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Abstract

Let k be a finite field and L be the function field of a curve C/k of genus g > 1. In the first part of this note
we show that the number of separable S -integral points on a constant elliptic curve E/L is bounded solely
in terms of g and the size of S. In the second part we assume that L is the function field of a hyperelliptic
curve Cy : s> = A(7), where A(f) is a square-free k-polynomial of odd degree. If oo is the place of L
associated to the point at infinity of Cy4, then we prove that the set of separable {oo}-points can be bounded
solely in terms of g and does not depend on the Mordell-Weil group E(L). This is done by bounding the
number of separable integral points over k(¢) on elliptic curves of the form Ej4 : A(t)y2 = f(x), where f(x)
is a polynomial over k. Additionally, we show that, under an extra condition on A(z), the existence of a
separable integral point of ‘small’ height on the elliptic curve E,/k(f) determines the isomorphism class
of the elliptic curve y* = f(x).
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1. Introduction

Let k be a finite field and L be the function field of a curve C/k. The purpose of
this note is to discuss arithmetical properties satisfied by integral points on isotrivial
elliptic curves over L, that is, when the j-invariant of the elliptic curve is an element
of k. More specifically, we study integral points on constant elliptic curves and some
of their quadratic twists.

The first property is related to a long-standing conjecture of S. Lang that roughly
says that the number of integral points is bounded independently of the model, for a
certain class of models. To make this statement more precise, let L be a number field, S
a finite set of places of L containing the archimedean places, Ry the ring of S -integers
of L and E an elliptic curve over L.

ConsecTurk 1.1 (Lang). The number of S -integral points on a quasi-minimal model of
an elliptic curve E/L is bounded solely in terms of the field L, the set S and the rank
of the Mordell-Weil group E(L).
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For more information on this conjecture, including the definition of the quasi-
minimal model of an elliptic curve, we refer the reader to the introduction of [1].

Hindry and Silverman [I] show that Lang’s conjecture is a consequence of
Szpiro’s celebrated conjecture. Moreover, they prove that Lang’s conjecture is true
unconditionally if L is the function field of a curve over a field of characteristic zero
and E/L is nonconstant. In Section 2 we prove the following theorem and we explain
how it can be seen as a version of Lang’s conjecture for constant elliptic curves over
function fields, that is, when E/L can be defined by a Weierstrass cubic over k.

TueoreMm 1.2. Let E/k be an elliptic curve, C/k a curve of genus g>1and S cC a
finite nonempty set of points. Then the number of nonconstant separable k-morphisms
W : C — E satisfying y~'(0) C S is bounded by

QS| +4(g - 1)+ D*.

Notice that, unlike Lang’s conjecture, the above bound on the number of integral
points on constant elliptic curves is in terms solely of the genus of C and |S| and not
the rank of its Mordell-Weil group. Moreover, our bound is ‘geometric’ in that it does
not depend on the base field k of the curve C, but only on the geometry of C. Below,
for a specific choice of S, we give a bound in terms of g that is arithmetic in nature,
that is, dependent on k.

We let A(?) be a square-free polynomial of odd degree d > 1 over a finite field k of
odd characteristic. We write co for the point at infinity of the curve Cy : y> = A(¢). Let
f(x) be a cubic polynomial over k defining an elliptic curve E : y* = f(x) with point
at infinity 0. We prove in Corollary 3.3 that the number of nonconstant separable
k-morphisms  : C4 — E satisfying ¢~!(0) c {oo} is bounded above by |k*¢3. As
before, the above bound is independent of the rank of the Mordell-Weil group.

In Section 3, to prove that the bound in Corollary 3.3 holds, we consider integral
points over k(¢) on elliptic curves of the form E4 : A(f)y*> = f(x). Using elementary
methods, we prove that if P = (F, G) is a separable integral point on E4 then

deg FF < degA — 1.

Additionally, in Section 3 we show that E4 can have a separable integral point of much
lower degree only for certain curves E. Indeed, Theorem 3.4 shows that if deg A’(f) = 0
and P = (F, G) is a separable integral point on E4 satisfying
degA -1
deg F < egT,

then j(E) = 1728.

2. Lang’s conjecture for constant elliptic curves

We start this section by explaining why Theorem 1.2 is a version of Lang’s
conjecture for constant elliptic curves over finite fields. At the end of the section we
provide a proof of this theorem.
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Let E be an elliptic curve defined over a finite field &, let L = k(C) be the function
field of a curve C of genus g > 1 and let S C C be a finite nonempty set of points.
Recall that our aim is to bound the number of S -integral points of E in terms solely of
L, S and rank E(L).

The set Mory(C, E) of k-morphisms from C to E is an abelian group canonically
isomorphic to the Mordell-Weil group Ey(L), where Ey = E X, L (see [3, Proposition
6.1]). Under this isomorphism, if O € E(k) is the point at infinity then the k-morphisms
¥ : C — E satisfying ¢~1(0) C S correspond to S-integral points on Eg/L. A k-
morphism satisfying this condition is called S -integral.

In this setting, the set of S -integral morphisms is not finite. Indeed, observe that if
¢ : E — E is the Frobenius endomorphism on E and ¢ is an S -integral morphism,
then for every integer n > 0, the k-morphism g, = ¢" o ¢ is S-integral. To avoid such
pathological examples, when discussing S -integral morphisms we disregard those that
are inseparable.

Also, we assume that all of our S-integral morphisms are nonconstant for the
following reason. Notice that with the exception of the constant morphism with
value oo, all constant morphisms in Mor(C, E) are S-integral. Moreover, under
the isomorphism Ey(L) = Mory(C, E), the set of constant morphisms Morg(C, E)
satisfies Eg(k) = Morg(C, E). Therefore, by the Hasse—Weil theorem the number of
S -integral morphisms that are constant is bounded by the size of k. Thus to prove
Lang’s conjecture for constant elliptic curves, we only need to bound the number of
nonconstant separable S -integral morphisms in terms of L, S and rank Mor(C, E).

Recall that the degree map, deg : Mory(C, E) — Z, defines a nondegenerate
quadratic form on Mor(C, E)/ Morg(C, E) that can be extended to a positive
definite quadratic form on the real vector space Mor(C, E) ® R. As a consequence,
Mor(C, E)/ Morg(C, E) is a lattice in Mor(C, E) ® R. This fact and the next result are
the last ingredients needed in our proof of Theorem 1.2.

Lemma 2.1. Let V be an R-vector space of dimension r, A C'V be a lattice and
q : V. — R be a positive definite quadratic form on V. If T is a positive real number

then
ren: g <7< (242 41)

for A =min{g(x) : x € A, x # 0}.

Proor. Let A(T) = {x e A : g(x) < T}, for a fixed real number 7 > 0. Suppose that a
and b are distinct elements of A(7T) such that a = bin A/nA, for some positive integer
n. Therefore there exists a nonzero u € A such that @ — b = nu. As a consequence, if
A =min{g(x) : x € A, x # 0} then

n? A < n’q(u) = q(nu) = q(a — b) < 2q(a) + 2q(b) < 4T,

[T
n< 4 —.
A

and
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Hence, if we choose n such that V4T /A1 + 1 > n > 4T /A, then the set A(T) will
inject into A/nA. This implies

|{x€A:q(x)§T}|§|A/nA|Snrs(\/%+1)r. o

Proor oF THEOREM 1.2. Let ¢ : C — E be a nonconstant separable map satisfying
Y (0)cS. Let e, (P) denote the ramification index of i at a point P € C and denote
by Ry the support of the ramification divisor of . The Riemann—Hurwitz formula

shows that
28-22 ) (ey(P) =)= )" ey(P)— IRyl = 2IRy| — IRyl = IRy |
PeR, PeR,

and

Dleu(P) <28 -2+ IRy <4(g - 1),

PeRy
Thus

degy= > eP)= > 1+ > eyP)
Pey~1(0) Pey~! (O)NRy, Pey~1(O)NR,
<IS1+ D ey(P)<IS|+4(g - D).
PeRy,

This shows that a nonconstant separable morphism ¢ : C — E satisfying y~'(0) c §
is contained in the set

{ € Mor(C, E)/ Mor)(C, E) : degy < |S| + 4(g — 1)}.

If welet V = Mori(C,E)®R, A = Mor(C,E)/ Morg(C, E) and g = deg then Lemma
2.1 shows that the number of nonconstant separable S -integral morphisms is bounded

by
(2 /IS|+4/§g— D, 1)’

where A = min{deg ¢ : Y € Mor(C, E)\ Morg(C, E)}. The result follows by noticing
that 4 > 1 and that, for constant elliptic curves, r < 4g (see [2, 10.1]). O

One can improve the upper bound given in Theorem 1.2 by decreasing the upper
bound on the degree of nonconstant separable S-integral morphisms or finding a
nontrivial lower bound for min{deg ¥ : ¥ € Mor(C, E)\ Morg(C, E)}.

3. Integral points on quadratic twists

Let k be a finite field of odd characteristic. Let A(f) be a square-free polynomial
defined over k of odd degree d > 1 and let C4 denote the curve defined by s2 = A(D).
We let E/k be an elliptic curve defined by y* = f(x), for some cubic polynomial f(x).
Let O and oo be the points at infinity of £ and Cj,, respectively.
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3.1. Bounding separable integral points on constant elliptic curves over function
fields of hyperelliptic curves. As discussed in Section 2, the set of nonconstant
separable k-morphisms ¢ : C4 — E satisfying ¥ ~'(0) C {oo} can be thought of as
‘integral points’ on the elliptic curve E over L, the function field of C4. Theorem 1.2
shows that the number of such morphisms can be bounded in terms of g = (d — 1)/2.
In this section, we give an upper bound (see Corollary 3.3) that depends only on d and
the size of k.

To obtain this new bound, we relate the set of co-integral k-morphisms to integral
points on a quadratic twist of E. We let E4 be the elliptic curve defined over k() by
A()y? = f(x). An integral point (F,G) on Ey4 is a point such that F, G € k[1].

LemmA 3.1. The set of nonconstant integral points on Ey4 is in bijection with the set
of nonconstant k-morphisms y : Cy —> E satisfying y~'(0) C {co}. Moreover; integral
points (F,G) with F’ # 0 correspond to nonconstant separable k-morphisms, and vice
versa.

Proor. Clearly, the map
(F®),G(1) — y(s, 1) = (F(1), sG(1)

defines a bijection between the set of integral points on E4 and the set of k-morphisms
Y : C4 — E of the form

Y(s, 1) = (F(1), sG(1)), 3.1

for some polynomials F(f) and G(f). A morphism of this form satisfies ¢~ (O) C {eo}.
Thus, we are left to show that any k-morphism ¢ : C, — E satisfying ¢~ !(0) c {c0}
is given by (3.1).

Let o (¢, s) = (¢, —s) be the hyperelliptic involution of C4. Using the group law on
E, we define the morphism ¢ o o + ¢ : C4 — E which is invariant under the action
of the group generated by o. Hence i o o + ¢ factors through P!, the quotient of Cy
by the group generated by o. Since a nonconstant map from P! to E does not exist,
Y~ 1(0) c {co} implies that ¥y o o + ¢ = O, that is, ¢y 0 o = —if.

Let us write ¥(t, s) = (Fy(t, 5), Go(t, 5)), for some rational functions Fy and G of
k(C4). The equation

(FO(t’ —S), GO(ta _S)) = ‘1[’([’ _S) = lr// co = _ll/ = (FO(ti S)a —GO(I, S))
implies that Fy(¢, s) = F(¢) is a rational function on ¢ and that Gy(¢, s) = sG(t), where

G(¢) is a rational function on ¢. Since ¥ ~' (O) C {oo}, we see that both F(¢) and G(¢) are
polynomials and ¢ has the desired form.
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To prove the ‘moreover’ part of the theorem, we look at the diagram of the function
field extensions determined by (3.1):
k(t, s)

2/

k(1)

k(x,y)

2/

k(x)
Both degree-two extensions are separable. Hence k(¢, s)/k(x,y) is separable if and
only if k(¢)/k(x) is separable. The polynomial F(T) — x € k(x)[T] is irreducible, so
the extension k(f)/k(x) is separable if and only if (F(T) — x)’ = F'(T) # 0. O
In light of the previous result, we say that (F, G) on E, is a separable integral point
if F,G € k[t] and F’ # 0. In the next result we bound the ‘height’ of such points.

Lemma 3.2. Let (F,G) be a separable integral point on Es. Then G divides F' and
d/3<degF<d-1.

Proor. An integral point (F, G) = (F(t), G()) on E, satisfies the identity
ADG®)? = f(F(@)). (3:2)

By equating degrees, we arrive at d < 3deg F.

To show that G divides F’, let 8 be a root of G(¢) of multiplicity r. By (3.2), (t — 8)"
divides f(F(¢)) and, consequently, F(8) is a root of f(x). By differentiating (3.2), we
arrive at

A'(G@) + 2AOGOG' (1) = F' (O f'(F(1)) (3.3)
and we conclude that (r — 8)" divides F’(¢) f'(F(¢)). If gcd(t — B, f(F(¢))) # 1 then F(B)
is a root of f’(x), contradicting the fact that f(x) has no repeated roots. Hence (¢ — 3)"
divides F’(t), which shows that G divides F”.

The desired upper bound for deg F' follows from the fact that G(¢) divides F’(t).
Indeed, this statement implies deg G < deg F' — 1 and, after comparing degrees in (3.2),
we arrive atdeg F < d — 1. O

CoroLLARY 3.3. The number of nonconstant separable k-morphisms  : Cy — E

satisfying ¥~ (0) C {oo} is bounded by |k|>*=3.

Proor. By Lemma 3.1, it is enough to count the number of integral points (F, G) on
E4 with F7 # 0. From Lemma 3.2, degG < deg F — 1 and deg F' < d — 1. Therefore,
deg G < d — 2 and the number of integral points (F, G) on E4 with F” # 0 is at most

{(F,G): F,G € k[t],deg F <d —1,deg G <d —2}| = |k|*"" - |k|972,

as desired. O
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3.2. Integral points on quadratic twists and isomorphism classes. In Lemma
3.2 we proved that if (F,G) is a separable integral point on E4 : A(f)y> = f(x), then
d/3 <deg F <d — 1. In this section we prove that if we assume the existence of a
separable integral point (F, G) with d/3 < deg F < (d — 1)/2 then j(E) = 1728, where
E is the elliptic curve defined by y* = f(x).

THEOREM 3.4. Suppose A'(t) =y € F,. Let E: y* = f(x) be an elliptic curve defined
over k. Suppose (F,G) is an integral point of E4/k(t) satisfying F' # 0. Then the
following three conditions are equivalent:

(A) 2degF <d-1;

(B) 2degG <degF —1;

(C) G?=pF’, for some f € k*.

Furthermore, if any one of the above conditions is true then j(E) = 1728.

Proor. From (3.2), d + 2deg G = 3deg F, and from this it easily follows that (A) is
equivalent to (B). It is also clear that (C) implies (B), so all we need to show is that (B)
implies (C).

Since both F and G are defined over k, a constant 3 satisfying (C) is an element of
k. Therefore, to prove that (B) implies (C) we may work over an extension of k where
f(x) factors.

Let f(x) = (x — @p)(x — @1)(x — @2) and denote F — a; by F;, for i € {0, 1,2}. Then

J(F) = FoF\Fa,
the F; are pairwise coprime and
FiFj=(a; - a)(a;—aj)) (mod F), (3.4)

for (i, j, 1) = {0, 1,2).
By equating degrees in (3.2), we obtain deg F; = d = 1 (mod 2). Consequently, by
unique factorisation and (3.2), we can find a nonconstant polynomial N; satisfying

ng(A, F,’) =N,
Since the F; are pairwise coprime, we can find a polynomial S; such that
Fi=NS2. (3.5)

We write s; = deg S; and assume, without loss of generality, that

So =81 =85, >0. 3.6)
Also, observe that
G=50515> (3.7
and
A = NgN|N,. (3.8)
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Given (3.7) and (3.8), it follows from (3.3) that
yG? + 2NoN1N2S S 1S2(S(S 182+ 808182+ S05185) = F/(FoF, + FoF, + Fi F»).
Thus, from (3.5),
yG® + 2NoS oS (F1F2 + 2N1S 1S FoF2 + 2N2S»S,FoF ) = F'(FoF| + FoF, + Fi F»).

For [ € {0, 1, 2}, this equality and (3.4) imply

G* + 28NS ;S| = BiF, (mod F),, (3.9)

where
Bi= (i —a)ar—aj))y. (3.10)

Since
F'=F|=NS?+2N:S;S}, (3.11)

(3.9) yields
G*=BN;S? (mod F),.

Clearly, deg(Nl’SIZ) < deg F; = deg F. Therefore if (B) is true, we get deg G* < deg F;
and ultimately,
G*> =BIN/S? (3.12)

for 1 €{0,1,2}.
Now consider {i, [} = {1, 2}. Multiplying (3.11) by §; and using (3.12),

BiF' =G*+2B;,N;:S;S".
Lemma 3.2 implies that G divides 28;N;S ;S . Thus, from (3.7),
S0S112B:N;S’,
since (S¢S, N;) = 1. This in turn implies
SoS1128;S:.
Notice that S : =0, for i = 1,2, since otherwise (3.6) would imply
s;<so+s5 <5 — 1.

Thus, (3.11) becomes
F/=N/S;,
and (3.12) gives
G* =BiN;S} = BiF] = BiF'.

This finishes the proof that (A), (B) and (C) are equivalent.
To show the second part, assume that one of the equivalent statements (A), (B) or
(C) is true. Then the last equality shows that necessarily 8 = 81 = 3, since F”’ # 0.
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By performing a change of variable x — x + @y, we obtain an elliptic curve
isomorphic to E, and we may assume that oy = 0. Therefore, from (3.10) we arrive

at
a(a) —az) a(ay — ay)
—— =h = —.
Y Y
Thus, af = a%. Since the «; are all distinct, we have @y = —a, # 0. This shows that E
is isomorphic over k (or an extension of k) to y? = x3 — a’x, for a = . Since this last
elliptic curve has j-invariant 1728, the result follows. O

We give an example to show that the hypotheses in Theorem 3.4 do not give vacuous
conditions.

ExawmpLE 3.5. Let k be a finite field of size ¢ =3 (mod 4). Then
(D12 fa-3/4)

is a separable integral point on (¢ — 1)y*> = x> — x.
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