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Abstract
In this paper we solve a long-standing problem which goes back to Laurent Schwartz’s work on mean periodic
functions. Namely, we completely characterize those locally compact Abelian groups having spectral synthesis. So
far a characterization theorem was available for discrete Abelian groups only. Here we use a kind of localization
concept for the ideals of the Fourier algebra of the underlying group. We show that localizability of ideals is
equivalent to synthesizability. Based on this equivalence we show that if spectral synthesis holds on a locally
compact Abelian group, then it holds on each extensions of it by a locally compact Abelian group consisting of
compact elements, and also on any extension to a direct sum with a copy of the integers. Then, using Schwartz’s
result and Gurevich’s counterexamples, we apply the structure theory of locally compact Abelian groups to obtain
our characterization theorem.

1. Introduction

The study of spectral synthesis started with the fundamental paper of L. Schwartz [1], where the
following result was proved:
Theorem 1. Every mean periodic function is the sum of a series of exponential monomials which are
limits of linear combinations of translates of the function.

Here “limit” is meant as uniform limit on compact sets. A continuous complex-valued function on
the reals is called mean periodic if the closure – with respect to uniform convergence on compact sets
– of the linear span of its translates is a proper subspace in the space of all continuous complex-valued
functions. Calling this closure the variety of the function, the above result says that in the variety of
each mean periodic function all exponential monomials span a dense subspace.

The basic concepts in this result can easily be generalized to more general situations. Given a
commutative topological group G we denote by C (𝐺) the space of all continuous complex-valued
functions equipped with the topology of uniform convergence on compact sets and with the pointwise
addition and pointwise multiplication with scalars. If f is in C (𝐺) and y is in G, then 𝜏𝑦 𝑓 denotes the
translate of f defined by

𝜏𝑦 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑦)

for each x in g. A closed linear subspace V in C (𝐺) is called a variety on G if it is translation invariant,
that is, 𝜏𝑦 𝑓 is in V for each f in V and y in G. Given an f in C (𝐺) the intersection of all varieties
including f is denoted by 𝜏( 𝑓 ), and it is called the variety of f.
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2 L. Székelyhidi

Given a commutative topological group G continuous complex homomorphisms of G into the
multiplicative group of nonzero complex numbers are called exponentials, and continuous complex
homomorphisms of G into the additive group of complex numbers are called additive functions. The
elements of the function algebra in C (𝐺) generated by all exponentials and additive functions are called
exponential polynomials. Functions of the form

𝑓 (𝑥) = 𝑃
(
𝑎1 (𝑥), 𝑎2 (𝑥), . . . , 𝑎𝑘 (𝑥)

)
𝑚(𝑥) (1)

are called exponential monomials, if 𝑃 : C𝑘 → C is a complex polynomial in k variables, 𝑎1, 𝑎2, . . . , 𝑎𝑘
are additive functions, and m is an exponential. Every exponential polynomial is a linear combination
of exponential monomials. If 𝑚 = 1, then the above function is called a polynomial.

Using these concepts we say that the variety V on G is synthesizable, if exponential monomials span a
dense subspace in it. We say that spectral synthesis holds on V, if every subvariety of V is synthesizable.
We say that spectral synthesis holds on the group G, or the group G is synthesizable, if every variety on
G is synthesizable. Hence Schwartz’s theorem can be formulated by saying that spectral synthesis holds
on R. In the paper [2], M. Lefranc proved that spectral synthesis holds on Z𝑛. In [4], R. J. Elliott made
an attempt to prove that spectral synthesis holds on every discrete Abelian group, but his proof was
incorrect. In fact, a counterexample for Elliott’s statement was given in [7]. In [8], a characterization
theorem was proved for discrete Abelian groups having spectral synthesis.

In the present paper we give a complete characterization of those locally compact Abelian groups on
which spectral synthesis holds. Using the localization method we worked out in [9], we can show that if
a locally compact Abelian group is synthesizable, then so is its extensions by a locally compact Abelian
group consisting of compact elements (see [10]). Also, here we prove that if a locally compact Abelian
group is synthesizable, and on its extensions to a direct sum with the group of integers (see [12]). Finally,
using the results of Schwartz [1] and Gurevich [6] we apply the structure theory of locally compact
Abelian groups.

2. Derivations of the Fourier algebra

In this section we recall some concepts and results concerning the Fourier algebra of locally compact
Abelian groups.

Given a locally compact Abelian group G we denote by M𝑐 (𝐺) its measure algebra, which is
the space of all compactly supported complex Borel measures on G. This space is identified with the
topological dual of C (𝐺) equipped with the weak*-topology. In fact, M𝑐 (𝐺) is a topological algebra
with the convolution of measures defined by

〈𝜇 ∗ 𝜈, 𝑓 〉 =
∫ ∫

𝑓 (𝑥 + 𝑦) 𝑑𝜇(𝑥) 𝑑𝜈(𝑦)

for each 𝜇, 𝜈 in M𝑐 (𝐺) and f in C (𝐺). In addition, C (𝐺) is a topological vector module over M𝑐 (𝐺).
It is clear that varieties on G are exactly the closed submodules of C (𝐺), and we have a one-to-one
correspondence between closed ideals in M𝑐 (𝐺) and varieties in C (𝐺) established by the annihilators:
𝑉 ↔ Ann𝑉 and 𝐼 ↔ Ann 𝐼 for each variety V and closed ideal I. For the sake of simplicity, we say that
the closed ideal I in M𝑐 (𝐺) is synthesizable, if the variety Ann 𝐼 is synthesizable.

Let G be a locally compact Abelian group and let A(𝐺) denote its Fourier algebra, that is, the algebra
of all Fourier transforms of compactly supported complex Borel measures on G. We recall that the
Fourier transform defined by

p𝜇(𝑚) =
∫

𝑚(−𝑥) 𝑑𝜇(𝑥)
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for each 𝜇 in the measure algebra is the extension of the Fourier–Laplace transform on the dual group:
here m is not necessarily a unitary exponential, that is, a character of G, but it can be any complex
exponential on G.

The algebra A(𝐺) is topologically isomorphic to the measure algebra M𝑐 (𝐺). For the sake of
simplicity, if the annihilator Ann 𝐼 of the closed ideal I in M𝑐 (𝐺) is synthesizable, then we say that
the corresponding closed ideal p𝐼 in A(𝐺) is synthesizable. Given an ideal p𝐼 in A(𝐺) a root of p𝐼 is an
exponential m at which every p𝜇 vanishes. The set of all roots of the ideal p𝐼 is denoted by 𝑍 (p𝐼).

The continuous linear operator 𝐷 : A(𝐺) → A(𝐺) is called a derivation of order one, if

𝐷 (p𝜇 · p𝜈) = 𝐷 (p𝜇) · p𝜈 + p𝜇 · 𝐷 (p𝜈)

holds for each p𝜇, p𝜈 inA(𝐺). For each natural number 𝑛 ≥ 1, the continuous linear operator 𝐷 : A(𝐺) →

A(𝐺) is called a derivation of order 𝑛 + 1, if the bilinear operator

(p𝜇, p𝜈) → 𝐷 (p𝜇 · p𝜈) − 𝐷 (p𝜇) · p𝜈 − p𝜇 · 𝐷 (p𝜈)

is a derivation of order n in both variables. All constant multiples of the identity operator on A(𝐺)

are considered derivations of order 0. Finally, we call a linear operator on A(𝐺) a derivation, if it is
a derivation of order n for some natural number n. It is easy to see that all derivations on A(𝐺) form
a commutative algebra with unit (see [9, Theorem 4]). The elements of the subalgebra generated by
derivations of order not greater than 1 are called polynomial derivations – in fact, they are polynomials
of derivations of order at most 1.

Given a continuous linear operator F on A(𝐺) and an exponential m on G the continuous function
𝑓𝐹,𝑚 : 𝐺 → C defined for x in G by

𝑓𝐹,𝑚(𝑥) = 𝐹 (p𝛿𝑥) (𝑚)𝑚(𝑥)

is called the generating function of F. The following proposition shows that each continuous linear
operator on A(𝐺) is uniquely determined by its generating function.
Proposition 1. Let F be a continuous linear operator on A(𝐺). Then

𝐹 (p𝜇) (𝑚) =
∫

𝑓𝐹,𝑚 (𝑥) q𝑚(𝑥) 𝑑𝜇(𝑥) (2)

holds for each exponential m and for every p𝜇 in A(𝐺).
Proof. For each exponential m, the mapping 𝜇 ↦→ 𝐹 (p𝜇) (𝑚) defines a continuous linear functional on
the measure algebra M𝑐 (𝐺). We conclude (see e.g. [5, 3.10 Theorem]) that there exists a continuous
function 𝜑𝑚 : 𝐺 → C such that

𝐹 (p𝜇) (𝑚) =
∫

𝜑𝑚(𝑧) 𝑑𝜇(𝑧)

holds for each 𝜇 in M𝑐 (𝐺). Then we have

𝜑𝑚(𝑥) =
∫

𝜑𝑚(𝑧) 𝑑𝛿𝑥 (𝑧) = 𝐹 (p𝛿𝑥) (𝑚),

hence 𝜑𝑚(𝑥) = 𝑓𝐹,𝑚 (𝑥) q𝑚(𝑥), which yields (2). �

Clearly, the generating function of the identity operator is the identically one function, and it is easy
to check that the generating function of a first order derivation is an additive function, and conversely,
each additive function generates a first order derivation. It follows that the generating function of a
polynomial derivation is a polynomial, and the degree of the generating polynomial is equal to the order
of the corresponding polynomial derivation (see also [9]).
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In general, there may exist nonpolynomial derivations on the Fourier algebra. However, the generating
function 𝜑 of any derivation is a so-called generalized polynomial, which, by definition, satisfies the
higher order difference equation

Δ 𝑦1 ,𝑦2 ,...,𝑦𝑛+1𝜑(𝑥) = 0. (3)

Here Δ 𝑦 = 𝜏𝑦 − 𝜏0, and Δ 𝑦1 ,𝑦2 ,...,𝑦𝑛+1 is the product of the linear operators 𝜏𝑦𝑖 − 𝜏0 for 𝑖 = 1, 2, . . . , 𝑛 + 1
(see [9]). Polynomials are generalized polynomials, but the converse is not true. Still all generalized
polynomials generate derivations, which are not polynomial derivations. We shall see that the existence
of nonpolynomial derivations is closely related to the failure of spectral synthesis.

Given a derivation D and an exponential m we denote by p𝐼𝐷,𝑚 the set of all functions p𝜇 in A(𝐺)

which are annihilated at m by all derivations of the form

p𝜇 ↦→

∫
𝜑(𝑥) q𝑚(𝑥) 𝑑𝜇(𝑥),

where 𝜑 belongs to the translation invariant linear space in C (𝐺) generated by 𝑓𝐷,𝑚. In other words,
p𝐼𝐷,𝑚 is the set of those functions p𝜇 in A(𝐺) which satisfy p𝜇(𝑚) = 𝐷 p𝜇(𝑚) = 0, and

∫
[Δ 𝑦1 ,𝑦2 ,...,𝑦𝑘 𝑓𝐷,𝑚] (𝑥) · q𝑚(𝑥) 𝑑𝜇(𝑥) = 0

for each positive integer k and 𝑦1, 𝑦2, . . . , 𝑦𝑘 in G. It is easy to see that for every derivation D on A(𝐺)

and for each exponential m, we have the equation 𝐼𝐷,𝑚 = Ann 𝜏( q𝑓𝐷,𝑚𝑚) (see [9]). As a by-product we
obtain that 𝐼𝐷,𝑚, as well as p𝐼𝐷,𝑚 is a closed ideal, hence so is the intersection p𝐼D,𝑚 =

⋂
𝐷∈D p𝐼𝐷,𝑚 for

any family D of derivations.
We note that for a polynomial derivation 𝑃(𝐷1, 𝐷2, . . . , 𝐷𝑘 ) the set p𝐼𝐷,𝑚 consists of those Fourier

transforms p𝜇 in A(𝐺) that satisfy

(𝜕𝛼1𝜕𝛼2 · · · 𝜕𝛼𝑘𝑃) (𝐷1, 𝐷2, . . . , 𝐷𝑘 ) (p𝜇) (𝑚) = 0

for every choice of the nonnegative integers 𝛼𝑖 .
The dual concept is the following: given a closed ideal p𝐼 in A(𝐺) and an exponential m, the set of

all derivations annihilating p𝐼 at m is denoted by D
p𝐼 ,𝑚. The subset of D

p𝐼 ,𝑚 consisting of all polynomial
derivations is denoted by P

p𝐼 ,𝑚. Clearly, we have the inclusion

p𝐼 ⊆
⋂
𝑚

p𝐼D
p𝐼 ,𝑚 ,𝑚 ⊆

⋂
𝑚

p𝐼P
p𝐼 ,𝑚 ,𝑚. (4)

We note that if m is not a root of p𝐼, then D
p𝐼 ,𝑚 = P

p𝐼 ,𝑚 = {0}, consequently p𝐼D
p𝐼 ,𝑚 ,𝑚 = p𝐼P

p𝐼 ,𝑚 ,𝑚 = A(𝐺),
hence those terms have no effect on the intersection.

Proposition 2. Let D be a family of derivations on A(𝐺). The ideal p𝐼 in A(𝐺) has the property

p𝐼 ⊇
⋂
𝑚

p𝐼D,𝑚 (5)

if and only if the functions q𝑓𝐷,𝑚𝑚 with D in D span a dense subspace in Ann 𝐼.

Proof. Let p𝐽 =
⋂

𝑚
p𝐼D,𝑚, and assume that p𝐽 ⊆ p𝐼. If the subspace spanned by all functions of the form

q𝑓𝐷,𝑚𝑚 with D in D is not dense in Ann 𝐼, then there exists a 𝜇0 not in Ann Ann 𝐼 = 𝐼 such that 𝜇0
annihilates all functions of the form q𝑓𝐷,𝑚𝑚 with D in D. In other words, for each x in G we have
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0 = (𝜇0 ∗ q𝑓𝐷,𝑚)𝑚(𝑥) =
∫

q𝑓𝐷,𝑚 (𝑥 − 𝑦)𝑚(𝑥 − 𝑦) 𝑑𝜇0 (𝑦)

=
∫

𝑓𝐷,𝑚(𝑦 − 𝑥) q𝑚(𝑦 − 𝑥) 𝑑𝜇0 (𝑦) = 𝑚(𝑥)

∫
𝑓𝐷,𝑚(𝑦 − 𝑥) q𝑚(𝑦) 𝑑𝜇0 (𝑦).

In particular, for 𝑥 = 0

0 = 𝜇0 ∗ q𝑓𝐷,𝑚𝑚(0) =
∫

𝑓𝐷,𝑚(𝑦) q𝑚(𝑦) 𝑑𝜇0 (𝑦) = 𝐷 (𝜇0) (𝑚)

holds for each D in D and for every m. Consequently, p𝜇0 is in p𝐼D,𝑚 for each m, hence it is in the set p𝐽,
but not in p𝐼 – a contradiction.

Conversely, assume that the subspace spanned by all functions of the form q𝑓𝐷,𝑚𝑚 with D in D, is
dense in Ann 𝐼. It follows that any 𝜇 in M𝑐 (𝐺), which satisfies

∫
q𝑓𝐷,𝑚(𝑥 − 𝑦)𝑚(𝑥 − 𝑦) 𝑑𝜇(𝑦) = 0 (6)

for all D in D and x in G, belongs to 𝐼 = Ann Ann 𝐼. Now let p𝜇 be in p𝐼D,𝑚 for some m, and suppose that
D is in D. Then for each x in G, the function p𝜇 · p𝛿−𝑥 is in p𝐼D,𝑚, hence

0 = 𝐷 (p𝜇 · p𝛿−𝑥) (𝑚) =
∫

q𝑓𝐷,𝑚(𝑥 − 𝑦)𝑚(𝑥 − 𝑦) 𝑑𝜇(𝑦),

that is, p𝜇 satisfies (6) for each D in D. This implies that 𝜇 is in I, and the theorem is proved. �

Corollary 1. Let p𝐼 be a closed ideal in A(𝐺). Then p𝐼 =
⋂

𝑚∈𝑍 (p𝐼 )
p𝐼P

p𝐼 ,𝑚 ,𝑚 holds if and only if all
functions of the form q𝑓𝐷,𝑚𝑚 with m in 𝑍 (p𝐼) and D in P

p𝐼 ,𝑚 span a dense subspace in the variety Ann 𝐼.

3. Localization

The ideal p𝐼 is called localizable, if we have equalities in (4). Roughly speaking, localizability of an ideal
means that the ideal is completely determined by the values of “derivatives” of the functions belonging
to this ideal. Nonlocalizability of the ideal p𝐼 means that there is a p𝜈 not in p𝐼, which is annihilated by all
polynomial derivations which annihilate p𝐼 at its zeros.

Theorem 2. Let G be a locally compact Abelian group. The ideal p𝐼 in A(𝐺) is localizable if and only
if it is synthesizable.

Proof. Assume that Ann 𝐼 is not synthesizable. Then the linear span of the exponential monomials in
Ann 𝐼 is not dense. In other words, there is a p𝜈 not in p𝐼 such that 𝜈 ∗ 𝑝𝑚 = 0 for every polynomial p such
that 𝑝𝑚 is in Ann 𝐼. For each such 𝑝𝑚 we consider the polynomial derivation

𝐷 (p𝜇) (𝑚) =
∫

q𝑝(𝑥) q𝑚(𝑥) 𝑑𝜇(𝑥)

whenever p𝜇 is in A(𝐺). As 𝑝𝑚 is in Ann 𝐼, hence D is in P
p𝐼 ,𝑚. On the other hand, every derivation in

P
p𝐼 ,𝑚 has this form with some 𝑝𝑚 in Ann 𝐼. As 𝜈 ∗ 𝑝𝑚(0) = 0 for all these functions, we have

𝐷 (p𝜈) (𝑚) =
∫

q𝑝(𝑥) q𝑚(𝑥) 𝑑𝜈(𝑥) =
∫

𝑝(0 − 𝑥)𝑚(0 − 𝑥) 𝑑𝜈(𝑥) = 𝜈 ∗ 𝑝𝑚(0) = 0,

holds for each D in P
p𝐼 ,𝑚. This means that p𝜈 is annihilated by all derivations in P

p𝐼 ,𝑚, but p𝜈 is not in p𝐼,
which contradicts the localizability.
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Now we assume that Ann 𝐼 is synthesizable. This means that all functions of the form q𝑓𝐷,𝑚𝑚 with
m in 𝑍 (p𝐼) and D in P

p𝐼 ,𝑚 span a dense subspace in the variety Ann 𝐼. By Corollary 1,

p𝐼 =
⋂

𝑚∈𝑍 (p𝐼 )

p𝐼P
p𝐼 ,𝑚 ,𝑚.

We show that this ideal is localizable. Assuming the contrary, there is an exponential m in 𝑍 (p𝐼) and
there is a p𝜈 not in p𝐼P

p𝐼 ,𝑚 ,𝑚 such that 𝐷 (p𝜈) (𝑚) = 0 for each derivation D in P
p𝐼 ,𝑚. In other words, p𝜈 is

annihilated at m by all derivations in P
p𝐼 ,𝑚, and still p𝜈 is not in p𝐼P

p𝐼 ,𝑚 ,𝑚 – a contradiction. �

4. Compact elements

In this section we show that if spectral synthesis holds on a locally compact Abelian group, then it also
holds on every extension by a locally compact Abelian group consisting of compact elements.
Theorem 3. Let G be a locally compact Abelian group and let B denote the closed subgroup of G
consisting of all compact elements. Then spectral synthesis holds on G if and only if it holds on 𝐺/𝐵.
Proof. If spectral synthesis holds on G, then it obviously holds on every continuous homomorphic
image of G (see [11, Theorem 3.1]), in particular, it holds on 𝐺/𝐵.

Conversely, we assume that spectral synthesis holds on 𝐺/𝐵. This means that every closed ideal in
the Fourier algebra of 𝐺/𝐵 is localizable, and we need to show the same for all closed ideals of the
Fourier algebra of G.

First we remark that the polynomial rings over G and over𝐺/𝐵 can be identified. Indeed, polynomials
on G are built up from additive functions on G, which clearly vanish on compact elements, as the additive
topological group of complex numbers has no nontrivial compact subgroups. Consequently, if a is an
additive function and 𝑥, 𝑦 are in the same coset of B, then 𝑥 − 𝑦 is in B, and 𝑎(𝑥 − 𝑦) = 0, which means
𝑎(𝑥) = 𝑎(𝑦). So, the additive functions on G arise from the additive functions of 𝐺/𝐵, hence the two
polynomial rings can be identified.

Now we define a projection of the Fourier algebra of G into the Fourier algebra of 𝐺/𝐵 as follows.
Let Φ : 𝐺 → 𝐺/𝐵 denote the natural mapping. For each measure 𝜇 in M𝑐 (𝐺) we define 𝜇𝐵 as the
linear functional

〈𝜇𝐵, 𝜑〉 = 〈𝜇, 𝜑 ◦Φ〉

whenever 𝜑 : 𝐺/𝐵 → C is a continuous function. It is straightforward that the mapping p𝜇 ↦→ p𝜇𝐵 is a
continuous algebra homomorphism of the Fourier algebra of G into the Fourier algebra of 𝐺/𝐵. As Φ
is an open mapping, closed ideals are mapped onto closed ideals.

For a given closed ideal p𝐼 in A(𝐺), we denote by p𝐼𝐵 the closed ideal in A(𝐺/𝐵) which corresponds
to p𝐼 under the above homomorphism. If m is a root of the ideal p𝐼𝐵, then p𝜇𝐵 (𝑚) = 0 for each p𝜇 in p𝐼. In
other words,

〈p𝜇, q𝑚 ◦Φ〉 = 〈p𝜇𝐵, q𝑚〉 = 0,

hence 𝑚 ◦ Φ, which is clearly an exponential on G, is a root of p𝐼. Suppose that D is a derivation in
P

p𝐼 ,𝑚◦Φ, then it has the form

𝐷 p𝜇(𝑚 ◦Φ) =
∫

𝑝 · ( q𝑚 ◦Φ) 𝑑𝜇

with some polynomial p on G. According to our remark above, the polynomial p can uniquely be written
as 𝑝𝐵 ◦Φ, where 𝑝𝐵 is a polynomial on 𝐺/𝐵. In other words,

𝐷 p𝜇(𝑚 ◦Φ) = 〈p𝜇, (𝑝𝐵 ◦Φ) ( q𝑚 ◦Φ)〉 = 〈p𝜇𝐵, 𝑝𝐵 q𝑚〉 = 𝐷𝐵 (p𝜇𝐵) (𝑚),

which defines a derivation 𝐷𝐵 on A(𝐺/𝐵) with generating function 𝑓𝐷𝐵 ,𝑚 = 𝑝𝐵.
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It follows that every derivation in P
p𝐼 ,𝑚◦Φ arises from a derivation in P

p𝐼𝐵 ,𝑚
. On the other hand, if d

is a derivation in P
p𝐼𝐵 ,𝑚

, then we have

𝑑 p𝜇𝐵 (𝑚) =
∫

𝑝 q𝑚 𝑑𝜇𝐵 = 〈𝜇𝐵, 𝑝 q𝑚〉 = 〈𝜇, (𝑝 ◦Φ) ( q𝑚 ◦Φ)〉

=
∫

𝑝
(
Φ(𝑥)

)
( q𝑚 ◦Φ) (𝑥) 𝑑𝜇(𝑥),

which defines a derivation D in P
p𝐼 ,𝑚◦Φ.

We summarize our assertions. Let p𝐼 be a proper closed ideal in A(𝐺) and assume that p𝐼 is non-
localizable. It follows that there is a function p𝜈 not in p𝐼 which is annihilated at M by all polynomial
derivations in P

p𝐼 ,𝑀 , for each exponential M on G. In particular, p𝜈 is annihilated at 𝑚 ◦Φ by all polyno-
mial derivations in P

p𝐼 ,𝑚◦Φ, for each exponential m on 𝐺/𝐵. We have seen above that this implies that
p𝜈𝐵 is annihilated at m by all polynomial derivations in P

p𝐼𝐵 ,𝑚
and for each exponential m on 𝐺/𝐵. As

spectral synthesis holds on 𝐺/𝐵, the ideal p𝐼𝐵 is localizable, hence p𝜈𝐵 is in p𝐼𝐵, but this contradicts the
assumption that p𝜈 is not in p𝐼. The proof is complete. �

From this result it follows immediately that if every element of a locally compact Abelian group is
compact, then spectral synthesis holds on this group. In particular, spectral synthesis holds on every
compact Abelian group. Also, we can provide the following simple proof for the characterization theorem
of discrete synthesizable Abelian groups (see [8]):

Corollary 2. Spectral synthesis holds on a discrete Abelian group if and only if its torsion free rank is
finite.

Proof. If the torsion free rank of G is infinite, then there is a generalized polynomial on G, which is not
a polynomial (see [7]), hence there is a nonpolynomial derivation on the Fourier algebra. Consequently,
we have the chain of inclusions

p𝐼 ⊆ p𝐼D
p𝐼 ,𝑚 ,𝑚 � p𝐼P

p𝐼 ,𝑚 ,𝑚,

which implies that p𝐼 ≠ p𝐼P
p𝐼 ,𝑚 ,𝑚, hence p𝐼 is not synthesizable.

Conversely, let G have finite torsion free rank. The subgroup B of compact elements coincides with
the set T of all elements of finite order, and 𝐺/𝑇 is a (continuous) homomorphic image of Z𝑛 with
some nonnegative integer n. As spectral synthesis holds on Z𝑛 (see [2]), it holds on its homomorphic
images. �

5. Extension by the integers

In this section we show that if spectral synthesis holds on a locally compact Abelian group, then it also
holds on the group obtained by adding Z to it as a direct summand.

It is known that every exponential 𝑒 : Z→ C has the form

𝑒(𝑘) = 𝜆𝑘

for k in Z, where 𝜆 is a nonzero complex number, which is uniquely determined by e. For this exponential
we use the notation 𝑒𝜆. It follows that for every commutative topological group G, the exponentials on
𝐺 ×Z have the form 𝑚 ⊗ 𝑒𝜆 : (𝑔, 𝑘) ↦→ 𝑚(𝑔)𝑒𝜆(𝑘), where m is an exponential on G, and 𝜆 is a nonzero
complex number. Hence the Fourier–Laplace transforms in A(𝐺 × Z) can be thought as two variable
functions defined on the pairs (𝑚, 𝜆), where m is an exponential on G, and 𝜆 is a nonzero complex
number.
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Let G be a locally compact Abelian group. For each measure 𝜇 in M𝑐 (𝐺 × Z) and for every k in Z
we let

𝑆𝑘 (𝜇) = {𝑔 : 𝑔 ∈ 𝐺 and (𝑔, 𝑘) ∈ supp 𝜇}.

As 𝜇 is compactly supported, there are only finitely many k’s in Z such that 𝑆𝑘 (𝜇) is nonempty. We have

supp 𝜇 =
⋃
𝑘∈Z

(𝑆𝑘 (𝜇) × {𝑘}),

and

𝑆𝑘 (𝜇) × {𝑘} = (𝐺 × {𝑘}) ∩ supp 𝜇.

It follows that the sets 𝑆𝑘 (𝜇) × {𝑘} are pairwise disjoint compact sets in 𝐺 × Z, and they are nonempty
for finitely many k’s only. The restriction of 𝜇 to 𝑆𝑘 (𝜇) × {𝑘} is denoted by 𝜇𝑘 . Then, by definition

〈𝜇𝑘 , 𝑓 〉 =
∫

𝑓 · 𝜒𝑘 𝑑𝜇

for each f in C (𝐺 × Z), where 𝜒𝑘 denotes the characteristic function of the set 𝑆𝑘 (𝜇) × {𝑘}. In other
words,

∫
𝑓 𝑑𝜇𝑘 =

∫
𝑓 (𝑔, 𝑘) 𝑑𝜇(𝑔, 𝑙)

holds for each k in Z and for every f in C (𝐺 × Z). Clearly, 𝜇 =
∑

𝑘∈Z 𝜇𝑘 , and this sum is finite.

Lemma 1. Let 𝜇 be in M𝑐 (𝐺 × Z). Then, for each k in Z, we have

𝜇𝑘 = 𝜇0 ∗ 𝛿 (0,𝑘) .

Here 𝛿 (0,𝑘) denotes the Dirac measure at the point (0, 𝑘) in 𝐺 × Z.

Proof. We have for each f in C (𝐺 × Z):

〈𝜇0 ∗ 𝛿 (0,𝑘) , 𝑓 〉 =
∫ ∫

𝑓 (𝑔 + ℎ, 𝑙 + 𝑛) 𝑑𝜇0 (𝑔, 𝑙) 𝑑𝛿 (0,𝑘) (ℎ, 𝑛)

=
∫

𝑓 (𝑔, 𝑙 + 𝑘) 𝑑𝜇0 (𝑔, 𝑙) =
∫

𝑓 (𝑔, 𝑘) 𝑑𝜇(𝑔, 𝑙) = 〈𝜇𝑘 , 𝑓 〉. �

For each 𝜇 in M𝑐 (𝐺 × Z), we define the measure 𝜇𝐺 in M𝑐 (𝐺) by

〈𝜇𝐺 , 𝜑〉 =
∫

𝜑(𝑔) 𝑑𝜇(𝑔, 𝑙),

whenever 𝜑 is in C (𝐺). Clearly, every 𝜑 in C (𝐺) can be considered as a function in C (𝐺 × Z), hence
this definition makes sense, further we have

〈𝜇𝐺 , 𝜑〉 =
∫

𝜑(𝑔) 𝑑𝜇0 (𝑔, 𝑙).

Lemma 2. If I is a closed ideal in M𝑐 (𝐺 × Z), then the set 𝐼𝐺 of all measures 𝜇𝐺 with 𝜇 in I, is a
closed ideal in M𝑐 (𝐺).
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Proof. Clearly 𝜇𝐺 + 𝜈𝐺 = (𝜇 + 𝜈)𝐺 and 𝜆 · 𝜇𝐺 = (𝜆 · 𝜇)𝐺 . Let 𝜇𝐺 be in I and 𝜉 in M𝑐 (𝐺). Then we
have for each 𝜑 in C (𝐺):

〈𝜉 ∗ 𝜇𝐺 , 𝜑〉 =
∫ ∫

𝜑(𝑔 + ℎ) 𝑑𝜉 (𝑔) 𝑑𝜇𝐺 (ℎ) =
∫ ∫

𝜑(𝑔 + ℎ) 𝑑𝜉 (𝑔) 𝑑𝜇(ℎ, 𝑙).

On the other hand, we extend 𝜉 from M𝑐 (𝐺) to M𝑐 (𝐺 × Z) by the definition

〈𝜉, 𝑓 〉 =
∫

𝑓 (𝑔, 0) 𝑑𝜉 (𝑔)

whenever f is in C (𝐺 × Z). Then

〈𝜉𝐺 , 𝜑〉 =
∫

𝜑(𝑔) 𝑑𝜉0(𝑔, 𝑙) =
∫

𝜑(𝑔) 𝑑𝜉 (𝑔) = 〈𝜉, 𝜑〉,

that is 𝜉𝐺 = 𝜉. Finally, a simple calculation shows that

〈𝜉 ∗ 𝜇𝐺 , 𝜑〉 = 〈(𝜉 ∗ 𝜇)𝐺 , 𝜑〉,

hence 𝜉 ∗ 𝜇𝐺 = (𝜉 ∗ 𝜇)𝐺 is in 𝐼𝐺 , as 𝜉 ∗ 𝜇 is in I.
Now we show that the ideal 𝐼𝐺 is closed. Assume that (𝜇𝛼) is a generalized sequence in I such that

the generalized sequence (𝜇𝛼,𝐺) converges to 𝜉 in M𝑐 (𝐺). This means that

lim
𝛼

∫
𝜑(𝑔) 𝑑𝜇𝛼,𝐺 (𝑔) =

∫
𝜑(𝑔) 𝑑𝜉 (𝑔)

holds for each 𝜑 in C (𝐺). In particular, for each exponential m on G we have

lim
𝛼

∫
q𝑚(𝑔) 𝑑𝜇𝛼,0 (𝑔, 𝑙) = lim

𝛼

∫
q𝑚(𝑔) 𝑑𝜇𝛼,𝐺 (𝑔) =

∫
q𝑚(𝑔) 𝑑𝜉 (𝑔) =

∫
q𝑚(𝑔) 𝑑𝜉0(𝑔, 𝑙).

In other words,

lim
𝛼

p𝜇𝛼,0 = p𝜉0

holds. It follows

lim
𝛼

𝜇𝑖,0 = 𝜉0,

consequently

𝜉𝑘 = 𝜉0 ∗ 𝛿 (0,𝑘) = lim
𝛼

𝜇𝛼,0 ∗ 𝛿 (0,𝑘) = lim
𝛼

𝜇𝛼,𝑘 .

Then we infer

𝜉 =
∑
𝑘

𝜉𝑘 =
∑
𝑘

lim
𝛼

𝜇𝛼,𝑘 = lim
𝛼

∑
𝑘

𝜇𝛼,𝑘 = lim
𝛼

𝜇𝛼,

where we can interchange the sum and the limit using the fact that in each sum the number of nonzero
terms is finite. As I is closed, 𝜉 is in I, which proves that 𝜉 = 𝜉𝐺 is in 𝐼𝐺 , that is, 𝐼𝐺 is closed. �

Now we can derive the following theorem.

Theorem 4. Let G be a locally compact Abelian group. Then spectral synthesis holds on G if and only
if it holds on 𝐺 × Z.
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Proof. If spectral synthesis holds on 𝐺 × Z, then it obviously holds on its continuous homomorphic
images, in particular, it holds on G, which is the projection of 𝐺 × Z onto the first component.

Conversely, we assume that spectral synthesis holds on G. This means that every closed ideal in the
Fourier algebra of G is localizable, and we need to show the same for all closed ideals of the Fourier
algebra of 𝐺 × Z.

We consider the closed ideal p𝐼 in the Fourier algebraA(𝐺×Z), and we assume that p𝐼 is nonlocalizable,
that is, there is a measure 𝜈 in M𝑐 (𝐺 × Z) such that p𝜈 is annihilated by P

p𝐼 ,𝑚,𝜆 for each m and 𝜆, but p𝜈

is not in p𝐼. We show that p𝜈𝐺 is in p𝐼𝐺; then it will follow that p𝜈 is in p𝐼, a contradiction.
Suppose that a polynomial derivation d annihilates p𝐼𝐺 at m. Then we have

𝑑 p𝜇𝐺 (𝑚) =
∫

𝑝𝑑,𝑚 (𝑔) q𝑚(𝑔) 𝑑𝜇𝐺 (𝑔) =
∫

𝑝𝑑,𝑚 (𝑔) q𝑚(𝑔) 𝑑𝜇(𝑔, 𝑙) = 0

for each p𝜇 in p𝐼𝐺 and for every exponential m on G, where 𝑝𝑑,𝑚 : 𝐺 → C is the generating polynomial
of d at m. Then we define the polynomial derivation D on the Fourier algebra A(𝐺 × Z) by

𝐷 p𝜇(𝑚, 𝜆) =
∫

𝑝𝑑,𝑚 (𝑔) q𝑚(𝑔)𝜆−𝑙 𝑑𝜇(𝑔, 𝑙).

If p𝜇 is in p𝐼, then we have

𝐷 p𝜇𝑘 (𝑚, 𝜆) =
∫

𝑝𝑑,𝑚 (𝑔) q𝑚(𝑔)𝜆−𝑙 𝑑𝜇𝑘 (𝑔, 𝑙) = 𝜆−𝑘 ·

∫
𝑝𝑑,𝑚 (𝑔) q𝑚(𝑔) 𝑑𝜇(𝑔, 𝑙) = 0

for each k in Z. As p𝜇 =
∑

𝑘∈Z p𝜇𝑘 , it follows that 𝐷 p𝜇(𝑚, 𝜆) = 0 for each p𝜇 in p𝐼. In other words, D is in
P

p𝐼 ,𝑚,𝜆 for each exponential m and nonzero complex number 𝜆. In particular, p𝜈 is annihilated by D:

𝐷p𝜈(𝑚, 𝜆) =
∫

𝑝𝑑,𝑚 q𝑚(𝑔)𝜆−𝑙 𝑑𝜈(𝑔, 𝑙) = 0.

It follows

𝑑p𝜈𝐺 (𝑚) = 𝐷p𝜈0 (𝑚, 𝜆) =
∫

𝑝𝑑,𝑚 (𝑔) q𝑚(𝑔) 𝑑𝜈(𝑔, 𝑙) = 0.

As d is an arbitrary polynomial derivation which annihilates p𝐼𝐺 at m, we have that p𝜈𝐺 is annihilated
by P

p𝐼𝐺 ,𝑚 for each m. As spectral synthesis holds on G, the ideal p𝐼𝐺 is localizable, consequently p𝜈𝐺 is
in p𝐼𝐺 , which implies that p𝜈 is in p𝐼, and our theorem is proved. �

6. Characterization theorems

Corollary 3. Let G be a compactly generated locally compact Abelian group. Then spectral synthesis
holds on G if and only if G is topologically isomorphic to R𝑎 × Z𝑏 × 𝐹, where 𝑎 ≤ 1 and b are
nonnegative integers, and F is an arbitrary compact Abelian group.

Proof. By the Structure Theorem of compactly generated locally compact Abelian groups (see [3, (9.8)
Theorem]) G is topologically isomorphic to R𝑎 × Z𝑏 × 𝐹, where 𝑎, 𝑏 are nonnegative integers, and F
is a compact Abelian group. If spectral synthesis holds on G, then it holds on its projection R𝑎. By the
results in [1, 6], spectral synthesis holds on R𝑎 if and only if 𝑎 ≤ 1, hence G is topologically isomorphic
to R𝑎 × Z𝑏 × 𝐹 where 𝑎 ≤ 1 and b are nonnegative integers, and F is a compact Abelian group.

Conversely, let 𝐺 = R×Z𝑏 ×𝐹 with b a nonnegative integer, and F a compact Abelian group. By [1],
spectral synthesis holds on R. By repeated application of Theorem 4, we have that spectral synthesis
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holds on R × Z𝑏 with any nonnegative integer b. Finally, by Theorem 3, spectral synthesis holds on
R × Z𝑏 × 𝐹. Our proof is complete. �

Corollary 4. Let G be a locally compact Abelian group. Let B denote the closed subgroup of all compact
elements in G. Then spectral synthesis holds on G if and only if 𝐺/𝐵 is topologically isomorphic to
R𝑛×𝐹, where 𝑛 ≤ 1 is a nonnegative integer, and F is a discrete torsion free Abelian group of finite rank.

Proof. First we prove the necessity. If spectral synthesis holds on G, then it holds on 𝐺/𝐵. By [3, (24.34)
Theorem], 𝐺/𝐵 has sufficiently enough real characters. By [3, (24.35) Corollary], 𝐺/𝐵 is topologically
isomorphic to R𝑛 × 𝐹, where n is a nonnegative integer, and F is a discrete torsion-free Abelian group.
As spectral synthesis holds on R𝑛 × 𝐹, it holds on the continuous projections R𝑛 and F. Then we have
𝑛 ≤ 1, and the torsion-free rank of F is finite, by [8].

For the sufficiency, if F is a torsion-free discrete Abelian group with finite rank, then it is the
(continuous) homomorphic image of Z𝑘 with some nonnegative integer k. By repeated application
of Theorem 4, we have that spectral synthesis holds on R × Z𝑘 , and then it holds on its continuous
homomorphic image R × 𝐹. Finally, by Theorem 3, we have that spectral synthesis holds on G. �
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