applicability to formal curriculum development.

Since the study did not include a formal validation phase,
further assessment is required, in which we plan to engage experts
in medical education, AI, and curriculum design to review and
confirm that the learning objectives derived from student
interviews are relevant, comprehensive, and aligned with educa-
tional goals of students.We plan to conduct further interviews with
instructors, faculty, AI experts, and curriculum designers to
validate our findings, and integrate their expertise with the student
perspectives obtained during this study. Following this validation,
we aim to pilot-test the learning objectives in a small-scale
educational setting using FUSION. This will allow us to assess
whether the objectives are practical, measurable, and achievable,
while also collecting feedback from both students and instructors
to guide further refinement.

Based on our findings and these planned steps, we propose a
user-informed iterative framework to inform both curriculum
development and software optimization for FUSION. This type of
framework has been successfully employed in other studies
evaluating how AI-based educational technologies may be used
to enhance students’ educational experiences [33]. It emphasizes a
continuous feedback loop, beginning with user-informed learning
objectives, followed by pilot implementation, evaluation, and
iterative refinement. Through collaboration between educators,
students, and software developers, this approach ensures that both
pedagogical strategies and technological features evolve in align-
ment with learner needs and curricular standards.

Conclusion

Advancements in educational technologies present both oppor-
tunities and challenges for biomedical science curriculum
development. The development of learner-centered objectives
can be supported by consensus-based approaches. Our findings
provide valuable information into the perceptions and usability of
AI-powered tissue visualization and analysis technology by
revealing salient applications of such technology in the educational
context among undergraduate students.

The AI-powered platform evaluated in this study, through
elicitation interviews with potential users and a CDA approach,
demonstrated significant potential to enhance undergraduate
biomedical education. However, future research is needed,
particularly that which provides students with direct hands-on
experience using the technology, as well as a formal validation

phase that incorporates instructor perspectives, to confirm and
refine the learning outcomes developed.
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