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Abstract

In this paper, we study asymptotic behaviors of a subcritical branching Brownian
motion with drift —p, killed upon exiting (0, co), and offspring distribution {py: k > 0}.
Let pr be the extinction time of this subcritical branching killed Brownian motion,
M;" the maximal position of all the particles alive at time ¢ and M—*:= maxso M; ”
the all-time maximal position. Let P, be the law of this subcritical branching killed
Brownian motion when the initial particle is located at x € (0, co). Under the assumption
Z,fozl k(log k)px < 0o, we establish the decay rates of ]P’x(z_p > 1) and PX(M_p >y) as
t and y respectively tend to co. We also establish the decay rate of IP’X(AN/I,_ P> (1, p)) as
t — 00, where z(t, p) = +/1z — pt for p <0 and z(¢, p) = z for p > 0. As a consequence,
we obtain a Yaglom-type limit theorem.

Keywords: Branching killed Brownian motion; survival probability; maximal displace-
ment; Feynman—Kac representation.
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1. Introduction

The goal of this paper is to study asymptotic behaviors of subcritical branching killed
Brownian motions with drifts. Before we introduce the model of branching killed Brownian
motion, we first give some preliminaries on branching Brownian motions without killing and
review some related literature about them. Then we introduce branching killed Brownian
motions and present our main results.
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1.1. Branching Brownian motions

A branching Brownian motion with drift —p is a continuous-time Markov process defined
as follows. At time O, there is a particle at x € R and this particle moves according to a
Brownian motion with drift —p € R. After an exponential time with parameter 8 > 0, inde-
pendent of the spatial motion, this particle dies and is replaced by k offspring with probability
Pk, k > 0. The offspring move independently according to Brownian motion with drift —p from
the place where they are born and obey the same branching mechanism as their parent. This
procedure continues. Let N, be the collection of particles alive at time z. If u € Ny, let X, (1)
denote the position of the particle u at time ¢, and for s € (0, ) we denote by X, *(s) the position
at time s of the ancestor of u. The point process (Z, ”);>o defined by

—P._
Z70=) oy 120,

ueN;

is called a branching Brownian motion with drift —p. We will use P, to denote the law of this
process and use [E, to denote the corresponding expectation. Let

¢:=inf{t > 0, N; =0}

be the extinction time of (Z, P )r=0. Note that the law of ¢ does not depend on p and is equal
to that of the extinction time of the continuous-time Galton—Watson process with the same
branching mechanism as the branching Brownian motion. Let m:=Y ;o kpx be the mean
number of offspring and let f be the generating function of the offspring distribution, f(u) =
Z,‘?O:O pkuk, u € [0, 1]. It is well known that the process will become extinct in finite time with
probability 1 if and only if m < 1 (subcritical) or m =1 and p; # 1 (critical). When m > 1
(supercritical), the process survives with positive probability.
For any ¢ > 0, let

M, P:=max{X,"(t): u e N;}
be the maximal position of all the particles alive at time ¢ and let
MP:= sup,o M;*

be the all-time maximal position. In the subcritical and critical cases, P, (M P < oo) =1 for
any x, p € R.

In the critical case m = 1 and p; # 1, Sawyer and Fleischman [24] proved that if 8 =1 and
the offspring distribution has finite third moment, then

6
lim X*Po(M° > x) = —, (1.1)
X— 00 o

where o is the variance of the offspring distribution. For a critical branching random walk with
spatial motion having finite (4 + ¢)th moment, a result similar to (1.1) was proved by Lalley
and Shao [14]. It was also proved in [14] that the law of M? /+/t under P (-|¢ > t) converges
weakly to some random variable. For related results in the case of critical branching Lévy
processes, see [23].

In the subcritical case m € (0, 1), let

a:= B(1 —m) € (0, 00).
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Define
Pw)=8Ff(1—-—u)—(0—-w)=:(¢+ewm)u, uclo,1], (1.2)

where ¢(u) = M for u € (0, 1] and p(0) = ®'(0+) — a = 0. ¢ is a nonnegative continu-
ous increasing function; see Lemma 7 below. It is well known (see Theorem 2.4 in [1, p. 121])
that the limit

tl_l)r& e Py(¢ > t) = Cgup € (0, 00) (1.3)
if and only if
o0
> k(log kypx < 0o (1.4)
k=1

We now give another equivalent form of (1.3). For any ¢ > 0, define
8(0):=Po(¢ > 1).

It is well known that g(¢) satisfies the equation

d

ag(t) =—P(g(1) = — (o + ¢(g(n)) &(0),
thus

t
e g(r) =exp {— /0 sv(g(S))dS} . (1.5)

It follows from (1.3) that

Csub = €Xp {— /0 go(g(s))ds} . (1.6)

Therefore, (1.3) is equivalent to

/O @(g(s))ds < 0. (1.7)

For M~”, when the underlying motion is a standard Brownian motion and the offspring
distribution has finite third moment, it was proved in [24] that, if p =0,
Po(MP > x)

lim =1, (1.8)
¥=00 (1 — m)s(x)e—v2ex

where s(x) is a bounded positive function. The limit (1.8) was later generalized in [23] to
subcritical branching spectrally negative Lévy processes. When specialized to our setting, [23,
Theorem 1.1] says that, when Z,fio k3pk < 00, there exists a constant « € (0, oo) such that

lim (V27 (M~ >x) =k (1.9)
X—> 00
In the case of subcritical branching random walks, it was proved in [21, Theorem 1.2] that
when the random walk has finite range and is nearly right-continuous in the sense of [21], a
result similar to (1.8) holds. In [21], the authors also gave some estimates for the limit behavior
of Po(M° > x) in the case of general subcritical branching random walks. For related results
about near-critical branching random walks, see [22].
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1.2. Branching killed Brownian motions

We are interested in asymptotic behaviors of branching killed Brownian motions with drift
—p, in which particles are killed (along with their descendants) upon exiting (0, c0). The point
process (Z, ”)i=o defined by
S—p._

Z7"= 2 Vminges i 0r-00%, 70
ueN;

is called a branching killed Brownian motion with drift —p. Let
TP.=inf {t > 0:277((0, 00)) = 0}

be the extinction time of (Z_ P )i>0. We define the maximal position at time ¢ and the all-time
maximal position of (Z; ”),>¢ by

M; "= max X,P(t) and M P:=maxM,”.
ueN;: ming<; X, (5)>0 =0

In the critical case (m=1 and p; # 1), Lalley and Zheng [15, Theorem 6.1] proved that, if
320 ki < 0o, then

lim y’P,(M° > y) = C)x,
y—00

where C € (0, 00) is a constant independent of x. It was also shown in [15, Theorem 6.1] that,
for any s € (0, 1),

lim y*Pyy(M° > y) = Ca(s) € (0, 00).
y—)OO -

Recently, Hou et al. [12] studied the asymptotic behaviors of the tails of the extinction time and
the maximal displacement of critical branching killed Lévy processes under some assumptions
on the spatial motion and the assumption that the offspring distribution belongs to the domain
of attraction of an «-stable distribution for « € (1, 2].

There are also quite a few papers in the literature studying the asymptotic behaviors of
supercritical (i.e. m € (1, 00)) branching killed Brownian motions with drift —p. Kesten [13]
proved that, when p > /2B8(m — 1), the process will become extinct almost surely and Harris
and Harris [10, Theorem 1] obtained the asymptotic behavior of the survival probability. In
the case p < +/2B(m — 1), Harris, Harris and Kyprianou [11] investigated the large deviation
probability of the maximal position. The papers [3, 7, 18] studied the tail of the total number
of killed particles under different drift conditions. [3, Proposition 4] studied the asymptotic
behavior of the probability that the all-time minimum of a dyadic branching Brownian motion
with drift —p > /28 starting from 0 does not fall below —x, which is similar in spirit to our
Theorem 2 below. For related results in the critical case p = +/28(m — 1), see [2, 13, 19, 20].

The main focus of this paper is on the asymptotic behaviors of subcritical branching
killed Brownian motions with drift. More precisely, we will study the asymptotic behaviors
of P,(¢ " > 1) and Px(M~" > y) as t and y tend to oo, respectively. Define

tz—pt, if p <0,
o, p) =

1.10
z, if p > 0. ( )
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We will also study the decay rate of Py (M,_ P>, ,0)) as ¢ tends to oo.
Our first main result is as follows. Recall that Cyyp is given in (1.3). Also, the notation

f(t) ~ g(t) as t — a means that lim,,, f(r)/g(t) = 1.
Theorem 1. Assume m € (0, 1) and (1.4). Let x > 0.

(1) If p=0, then

~ 2
lim V7e*'P, ({ > t) =,/ = CsupX.
t—00 T
(i) If p <0, then

lim e*Py(¢ ™7 > 1) = Coup(1 — e).
t—00

(iii) If p > O, then
2

+"—)t ~ 2
lim t%e(a 2 )P, (7P > 1) =,/ =Colp)xe",
T

—>00

2 i~
where Co(p):=limy_ 0o €@t TN [ ye=/P(F=° > N)dy € (0, 00).

Furthermore, for any p € R, as t — 00,
Po(¢77 > 1) ~ T Ee(Z, " (0, 00))),
where I, = Csup when p <0and T, = ,02C0(,0) when p > 0.

Let (B;, P,) be a standard Brownian motion starting from x. For any p € R, it is known that

2
{e_p(B’_x)_pTl, t > 0} is a positive P,-martingale with mean 1. Define F;:= o (Bs:s <) and

—p
dPs :=e—P<Bf—x)—§’. (1.11)
dP, 17

Then under Py °, {B;, t > 0} is a Brownian motion with drift —p starting from x.

Remark 1. Combining Theorem 1 with the asymptotic behavior of P, Pty >1) (wheze, for
any y € R, 1y is the first hitting time of y) in Lemma 1, we see that, when p <0, ]P’x(f >
t) ~P, (¢ > 1) P (19 > 1), i.e., the branching and the spatial motion are nearly independent.
For p > 0, the constant Cy(p) is related to the existence of a quasi-stationary distribution.
Moreover, one can show that in this case,

P, (2"
lim (7>

1; 1.12
NS It (12

see (3.26) below.

Our second main result is on the tail probability IP’X(M P > ). In the case when there is
no killing, the results (1.8) and (1.9) were proved under the assumption that the offspring
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distribution has finite third moment. Our assumption (1.4) on the offspring distribution is much
weaker.

Theorem 2. Assume m € (0, 1) and (1.4). Then for any p € R, there exists a constant C.(p) €
(0, 00) such that, for any x > 0,

lim eP V2P VP (7P > y) = 2C,(p)e sinh (xy/2a + p2).

y—>00

Remark 2. On {]lN/I ~P >y}, there is at least one particle which achieves the level y before hit-
ting 0. The reason for the appearance of the sinh function in the theorem above is that this
function is related to the Laplace transformation of Ty on the event {r, < 7o} and this event
gives the main contribution to the tail probability of M—r > v}

Our third main result is on the limit behavior of the maximal position at time ¢.

Theorem 3. Assume m € (0, 1) and (1.4). Let x > 0.

(i) Forp=0and z>0,

lim «/;e“’]P’x( > \/_z) ,/ Csubxe 12/2,
11— 00
or equivalently, as t — o0,

Py (1\71,_p > \/;Z> CsubEx ( " (W oo)))

(i) For p <0andzeR,

- C 1— 2px
lim e*'P, (Mt P+ pt> «/Ez) M f -7 dy,

—0o0

or equivalently, as t — 00,

B (1,7 -+ pt > i) ~ CanlBx (2 ((iz = p1,00))) .

(iii) For p >0andz>0,

22

+5 )t ~_ 2
lim t%e(a : > P, (M, LS Z) =,/ —C(p)xe”,
T

—00

ot )
where C,(p):= limy_, o0 e< : f ye VP, ( N > z) dy € (0, 00) is a function of
z independent of x. Or equivalently, as t — oo,

P, (7 >2) ~ %E (7" (@ o)) (1.13)

Remark 3. Actually, combining inequalities (3.22) and (3.24) in the proof of Theorem 3, we
can get that when p > 0, for any z > 0,

o o0
Csub / ye Py < C.(p) < f ye PVdy.
Zz Zz
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We mention here that we do not know the exact expression for C,(p). By (1.12), we know that
C:(p) is not equal to Cup [ ye™>dy.

Combining Theorems 1 and 3, we get the following Yaglom-type theorem.

Corollary 1. Assume m € (0, 1) and (1.4). Let x > 0.

(1) If p=0, then

Vit
where (R, P) is a Rayleigh random variable with density ze’zz/zl{po}.

(i) If p <O, then

M~
P, <l—e-|§_p>t> -4 PRe.),

M7 +pt  ~
Px<thpe-|;P>t) L pyB e,

where (B1, Py) is a standard normal random variable.

(iii) If p > O, then there exists a random variable (X, P) whose law is independent of x such
that

P, (M,_p € -|E"’ > t) L Pxe.

Remark 4. Note that the Rayleigh distribution is the law of a Brownian meander (starting
from 0) at time 1, so it is not surprising that it appears in Corollary 1(i) above. Furthermore,
compared with [14, Theorem 3] in the case of critical branching random walks, for p <0, the
weak limit of Mt_ ? conditioned on survival up to time ¢ is simpler. The limit in [14, Theorem
3] is related to the maximum of a measure-valued process (see [14, Corollary 4]).

Remark 5. It is natural to study similar problems for subcritical branching killed Lévy pro-
cesses. However, in the general case, even when the spatial motion is spectrally negative, some
of the main ingredients, such as Lemma 1, are much more difficult. So, to avoid technical
details, we concentrate on the case of subcritical branching killed Brownian motion with drift.
It also natural to study similar problems for subcritical branching killed random walks.

Organization of the paper. The rest of the paper is organized as follows. In Section 2.1, we
first give some results on Brownian motion and the three-dimensional Bessel process that will
be used in the proofs of our main results. Then we recall some connections between a certain
evolution equation and our model in Section 2.2. The proofs of Theorems 1 and 3 are given in
Section 3 and the proof of Theorem 2 is given in Section 4.

2. Preliminaries

2.1. Some useful properties of Brownian motion

Recall that (B, Py) is a standard Brownian motion starting from x and F; := o (Bs: s <1).
For any z € R, define t,:=inf{r > 0 : B; = z}. Note that for any x > 0, under P,, %l{ro>,} is a
positive martingale of mean 1. Define

dP;Icg 2&1 2&1 . B.>0 (21)
dPx ]:’ x {to>1} X {mlnsgr >0} - .
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It is well known that (B;, P?) is a three-dimensional Bessel process with transition probability
density pB(x, y) given by

y 1 _o? 2y
pf(x,y)::;me 21 (1—6 f)l{y>()}.

Recall that P, is defined in (1.11). The following result gives the asymptotic behavior of
P, " (1o > t, B; > z(t, p)) as t — oo where z(t, p) is defined in (1.10). For the case p <0, see
[5, p. 30], and for the case p > 0, see [17, (7) and Lemma 3.1]. The case p =0 follows from
the reflection principle.

Lemma 1. Let x > 0.
(1) If p =0, then for any 7 > 0, we have

2

2 <
lim 7Pyx(to > t, B; > +/12) =,/—xe” 2.
t—00 T
@) If p <O, then
lim P °(tg > 1) =1—e**
1— 00

Also, for any z e R,

sz)
11mPp(t0>tB,+pt>J—z /

—>0o0

(iii) If p > O, then for any z > 0,

2 x
lim r3e’T 'P Plro>1, B >2) =,/ —xepx_/ ye P dy.
t—00 T 2

In the following result, we give the asymptotic behaviors of E, ( (o, oo))) and
E, (Z,_'O ((z(z, p), oo))) as t — oo.
Lemma 2. Let x > 0.

(1) If p =0, then for any 7> 0,

l1m Ve E, ( Z (Wt oo))) \/gxe_

SN

@) If p <0, we have

lim e*E(Z, (0, 00))) = 1 — e’

t—00

and for any z € R,

ot —p esz 00 —ﬁ
hm e E, ( (W'1tz — pt, oo))) e Zdy.
Z
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(iii) If p > O, then for any 7 > 0,

lim z3/2e<a+é>t1@x (Zf (G, oo)))

t—>00

2 *© 1 /2
=,/ —xef* / ye Pdy=— Zxe? D (pz+1).
i . o2V

Proof. For any bounded measurable function F, by the many-to-one lemma (see Hardy and
Harris [9, Theorem 2.8]), we have

]EX( Z F(X,(s),0<s< t)) =e “E;” (F(B;,0<s<1), (2.2)

ueN; ¥
which implies that

E«(Z; (0, 00))) =e P (10 > 1)

and
Ex(Z, " ((a(t, p). 00))) = e “"P P (B; > z(t, p), T0 > 1).
Combining this with Lemma 1, we arrive at the desired result. O

Lemma 5 below will play an important role in the proof of Theorem 2. To prove this result,
we give two elementary lemmas first. The proofs of these two lemmas are routine and we give
the details for completeness.

Lemma 3. For any a > 0, 0 < x <y and nonnegative Borel function h, we have

E, <1{rv<ro}e_my_fory MBS)dS) - fEf <e—‘”y—fory h<BJ)dS> ’
’ y

Proof. Note that Pf(ry =00) =0 for any 0 <x <y. Since Fr », C Fy, it follows from (2.1)
that

Ef <e—ary—f0y h(BS)ds> — lim Ef (e—afy_foy h(Bs)dsl{ty<t})

1—>00

B oy
= lim Ex< [1{TO>,}e_“fy_fo h(BS)dSl{Ty<,}>

t—00 X

Ty B
= lim E, (e_my_fo) h(BS)dxl{ry«}Ex <_t1{ro>t}|]:r,./\t)) .
X )

—00

Since (%1{m>t}>r>o is a Py-martingale with respect to (F;);>0, by the optional stopping

theorem, we have

B Byt
Ex <;t1{ro>t}|‘/_'.ry/\t> = %1{10>ry/\t}~
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It follows from the dominated convergence theorem that

EZ (e7mlo MB04) =2 fim By (1 gy e 00 B

X t—00

= ﬁEx (1{r0>ry}e_my_foy h(BS)ds) .
This completes the proof. O
Lemma 4. For any a >0, 0 < x <y, p € R and nonnegative Borel function h, we have

2 ,
- <a+ & ) o=y h(By)ds

_ —ar— [ i _
Exp (l{ry<ro}e =l h(BA)dS) =eft y)Ex 1{ty<ro}e

Proof. From [6, Theorem 6, p. 16], we know that {ty < o} N {1y <t} ={ry At <10} N
{tynt <t} is Fr-measurable. We deal with the case a>0 first. For a>0, since
e "™ 1{g,=00) =0, it follows from (1.11) that

X

E_? <1{I_V<t0}e_af,v—foy h(Bs)dS) 2.3)

) _ _ o
— lim Ex/) <l{ry<ro}e aty—J h(Bx)dsl{Ty<t}>

—>00

. _ -~ _i Y
211_1}& Ex(e p(Bi—x) ztl{ry<m}e aty— [y h(Bj)dsl{qu})

Ty . 2
= lim Ex<e_ary_f0> h(BS)dAl{ry<ro,ry<t}Ex(e_’o(B’_x)_pTl

—00

fw))

2

Recall that <e_p(B’_x)_p2’) is a Py-martingale with respect to (F;);>0, so by the optional
>0

stopping theorem, on {7y, < t}, we have

2 2 2
E, (e—p<Bf—x)—%z| b M) — o PBryn=0)= T (AD _ o=p(—2)= 51y
3

Combining this with (2.3) and using the fact that P, (ry < oo) =1, we get for a > 0,

Ty

2
o - a+"—)r —Jo  (Bs)d
| (1{,).<fo}efarrfo h<B.Y)ds> =e"(x’y)Ex(1{ry<m}e ( AN ) (2.4)

X

For the case a = 0, by the dominated convergence theorem and the display above,

_ _ [y . _ _or (D
B (1{1,<fo}e I h(Bs)ds) :91]m EC° (1{1,«0}6 ot~y h(Bx)ds)
—0+

2 Ty
- 9+L)zv—f~‘h(33)ds
= lim ep(x—y)Ex(l{Tv«O}e ( ) )
—0+ 7

02 Ty
= ep(x—y)Ex (1 {ry< e 2 vl h(BS)dS> .

This completes the proof. U
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Combining Lemmas 3 and 4, we immediately get the following result.

Lemma 5. For any a >0, 0 < x <y, p € R and nonnegative Borel function h, we have

2 Ty
_ e (Y B, X o 7(a+ﬂ7>ry7 Jo© h(Bs)ds
Ex P (l{ty<ro}e any '[0 h(BJ)ds) = ;ep(x y)Ef (S

The following result can be found in [5, p. 469].

Lemma 6. For any a > 0 and 0 < x <y, we have

B () = y sinh (xv/2a)
* x sinh (y+/ 2a)
Combining Lemmas 5 and 6, we see that for any p < 0 and x > 0,
h
lim P_* (‘L'y < ro) = lim &%~ y)M =1—e>", (2.5)
y—>00 y—>00 sinh ( — yp)

2.2. An evolution equation related to branching killed Brownian motion

Recall that (B;, P;”) is a Brownian motion with drift —p and that o is the first time that
B hits 0. Let &:= B;1{,~s be the Brownian motion killed upon hitting 0. Then the branching
killed Brownian motion with drift is also a branching Markov process with spatial motion
(&, P, ”), branching rate 8 and offspring distribution {p;:k € N}. Let X’f * be the set of particles
alive at time ¢ of the branching killed Brownian motion. It is well known that, for any [0,1]-
valued Borel function £, the function

wr n=1-E, [ [ nx,*@) (2.6)
veN;

is the unique positive locally bounded solution to

t
up(x, ) =E P (h(B), t <19) —E;” (/ O(up(Bs, t — 8))ds, t < to> , 2.7
0

where the function @ is given as in (1.2) (see, for example, [16, (4.8), p. 102]). Now we check
Ji Sy Bs. 1)

that the unique solution is given by E; ” (h(Bt)e 0 T Bi= Yt < 15 ). For 0 < s <t, define

" ®(up(B,, t —
Agr=— / (up(By r)) dr
s up(Bp,t—r)

It is elementary to check that
t
efor — _/ eAs.rwds
0 up(Bs, t —5)

Hence we have
E° (eAO”h(B,), r < ro) 2.8)

P (up(Bs, t —
Ay, Pl ))d,l‘<‘l§0).

—E-F -
=E* (W(B)), t < 70) <h<3f> / un(By. t — )
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Now using the Markov property and the fact that

W /” Pn(Bris. t=5=1) |
! 0 up(Byys, t —5—r)

¢ Dy (Bs.1—5))

equation (2.8) says that E;” (h(B,)e b Emi= &< to) satisfies (2.7). Thus we have

t CD(uh(Bq 1—s))

up(x, ) =E;* (h(B,)e Jo Zwmi= dv, t< ro) (2.9)
— e—atEx—p (h(Bt)e_fg (p(u;,(Bs,t—s))ds’ f< TO) )
By the Markov property, the function
ulx, ) :=Py(C" > 1) (2.10)

satisfies u(x, t)=1—E( Hveﬁ—p u(X, °(s), t — 5)). By taking s =t in (2.8), we get that the
function u defined in (2.10) has the representation (2.9) with h(x) = 1x>0). By a similar
argument, we can get that the function

0.(x, 1):=P,(M,; * >2), x,1>0, 2.11)

has the representation (2.9) with h(x) = 1y~ 4.
Recall that ¢ is defined in (1.2). The next simple result will be used in the proofs of our
main results.

Lemma 7. The function ¢(u) is increasing in u € [0, 1]. Moreover, under (1.4), for any ¢ > 0,

we have
o
/ @ (e7) dt < 0.
0

Proof. By the definition of ¢,

e’} Nk _ oo
B o) = LicoPdl =0 ~ Q20 _ <1 — kak)
k=0

u

'] [e'9) 00 k—1 0 00
=S X |-y a-w=X| X n|(1-a-w).

=0 \k=t+1 k=1 =0 =0 \k=(+1

Therefore, ¢ is increasing in u. Combining the monotonicity of ¢ and (1.5), we have
o o
| otcae = [ gt <.
0 0

Setting N := —% log Csup, then for any ¢ > 0,

00 o o] o N o o] N
/ g (e™)di=— / @ (e ™) dr<— / p()dt + — / (e *=N)qy
0 0 cJo ¢ Jo

c

o a [ —at
=—Nop(1)+ — @(Cgype™ *")dt < 00.
c c Jo
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3. Proofs of Theorems 1 and 3

In this section, we prove Theorems 1 and 3 by establishing some upper and lower bounds
for the functions u(z,x) and Q.(x, ) defined in (2.10) and (2.11), respectively. It is easy to see
that

Qo(x, ) =Px(M; * > 0) =Pu( " > 1) = u(x, 1). (3.1)

We first estimate Q Ji— pt(x, t) and u(x,t) from below. We treat the cases p =0 and p <0
together since it turns out that branching and spatial motion are nearly independent in these
two cases.

Lemma 8. Suppose that x > 0 and p <0.
(1) If p =0, then for any z > 0,

2

.. 2 _2
htrgégfx/l:emQ«ﬁz(X, )= ;Csubxe z,

@) If p <O, then

lim inf e u(x, £) > Cyup (1 — €**),
11— 00

and for any z € R,
o Caub(l =) (> 2
at su
hgégfe O Jiz i, ) = —\/E /z e 2dy.

Proof. At the end of the first paragraph of Section 2.2, we have shown that Q,(x, f) defined
in (2.11) admits the following expression:

0:(5, 0= B 7 (101 pge” B HQBINE) . (3.2)
Since E < ¢, we have that
0:(x, ) <Pt >0 =g@1), x,1>0,2>0. (3.3)
Thus by Lemma 7,

"t
O (x, 1) > e_wE;p <l{t0>t,B,>z}e_ Jo (p(g(t—s))ds)

1
—e Do “’(g(s))dse_“’P;p(ro >t, B >2)

= CSube_ath_p(TO >1, BT > Z)7

where in the last inequality we used (1.6). Recalling (3.1) and using Lemma 1 with z replaced
by 0 and /7z — pt, we get the desired result. O

Lemma 9. Assume that p =0 and x > 0. Then for any z > 0, we have that

[2 2
lim sup v/7e*'Q_z;.(x, 1) <,/ = Cqupxe™ 2.
T

1—0o0
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Proof. For any y > x,
0.(y. ) =P, (EIu N st minX,"(s)> 0, X, () > z) (3.4)
> }P’y(flu eN; st r?Si?X;p(s) >y—x, X, () > z+y—x)
_P, (Eiu EN st minX, () >0, X, () > z) —0.(x, 1),
which implies that Q. (x, ) is increasing in x. Fix an N > 0. For t > N, by (3.4),

QﬁZ(X, t) < e—OltEx (1{1—0>[’Bt>\/fz}e_ ff*N W(Q\ﬁz(Bs,t—S))dS> (35)

_ - infrer—n.7 Br,1—5))ds
< ¢ R, (1{r0>z,3,> Ji® Jin 9(Q i infreqi—n.n Br.t=s5) v)

N .
—e K, (1{TO>[ B i Jo #Q g linfrep—n.n Br,s»ds) .

Take a y € (0, %) and define

3

N S
= = Jo 9(Q s (infrer—N.q Br,s))ds
Li(1): =E; (1{r0>tht>\ﬁzvinfre[t—N.[] By Jicti)€ Jo Vie(infrep—n.n )

N .
- _(infyer—N 1 Br,s))ds
bL(t): =Ex (1{TO>I,B:>«ﬂZ,infrE[t7N,t] By < iz+1}® Jo #40.infeton Bre) )

Then Qﬁz(x, 1) <e Y (I1(f) + (). Since Q. (x, 1) is increasing in x, we have

N
L) <e= 0 $QUWEHT NP o B S fi). (3.6)
Set My:= IVIE, M= M? and Xg(r):z X, (r) for simplicity. For any s < N, we have
Qi-(Wiz 41, $)>P s (My > iz, inf inf X,(r) > 0)

r<s ueN,

=P iy My > Vi) =P s (Mg > iz, i‘;ﬁ ui§§, X,(r) <0)

= Po(M; > ") = BoCinf inf X,() < —(/iz+1")

= IPJO(Zus > _ty) - ]PO( m<ax M, > \/ZZ + ty)-
r<s

According to (2.2),

Po(M; > —1t") 2 Po(¢ > 5, My > —1") =Po({ > ) —Po(¢ > s, My <—1") (3.7

>Po(¢ >5)—Po Z Iix =7y 21

ueNg

>Po(¢ > 5) —e” *Py(Bs < —1").
Therefore, for any fixed s <N, we get

Q i:(Viz+17. 5) 2 g(s) — e~ Po(By < —1") — Po(max M, > V/1z + 7).
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Plugging this into (3.6) and applying the dominated convergence theorem, we get

lim sup ho
=00 Pyu(To >t, B; > +/12)

N
< lim sup exp {— / % ((g(S) — e *Py(By < —1") — Po(max M, > 1z + ty)) )dS}
0 r<s +

1—0o0

— e Jo wlsloNds.

Letting N — oo, we get

L(t 00
lim sup lim sup 10 <e Jo #EOd — oy < 0o
Nooo t—»oo Pyu(tog>1t, B> \/;Z)

Therefore, applying Lemma 1(i), we obtain that

2
lim sup lim sup ~/#1; () < / = Cqupre = /2. (3.8)
T

N—oo =00

Next, we show that lim;_, o, v/7I2(f) = 0. For 8 > 0, it holds that
L(t) <Py(1o > t, B; > +/1z, [infv ]B, <Atz +1") (3.9)
re(t—N,t

<Pu(w0 > 1,1z < B; < Vi(z+9))
+Pu(B = Vilz+8), _inf B, <iz+1).
re[t—N,t]

Note that e7*(1 — e™) < x for all u, x > 0. Thus by (2.1), we get

X
P, (10 > 1, V1z < B, < /i(z +§)) =EZ (E1MK&<M+(S)}) (3.10)
t

Viletd) yr? y 5 2x(z+8
:/ ) (1 ’i)dy X(z 4 6)

e 2t < —
\/Ez 2t

2r Nt
For any ¢ > N, by the reflection principle, we have

PX<B, > Viz+8), inf B, <<iz+ tV) (3.11)
re[i—N, 1]

§P0< inf B,<—3¢E+ty)=Po(|BN|>5¢Z—zy).
rel[0,N]

Combining (3.9), (3.10) and (3.11), letting ¢t — oo first and then § — 0, we get
Jlim Vih (1) = 0.
Combining this with (3.5) and (3.8), we get the desired assertion. O
Lemma 10. Assume that x > 0 and p < O.
(1) It holds that

lim sup e*'u(x, 1) < Coup(1 — e27%).
=00
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(ii) For any z € R, we have

. Caup(l — ) [ 2
limsupe®Q . (x, 1)< Su—/ e~ Zdy.
et Y vm o LT

Proof. We will prove (i) and (ii) in one stroke. For (i) we put z; =0 and for (ii) we put
7 = +/tz — pt. Then taking z = 7, in (3.2), we get

t o
04,5, 1) = € B (1ymrpme” Hon 0 Brimd) (3.12)

N .

Take a y € (0, %) and define
N .
Ci1(t):=E_" (1 (0> Bemsinfycppw g Bz b7 1€ IV (0 (infreq—n.n Br,s))ds> ’
N .
Cz(l)1= E;p (1 {to>1,B;>2zs,infre[r—n, 1 Br<Zr+tV}67 fo #(Qz (infreti—n. B,,s))ds) :
Then O, (x, ) < e~ (C1(r) + C2(1)). Using (3.4), we have

N
C1(1) <e™ Jo QG Ap-p(r) = ¢ B, > 7). (3.13)
For any s < N, similarly to (3.7), for ¢ large enough such that z; > 0, we have
0.,z + 1, 8) =P, (M;* >z, inf inf X, (r) > 0)
r<s ueN,
= Prppr (M0 > 2) = P (M7 > 2. ik inf X, (1) <0)
>Po(M;* > —1") — Po(inf inf X, ”(r) < —(z, +1"))
r<s ueN,
> Po(Ms > —1") — Po(max M > 1),
r<s
where the last inequality follows from M; ” > M and z; > 0. Combining this with (3.7), we
get
O,z +17,5) > g(s) — e  ¥Py(Bs < —17) — Py( max MP>1).
r<s

Letting N — oo in (3.13) and combining the resulting conclusion with the above, we get

Ci(t 00
lim sup lim sup — 1) <e o oM — o
N—oo —00 Px p(T() >, Bt > Zt)

Applying Lemma 1(ii), we get that for z; =0,

lim sup lim sup C1(f) < Cyyp(1 — ezl’x), 3.14)

N—o00 —00

and for z; = \/tz — pt,

C 1 — 20x 00 ¥
lim sup lim sup Cl(t)s% / e T dy. (3.15)
V4

N—oco t—>00
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Next, we show that lim;_, oo C>(¢) = 0. For § > 0, we have
C() <P P(vo>t,B;>z, inf B,<z+1)
re[t—N, 1]

<P_P(zy < B; < 7+ /18)
+P (B >z + /15, inf ]Br <z +1).
t

re[t—N,
Since the density of B, under Py” is equal to ——e— =5 < _1 h
1mnce tne adensity o under 1S equal t0 —¢ t Wwe nave
Y ! x ! 2t - 2nt’
Z+4/18 1 5

Px_p(Zt <Br<z+ «/;5) <

——dy= .
Z N2t Y 21

Moreover, for any fixed N > 0, similarly to (3.11), we have, for t > N,

P (Bizz+i8, inf Br<z+1")<Po(By|>8vi—1 = Np).
relt—N,t

Letting t — oo first and then § — 0, we get that, for any p < 0, lim;—, oo C2(¢) = 0. Combining
this with (3.12), (3.14) and (3.15), we get the desired assertion. O

Now we consider the asymptotic behavior of Q,(x, f) as t — oo for p > 0. Fix an N > 0 and
define

InO):=E;” (1{r0>N,BN>z}e_ I ‘p(Qz(B“N_S))dS), y>0,z>0.
Obviously, fy is a bounded function on (0, co). Combining with (3.2), we easily see that
fi0) =Ny (My" > 2), (3.16)
which implies that fy is increasing with respect to y.

Lemma 11. Assume that p > 0, x > 0 and z > 0. It holds that

2 t
tlim tS/ze%tEx_p (1{r0>t,Bt>Z}e_ Jiow ‘p(QZ(Bs’t_S))dX)
—00

2
2 <a+p—>N 00 ~
=,/ ;xe"’xe : [) P, (MN’O > z) ye PVdy.

Proof. By the Markov property,

! \q o
E;* (1{r0>t,3,>z}67 Ji-n (p(Qz(Bs»l*A))dA)

X

_ N 3
ZEx_p (1{10>I—N}EB£N (1{70>NsBN>Z}e fO ©(Q:(Bs,N S))ds))
=E.” (=0 [§Br-n)) =E;* (f{B-n)t0 > 1 = N) P (10 > 1 = N).

Since fy is increasing and bounded, it is almost everywhere continuous. Then applying
Lemma 1(iii), we get that

2
lim 3%eTNE? (F(Bi—n)lwo > t — N) Py (t9 > t — N)

1—0o0

2 o 2 2 2 0o
=p / fy@ye P dy x |/ —xp~ e = | —xe / Fa(y)ye P¥dy,
0 T T 0
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which implies the desired result together with (3.16). (|

Proofs of Theorem 1 and Theorem 3. Parts (i) and (ii) of both Theorem 1 and
Theorem 3 follow directly from Lemmas 8, 9, 10 and 2. So we only need to prove part (iii) of
both theorems. By (3.1), it suffices to prove (iii) of Theorem 3. Fix p > 0, N > 0 and z > 0. By
(3.2), we have, fort > N,

0:(x, 1) = € ;7 gy g™ J0 QB (3.17)
<e “E;’ (1{r0>t,B,>z}ei Jiow ‘p(QZ(B“”*S))dS> .

Applying Lemma 11, we get

2
ot+"—)t
lim sup t3/2e( 2 ) 0.(x, 1) (3.18)
— 00
2 ey (B e |
<./ =xe’*liminfe / P, (MN'O > z) ye P¥dy.
b4 N—o00o 0
It follows from (3.3) that
0.(x, ) > e “'E_" (1{r0>t,B,>z}e_ Jin ¢(Qz(BSsT_S))dS) o= Jo " plgli—s)ds (3.19)

Recall that the moment condition (1.4) is equivalent to (1.7), which implies that
1> e Jo N o=sNds _ o= [y o(s()ds 5 o= [ ¢(g(sNds N290 ¢

Using Lemma 11 again, we get

2
+"—)t
1ig£ft3/2e<a ) 0.x, 1) (3.20)

2
. ) 2 <0t+p )N oo ~_
> lim sup e~ v ¢ | ;xe’”e ’ /0 Py (MNp > z) ye Pdy

N—oo

2 . <a+é)N o0 ~ 5 .
= ;xe/’x limsupe / Py (MN > z) ye PVdy.
0

N—o00

Combining (3.18) and (3.20), we get

2
+/’—)t
lim t3/2e(a ) 0.x, 1) (3.21)

—00
2 e (BN e, 2

=,/ —xe” lim e / P, (MN >z) ye PVdy =,/ —xe” C,(p),
w N—oo 0 b4

. <a+§)N 0 ~
where C,(p):=limy_ e fo Py (MNp > z) ye PYdy. Now we show that C,(p) €
(0, 0o). First, applying (3.17), we get

Q.(x, ) <e P ” (o> 1,B; > 7).
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Combining this with Lemma 1, we get that

. 3 <a+§>f 2
limsupt2e Q.(x, 1) < ;xe"’ / ye Vdy. (3.22)
z

11— 00

Therefore, C,(p) < fzoo ye~PYdy < oco. Next, by (3.3), we have

0.(x, 1) > e~ Jo ¥EWMsg—aip—p (7, ¢ B = 7) (3.23)

Z CSUbe_ath_p (TO > tv Bt > Z) ’

where the last inequality follows from (1.6). Using Lemma 1 (iii) again, we get

S (a+§>z 2 o
liminfs2e Q. (x, 1) > Ceup —xepx/ ve PVdy. (3.24)
t—00 T z

Therefore, we see that

o
C:(p) = Caub / ye~Pdy > 0.
z

Combining (3.21) and Lemma 2, we get (1.13).
Proof of (1.12). First using Theorem 1(iii), and then Lemma 11 and (3.19) with N =1 and
z=0, we see that

2
a+p7

e
Co(p) = ExePth—lfgoﬂe Qo(x, 1)
>3 lpx lim AeSTE” (1rgme™ I #O:(Bt=) o= flutatonds
xe — 00

00 2 o0 ~ _
— e /i elg)ds ot / P, (M1 oo 0) ye PVdy
0

o0
e S pes g E,” (1 to=1)€ I w(Qo(Bs,lfs))ds) ye~PYdy,
0

where in the last equality we used (3.2). Since Qo(By, 1 — s) < g(1 — s) by the definition of Q,
applying the inequality e* > 1 + x, x > 0, we conclude from the display above that

00 2 o 1
Co(p) > e o~ #E@dsetr E,” (1 (ro> 11600 w(g(l—S))—w(Qo(Bs,l—S))dS) yePVdy
0
2

00 1
> Coupe / E;” (1 + / ¢(g(1 — 5)) — 9(Qo(Bs. 1 — 5))ds, 10 > 1) ye P¥dy
0 0

2

o0
> Cope ™ / P, (1 > 1) ye dy. (3.25)
0
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Now combining (1.11), (2.1) and (3.25), we obtain that

0
_a=y? ,
= Csub f / y) (1 — e—Za}) dyda
7'[

Noticing that

we obtain that
o
Co(p) > Csup / ae” Pa. (3.26)
0

Therefore, combining (1.3), Theorem 1(iii) and Lemma 1(iii), we get (1.12).
Proof of Corollary 1. We only give the proof of (iii). Taking N = 0 in (3.17), by (3.23) with
z=0, we have

Qz(x 1))
u(x, t)

P P t,B 1
(to>1,Br>z7) P77 (B> 2|t >1).
CaunPx” (to>1) Csub

}P’x(]\N/I >z‘§ '0>t>

By Lemma 1(iii), the tightness of Mt_ ? follows from the tightness of B, under P, ” (~|ro > t).
Therefore, the weak convergence of AN/It_  is a consequence of the existence of C,(p) in

Theorem 3(iii), which implies the desired result.
4. Proof of Theorem 2

Proof of Theorem 2. For x, y > 0, define v(x, y):= PX(M P >y). We divide the proof into
three steps. In Step 1, we use the Feynman—Kac formula and the strong Markov property to
rewrite v(x,y) as the product of two factors A (x, y) and A>(y); see (4.3) below. In Steps 2 and
3, we study the asymptotic behavior of A;(x, y) and A>(y) respectively as y — oo. Combining
these results, we arrive at the assertion of the theorem.

Step 1: For 0 < x < y, comparing the first branching time with 7y, we have

v(x, y) = / Be PP P (1, < 10, Ty < 5)ds

/ Be~ ﬂSE (( Z (1 — v(Bs, y))k) l{ryA‘L'()>S})
CE (P ny) + /0 ﬁeﬁsEx"((l =2 pe (1= v y>>")1{f>-“°>“>ds'

k=0
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By [8, Lemma 4.1], the above equation is equivalent to
oo
v(x,y)+ B / Ex_p (V(Bsa Y)l{ry/\ro>s}) ds
P (Ty<":0 +ﬂ/ ( 1 _Zpk (1 —v(By, y)) )1{tyAr0>s})d

which is also equivalent to

v(x, y) =P” (‘L'y < T()) —E.” ( /Ory K d(v(By, y))dS>,

where & is defined in (1.2). By repeating the argument leading to (2.9), we get that
v 3) = By (1 cqgpe e 90 @.1)

2 o
X PO EB (e* ("‘ + %)Ty*foy ©(V(Bs,y))ds )
X
y

3

where the last equality follows from Lemma 5. Combining the first equality in (4.1) and (2.4)
(with h = 0), we have that

2 /
v(x,y) <E;P (e7%%) =e’"VE, (e_(“+%)?") = e<p—|r 2a+p2)(x_y). (4.2)
Fix a y € (0, 1). By the strong Markov property of three-dimensional Bessel processes, we
have
X yeB *(“%)fwrf(ﬁ”‘*"‘” o0 (By.y)ds
v(x, y) Z;ep(x—y)Ex e ’ (4.3)
2 Ty
- a+"—)rr Jo! By, ))ds
X Effyy e ( ’ ‘
X ap—y)
=:-e A1 (x, Y)A2(y),
y
where
Ai(x, y):=E? e‘(“@)f@fyn—fo’“"’” o0 (By.y)ds
1(x, y):=
and
2 Ty
- ot-i—%)rv— S o (v(By,y)ds
Ar(y):=E:_ e ( ’
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Step 2: In this step, we study the asymptotic behavior of A;(x, y) as y — oco. By Lemma 5
with a =0, p replaced by —/2a + p2, y replaced by y — y¥, and h = ¢ o v(-, y), we get

Y. o=/ 20020y —x)Ex\/Zot-hOz (

— o0 w(v(Bs,y»ds)

(v
Allx,y)= l{r(y,yy)<ro}e k

—yY R
=) x—y e V2P0 0] ().
By the inequality 1 — e~ < |x|, we obtain that
2a+p? N
0<PY ™™ (tpoy) < 70) — A1(x, ) (4.4)
=Ex et <l{t(vyy><ro} (1 —e” fo(v_yy) ‘P(V(Bs’Y))dS>>

< Ex«/2a+p2 (/f@y}’) o((B., y))ds) '
0

Now set y,(x):=inf{w >y — y¥:w — x € N} to be the smallest number w greater than or equal
to y — y¥ such that w — x is a positive integer and cy:= p + +/2a + p% > 0. By (4.2),

2 Ty—yY) 2 Tyse(x)
E;/2a+p (/O Y (p(v(BS,y))ds>§E;/2a+p (/(;’ (p(ec*(B“y))ds>

yx()—x—1 Tath+1
Z E) Vaaip? </ w(ec*(Bsy))ds)
T

x+k
V*(X) x—1
Z E (Tx+k+1 — Tyik) <P(ec*(x+k+l_y))
Yi(X)—x
_E«/2a+p (@ Y (—C*(y—l—y*(x)-i-k))'
k=1

According to the definition of y.(x), for y large enough,
y=l=y@zy—1-@—y +DH=y" -2

Therefore, when y is large enough so that y¥ — 2 > y¥/?, by Lemma 7, we have

B ([ o) <BY 5 @) S (607 )
0 k=1
< Ea/m () /OO 0 (e—c*(yv/2+z)) dz
= E“/m (11 ) ¢ (e7%) =% 0.
Combining the above limit with (4.4), it holds that

/ 2 A
lim (Px ke (Ty—yr) < T0) — A1lx, y)) =

y—00
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Combining (2.5) and the definition of Al, we conclude that

A/ 2a+p2x
lim Aj(x, )’)e [20+02(—y") _ € lim P;/2ot+p2 (

y—00 y X y—00

2.
= = sinh [ xy/2a + p? ) .
x

Step 3: In this step, we study the limit behavior for A;. We define v(x, y) = 0 for x < 0. By
Lemma 5, we have

Ty—yr) < ‘L'()) (4.5)

ye VAT i

_ [y
Ary(y)= - y—y? (] {ry<70}€ Jo ‘/’(V(BmY))dS) 4.6)
—J/2 2y¥
e V2atply (20407 ([~ [ pu(By s\ _ g/ 2007 — Jo” @(v(By.y))ds
vy e Ey " (lnzne :

V2a+p2 . . . . . .
where, under Py_y(;”rp , B is a Brownian motion with drift \/2« + p2 starting from y — y”. We
claim that

2 Ty
lim EY 2% (e_ o’ ¢<V<Bs~y>)df) =Ci(p) >0, 4.7)

y—>o0 YV
2 Ty
lim EY 307 (1gge™ o o0BS) =g, (4.8)
y—>00 ) ?

We prove (4.8) first. In fact, by Lemma 5 and 6, we have

V2ot (1{%‘?0}6_ K (p(v(BS,y))ds) < P\_/iziﬂrpz(ty S )=1— P«/Zot-}—pz'

Y=y y y—y¥ (ty < 70)
y
Vaatpry Sinh (0 = y)y/2a + p?) =
sinh (yv/20 + p2) ’

which gives (4.8). To prove (4.7), for any y > 0, define

=1—-e"

Y=y

G(y):=E/ 2actp? (e_,ory w(V(Bs,y))ds) '

For z >y, by the strong Markov property, we have

G(@) =K, 2ecte? (e_ forzy w(V(Bs+Z—zV,z))ds)

¥ =y

= EOV 2a+4p2 (e— fOT(zV —Y) (p(v(Bs-G-z—zV,Z))ds) EV 20[}—/}—/)2 (e_ fO’zV W(V(Bs+z—zy,z))ds)

The first term of the above display is dominated by 1 from above, and the second is equal to

Eo 2atp? (e_ foryy w(V(Bs+Z—yV,z))dS)

. Hence, G(z) is bounded from above by

GQ2) < E0“/2a+p2 <e_ for‘vy o(V(Bs+y—y” +z—y,y+z—y))d~v) ) 4.9)
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Note that, for w > 0, when x > 0, we have that
vix+w,y+w) =P (31>0, ueN,” st. m<i¥1Xu(s) >0, X,() >y+w)
s<

>Py@t>0, ueh,” st m<1? Xu(s) > w, X, () >y+w)=vx,y).
s<

When x <0, the above inequality holds trivially since v(x, y) = 0. Combining this with (4.9),
we get that

G(Z) < ES/ZO{-%—/)Z <e_ f[;yy w(v(Bs—}-y—yV’y))dS) — G(y), Z> .

Thus the limit Cy(p):= limy_, o G(y) exists. Combining (4.6), (4.7) and (4.8), we get
lim Aj(y)eV 2atp%y Cy(p). 4.10)
y—>00

It is obvious that C,(p) € [0, 1]. Now we show that C(p) is positive. Combining the definition
of G, (4.2) and Jensen’s inequality, we get that

012 Y57 (o { (e(wm . v>> })
G [
> exp {—E‘m (/Oro 0 <e‘(”+*/m)35) ds)} . 4.11)

yV

Combining Lemma 1(ii) and [4, Proposition 17(i) and (ii), p. 172] we know that the
—A/ 2 and P«/2a+p

equal to Kj(1 —e™ 2a+p? *) and K>x for some constants K, K> > 0, respectively. Therefore,
combining (4.11) and [4, Proposition 20, p. 176], there exists a constant K > 0 such that

renewal functions of the ladder height process of B under P

00 y
o . —2/ 204922 ( —(p+ 204010 +zfx))
Ci(p)= yl_l)n;o G(y) > ylggoexp {—K/(‘) e dz/o o le dx,

ee} 5 yV+Z -
= lim exp —K/ e 2V 2tp Zdzf @ <e—(p+«/2a+p X)dx
0 Z

y—>00
o0 o
> exp {_Kf o2 2a+p2de/ p (e—(p+«/2a+p2)x) dx} = 0.
0 0

where in the last inequality we used Lemma 7. This implies C«(p) > 0. Combining (4.3), (4.5)
and (4.10), we conclude that

lim eV 22020l y) = 2C,(p)eP™ sinh (xy/2¢ + p2),

y—00

which completes the proof of the theorem.
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