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Secondary fragmentation of an impulsively accelerated drop depends on fluid properties
and velocity of the ambient flow. The critical Weber number (Wecr ), the minimum Weber
number at which a drop undergoes non-vibrational breakup, depends on the density ratio
(ρ), the drop (Ohd) and the ambient (Oho) Ohnesorge numbers. The current study uses
volume-of-fluid based interface-tracking multiphase flow simulations to quantify the effect
of different non-dimensional groups on the threshold at which secondary fragmentation
occurs. For Ohd � 0.1, a decrease in Ohd was found to significantly influence the breakup
morphology, plume formation and Wecr . The balance between the pressure difference
between the poles and the periphery, and the shear stresses on the upstream surface, was
found to be controlled by ρ and Oho. These forces induce flow inside the initially spherical
drop, resulting in deformation into pancakes and eventually the breakup morphology of a
forward/backward bag. The evolution pathways of the drop morphology based on their
non-dimensional groups have been charted. With inclusion of the data from the expanded
parameter space, the traditional Wecr − Ohd diagram used to illustrate the dependence of
the critical Weber number on Ohd was found to be inadequate in predicting the minimum
initial We required to undergo fragmentation. A new non-dimensional parameter Cbreakup
is derived based on the competition between the forces driving the drop deformation and
the forces resisting the drop deformation. Tested using available experimental data and
current simulations, Cbreakup is found to be a robust predictor for the threshold of drop
fragmentation.
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1. Introduction
Drop fragmentation, also known as secondary fragmentation, is the process through which
a drop breaks up under the action of external aerodynamic forces induced by the ambient
flow. These forces originate due to a velocity deficit between the drop and the ambient
medium. There are two fundamental ways a drop might experience a velocity deficit:
a uniform ambient flow impacts a stationary drop in a gravity-free environment, called
‘impulsive acceleration’ (Han & Tryggvason 2001); or an initially stationary drop accel-
erates under the action of a constant body force, while experiencing aerodynamic forces,
called ‘free fall’ (Jalaal & Mehravaran 2012). For both cases, a liquid drop experiences
aerodynamic forces that cause the drop to deform, which may lead to its fragmentation at
a Weber number We0 higher than the critical value Wecr (Hinze 1949, 1955). During free
fall, the drop starts with zero aerodynamic forces that gradually increase to a maximum,
at either its terminal or its breakup velocity. On the other hand, an impulsively accelerated
drop starts its deformation process with the largest velocity deficit, and the corresponding
large aerodynamic stresses acting on it. These stresses gradually reduce as the drop
decelerates with respect to the ambient flow. It should be noted that as the drop decelerates,
it also simultaneously deforms causing an increase in its frontal area, which can in turn
increase surface shear stresses, given the velocity deficit is still substantial.

Most applications such as the internal combustion engine, spray painting, etc. involve a
secondary fragmentation due to impulsive acceleration. Among impulsive acceleration
cases, there can be different experimental systems such as a drop introduced into a
uniform cross-flow or a drop exposed to a shockwave in a wind tunnel. The time
scales of an impulsive drop breakup process are relatively small, resulting in both
the aforementioned experimental set-up predicting a similar critical Weber number for
secondary fragmentation (Hsiang & Faeth 1992, 1995). Most of the experimental studies
conducted on secondary fragmentation (Pruppacher & Beard 1970; Krzeczkowski 1980;
Wierzba 1990; Hsiang & Faeth 1992; Gelfand 1996; Theofanous, Li & Dinh 2004;
Szakáll et al. 2009; Kulkarni & Sojka 2014; Jain et al. 2015) have focused on impulsive
acceleration, and those results are summarised in figure 1.

After starting from an initial spherical shape, drops start the deformation process with
flattening of the downstream face under the influence of pressure forces (Villermaux &
Bossa 2009; Jain et al. 2019; Jackiw & Ashgriz 2021). This is followed by the formation of
a pancake of one of the following two types: (i) a flat disk-like structure with both upstream
and downstream faces showing an increase in radius of curvatures (henceforth called ‘flat
pancake’); or (ii) a pancake with a concave-shaped downstream surface, corresponding
with minimal change in curvature of the upstream surface (henceforth called ‘forward
pancake’) (Han & Tryggvason 2001). These differences in pancake shapes have been
observed for differences in physical and flow parameters such as density ratio ρ and initial
Reynolds number Re0 (or outside Ohnesorge number Oho). However, the exact physical
mechanism that causes this difference in pancake morphology has not yet been explored in
the literature. Beyond the formation of a pancake, the pancake deforms further and starts
to form a toroidal periphery (rim), which then leads to further deformation and possibly
even breakup through different morphologies (discussed in the next paragraph). This stage,
which marks the completion of pancake formation and the start of a visible peripheral rim,
can be temporally indicated by a non-dimensional time t∗ = t/τ ≈ 1. Here, τ = D

√
ρ/V0

is the drop deformation time scale (Rimbert et al. 2020), where V0 is the uniform
initial velocity of the ambient medium relative to the drop, D is the drop’s volume-
averaged diameter and t represents the elapsed dimensional time during the deformation
process. This time scale is the same as the dimensionless time for Rayleigh–Taylor
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Figure 1. (a–e) Types of drop breakup morphologies (Guildenbecher, López-Rivera & Sojka 2009; Theofanous
2011) observed in experiments in order of increasing threshold Weber numbers. Panel ( f ) plots all the
experimental data on threshold Weber numbers required to produce different fragmentation morphologies,
based on a similar plot in Hsiang & Faeth (1995) and data from Krzeczkowski (1980), Pilch & Erdman (1987),
Wierzba (1990), Dai & Faeth (2001), Han & Tryggvason (2001), Kulkarni & Sojka (2014), Jain et al. (2019),
Jackiw & Ashgriz (2021). Backward bag breakup, as shown is panel (b) in the red box and the red curve in
panel ( f ), has been the predominantly observed critical non-vibrational fragmentation morphology.

or Kelvin–Helmholtz instabilities specified by Pilch & Erdman (1987). Here τ includes the
effect of ρ, thus making t∗ a useful temporal scale when comparing cases with different
density ratios.

Following the formation of a pancake after t∗ > 1, the drop may further deform and ulti-
mately breakup through one of the following morphologies (as illustrated in figure 1a–e):
(i) the vibrational mode where the drop oscillates about a maximum deformation state,
and does not show consistent breakup (Hsiang & Faeth 1992; Rimbert et al. 2020);
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(ii) the simple bag breakup that involves the formation of a toroidal rim and the inflation
of a thin film (bag) in between, which ultimately ruptures due to Rayleigh–Plateau
instabilities (Kulkarni & Sojka 2014; Jackiw & Ashgriz 2021); (iii) a bag breakup
with morphological features in addition to a bag, such as a stamen/plume (Hsiang &
Faeth 1995; Jain et al. 2015) or multiple bags (Cao et al. 2007; Jackiw & Ashgriz
2021); (iv) sheet-thinning breakup where thin sheets and ligaments are removed from
the periphery of the pancake and are blown downstream relative to the drop core due to
their low local inertia, ultimately breaking up due to instabilities (Khosla & Smith 2006;
Guildenbecher et al. 2009); and (v) catastrophic breakup where unstably growing surface
waves pierce through the entire pancake and cause it to catastrophically disintegrate
(Theofanous 2011).

For liquid drops in air under standard atmospheric conditions, ρ > 500 and 0.0005 <

Oho < 0.005. Consequently, in the context of density ratio, most existing experimental
works are concentrated within ρ > 500. For all such experimental works, the critical
drop breakup morphology for Ohd < 0.1 has been observed to always be a simple bag
breakup, with minimal dependence of Wecr on density ratio. Through the advent of
petascale/exascale computing in the last two decades, both axisymmetric and three-
dimensional (3-D) direct numerical simulations of large ρ cases has become possible, thus
allowing computational exploration of the entire density-ratio space for drops, i.e. ρ > 1.
As a result, substantial research has been conducted in the high ρ space (Theofanous
2011; Tavangar, Hashemabadi & Saberimoghadam 2015; Strotos et al. 2016; Yang et al.
2017; Guan et al. 2018; Dorschner et al. 2020; Ling & Mahmood 2023; Tang, Adcock &
Mostert 2023), where threshold breakup morphologies similar to the experiments have
been observed. On the other hand, computational works exploring low density-ratio
cases (ρ < 100) tell a different story. Han & Tryggvason (2001) was one of the earliest
computational works to explore the role of density ratio in the impulsive acceleration of
a drop for various ambient and drop viscosities. The work focused on ρ = 1.15 and 10,
and found ρ to significantly influence the threshold Weber numbers and the corresponding
fragmentation morphology (e.g. forward pancake and bag formation). Jain et al. (2019)
explored the effect of ρ on drop deformation for a specific Re0 and viscosity ratio for a
range of We0 from 20 to 100, and observed the immense impact ρ has on the orientation
of bags and pancakes, the drop velocities and the total observed deformations. Similar
conclusions were reached by Marcotte & Zaleski (2019), where a higher threshold Weber
number for both fragmentation and the transition from bursting to stripping was observed
for the low density-ratio cases.

By the 1990s, experimental and theoretical studies (Karam & Bellinger 1968;
Krzeczkowski 1980; Pilch & Erdman 1987) had established the important role of the drop
Ohnesorge number Ohd on Wecr . Hsiang & Faeth’s review paper in 1995 (Hsiang &
Faeth 1995) significantly advanced this understanding. They aggregated all available
experimental data from existing works, including their own experiments, into Wecr vs Ohd
plots. Their findings showed that the threshold We0 for the onset of all types of breakup
morphologies (i.e. simple backward bag and other higher We0 breakup morphologies)
follows a similar trend with respect to Ohd (see figure 1 of Hsiang & Faeth (1995) or
figure 1f ), with the threshold We0 almost independent with respect to Ohd for Ohd < 0.1,
and then increasing rapidly for Ohd > 0.1. Furthermore, the critical breakup morphology
(for the onset of breakup) for all the explored works were found to be simple bag breakups.
It is crucial to emphasise that all the findings presented in Hsiang & Faeth (1995) were
derived from experiments in the high density-ratio regime, i.e. ρ > 500. This focus on
high density ratios is also reflected in the majority of computational studies investigating
the effect of Ohd on drop breakup. For instance, Yang et al. (2017) observed an increase
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in the transition Weber number from squeezing to bag breakup for increasing Ohd for
drops with ρ = 800. Similarly, Jain et al. (2019) explored the effect of viscosity ratio
(and hence Ohd ) on breakup morphologies through simulations of drops of ρ = 1000 and
two different viscosity ratios. They noted a decrease in We0 with decreasing Ohd and the
emergence of a plume at the upstream pole for lower viscosity ratios in both 3-D and
equivalent axisymmetric simulations. Tang et al. (2023) examined the influence of a range
of Ohd values less than 0.1 on the time of the start of breakup of the bag, discovering
an exponential increase with Ohd . All the aforementioned computational studies operate
within ρ ≈ 800, and thus, result in a weak dependence of the threshold to Ohd , similar
to experiments. This is apparent in figure 8 of Yang et al. (2017), where the Wecr is
observed to be within 10 < Wecr < 20 for all Ohd < 0.1. However, the threshold We0 can
exhibit substantial variation with Ohd for lower density ratios and ambient Ohnesorge
numbers (Oho). This is highlighted by some (although limited) computational studies,
that have explored the effect of Ohd at lower density ratios. Han & Tryggvason (2001),
for a density ratio of 10, observed a significant decrease in the amount of deformation for
higher drop viscosities. This decrease in deformation was speculated to lead to an increase
in Wecr values. Kékesi et al. (2014) linked the fragmentation morphology to the ratio of the
characteristic times for shear and bag breakup, proportional to the ratio of viscosity ratio
and density ratio, supported by 3-D simulations. Farsoiya et al. (2023) discovered that
Wecr (based on turbulence dissipation rate) low density ratio (ρ = 1) drops in isotropic
turbulence are significantly influenced by the viscosity ratio.

Villermaux & Bossa (2009) was the first to analytically describe the bag breakup
process for an inviscid drop and derived a constant threshold value of 6 for Wecr , an
underestimation compared with experimentally seen threshold values. Their work was
extended to include the viscosity of the drop fluid, first by Kulkarni & Sojka (2014) and
most recently by Jackiw & Ashgriz (2021), resulting in a function of Ohd that describes
Wecr . This was corrected for the underestimation and led to a great match with previous
experimental results. The analytical works mentioned above do not take into account
ambient fluid properties such as ambient viscosity (Oho) and density (ρ) (which in turn
dictates the relative velocity of the drop with the ambient) in influencing the resulting
deformation characteristics. However, the density and viscosity contrasts between the
ambient and drop fluids are generally very large for experimental systems, thus minimising
the relative significance of ambient fluid properties relative to that of the drop. This allows
for a good match between the analytical solution and corresponding experimental Wecr
values, even with the aforementioned assumptions. However (as will be explored in detail
in this work), for systems where the contrast between the (physical properties of) ambient
and drop fluids is not substantial, these factors must be taken into account for the correct
estimation of threshold We0 values.

The initial Reynolds number Re0 (or alternatively the ambient Ohnesorge number Oho)
also remains to be exhaustively explored, especially in the context of critical drop breakup
threshold. Han & Tryggvason (2001) did simulations for different Re0 values for some
low density-ratio cases, and observed a large reduction in drop deformations for low Re0
values. They speculated that this reduction in deformation might lead to an increase in
Wecr values. Very few other works have explored or commented on the role of Oho on
drop breakup (Guildenbecher et al. 2009; Jain et al. 2019; Marcotte & Zaleski 2019). Jain
et al. (2019) once again was one of the very few works to analyse the impact of Re0 on
high density-ratio drops (ρ = 1000) and observed higher incidences of plume formation in
backward bag morphology for higher Re0 values.

Hence, there is the need for a single cohesive study analysing the effect of all the
relevant non-dimensional parameters, Oho, Ohd and ρ on drop deformation and breakup,
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and their impact on the threshold Weber number observed for critical breakup (Wecr ). In
this study we quantify the effect of each of these parameters using high-fidelity multiphase
flow simulations. It should be noted that a distinction between liquid–gas and liquid–
liquid drop-ambient systems has been maintained in the existing literature. However,
fundamentally, the only differentiating factor between the two systems is the density and
viscosity ratios, as well as the surface tension of the fluid interface. It is expected that the
need for this distinction should vanish for a study that covers a sufficiently large parameter
sweep involving ρ, Oho and Ohd . Thus, a wide range of values of ρ and Oho have been
quantified. To focus at a range rarely explored in existing studies, Ohd values explored in
this study are restricted to Ohd � 0.1.

The paper starts with a description of the relevant impulsive acceleration problem
(§ 2.1), the high-fidelity numerical model (§§ 2.2 and 2.3). The parameter space to be
numerically explored is described in detail in § 2.4. The effects of Ohd , Oho and ρ on
the drop deformation, given that other parameters are constant, are described in detail,
illustrating the forces and internal flow observed in the drops (§ 3). During the course
of the parameter sweep, by simulating a range of Weber number values for every non-
dimensional parameter set, the corresponding critical Weber number can be discovered.
Based on the insights gained from the simulations, a novel non-dimensional parameter
(Cbreakup) has been derived, incorporating the effects of all the relevant non-dimensional
numbers. Here Cbreakup is found to be more effective in predicting the threshold of drop
fragmentation, over the currently used Wecr .

2. Problem description and formulation

2.1. Problem description and non-dimensionalisation
Let us consider a drop of diameter D containing a fluid of density ρd and dynamic
viscosity μd (subscript d implies properties associated with the drop). It is impulsively
accelerated by a uniform flow of velocity V0, density ρo and viscosity μo (subscript o
implies properties associated with the ambient medium, i.e. outside the drop), starting at
t = 0. The surface tension of the drop-ambient interface is σ .

Based on these initial conditions, we can define an initial Weber number We0
(ρoV 2

0 D/σ ), which represents the competition between the dynamic pressure forces that
drive the deformation of the drop and the capillary forces that resist this deformation.
An increase in We0 corresponds to an increase in the maximum deformation achieved
by the drop before it retracts to its equilibrium shape of a sphere, due to the action
of surface tension. We then expect there to be a maximum We0 for which the surface
tension forces barely prevent fragmentation in the drop. This threshold is called the critical
Weber number Wecr (ρoV 2

cr D/σ ), where Vcr corresponds to the critical (lowest possible)
V0 required to consistently realise a non-vibrational breakup. A Buckingham-Pi analysis
((2.1)) for this system reveals that

Wecr = F (ρ, Oho, Ohd) . (2.1)

The density ratio ρ = (ρd/ρo) is a measure of the inertia of the drop relative to the
ambient medium, reflecting its responsiveness to external forces. The dynamic pressure
forces exerted by the ambient medium scale with ρo, i.e. its effectiveness in inducing
accelerations in specific parts (such as the peripheral rim or the core) or in the entirety of
the drop is inversely proportional to ρ. The drop Ohnesorge number Ohd = (μd/

√
ρd σ D)

is a ratio of capillary and momentum diffusion time scales and provides an estimate of
how the energy supplied to a drop by external forcing is distributed among surface energy
and viscous dissipation. The ambient Ohnesorge number Oho = (μo/

√
ρo σ D) provides
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a non-dimensional, velocity-independent analogue for the initial Reynolds number Re0
(since Oho = √

We0/Re0), and represents ambient viscosity given that other parameters
are the same. Finally, we define an instantaneous Reynolds number Re = (ρ0Vrel Drel/μo)
in addition to Re0, in order to accommodate the generally significant change in centre-of-
mass accelerations and frontal area across the time scales over which a drop deforms and
fragments. Here Re0 is based on the drop’s instantaneous velocity deficit (Vrel) with the
ambient medium and its frontal radius for the instantaneous deformed shape (Drel).

If we choose ρo, V0 and D as the basis variables for non-dimensionalising the
system, the dimensional variables can be non-dimensionalised as ρ̃d = ρ, σ̃ = 1/We0,
μ̃o = Oho/

√
We0 and μ̃d = Ohd

√
ρ/We0.

Hence, for a specific ambient-drop fluid combination (i.e. fixed physical properties), a
specific drop diameter and a specific inflow velocity, a set of {ρ, Oho, Ohd , We0} can be
obtained that fully characterises the system. A drop can be simulated in Basilisk to assess
whether it undergoes a non-vibrational breakup for the corresponding non-dimensional
set. If the drop does not fragment, We0 is systematically increased (attributable to a
decrease in σ in non-dimensional space or an increase in inflow velocity in dimensional
space) and the impulsive acceleration simulation is rerun. These steps are repeated until
the drop exhibits a non-vibrational breakup. The corresponding minimum We0 that marks
the onset of non-vibrational breakup is the critical Weber number Wecr for that particular
non-dimensional set {ρ, Oho, Ohd , We0}.

2.2. Model description
The simulations have been performed using the open-source solver Basilisk, which is
well validated for two-phase flows on adaptive Cartesian meshes across a wide range of
densities and viscosity ratios (Popinet 2003, 2009; Marcotte & Zaleski 2019). For this
work, we employ its two-phase Navier–Stokes solver. The numerical scheme is detailed
in Appendix A; this section outlines only the assumptions and parameters specific to our
problem.

The extensive parametric sweep required by this study (2.1) makes 3-D fragmentation
simulations computationally infeasible. We therefore utilise axisymmetric simulations,
since the primary deformation process – from initial flattening to the onset of bag
inflation – is predominantly axisymmetric. We note that asymmetries develop at later
stages (t∗ > 1) due to more prominent instabilities in the interface and ambient flow,
making a quantitative point-by-point accurate prediction using axisymmetric simulations
difficult. However, the goal of this work is to characterise the drop’s deformation pathway
and ultimate fate by analysing its qualitative temporal evolution, such as periods of
growth/decay of the drop dimensions and the concavity of the corresponding temporal
evolution. We hypothesise that such predictions do not require point-by-point quantitative
accuracy. Therefore, axisymmetric simulations are deemed sufficient for this study. The
validity of this assumption is assessed in § 2.3.

The general simulation domain, used for the simulations in this study, is illustrated in
figure 2. It is a square (for compatibility with quadtree meshes) axisymmetric domain of
size L and its dimensions are carefully chosen to ensure that the drop always remains a
sufficient distance from the boundaries. Here L can be as small as 16 for drops with high
inertia (ρ � 100) and as large as 64 for drops with low inertia (ρ = 10). The top boundary is
symmetric (∂n P = ∂nut = un = 0) and the bottom boundary is the axisymmetry axis. The
left boundary allows a uniform ambient fluid inflow into the domain (un = V0 = 1) and the
right boundary allows the flow to exit the domain freely (∂nun = 0). A drop of diameter
D = 1 is initialised with its centre on the axisymmetric axis and its initial velocity set to 0.
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Figure 2. The axisymmetric domain used for all simulations in this work. At t = 0, the simulation starts with
a stationary axisymmetric spherical drop under impulsive acceleration.

To ensure sufficient solution accuracy, we enforce the maximum allowed wavelet errors
to χu = 10−4 and χc = 10−6 for velocity and volume fraction fields, respectively. The
maximum allowed residual for the Poisson solve, εp, is set to 10−4. The minimum allowed
cell size is set to 512 cells per diameter, which corresponds to 213 elements (N = 13 levels
of refinement) for L = 16, except for cases with Oho = 0.0001, which correspond to the
highest values of Re0, for which we use 1024 cells per diameter (N = 14 for L = 16). Test
simulations are run with different values for χc, χu , εe and N , detailed in Appendix B, and
the resulting volume fraction fields and streamwise and transverse lengths of the drops are
compared. The results show that the chosen values of χc, χu , εe and N are sufficient to
ensure that the simulations result in drop shapes that are converged with respect to these
parameters.

A significant fraction of the simulations in this study involve high density ratios
(ρ > 500). For such high density ratios, a sharp interface can induce instabilities at the
interface due to an unnatural spike in kinetic energy (Jain et al. 2015). The phenomenon
has also been observed in all of our large ρ simulations with low Ohd (Ohd � 0.001),
albeit not presented here. In these cases, the upstream face shows unnaturally large surface
instabilities, which lead to the removal of micro-droplets from the main drop. To overcome
these issues, the interface is smeared by vertex averaging the volume fraction field. This
approach helps to reduce density gradients across the interface, preventing its premature
breakup. The numerical scheme with this smearing will be validated for a high ρ case in
the next section.

At t = 0, the ambient fluid is quiescent and the drop is initialised with zero initial
velocity. Given the incompressible nature of the flow and an infinite propagation speed
of any information across the domain, the end of the first time step sees the entire
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domain attain a flow consistent with the left inflow boundary conditions. This involves
the establishment of an incompressible flow around the drop, requiring the velocity field
to be solenoidal. In real life, this process occurs in a finite amount of time, dependent on
the velocity of the acoustic wave velocity. However, in a numerical system, this occurs
in a single time step and leads to a jump in the drop centre-of-mass velocity, without
gaining any corresponding deformation. The magnitude of this velocity jump in its centre-
of-mass velocity δVcm is inversely proportional to ρ (Marcotte & Zaleski 2019). Hence, the
effective relative velocity at the undeformed state of the drop reduces to Veff = 1 − δVcm .
Accounting for this effective velocity becomes imperative when calculating the associated
We0 of the system. To address this, simulations have been conducted for each pertinent
ρ − Oho pair, resulting in the following observed velocity jumps – a substantial jump of
approximately 0.14 for ρ = 10, a jump of 0.030 for ρ = 50, and a negligible velocity jump
of 0.015 (∼1.5 %) for ρ = 100. For all simulations with ρ > 100, this first time-step jump
is deemed insignificant. All non-dimensional parameters in the current work have been
corrected to incorporate this jump.

2.3. Verification of axisymmetric drop simulations
To verify the capabilities of Basilisk in modelling high density-ratio drops subjected
to impulsive acceleration, we reproduce the Bag breakup experiment as described in
Flock et al. (2012). An ethyl alcohol drop is released from a certain height above an
approximately uniform jet of air. The drop undergoes a nearly quiescent free fall for a
height of 188 mm before entering a jet of air of mean velocity 10 m s−1 and a peak velocity
of 15 m s−1. The drop, having acquired some vertical velocity during its fall, has a shape
that is close to but not perfectly spherical when it enters the air jet. The drop then deforms
as a result of aerodynamic forces exerted by the air jet and finally breaks up according to a
bag breakup morphology. As the drop enters the jet, it initially experiences aerodynamic
forces applied by the boundary layer of the flow, and then moves into the main flow with
peak flow velocities.

A simplified axisymmetric version of this experiment is simulated in Basilisk with non-
dimensional parameters derived from the dimensional parameters specified in Flock et al.
(2012). The simulation parameters are V = 1, Oho = 2.3 × 10−3, Ohd = 5.9652 × 10−3,
the choice of We0 depends on the choice of air-jet velocity between 10 and 15 m s−1,
L = 16 and D = 1. The simulation differs from the experiment in multiple, although minor
ways. Firstly, the initial free fall of the drop is omitted since a gravity force perpendicular
to the jet direction would render the system non-axisymmetric. Consequently, the slight
deformation of the drop just before encountering the air jet is captured in the simulation.
Secondly, unlike the experiments where the drop passes through a boundary layer of
thickness approximately 3 mm before experiencing the peak 15 m s−1 jet velocity, the
simulations instantaneously load the drop with the full velocity of the air jet. Considering
that the provided We0 = 13 is based on the mean jet velocity, it will be essential to find the
We0 appropriate for our simulation conditions (instantaneous loading), corresponding to
velocities between 10 and 15 m s−1.

Figure 3 plots the streamwise (ex ) and transverse (er ) lengths of the drop as a function
of time, obtained through an axisymmetric simulation in Basilisk, and compares them
to the experimental and simulation results from some recent works. The streamwise and
transverse lengths obtained from the experimental data in Flock et al. (2012) is plotted,
along with the experiments performed by Jackiw & Ashgriz (2021). Lengths ex and er
corresponding to axisymmetric and 3-D simulations performed by Ling & Mahmood
(2023) are also plotted for reference. The experiments performed by Jackiw & Ashgriz
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Figure 3. Panels (a) and (b) compare the streamwise and transverse lengths (see figure 4 for definitions of ex
and er ) obtained from the simulation to various experiments: JA (2021) (Jackiw & Ashgriz 2021), Flock et al.
(2012), and axisymmetric and 3-D simulation results from LM (2023) (Ling & Mahmood 2023).

(2021) had Oho and Ohd values close to Flock et al. (2012), and hence, are a good reference
for comparison.

It is observed that the current axisymmetric simulations reasonably capture the
streamwise length until t∗ ≈ 1.2 and transverse length until t∗ ≈ 1.5. The prediction of
both the parameters worsens beyond this point. This coincides with the period of rapid
streamwise and transverse expansion that follows the initial inflation of the drop into a
bag-like structure. This is evident in the temporal evolution of the transverse length, er ,
as shown in figure 3(b), which exhibits a rapid growth in the drop size after t∗ ≈ 1.5.
The constraint of azimuthal symmetry, inherent to axisymmetric simulations, limits the
accurate representation of the intrinsically 3-D phenomena associated with bag inflation
and subsequent rupture. These phenomena are driven by surface instabilities (Lozano
et al. 1998; Bremond & Villermaux 2005; Villermaux 2007; Zhao et al. 2011). In
addition, axisymmetric simulations tend to overestimate the stagnation pressures at the
downstream pole of the drop, which artificially restricts the inflation of the bag (Ling &
Mahmood 2023). In contrast, 3-D simulations do not suffer from such limitations. The 3-D
simulations performed by Ling & Mahmood (2023) show a substantially better agreement
with experiments beyond t∗ ≈ 1.2. However, the current axisymmetric simulations exhibit
excellent agreement with the axisymmetric results reported by Ling & Mahmood (2023),
which employed the same boundary conditions and numerical methods. Therefore, the
numerical set-up employed in this work can be considered comparable to axisymmetric
simulations in the recent literature.

It is worthwhile to note that the 3-D simulations show a slight overestimation in stream-
wise deformation compared with the experiments. This manifests as a lower minimum
ex in the 3-D simulations compared with the experiments. This ex value corresponds to
the drop’s streamwise dimension at the onset of bag expansion, called the initiation time
by Jackiw & Ashgriz (2021). This can be attributed to the difference in initial Weber
number We0 between the experiments (We0 = 13) and the simulations (We0 = 15.3). This
overestimation may also arise from the presence of gravity in the experimental set-up that
leads to a non-spherical initial shape of the drop when it enters the air jet.

Even with the observed limitations of axisymmetric simulations in quantitatively
predicting the point-by-point evolution of the drop dimensions, the simulations still
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capture the qualitative evolution of the drop morphology. The almost monotonic decrease
in streamwise dimension until reaching an initiation time, and the subsequent growth
resulting in a positive concavity, is captured by the axisymmetric simulations. In
figure 3(a) the axisymmetric simulations agree reasonably well with properties such as
initiation time, and the constant radial expansion rate after balancing time Tbal , i.e. the
time when aerodynamic and surface tension forces balance (Jackiw & Ashgriz 2021).
The axisymmetric simulations also succeed in achieving a similar initial pancake shape
of the drop, as well as the subsequent appearance of a bag for such high density, low
viscosity drops (Ling & Mahmood 2023). For the purposes of this work, this is sufficient
information to conduct a broad categorical analysis on the sensitivity of features to
parameters such as Oho, Ohd and ρ. Thus, the axisymmetric simulations are deemed
sufficient for such water–air like systems.

However, in order to justify the use of axisymmetric simulations for the extensive
parameter space relevant to this work, we would need to verify the ability of axisymmetric
simulations in capturing the pancake shape and subsequent bag formation for a wider
range of density ratios and ambient Ohnesorge numbers. This is done in Appendix C,
where we compare 3-D and axisymmetric simulations for a few benchmark cases,
with a special focus on non-trivial cases that show forward pancake and forward bag
formation. In short, we observe an good agreement between 3-D and axisymmetric
simulations for all cases except for Oho, Ohd � 0.001, including the appearance of forward
pancakes for high Oho cases and forward bags for low density-ratio cases. The case
with {ρ, Oho, Ohd} = {100, 0.0001, 0.001} however shows a significant deviation in the
post pancake deformation of the drop, with the axisymmetric simulations showing a
forward bag formation while the 3-D simulations show a backward bag formation. Thus,
any conclusions drawn from axisymmetric simulations for such low viscosity systems
should be treated with extreme caution. For all other systems, we can be confident that
the axisymmetric simulations capture the qualitative evolution of the drop morphology,
including the appearance of forward pancakes and forward bags.

Hence, all information pertinent to this work can be reliably obtained through
axisymmetric simulations. The axisymmetric simulations are significantly less expensive
than 3-D simulations, and hence, well suited for the extensive parametric study proposed
in this work.

2.4. Parameter space explored
The goal of this work is to systematically study the influence of the three non-dimensional
parameters discussed, namely ρ, Oho and Ohd , on drop deformation and breakup
morphology. Table 1 summarises the parameter space explored through simulations in
this work, encompassing 60 sets of {ρ, Oho, Ohd}. Each set is simulated for different
We0 values in order to identify its critical Weber number Wecr and the corresponding
critical breakup morphology. This is achieved by simulating each {ρ, Oho, Ohd} set with
multiple We0 values to determine the lowest We0 value at which a non-vibrational breakup
is observed, in short its Wecr .

Given Re0 ∝ 1/Oho, a range of Re0 of the order of (10, 104) corresponds to a Oho range
of (0.0001, 0.1). Any higher Re0 becomes computationally infeasible due to significant
turbulent vortices in the domain leading to a requirement for higher mesh resolution,
lower time-step sizes and even 3-D simulations. Hence, this justifies the parameter space
specified for Oho.

The influence of Ohd on Wecr has been investigated extensively in the literature,
primarily for systems with large ρ and Oho values, conditions typical of most experimental
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Parameters Values Computational cells

ρ 10, 50, 100, 500, 1000 Min: 1.75 × 105

Oho 0.1, 0.01, 0.001, 0.0001 Max: 4 × 106

Ohd 0.1, 0.01, 0.001

Table 1. A list of all values of ρ, Oho and Ohd that form the part of the parametric space to be explored
through simulations. In total, 60 sets of {ρ, Oho, Ohd } are considered, each is simulated for multiple We0
values to obtain Wecr . The minimum and maximum number of cells in the computational domain associated
with all simulations is listed in the third column.

−1.0

B C

E

D

er

ex

Axr = ex/er 

A

Pancake formation stage Post pancake formation
Number of cells per diameter = 512

1.0

Figure 4. Non-dimensional pressure field P/(ρoV 2
0 ) renders for a drop undergoing backward bag

fragmentation. Labelled A–E in the figure are the points of interest in a deforming drop and relate to the
following features: the upstream pole/centre/core of the drop (A); the periphery of the drop (B); the rim of the
drop, which in general has a higher local inertia compared with its centre (C); the downstream low pressure
circulation zone, which can affect the motion of its rim if it is attached to the drop surface (unlike in the figure)
(D); and the inflated bag, which inflates because of its low inertia and, hence, higher accelerations (E).

set-ups. For such systems, Wecr has been observed to be relatively constant (typically
within 10 < Wecr < 20) for such systems for Ohd < 0.1 (Hsiang & Faeth 1995;
Guildenbecher et al. 2009; Yang et al. 2017). However, a similar comprehensive
understanding of the influence of Ohd is lacking for low ρ or Oho values. This study
aims to address this gap by exploring the fragmentation threshold for the commonly
seen values of Ohd across a parameter space encompassing variations in both ρ and Oho
beyond the typical experimental range. Naturally, to encompass the entire space of low
and high density-ratio systems, ρ values are varied from 10 to 1000.

The choice of such a comprehensive parameter exploration sets the stage for a detailed
investigation into the nuanced interplay of these parameters on drop deformation and
breakup characteristics.

3. Results
Figure 4 illustrates a typical drop deformation process, indicating the key features used to
define several essential factors. Together, these factors provide an intuitive framework for
understanding the deformation dynamics and will be used throughout this study.
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(i) The local variation in inertia across the drop, which determines the local
accelerations of the constituent parts, e.g. the difference in local inertia between the
centre (A) and rim (C).

(ii) The pressure difference between the poles (A) and periphery (B), denoted by
	Pdrive. 	Pdrive is directly proportional to the stagnation pressures observed at the
upstream pole of the drop.

(iii) The surface stresses or viscous forces experienced by the upstream facing surface
of the drop. These stresses are a function of the instantaneous Reynolds number Re,
which can in many cases be approximated as equal to Re0 if the temporal evolution
of centre-of-mass velocities and drop deformation do not significantly alter Re.

(iv) The drop Ohnesorge number Ohd , which dictates the distribution of the total energy
supplied by the ambient flow to the drop between surface energy and the fluid
momentum gained by the drop.

From the start of the deformation process until the formation of a distinct rim at
t∗ ≈ 1, a drop does not exhibit any appreciable variation in local inertia along the lateral
dimension. Hence, during this initial deformation phase, local inertia differences do not
significantly influence the initial deformation; instead, the interplay between pressure and
shear forces predominantly governs the process. Acceleration and, hence, the increase
in velocity of the centre of mass is inversely proportional to total inertia and directly
affects the instantaneous Reynolds number Re of the ambient flow past the drop. While
Re dictates the shear stresses on the upstream surface, the relative velocity of the drop
dictates the stagnation pressures at the upstream pole and, hence, 	Pdrive. The resulting
pancake shape depends on the comparative strengths of the pressure difference and shear
forces.

Once a drop develops local inertia variations across the lateral dimension as it deforms
past the pancake stage, any subsequent deformation becomes strongly dependent on these
variations in local accelerations. For the same external forces, regions of the drop with
larger inertia experience much lower accelerations, and hence, lag behind their lower
inertia counterparts.

The Reynolds number of the ambient flow past the drop dictates the strength, time
scales, length scales and location of the downstream vortices (Forouzi Feshalami et al.
2022). Thus, it is essential that we consider the interaction of these vortices with the rim
for different Reynolds numbers to understand the final shape. The sensitivity of the rim to
these flow characteristics is decided almost solely by inertia relative to the ambient fluid,
i.e. ρ. A large density-ratio drop is expected to exhibit very little sensitivity to downstream
vortices, and vice versa.

If we consider the specific drop case shown in figure 4, the ratio of the spatial extent
of the drop along the axisymmetric axis to the spatial extent along the r axis provides its
aspect ratio Axr . This parameter will be used in future sections to quantify the deformation
shown by the drops for the parameter space. In the first image (from left to right), we
observe a flat pancake, which occurs when 	Pdrive predominantly drives the internal flow
in the drop (over shear stresses). We also observe a clear toroidal rim (second image) that
has a large local inertia and is therefore expected to lag the lower inertia centre of the
drop. Due to the large inertia, the rim remains unaffected by the low-pressure zone created
by the downstream vortex, which sheds a sufficient distance away from the rim and is
not attached to the drop. Ultimately, the drop deforms into a backward bag morphology,
where the centre inflates into a bag under the action of pressure forces at the stagnation
point.
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Figure 5. Panel (a) shows the temporal variation of (streamwise ex and transverse er ) axis lengths, and the
x component of the centre-of-mass (cm) velocity of drops with different ρ values. The analytical relationship
for ėr as given by Jackiw & Ashgriz (2021) is plotted for reference (see line labelled ‘JA(2021)’). Dashed
lines represent linear fit lines of er from t∗ = 0.3 to t∗ = 1.2. Internal velocity fields for ρ = 10, ρ = 100 and
ρ = 1000 are plotted in (b), (c) and (d), respectively. The upper half shows r velocities (ur ), whereas the lower
half of each plot shows x velocities (ux ). All drop systems presented have Oho = 0.001, Ohd = 0.1, We0 = 20.

3.1. Density ratio
This section illustrates the role of density ratio in influencing drop deformation and
breakup morphology. Figure 5 illustrates the variation of the streamwise (ex ) and
transverse (er ) lengths of the drop and x-component of centre-of-mass (cm) velocities
(Vcm,x ), in the top and bottom of the plot, respectively. Density ratios from 10 to 1000 are
shown. All cases show a decrease in their transverse length until ex reaches a minima. We
define this instant at which the drop achieves its minimum streamwise length as its pancake
state. If the streamwise length of the pancake reaches a critical minimum, the drop unstably
loses fluid from its core to its periphery, resulting in the formation of a thin fluid sheet near
the core and a toroidal rim near the periphery, which eventually ruptures. The cases with
a high density ratio, i.e. ρ = 100, 500, 1000, achieve their minimum ex at t∗ ≈ 1, which
coincides with the initiation time as described by Jackiw & Ashgriz (2021), i.e. the time of
initiation of inflation of the bag. Jackiw & Ashgriz (2021) suggested an initiation time of
approximately 1 based on their experiments of a water drop in an air jet, which is consistent
with the results presented here. All the high ρ cases also achieve a minimum ex at t∗ ≈ 1.
In addition, the minimum ex , which can alternatively be interpreted as a maximum rim
curvature, is nearly identical. Since all cases share the same surface tension coefficient
(for the same Weber number), a likely hypothesis is that the drops deform streamwise
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Figure 6. Pressure field plots for drops with three different density ratios are plotted: (a) ρ = 10, (b) ρ = 100,
(c) ρ = 1000 for a low Oho system. All drops referred to here have the following common parameters: Oho =
0.001, Ohd = 0.1, We0 = 20.

until their surface tension forces, which are directly proportional to rim curvature, reach a
similar magnitude. The rim curvature can be closely approximated by the reciprocal of the
thickness of the flattened ‘pancake’ shape (Villermaux & Bossa 2009; Kulkarni & Sojka
2014). Thus, for similar aerodynamic forces, the rim curvature is expected to be similar for
two drops with the same surface tension coefficient.

In contrast to the high ρ cases, the low ρ cases (ρ = 10, 50) do not fragment for a
initial Weber number of We0 = 20. This aligns with the fact that the drops for the two
cases do not achieve a minimum ex as low as the high ρ cases. Instead of unstably losing
fluid from the core to the periphery, these drops begin retracting back towards a spherical
shape after reaching their maximum deformation or pancake state. This hints at the lower
aerodynamic forces experienced by the low ρ cases, which dictates the magnitude of the
corresponding surface tension forces required to balance the aerodynamic forces. This
hypothesis is supported by examining Vcm,x of the lowest ρ drops, which rapidly lose their
relative velocity with the ambient, and hence, experience lower aerodynamic forces at later
times.

It is also observed that the temporal development of transverse length er very closely
follows a linear trend after reaching the balancing time Tbal , which is consistent with
the analytical relationship for ėr as given by Jackiw & Ashgriz (2021). The analytical
relationship for ėr is given by

ėr =
(a

2

)2
(

1 − 128
a2We

)
Tbal , (3.1)

where a = 6 and Tbal = 1/8 as specified by Jackiw & Ashgriz (2021). The analytical
relationship for ėr is plotted in figure 5(a) as a dash-dotted line labelled ‘JA(2021)’ for
reference. The linear fit lines for er , from t∗ = 0.3 to the specific initiation time for each
case are plotted as dashed lines and show a good agreement with (3.1).

Figures 5(b,c,d) and 6(a,b,c), compare the internal velocity and pressure fields for
drops of different density ratios for Oho = 0.001 (Re0 ≈ 4472), respectively. Such high Re0
results in low shear stresses acting on the drop’s upstream surface, and almost the entirety
of aerodynamic forcing is exerted through pressure forces. Until the formation of a distinct
toroidal rim at t ≈ 1, local inertia variations across the lateral dimension of the drop remain
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small and, therefore, do not significantly influence the corresponding local accelerations
experienced by each region of the drop. Hence, during the pancake formation stage, the
deformation is primarily dependent on the balance between the shear and pressure forces
applied by the ambient medium.

Low ρ drops, having lower total inertias, experience larger centroid accelerations. This
leads to lower relative velocities, instantaneous Reynolds numbers (Re) and stagnation
pressures compared with high ρ drops under identical conditions. Thus, low ρ drops show
a higher local and volume-averaged responsiveness to external forces (such as attached
vortical structures). Consequently, the deformation process becomes highly sensitive to
ρ. For instance, the pressure field for three different ρ values is presented in figure 6,
and shows the lowest driving pressure forces (	Pdrive) for ρ = 10 case, allowing even
the low shear stresses (due to high Re0) acting at the upstream surface of the drop to
be a significant contributor to the initial deformation and internal flow of the drop. As
ρ increases, the stagnation pressure (and hence 	Pdrive) grows, making the contribution
of shear stresses increasingly irrelevant. Thus, for the ρ = 1000 drop, the internal flow is
expected to be completely driven by the pressure forces. The internal flow plots shown in
figure 5 confirm this behaviour. The internal flow for the ρ = 10 drop is highest near the
upstream surface and decreases to nearly zero at the downstream pole (see ux ), with the
corresponding velocity gradient pointing in a direction normal to the upstream surface.
The internal flow for ρ = 1000 (shown in panel d) on the contrary, has the highest x
velocities at the upstream pole and not at the periphery. All cases also show negligible
lateral inertia differences across the drop before t∗ < 1. Thus, for the ρ = 10 case, the high
shear at the periphery leads to a greater local acceleration there than at the centre. We
also note that the the lower relative velocity of the low ρ case with the ambient leads to
even lower Re values, resulting in a vortex that is not fully detached from its periphery,
increasing the induced stresses. This creates a differential acceleration between the pole
and the periphery for the ρ = 10 case, resulting in a forward-facing pancake. The ρ = 1000
case, on the other hand, forms a flat pancake. Thus, the competition between shear stresses
and 	Pdrive controls the orientation of the pancake.

Beyond the pancake stage (at t∗ ≈ 1), a prominent toroidal rim forms in all cases
(figure 6). This concentrates mass at the periphery, increasing the rim’s local inertia
relative to the drop’s thinning core. The subsequent evolution is dictated by the interplay
between this variation in local inertia, aerodynamic forces and the downstream vortex
structure, which varies significantly with ρ. However, for all three cases, the rim eventually
gains enough mass to decelerate relative to the centre of mass, forming a bag-like structure
of backward orientation. The rate of evacuation of the core fluid towards the periphery and
the lateral stretching of the pancake is significantly different for the three cases, leading to
different bag morphologies.

The ρ = 10 drop experiences the smallest pressure forces driving its internal flow, and
hence, its core experiences the smallest rates of evacuation. It hence takes longer for a
prominent rim to form, coinciding with a delayed flipping of the thinned pancake from
forward to backward. The downstream vortex shed from the periphery is also the weakest
for this case and cannot induce any significant stretching of the rim. The end result is
substantially less deformation and no fragmentation in this case. Conversely, the ρ = 1000
drop experiences the largest 	Pdrive driving its internal flow, and hence, the rate of
evacuation of the core fluid is very high. The high inertia makes the rim fairly insensitive
to downstream vortices and large Re leads to the vortex detaching from the periphery
early and cleanly. It is only the intermediate ρ = 100 case that shows a sufficiently strong
downstream vortex that sheds close to the rim and produces larger lateral stretching rates,
reflected in the larger transverse internal velocities ur compared with the other two cases
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Figure 7. Pressure field plots are plotted for two different ρ values for a high Oho ambient flow. Results are
shown for (a) ρ = 10 and (b) ρ = 1000. All drops shown here have the following common parameters: Oho =
0.1, Ohd = 0.1, We0 = 20.

(figure 5). In fact, only an intermediate ρ allows large enough Re to generate a strong
downstream vortex and yet low enough inertia for the rim to be sensitive to such forces.
This stronger stretching coupled with the intermediate rates of evacuation of the core
results in a backward bag with a core that has not completely evacuated, leading to a
bag-plume morphology. A similar explanation for the formation of a plume is provided by
Jackiw & Ashgriz (2021), where a faster bag inflation rate (due to higher We0 in the paper)
compared with the movement of drop fluid from the centre to rim leads to the presence
of an undeformed core at the centre of the drop. The volume of fluid contained in this
undeformed core dictates the specific breakup observed – bag-plume, multi-bag or sheet
thinning. This deformation process is also shown in Marcotte & Zaleski (2019, figure 4)
for a low Oho case where a variation in ρ from 10 to 2000 is accompanied with a shift in
pancake and breakup morphology exactly as observed here.

Let us now shift our attention to the effect of ρ on high Oho cases. Figure 7 shows
the evolution of the pressure field around the drops with time. In both cases, Oho is 0.1,
which corresponds to Re0 = 44.72. For such a low Re0, we expect the shear stresses on the
upstream surface to be substantial. Hence, despite observing substantially higher upstream
stagnation pressures (and hence higher 	Pdrive) for (b) (ρ = 1000) compared with
(a) (ρ = 10), 	Pdrive still does not dominate over the shear stresses during pancake
formation. As expected, we see a forward pancake at t∗ = 0.948 for both cases.
Additionally, because of the low Re0 of the flow, the ambient flow remains attached
to the drop’s surface, eliminating the formation of any downstream circulation zones.
Subsequently, as the drop core is evacuated and a distinct rim is formed, a backward bag
remains the only possible morphology. Panel (b) shows a backward bag breakup, while
panel (a) shows much smaller deformations and does not fragment, the lower deformation
is consistent with lower relative velocities, resulting in lower external forces.

In conclusion, the morphology of the pancake depends on the competition between the
pressure difference between the poles and the periphery of the drop, with the shear stresses
acting on the upstream surface. A flat pancake is observed when 	Pdrive is dominant,
whereas a forward-facing pancake is observed when shear stresses are dominant. As the
drop deforms past the pancake stage, it forms a bag, which can be forward or backward,
depending on the local inertia of the rim and the strength of the downstream vortex.
Local inertia depends on ρ and the rate of evacuation of fluid from the drop core. The
strength and location of downstream vortices, on the other hand, depend on Oho and
the instantaneous velocity of the drop, which again depends on inertia ρ. Finally, under
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Figure 8. Panel (a) shows the temporal evolution of the (streamwise ex and transverse er ) axis lengths for
different Oho values. The analytical relationship for ėr as given by Jackiw & Ashgriz (2021) is plotted for
reference (see line labelled ‘JA(2021)’). Dashed lines represent linear fit lines of er from t∗ = 0.3 to t∗ = 1.2.
Velocity fields are plotted for Oho = 0.1 and Oho = 0.001 in (b) and (c), respectively. For all plots, ρ = 1000,
Ohd = 0.1 and We0 = 20.

conditions where the drop experiences a higher rate of lateral stretching (dependent on
Re) compared with the rate of evacuation of the core (dependent on 	Pdrive), we may also
observe a plume.

3.2. Ambient Ohnesorge number
Figure 8(a) illustrates the temporal evolution of drop streamwise (ex ) and transverse
(er ) lengths and the x component of centre-of-mass velocities (Vcm,x ), spanning Oho
values from 0.1 (Re0 = 44.72) to 0.001 (Re0 = 4472) for a high density-ratio system. The
discussions on the temporal evolution of ex and er made in § 3.1 carry ideas that can be
utilised to interpret the results shown in figure 8(a). The two lower Oho cases show a
decrease in ex to identical minimum values, achieved at the initiation time. This decrease
in ex is accompanied by a linear increase in er after Tbal , the rate of increase very similar
to the analytical relationship (3.1) for ėr as given by Jackiw & Ashgriz (2021). However, in
the case of Oho = 0.1 the streamwise length shows two distinct minima. The first minima
occurs when the drop starts forming a forward pancake at t∗ ≈ 0.6, as seen in figures 8(b)
and 9(a). At t∗ ≈ 1.2, the forward pancake starts flipping as the drop forms a backward bag,
leading to a second minima in ex right at the onset of bag inflation, which coincides with
the initiation time as defined by Jackiw & Ashgriz (2021). The second minima reached by
the drop in the Oho = 0.1 case is higher than the minima reached by the other two cases,
which hints at the lower rim curvatures achieved by the drop before bag inflation. It is
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Figure 9. Pressure fields for drops with (a) Oho = 0.1 and (b) Oho = 0.001. For both drops, ρ = 1000,
Ohd = 0.1 and We0 = 20.

also observed that this case follows the analytical linear increase in er only upto the first
minima, after which the rate of increase in er decreases. This is expected as the analytical
relationship was derived for experimental systems that typically form flat pancakes for
high Re systems.

The drop with the highest value of Oho experiences the largest drag forces given the
same relative velocity, the majority of which is imparted by the shear stresses acting on its
surface, owing to the circular symmetry of the pressure field around a cylinder in low Re
flows. This case thus shows the largest centre-of-mass acceleration, resulting in the highest
Vcm,x throughout the deformation process. The lower relative velocities of this case result
in lower stagnation pressures and, thus, lower 	Pdrive values. This hints at the cause for
the lower rim curvatures achieved by the drop before bag inflation.

Pressure fields for two different Oho values for ρ = 1000 have been plotted in figure 9.
All non-dimensional parameters except Oho are the same for the two cases. For the drop
in figure 9(a), Oho = 0.1, i.e. Re0 is very low, which corresponds to a large outside
viscosity. Thus, the flow does not detach from the drop surface and leads to large viscous
stresses on the upstream surface and, consequently, larger centre-of-mass velocities. The
drop in figure 9(b), on the other hand, has a Re0 value that is 100 times larger, leading
to much smaller shear stresses and, consequently, smaller centre-of-mass velocities. The
larger velocities of the drop shown in panel (a) lead to smaller stagnation pressures and,
consequently, smaller 	Pdrive compared with the case shown in panel (b). It should
be noted that the instantaneous Reynolds number Re (instead of Re0) would be a more
accurate descriptor of the effective shear stresses experienced by a drop. However, this
discrepancy between Re and Re0 (resulting from non-zero centre-of-mass velocities and
frontal radius growths) plays a minor role in influencing shear stresses compared with
the two orders of magnitude change in Re0 between the two cases. For the drop shown
in figure 9(a), owing to lower stagnation pressures, the shear stresses acting on its
upstream surface dictate its initial internal flow and resulting deformation. This is clearly
demonstrated by the internal flow plot shown in figure 8(b) for the drop, where velocities
are the highest at its upstream surface and decreases to zero at its downstream pole,
coinciding with the location of the largest shear stresses applied by the ambient flow. This
dominance of shear stresses results in the formation of a forward-facing pancake.

Conversely, for the higher Re system depicted in figure 9(b), shear stresses are
significantly lower, which coupled with the larger 	Pdrive (compared with panel a) results
in a pressure dominated internal flow. Consequently, the drop deforms into a flat pancake
and the highest internal velocities occur at its upstream pole rather than at the periphery.
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Figure 10. Panels (a) and (c) plot y velocities and the pressure field for a drop with Oho = 0.01; whereas
(b) and (d) plot y velocities and the pressure field for a drop with Oho = 0.001. For both cases, ρ = 50,
Ohd = 0.1 and We0 = 20.

In summary, the orientation of the pancake, determined by the competition between
	Pdrive and shear stresses, is influenced by both ρ, due to its significant impact on
	Pdrive, and Oho, due to its significant impact on the Re, and consequently, the shear
stresses exerted on the drop.

As the drops deform further, both cases develop a prominent rim, resulting in a large
disparity in local inertia between the rim and the centre (prospective bag) of the drop. For
the drop in figure 9(a), the extremely low Re results in an attached flow downstream of the
drop, preventing the formation of a downstream vortex. In contrast, the drop in panel (b)
with its large Re develops a downstream vortex, but the large local inertia (i.e. ρ) allows the
vortex to detach early from the drop. Hence, for both cases, the rim does not experience
any additional forces that can counteract the impact of the large local inertia (smaller
local acceleration) of its rim. We observe that the drop in panel (a) flips orientation from
a forward pancake to a backward bag, while the drop in panel (b) deforms from a flat
pancake to a backward bag.

It is worthwhile to note that decreasing Oho motivates the formation of a plume. The
reason for this can be discerned from the velocity field plots shown in figures 10(a) and
10(b). The lower Oho case develops a stronger downstream vortex due to its larger Re0,
as is evident from the larger r velocities at its rim. The common mediocre density ratio
of ρ = 50 renders the toroidal rims of the drops more susceptible to lateral stretching due
to their interaction with the downstream vortices. However, the induced drag on the lower
Oho case is larger leading to comparatively higher rates of stretching. Ultimately, the larger
Oho case fragments with a simple backward bag breakup morphology. The lower Oho case
instead develops a plume that leads to the formation of an annular bag between the centre
and the periphery, i.e. backward bag-plume morphology.

A case with much lower Oho (<0.001) would have a Reynolds number firmly in the
free-shear regime (Forouzi Feshalami et al. 2022), producing smaller, stronger and faster
shedding vortices that form much closer to the drop periphery. Consequently, the drop in
the higher Re0 case would experience even higher stretching rates from the poles to the
periphery, as it is subjected to stronger induced drag forces due to better access to the low
pressure zones downstream. This scenario when coupled with a low density-ratio drop
could prevent the forward pancake from ever flipping, leading to a forward bag formation.
This is indeed observed in the threshold fragmentation of the low ρ cases with Oho =
{0.001, 0.0001} and Ohd = 0.1, where the drop forms a forward bag without ever flipping
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its orientation. The pressure field for these cases is shown in Appendix C, and its validity
justified through a comparison with analogous 3-D simulations.

In short, the rate of stretching, and consequently, the size of the resulting plume,
increases with increasing proximity and strength of downstream vortices on the rim (due to
an increase in Re0). For low We0 simulations, forward bags are only observed for smaller
inertia drops when Oho values are small, with Re preferably in the shear layer instability
regime (1000 � Re0 � 105).

3.3. Drop Ohnesorge number
We start our investigation into the role of the drop Ohnesorge number by studying cases
with high density ratios and low ambient Ohnesorge numbers. In such drop-ambient
systems, drops due to their large inertia maintain high relative velocities with the ambient
flow, yielding large stagnation pressures (	Pdrive) and large instantaneous Reynolds
numbers (Re). The low shear stresses acting on its upstream surface (due to high Re)
allow 	Pdrive to dictate its internal flow, resulting in the formation of a flat pancake.
Given that all other non-dimensional parameters are the same across two cases, the case
with the larger Ohd has a larger drop viscosity μd , and is expected to have lower internal
flow velocities and circulations. Higher μd also results in an exponential decrease in the
incidence of surface instabilities (Fuster et al. 2009). While an increase in surface tension
decreases the wavelength of the fastest growing surface waves, an increase in μd increases
the length and time scales for which a capillary wave generated by an instability remains
intact. As a drop accelerates and its relative velocity with the ambient flow decreases, the
effective acceleration of the drop relative to the ambient medium decreases. Consequently,
a surface wave that might have been unstable at the start of deformation, might be stable at
more advanced stages of deformation, under the condition that the length scales and time
scales of instabilities are large enough for the given μd (Goodridge et al. 1997).

Figure 11 illustrates the pressure fields for two such cases with ρ = 1000, Oho = 0.001
and a varying Ohd . Both cases show very similar (high) stagnation pressures and an
Re0 of 4472 results in a well-defined downstream vortex detached from their peripheries,
indicative of their large local and total inertia. As expected, at t∗ ≈ 1, both cases form a flat
pancake and the onset of rim formation. However, for the drop in panel (b), we observe a
high-pressure zone at its upstream pole that hints at the initiation of a plume. The internal
flow field in figure 12(b) reveals an instability at the upstream pole of the drop, motivating
a flow from its periphery to its upstream pole, hugging its upstream surface. The smaller
viscosity of the drop in panel (b) (100 times smaller) facilitates the development of a
prominent capillary instability at its pole and the corresponding pancake-plume shape.
Furthermore, the location of the instability (i.e. the upstream pole) is a stagnation point
and sees the highest accelerations out of all regions of the drop. This matches with
the definition of Rayleigh–Taylor instabilities and might be the primary mechanism
behind the development of a plume of this kind. According to Villermaux (2007),
Jalaal & Mehravaran (2014), an increase in density discontinuity motivates the formation
of Rayleigh–Taylor instabilities. Our current simulations also show this behaviour, as
only the cases with ρ = 500 or 1000 and for the lowest Ohd values form an unstable
plume.

As the drops in the two cases continue to deform and more mass is transferred from their
cores to their rims, substantial variations in local inertia (and hence local accelerations)
start to develop. Notably, for the drop in figure 11(b), the plume has grown further and
the drop now has two high local inertia regions – its core and its rim. The annular region
connecting its core and rim has lower local inertia compared with both these regions and,
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Figure 11. Pressure fields around drops of different Ohd values: (a) Ohd = 0.1 and (b) Ohd = 0.001. All drops
in these plots have ρ = 1000, Oho = 0.001, We0 = 20.
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Figure 12. Internal flows for two different Ohd values: (a) Ohd = 0.1 and (b) Ohd = 0.001. (c) Zoomed-in
view of t∗ = 1.2649 for (b). All drops in these plots have ρ = 1000, Oho = 0.001, We0 = 20.

hence, accelerates downstream relative to both, resulting in the growth of a bag between
the plume and the rim. Ultimately, this annular bag fragments, culminating in a backward
bag-plume morphology, as seen in panel (b).

For the drop in figure 11(b), it should be noted that a reduction in We0 (while keeping
other parameters constant) still results in the development of an instability-driven plume
at its upstream pole, albeit of a smaller size. For instance, when We0 = 16 for the drop in
figure 11(b), it does not deform enough to exhibit fragmentation (of the bag-plume kind).
Consequently, solely decreasing We0 is not sufficient to shift the breakup morphology
from a backward bag-plume to a simple bag breakup for the specific (ρ, Ohd and Oho)
set. This makes a backward bag-plume breakup the critical breakup morphology for this
case – a feature of the physical properties of the system described by (ρ, Ohd and Oho),
and not just a function of boundary conditions (i.e. inflow velocity or We0).
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Figure 13. The y velocities for two different Ohd values: (a) Ohd = 0.1 and (b) Ohd = 0.001.
Both cases have ρ = 100, Oho = 0.001, We0 = 13.

In contrast to the plume in figure 11(b) that originates from an instability due to lack of
sufficient viscous damping, a decrease in Ohd can also lead to a plume similar to that in
figure 10(b). One such example is shown in figure 13.

If we focus our attention on the specific case of drops, Ohd can be interpreted as the
ratio of the capillary time scale Tσ to the viscous time scale Tμ, i.e. Ohd = Tσ /Tμ. The
capillary time scale Tσ (= √

ρd D3/σ ) is defined as the duration for a capillary wave of
wavelength D to traverse a distance of D; while viscous time scale Tμ (= ρd D2/μd )
represents the duration for momentum to diffuse across the drop (Popinet 2009). A smaller
Ohd hence implies a relatively small Tσ compared with Tμ, indicating that the information
about interface deformation travels much faster than the rate of transfer of momentum
to the drop fluid across the diameter. Hence, the downstream vortices could apply some
induced drag on the drop rim, causing local acceleration relative to the core and subsequent
deformation. However, this induced drag may not setup equivalent flow throughout the
entire drop fluid. This is evident from the y-velocity plots shown in figure 13, where the
lower Ohd case (panel b) shows larger y velocities at the rim, indicating greater rates of
stretching compared with the higher Ohd case (a). Hence, the case in panel (b) due to its
larger Tμ results in a plume. It is essential to note that the drop in this case only shows a
plume once it has started to form a bag, and the initial pancake at t∗ ≈ 1 is flat. In contrast,
the plume in figure 11(b) develops very early in the deformation process, right at the instant
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Figure 14. The fluid interface for three cases with ρ = 1000, Oho = 0.001, We0 = 15, and (a) Ohd = 0.1,
(b) Ohd = 0.01 and (c) Ohd = 0.001.

of formation of the pancake. Hence, the two types of plumes fundamentally differ in their
formation mechanisms.

According to much of the existing literature, if Ohd � 0.1, Ohd tends to have minimal
impact on drop breakup mechanism. Therefore, for most studies, the choice of Ohd is
not focused upon, as long as it is ensured to be lower than 0.1. However, the simulations
conducted and analysed in this study do not corroborate with this understanding.

Another example emphasising the effect of Ohd on drop deformation and breakup
morphology is shown through drop interface plots in figure 14. In panel (a) the drop
never achieves large enough deformation to undergo breakup. The drop in panel (b) on
the other hand shows bag breakup for the same parameters except for Ohd = 0.01. The
lower deformations achieved by the drop in panel (a) can be attributed to higher fluid
viscosity, which provides resistance to internal flow and dissipates energy supplied by the
ambient flow through surface forces. For Ohd = 0.001 in panel (c), the breakup type shifts
from a simple backward bag to a backward bag-plume breakup, with the plume formation
driven by Rayleigh–Taylor instabilities. In short, a decrease in Ohd is expected to reduce
the required critical Weber number Wecr for a backward bag breakup. Hence, for the same
W e0 = 15, we observe that the drop in panel (c) exhibits a backward bag-plume breakup,
which is a multimode breakup that we expect to manifest at a We0 higher than that required
for a simple backward bag.

4. Discussion
In this work, a parameter sweep using axisymmetric simulations was performed for
multiple values of Weber number for every set of {ρ, Oho, Ohd} possible in the parameter
space defined in § 2.4. From this vast set of simulation data, we set out to achieve two
primary objectives: (1) extract the influence of each involved non-dimensional parameter
involved – specifically ρ, Oho and Ohd – on drop pancake and breakup morphology;
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Figure 15. Plot of Wecr against Ohd . Dependence on Oho is represented using vertical lines, with their vertical
extent representing corresponding variation in Wecr . Dependence on ρ is shown through different coloured
vertical lines (offset from its true x location to prevent overlaps with other lines) representing each ρ value in
the parameter space. Specific markers are used to represent all critical breakup morphologies observed in the
simulations. The experimental data for Wecr from figure 1 is shown as a translucent area in the background of
the plot.

and (2) determine both Critical Weber number values as well as corresponding critical
breakup morphologies for each unique combination of {ρ, Oho, Ohd} in our parameter
space. The first objective was addressed in detail in § 3. This section focuses on the second
objective.

4.1. The threshold of impulsive drop breakup
Figure 15 shows the variation of critical Weber number (Wecr ) against the drop Ohnesorge
number (Ohd ) for drops of different density ratios (ρ) and the outside Ohnesorge numbers
(Oho). Here Ohd takes three different values in the parameter space: 0.1, 0.01 and 0.001.
For every Ohd , a ρ value is represented by a coloured vertical line that shows the range of
Wecr values obtained due to variation in Oho. The lower Wecr values generally correspond
to lower Oho values and vice versa. Therefore, for each Ohd value in the plot, there exist
five coloured vertical lines corresponding to the 5 ρ values explored in the parametric
sweep. It should be noted that each coloured line has been offset from its Ohd value by a
different amount for preventing overlaps with other ρ lines and, hence, improve clarity. All
the cases are also explicitly marked with a uniquely shaped marker corresponding to each
fragmentation morphology. Finally, all the experimental data for Wecr explored through
this work is shown as a translucent area in the background of the plot, also shown as
explicit markers in figure 1.

On the basis of all the simulation results and figure 15, the following conclusions
emerge.

(i) Consistency with experimental data: all simulations with high ρ (� 500) values
critically fragment at Wecr values that very closely match historical experimental
works. This is expected given that most experimental studies have historically
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focused on impulsive fragmentation for water–air analogous systems, which have
ρ � 500. Only cases with ρ < 500 show any appreciable deviation from the
experiments.

(ii) Sensitivity to Oho: the lowest ρ cases exhibit the largest variations in critical Weber
numbers with respect to changes in Oho for the high Ohd cases, as indicated by the
length of the vertical lines in figure 15. A drop with a large ρ (�500) experiences
larger relative velocities, making 	Pdrive the dominant factor driving its deformation
in most cases. Even in cases with large external shear stresses on the drop (the
largest Oho cases), once a clear rim has formed in the deformed drop, local inertia
variations take over the deformation process. Only the lower inertia (ρ) drops show
any appreciable sensitivity to changes in Oho and the corresponding differences in
downstream vortical structures. An exception exists when Oho is in the free-shear
regime (Re0 > 10 000 (§ 3.2), and even the drops with a high ρ respond strongly to
the resulting downstream vortices, fragmenting with a forward bag morphology.

(iii) Variations in fragmentation morphologies: the critical breakup morphology
transitions from a forward bag (ρ = 10) to a backward-transition (ρ = 50, 100) (see
figure 16) to a backward and backward-plume bag with increase in ρ � 500. As ρ

increases, the drop’s rim is expected to start lagging behind the drop core at some
point during its deformation, when local inertia of its rim becomes substantially
larger than that of its core. The shift in morphology from a forward to a backward
bag is observed only for low Oho values, which produce downstream vortices that
are strong enough to compensate for the larger local inertia of the rim. Alternatively,
large Oho cases always exhibit backward bag breakup at critical conditions. This is
due to the downstream vortices being weak or non-existent for low Re0 flows.

(iv) Sensitivity to Ohd : in addition to the drop Ohnesorge number’s role in controlling the
sensitivity of Wecr to Oho, a decrease in Ohd also affects the critical fragmentation
morphology by motivating the formation of a plume. This is seen for the lowest Ohd
(0.01, 0.001) and Oho (0.001, 0.0001) values, and for the largest ρ (500, 1000) drops
(star shaped marker in figure 15). Such drops show an unstable plume at the upstream
poles of their flat pancakes, which are also locations of maximum acceleration in
the drops and can be attributed to Rayleigh–Taylor instabilities. Both low viscosity
and larger density ratios motivate the development of such instabilities (Villermaux
2007; Guildenbecher et al. 2009; Jalaal & Mehravaran 2014). Since the pancake for
this non-dimensional set starts with a plume even for lower non-critical We0 values,
a plain backward bag breakup can never manifest for such systems, and hence, a
backward bag-plume breakup becomes its critical breakup morphology. The drop
Ohnesorge number Ohd also influences the rate of evacuation of the drop core, which
ultimately results in a forward bag for all high Oho cases, when shear stresses drive
pancake formation.

The conclusions drawn from figure 15 show that the accepted idea of critical Weber
number being almost independent of drop Ohnesorge number for Ohd < 0.1 might not
always hold, especially for systems that stray too far from properties analogous to the
water-air system. Furthermore, the critical breakup morphology need not necessarily be
a backward bag breakup. Backward bag-plume and forward bag morphologies can be the
critical morphologies for certain low ρ and low Oho cases.

A path diagram, as illustrated in figure 16(a), can be drawn that summarises all the
deformation paths a spherical drop might follow as it deforms to critical fragmentation
under impulsive acceleration. A companion phase diagram (figure 16b) provides the
non-dimensional parameter space that results in one of the four observed fragmentation
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Figure 16. Panel (a) is a path diagram of all deformation paths a spherical drop under impulsive acceleration
can take when breaking up critically. A spherical drop can deform into three types of pancakes, each of which
can further deform into one of four breakup morphologies, the corresponding ρ, Oho, Ohd , We0 parameter
space is shown in the phase diagram (b). The blue-highlighted region in (b) indicates cases with the lowest Oho
and Ohd values, for which the axisymmetric simulations may not be representative of reality, as discussed in
Appendix C.

morphologies. It is worth highlighting that all the breakup paths provided in the
diagram are for their respective critical conditions, and consequently, the Wecr values
corresponding to different paths need not be the same.

For small ρ or high Oho values or both, shear stresses drive the internal flow, resulting
in a forward pancake. The fate of this forward-facing orientation is then contingent on the
balance between local inertia differences and the strength and proximity of downstream
vortices to the rim. For systems with large Oho, irrespective of density ratio, downstream
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vortices either do not form or shed further downstream. The drop is not subjected to
large lateral stretching rates, allowing the formation of a prominent toroidal rim. The
resulting lateral inertia differences lead to the flipping of the bag from forward to backward
orientation, eventually fragmenting with a backward bag morphology. On the other hand,
for small Oho (and, hence, small ρ for a forward pancake) coupled with large Ohd ,
the strong, fast and proximal downstream vortices generate large lateral stretching rates,
preventing the formation of a prominent rim. As a result, the drop continues to hold its
forward-facing orientation and breaks up with a forward bag morphology.

When ρ is large and Oho is small, the drop under critical conditions either deforms
into a flat pancake or a flat pancake with a plume depending on whether ρ and Oho
are at the extreme ends of the parameter space. The largest values of ρ and the smallest
values of Oho and Ohd lead to the appearance of a plume at the upstream pole of the
flat pancake. It can be hypothesised that the low viscosities of both outside and drop
fluids do not provide sufficient viscous dissipation to stabilise the jet ejected at the
upstream pole (due to Rayleigh–Taylor instability) of the drop. From this pancake shape,
the only possible critical breakup morphology is a backward bag-plume breakup. All other
intermediate cases form a flat pancake that can form either a backward-transition breakup
(for intermediate ρ values and low Oho values) or a backward bag (for all the remaining
cases). A backward-transition breakup is a forward bag with a flipped rim, i.e. a drop that
at its final moments gains enough inertia in its rim to start the bag flipping process. As
expected, this is observed for intermediate ρ values where neither local inertia differences
nor downstream vortices outright dominate the dynamics of the drop’s periphery.

The path diagram, together with the phase diagram, only informs of the types of
pancakes and corresponding general breakup morphologies observed for a specific set of
{ρ, Oho, Ohd} under threshold conditions. For information on the lowest We required to
achieve the corresponding non-vibrational breakup (i.e. Wecr ), one may refer to figure 15.

4.2. Bag inflation characteristics
An understanding of the time scales involved for the inflation of bags during bag breakups
is essential in the correct estimation of bag burst time scales and effective centre-of-
mass velocities for bag breakups. Villermaux & Bossa (2009) were the first to give an
analytical description of bag inflation rates for backward bag morphology. They found that
the amplitude of bag inflation increased exponentially with time with an exponent factor
of two for an inviscid drop. Kulkarni & Sojka (2014) extended the work of Villermaux &
Bossa (2009) to include drop viscosity and numerically obtained a similar exponential
relationship for bag inflation, now also dependent on Ohd . However, Ohd was found to
have a very small impact on bag inflation rates. On the other hand, We0 has a more dramatic
effect on the exponent factors governing inflation, with higher We0 showing faster inflation
rates. The large variety of simulations in the current work across a large parameter space
present an opportunity to explore the role of the relevant non-dimensional parameters
on bag inflation. Before we proceed, it is essential to emphasise that the axisymmetric
simulations conducted in this work cannot capture the bag inflation too far beyond the
initiation time (Ling & Mahmood 2023; Tang et al. 2023). Hence, the bag inflation rates
presented here are not useful in their absolute values, and only representative of the early
stages of bag inflation. However, the differences in bag inflation rates for different cases,
solely in the context of other axisymmetric simulations, still provides useful insights into
the functional dependence of early bag inflation rates on these parameters.

With this caveat in mind, we highlight some key observations related to the bag inflation
rates for a few simulations where backward bag breakup is observed. The evolution of bag
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Figure 17. Bag inflation α(t∗) with time t∗ is shown for some unique backward bag breakup cases. The non-
dimensional parameter set for each case is of the form {ρ, Oho, Ohd , We0}. The cases plotted here include
simple backward bags ({500, 0.001, 0.1, 17}, {1000, 0.1, 0.1, 20} {1000, 0.001, 0.1, 20}) and backward-plume
bags ({100, 0.001, 0.1, 20}, {500, 0.001, 0.1, 20}, {1000, 0.001, 0.001, 20}). In addition, {1000, 0.1, 0.1, 20}
initially forms a forward pancake shape that then flips to a backward bag. Through this plot, the effect of We0,
Oho and ρ on bag inflation rates is highlighted.

inflation α(t∗) with time is illustrated in figure 17, where α(t∗) is equal to the horizontal
extent of the drop ex (as shown in figure 4). For every plot, the drop shows a decrease in
α(t∗) up until it reaches the end of the pancake stage at t∗ ≈ 1, beyond which the drop
begins to inflate. The only exception is the {1000, 0.1, 0.1, 20} case, which initially shows
an increase in α(t∗) due to deforming to a forward pancake. The bag inflation stage only
starts at t∗ ≈ 2.5 for this case. Once firmly in the bag inflation stage, all cases plotted here
show an exponential growth α(t∗) with time with a specific exponential growth factor,
marked in figure 17 as numbers alongside each plot.

From the plots, a number of key observations can be made. The {1000, 0.001, 0.001, 20}
case, which has properties closest to a water–air drop-ambient system, shows an inflation
growth factor of 1.96, which is very close to the value that was analytically found by
Villermaux & Bossa (2009), and was matched against a bag breakup experiment of a
water drop. Even though this case is a backward-plume breakup, its inflation growth rate
matches that of a simple bag and is not affected by the presence of the plume.

For the {500, 0.001, 0.1} case, out of the two Weber numbers shown in the plot
(We0 = 17, 20), the higher We0 drop shows a faster bag inflation rate, indicated by the
larger exponential growth of its α(t∗). This is an expected observation, since the overall
deformation rate is also higher for a higher We0 case, owing to the lower surface tension
forces relative to the dynamic pressure forces driving the drop’s deformation. Hence, the
same amount of energy (supplied to the drop by the external forces) should lead to a larger
change in the interface area as a result of a lower surface tension.

We also observe that the ρ = 100 case shows a dramatically lower inflation rate
compared with analogous ρ = 500 or ρ = 1000 cases. This may be attributed to the lower
relative velocities with the ambient flow observed for the low ρ case, which results in a
decrease in its effective Weber number, and hence, lower bag inflation rates.
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Drop and ambient viscosities appear to have an inverse effect on bag inflation rates.
Among the three ρ = 1000 cases shown in the plot, the higher drop and ambient Ohnesorge
number cases show the larger exponential growth rates of α(t∗).

More generally, figure 17 shows that t ≈ τ (or t∗ ≈ 1) is a good representative time scale
for the start of the bag inflation process. This observation is consistent with the aspect ratio
plots shown in figures 5 and 8, where the pancake formation stage almost always ended at
t∗ ≈ 1.

If the aerodynamic forces acting on a drop are large enough to initiate bag inflation in
its pancake, it is expected that the drop will go on to or be very close to fragmentation.
Therefore, we hypothesise that the balance of all forces acting on a drop at this stage
(aerodynamic forces driving its deformation, and capillary and viscous forces resisting it),
i.e. at the end of its pancake formation and at the start of its bag inflation, is representative
of the overall stability of the drop fragmentation process. We use this understanding to
obtain a better estimate of the effective aerodynamic forces on the drop in the next section.

4.3. A parameter for prediction of breakup threshold
Most previous studies have characterised the threshold for impulsive breakup of spherical
drops using a Weber number based on the initial relative velocity with ambient (We0 =
ρoV 2

0 D/σ ). For all cases with properties analogous to the water–air system, i.e. ρ > 500,
Oho < 0.01 and Ohd < 0.1, critical breakup occurs consistently at a critical Weber number
of Wecr ≈ 14. However, as has been discovered and exhaustively described through the
simulation results in the previous sections (summarised succinctly in figures 15 and 16),
different cases that stray away from the non-dimensional space described by water–air
systems do not show the same threshold Weber number value. Substantially higher Wecr
values are observed for cases with low density ratios and high Ohnesorge numbers. The
Weber number We0 represents the ratio of the pressure forces applied on a drop surface
by the ambient medium, based on its initial relative velocity to the surface tension acting
against any change in surface energy. However, drop deformation also depends on the
viscous forces applied by the surrounding flow, the inertia and, hence, the acceleration,
and the viscous dissipation against internal fluid flow. These effects have been explained
in detail in § 3 through simulations for varying Oho, Ohd and ρ values, respectively.
Hence, We0 does not capture the role of all the factors relevant in the drop deformation
process. We aim to construct a new non-dimensional group that aggregates the effect
of all the parameters, namely We0, Oho, Ohd and ρ, and shows a consistent critical
value demarcating the threshold of breakup under impulsive acceleration for the complete
parameter space explored in this study.

Let us assume that this new non-dimensional number, denoted by Cbreakup, is a function
of all the dimensional variables involved in the breakup process (4.1). There are three
independent dimensions in the problem. Hence, through Buckingham-Pi analysis, we can
obtain at most four independent non-dimensional numbers. The four non-dimensional
numbers relevant to this problem have already been defined in § 2.1, namely ρ, Oho, Ohd
and We0. It is expected for Cbreakup to be described as

Cbreakup = f (V0, D, ρo, ρd , μo, μd , σ ), (4.1)

which when non-dimensionalised gives us

Cbreakup = f (We0, ρ, Oho, Ohd). (4.2)

We derive Cbreakup using a method analogous to that of Blackwell et al. (2015, &
Section IV). In their work, Blackwell et al., developed a non-dimensional group to
describe the stick-splash behaviour of a drop impacting a surface. This group was based
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Figure 18. An alternate version of figure 15 where instead of Wecr , the variation of Cbreakup with respect
to ρ, Oho and Ohd is plotted. In addition to simulation data, all available experimental data in the relevant
non-dimensional space for critical bag breakup (plotted in figure 1) is also plotted here for reference.

on the ratio of forces promoting splashing (inertial forces) to those promoting sticking
(dissipative forces). Similarly, we define Cbreakup based on the competition between forces
driving fluid radially outward from the drop’s core and forces resisting this outward flow.
We hypothesise that this competition determines the threshold for secondary
fragmentation (the breakup of the primary drop into smaller droplets), where Cbreakup
is defined as

Cbreakup = Forces driving drop deformation
Forces resisting drop deformation

. (4.3)

The forces will be evaluated at t∗ ≈ 1, which represents the end of the pancake stage and
the start of the bag inflation process. The choice of t∗ ≈ 1 as the critical time controlling
the bag inflation process has been justified in § 4.2.

Let us assume that a spherical drop of diameter D0 at t∗ = 0 deforms in to a disk of
diameter D, bounded radially by a semi-circular ring of diameter W , and has an aspect
ratio Axr at t∗ = 1 (figure 18a). Mass conservation when applied to the drop gives us D ≈
(2/Axr )

(1/3)D0 and W ≈ (2/3)(D3
0/D2), if we ignore the mass that the curved periphery

holds.
All regions of the pancake within the flat disk region (r < D) have a very large local

radius of curvature, and hence, contribute negligibly to surface tension forces locally. The
periphery is the only region with any appreciable curvature equal to the sum of local
longitudinal and azimuthal curvatures, i.e. (2/W + 2/D) = 2(1 + Axr )/W . Therefore,
crossing the drop interface at its periphery produces a pressure jump of 2σ(1 + Axr )/W
according to the Young–Laplace equation that acts on the narrow cylinder between the
semi-circular peripheral ring and the flat disk of area π DW at a radial distance D/2 (point
B in figure 18a). The total contribution of surface tension can be estimated by calculating
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the force applied by the excess pressure on this area, given as

Fσ = 2πσ D (1 + Axr ). (4.4)

The surface tension force is directed against the movement of the drop fluid from the
core to the periphery.

If the flow around the pancake is assumed to be a potential flow with a stagnation point
at the upstream pole, the pressure at the upstream surface of the pancake at radial distance
r from the longitudinal (axisymmetric) axis can be estimated (Villermaux & Bossa 2009;
Jackiw & Ashgriz 2021) as

po(r) = po(0) − ρoa2V 2
rel

8D2
0

r2. (4.5)

Here, po(0) = 0.5ρoV 2
rel is the stagnation pressure at the upstream pole. Thus, pressure is

the maximum at the upstream pole and drops as we move radially away from the upstream
stagnation point towards the periphery. The potential flow around a rigid body has a
stretching factor a of 6 for a sphere and 4/π for a flat disk, the latter being applicable
in this work for the flow around a flat pancake. The true pressure inside the drop is a
superposition of aerodynamic pressures and excess pressure due to surface tension. Since
the local curvature of the drop interface is negligible for 0 < r < (D − 0.5W ), the pressure
inside the drop pd(r) near its upstream surface in the disk region is almost equal to po(r).
We can thus calculate the independent contribution of the aerodynamic pressure forces in
driving the evacuation of the drop core – by integrating the infinitesimal force due to po(r)

acting on a cylindrical surface of radius r and width W across the radius of the pancake:

Fp =
∫ 0.5D

0

[
po(r) (2πr W ) − po(r + dr) (2π(r + dr)W )

]
(4.6a)

= −2πW
∫ 0.5D

0

[
po(r) + ∂po(r)

∂r
r

]
dr, (4.6b)

Fp = a2

48
πρoV 2

rel D0 D − 1
3
πρoV 2

rel
D3

0
D

= Fp,d − Fp,s . (4.7)

Here Fp,d is the contribution of the radial pressure drop in the ambient flow in support
of evacuation of the core, whereas Fps is the contribution of stagnation pressure against it.

In addition to surface tension and external dynamic pressures, we must estimate the
contribution of drop fluid viscosity in dissipating (part of) the kinetic energy of the internal
flow. An estimate for the differential viscous dissipation power can be obtained by using
the relation (Batchelor 1967; Deville, Fischer & Mund 2002; Rimbert et al. 2020)

Φ = 2μd d : d = 2μd di j di j , (4.8)

where d = 0.5[∇u + (∇u)T ] is the rate of deformation tensor, d : d is its dyadic product
and u is the velocity vector field. Using mass conservation, Kulkarni & Sojka (2014)
derived a relation ur = r Ḋ/D for the radial velocity of the drop fluid in terms of its radial
expansion rate, which in Cartesian coordinates can be written as u = (Ḋ/D)(x ĵ + y k̂),
given that the transverse plane is synonymous with the yz plane. Substituting this velocity
function in (4.8) and dividing by the local velocity scale, we can obtain a scale for the
small local viscous force, which is always oriented in a direction opposite to the internal
flow velocity (i.e. negative radial direction) as

dFμ ∝ 4μd
Ḋ

D

1
r
. (4.9)
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Integrating (4.9) over the entire volume of the pancake, we get an estimate for the total
viscous dissipation force working against the internal flow as

Fμ ∝ 4
3
πμd D3

0
Ḋ

D2 . (4.10)

A drop under impulsive acceleration starts at zero velocity and then asymptotically
accelerates towards a maximum velocity equal to that of the ambient flow (given that
the drop is still intact). This acceleration is driven by the pressure and viscous stresses
applied by the outside flow on the drop interface, the corresponding magnitude of which
is dictated by the instantaneous Reynolds number and relative velocity with the ambient
medium Vrel. As the drop continues to accelerate, its relative velocity with respect to the
ambient medium continues to decrease, which reduces both the pressure and the viscous
stresses. For water–air systems where Oho is low and ρ is high, the drop does not show
significant accelerations and Vrel remains close to the initial relative velocity of V0 for
almost the entire duration of the breakup process. For such cases, setting Vrel equal to V0
would be a valid assumption. Conversely, if the drop shows significant accelerations and
gains velocities that are a substantial fraction of V0 (which is the case for low ρ or high
Oho systems), Vrel cannot be assumed to be equal to V0 anymore. It then becomes essential
to derive a scaling for Vrel that is valid for the whole parameter space. For this purpose,
we utilise the drag equation for a sphere, i.e.

Fdrag = 1
2

CDρoV 2
rel A (4.11)

to evaluate the drag forces acting on the drop at time t = 0 (i.e. when the drop is spherical
and at rest):

ρd
π

6
D3a0 = Fdrag(t = 0) = π

8
CD0ρoV 2

0 D2. (4.12)

Equation (4.12) gives us a scale for the acceleration experienced by the drop at t = 0:

a0 = 3
4

1
ρD

CD0V 2
0 . (4.13)

A scale describing the velocity of the drop relative to the ambient medium after a time of
the order of the deformation time scale τ (§ 4.2) can be obtained by evaluating V0 − τa0,
which when simplified gives

Vrel ∝ KvV0 , where Kv =
(

1 − 3
4

CD0√
ρ

)
. (4.14)

In figures 5 and 9 we observe that the drop’s velocity decreases with an increase in ρ and
a decrease in Oho. These observations are in line with the relative velocity scale obtained
in (4.14), where CD0 is a function of Re0 = √

We0/Oho. Any increase in the ratio between
CD0 and

√
ρ leads to a decrease in Vrel. It is important to note that the use of a drag

coefficient for a sphere in the derivation of Vrel is a simplification that allows us to obtain
an explicit estimate for Vrel. However, this choice results in an underestimation of the
average acceleration experienced by the drop, since a pancake shape is less aerodynamic
and has a larger frontal area compared with a sphere. This results in an overestimation
of Vrel , and hence, an overestimation of pressure forces as well as viscous dissipation. In
addition, as the drop accelerates and deforms, its instantaneous Reynolds number also
changes, which would affect the drag coefficient. However, the threshold is expected
to be overestimated as a result of this simplification, since the aerodynamic forces are
proportional to the square of the relative velocity.
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Here Ḋ is estimated to be equal to 2Vrel/(
√

ρ + 1), described as the Dimotakis velocity
(Dimotakis 1986) and also used by Marcotte & Zaleski (2019) in their work. Finally, in
all simulations conducted in the current work across the parameter space, it was observed
that the aspect ratio Axr at t∗ ≈ 1 was almost always 0.175, and we use this value and the
corresponding D for the calculation of the forcing scales.

At this stage, we have derived all the relevant forcing scales and related parameters for
deriving a new parameter describing the fragmentation threshold. However, this derivation
hinges upon an important assumption that the pancake is a flat disk for all the cases. This
is however not true for all the high Oho cases that form a forward-facing pancake (concave
shape pointing downstream). This difference in geometry affects the potential flow and the
corresponding pressure field around the drop, the pressure jumps due to surface curvature
and the corresponding internal flow vectors.

It is also important to note that the use of the deformation time scale τ to estimate
the velocity scale implicitly inherits the assumption that the drop flattens into a pancake in
time τ , and the balance of forces acting on the drop control whether the pancake invariably
develops a bag. Hence, we expect Cbreakup to correctly capture the threshold only for drops
that go through a critical pancake shape during their deformation process.

Equation (4.3) can now be rewritten incorporating the pressure deficit and stagnation
pressure forces (4.7), surface tension force (4.4) and viscous resistance in a drop fluid
(4.10), i.e.

Cbreakup = Fp,d

Fp,s + Fσ + Fμ

, (4.15)

which finally results in

Cbreakup = (a2/48) We0K 2
v D2

2D2(1 + Axr ) + (4/3)Ohd (ρWe0)0.5 Ḋ + (1/3)We0K 2
v

. (4.16)

For a water–air analogous systems, Ohd << 1 and ρ > 500, which implies that Kv ≈ 1
(CD0 ≈ 1 for large Re0) and Ḋ ≈ Vrel/

√
ρ. Then Cbreakup can be simplified to

Cbreakup = (a2/48) We0 D2

2D2(1 + Axr ) + (1/3)We0
. (4.17)

For obtaining Cbreakup using (4.16), an explicit equation for the drag coefficient is
required. We use the following relationship provided by Turton & Levenspiel (1986):

CD0 = 24
Re0

(
1 + 0.173Re0.657

0
) + 0.413

1 + 16300Re−1.09
0

. (4.18)

Note that CD0 is a function of Re0 but can also be expressed in terms of Oho and We0
since Re0 = √

We0/Oho.
The Wecr vs Ohd plot in figure 15 is recreated in figure 18(c) using Cbreakup (4.16)

on the y axis. When scaled according to this new non-dimensional parameter, almost all
simulation points move to a narrow range of 0.083 < Cbreakup < 0.137 with a standard
deviation of 0.02 about a mean of 0.11, when compared with 10 < Wecr < 74 in the former
plot. The highest Wecr cases corresponding to Ohd , Oho = 0.1 and ρ = 10, 50 in figure 15
when plotted according to (4.16) achieve substantially lower threshold values, much more
in line with the Cbreakup values obtained for other simulation cases. It is also observed that
the non-trivial fragmentation morphologies such as backward bag-plume and backward-
transition breakup cases show relatively the largest Cbreakup values among all other cases
with the same Ohd .
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We also plot Cbreakup values of all the available experimental data for critical backward
bag breakup as a set of reference data for the plot. As expected, the experimental data
remains bound within a narrow extent of Cbreakup values, similar to its Wecr analogue.
The Cbreakup values do start to drop off as we approach larger and larger Ohd values,
i.e. Cbreakup appears to overestimate the effort required to achieve critical breakup in
very high Ohd drops compared with experiments. This is in line with the observations in
previous experimental works (Hinze 1955; Hsiang & Faeth 1995) where it was observed
that bag breakup becomes progressively difficult for higher drop Ohnesorge numbers and
ultimately stops manifesting for Ohd > 2. Other breakup modes such as multimode and
sheet thinning become the critical breakup modes for very high Ohd systems. The inherent
assumption in the derivation of Cbreakup was to assume that critical breakup morphology
is a bag breakup, i.e. a drop first flattens into a pancake that then blows in to a bag. Any
major deviation from this general breakup mechanism is expected to drastically change the
deformation and breakup physics of such drops. Hence, as Ohd increases past 1, physics
related to multimode and sheet thinning breaks starts to become significant and, hence,
must be considered in the derivation of any parameter attempting to define the critical
breakup criteria.

Another factor worth considering is the initial Reynolds number required (i.e. Re0 =√
We0/Oho) for very large We0 values to show a breakup for high Ohd drops. For very

large We0 values, very large Re0 values are expected, which would make the external flow
more chaotic, which can have a major impact on the pressure forces experienced by the
drop, its interaction with downstream vortices and the intensity of surface waves (§ 3.2).
These effects have not been taken into account in our derivation of Cbreakup.

For the non-dimensional parameter space considered in the current work, Cbreakup
captures the dominant physics very well and succeeds in compressing the rather large
variance in Wecr values observed due to very low ρ and high Ohd and Oho values.
Therefore, for the purposes of the work, Cbreakup fulfils our requirements.

5. Conclusions
The current work aimed to clarify two major questions: (i) the effect of We0, ρ, Oho and
Ohd on drop deformation and breakup characteristics, at or near the Wecr and for physical
properties that are vastly different from commonly available water–air systems; and
(ii) the effect of these non-dimensional parameters on drop critical breakup morphology.

As explained extensively in § 1, most of the currently accepted ideas on threshold
secondary atomisation, such as the independence of Wecr with respect to Ohd given
it is below 0.1, or the critical breakup morphology being solely a backward bag, etc.
originate from experimental works done for a small parametric space occupied by water–
air analogous systems. The current work aimed to shed some light on these accepted ideas
and provide a more complete picture of the process of secondary atomisation of Newtonian
drops. For this purpose, a parametric sweep across all the involved non-dimensional
parameters, i.e. {ρ, Oho, Ohd} (§ 2.4) was performed using axisymmetric simulations on
Basilisk, with We0 values increased until a non-vibrational (critical) breakup was achieved
for a given {ρ, Oho, Ohd} set. The large amount of simulation data obtained from the
comprehensive parameter exploration resulted in the following key findings.

(i) The internal flow inside a drop away from its core can be motivated by two forces:
the pressure difference between its poles (	Pdrive) and its periphery, and the shear
stresses acting on its upstream surface. The competition between the two and the
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relative strengths of the two dictates whether the the drop pancake is flat or forward-
facing. An internal flow predominantly driven by a pressure difference results in a
flat pancake, whereas a shear-stress driven internal flow results in a forward-facing
pancake (§ 3).

(ii) Density ratio controls 	Pdrive, whereas Oho controls the shear stresses on the
upstream surface. Thus, both these non-dimensional parameters are important when
predicting the orientation of the pancake.

(iii) Given an external forcing, the sensitivity (i.e. local accelerations) of the different
parts of the drop when experiencing external forces is directly controlled by the
local inertia of that region. The morphology of the drop (forward or backward bag)
as it continues to deform past the pancake stage is then controlled by the relative
accelerations of different parts, which depends on the dominant mechanism driving
the internal flow (pressure versus shear stresses), the rate of evacuation of the core,
the strength of downstream vortices and the density ratio of the drop fluid.

(iv) Oho controls the length scales and time scales of the vortices produced in the wake
of the drop. If the vortices do not detach from the periphery of the drop, higher
local accelerations at the periphery are observed, which results in the formation of
a forward-facing bag. This is generally only the case for low ρ drops.

(v) Given ρ and Oho are the same, the drop Ohnesorge number Ohd controls the
response of the drop fluid to the external forcing. A low Ohd may allow the
development of a surface instability at the upstream pole, resulting in the formation
of a plume, and thus making a backward bag-plume morphology as the threshold
morphology. The drop Ohnesorge number Ohd also controls the rate of evacuation
of the core, with lower Ohd cases showing slower evacuation and, thus, motivating
the formation of a plume.

(vi) The critical Weber number Wecr over the explored parameter space is obtained
and plotted against Ohd (figure 15) to recreate the plot presented in Hsiang &
Faeth (1995). It is found that Wecr varies significantly in the space Ohd < 0.1,
achieving values as high as 70 for the lowest density ratio and ambient Ohnesorge
number systems. Furthermore, backward bag-plume and forward bag morphologies
are observed for threshold fragmentation in addition to the trivial backward bag
morphology.

(vii) Based on all the insights gained from the simulation results, a phase diagram
(figure 16) is constructed describing the various deformation pathways a spherical
drop may undertake under impulsive acceleration depending on the properties. The
drop deformation path shows its first split at the shape of the pancake, which then
leads to the possible threshold fragmentation morphologies.

(viii) The simulations also allow us to explore bag inflation characteristics for backward
bag breakups for a greater parameter space, and extract some general conclusions
on the influence of each parameter in modulating the growth rate and the associated
time scales. Additionally, t∗ ≈ 1 is found to be a good measure for the time scale
required for the initiation of bag inflation.

(ix) Finally, a non-dimensional parameter (Cbreakup) is derived by finding the ratio of
forces supporting the fragmentation of the drop to the forces opposing it. Surface
tension forces, pressure forces and viscous dissipation are considered. The change
in velocity of the drop relative to the ambient medium (which can be significant for
low ρ drops) is accounted for when calculating the forces. The term Cbreakup thus
obtained provides a more complete alternative to the Weber number as an indicator
of drop threshold criteria in the dimensional space of the current study, by capturing
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the effects of all three studied non-dimensional parameters, i.e. ρ, Oho and Ohd , on
drop deformation and breakup.
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Appendix A. Numerical scheme
Basilisk solves incompressible Navier–Stokes multiphase flow equations ((A1), (A2) and
(A3)) on a quad/octree discretised grid, which allows variable mesh densities at the
interface (Popinet 2003) and, therefore, accurately captures capillary scale phenomena.
Conservation of momentum and mass results in the equations

ρ(∂t u + u.∇u) = −∇ p + ∇.(2μD) + σκδsn, (A1a)
∂tρ + ∇.(ρ u) = 0, (A1b)

∇.u = 0, (A1c)

where u = (u, v, w) is the fluid velocity, ρ ≡ ρ(x, t) is the fluid density, μ ≡ μ(x, t) is the
dynamic viscosity and D is the deformation tensor defined as Di j = (∂i u j + ∂ j ui )/2. The
Dirac distribution function δs allows inclusion of surface tension forces in the momentum
equation by switching on the surface tension term only at the interface between the fluids;
σ is the surface tension coefficient, κ and n the curvature and the normal to the interface,
respectively. We compute κ using the height function formulation as described by Torrey
et al. (1985), with attention given to address under-resolved interfaces. The surface tension
term is calculated using the continuum surface force approach first described in Brackbill,
Kothe & Zemach (1992), with special care taken to ensure that the conditions described in
Francois et al. (2006) are satisfied to prevent parasitic currents.

To maintain the single equation formulation of the momentum equation, the two fluids
are represented using a volume fraction c(x, t) according to which ρ and μ are defined as

ρ = cρ1 + (1 − c)ρ2, (A2a)
μ = cμ1 + (1 − c)μ2, (A2b)

where ρ1, ρ2 and μ1, μ2 are the densities of the first and second fluid in the domain,
respectively. In this formulation, the density advection equation is replaced with a volume
fraction advection equation:

∂t c + ∇ · (c u) = 0. (A3)

The entire computational domain is discretised using squares for two dimensions
(quadtree) and cubes for three dimensions (octree) and then organised in a hierarchy
of cells. The mesh resolution is adaptive in nature, and hence, the two-fluid interface
is resolved at a much higher resolution than other computationally less interesting
regions of the domain. This allows for large savings in the computational costs for two-
phase simulations. Any cell serving as a parent computational element can undergo
further refinement into four or eight equal children cells for two- and three-dimensional
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computations, respectively. Each of the children cells, in turn, can act as a parent cell
if further refinement is warranted. This successive refinement continues until a (user-
defined) threshold criterion for error is satisfied or a maximum refinement level is
reached. A wavelet-based error estimation is used to estimate errors associated with the
specified fields (Popinet 2015; van Hooft et al. 2018). The maximum allowed refinement,
corresponding to the smallest allowed cell size, is constrained by a user-specified minimum
allowed cell dimension, which is defined by a parameter called ‘maximum level’, a
maximum level of N corresponding to a minimum cell size of L/2N .

Appendix B. Choice of numerical parameters
Before using Basilisk for the production runs, it is essential to test for independence
of the solutions with respect to both the maximum mesh resolution (normally achieved
at the interface), wavelet-error thresholds for relevant field variables and the tolerance
of the Poisson solver. For drop simulations, the accuracy of the calculated interface
and the velocity fields must be ensured for correct retrieval of surface stresses, and
correspondingly the temporal development of the drop deformation process. Hence, in the
current simulations the extent of adaptive mesh refinement performed at a computational
cell is restricted by the allowable maximum wavelet errors for velocity (χu) and volume
fraction (χc) fields. Additionally, a maximum allowed refinement level (N ) is specified that
enforces a strict allowed minimum cell size of L/2N across all the computational cells.
This helps prevent unbounded mesh refinement if the error threshold criteria converges
slowly with a decrease in cell size in a computational cell, which in turn eases the
restriction on the simulation time step (dependent on the cell with the highest Courant–
Friedrichs–Lewy number in the domain). Finally, the tolerance of the Poisson solver (ε) is
also a critical parameter that can affect the accuracy of the velocity field and, hence, the
interface.

We test the independence of the axisymmetric simulations with respect to χu ,
N and ε using a test case with {ρ, Oho, Ohd , We0} = {500, 0.001, 0.01, 10} on an
axisymmetric domain (figure 2) with L = 16, D = 1 and V0 = 1. A drop-ambient system
with these physical properties is expected to deform close to fragmentation, but instead
of fragmenting it retracts towards its neutral spherical shape. Thus, it provides a good
representative case for identifying any spurious diffusion accumulated in the system. For
testing the influence of χc, we simulate a case with ρ, Oho, Ohd , We0 = 500, 0.01, 0.1, 16,
which is expected to inflate into a bag morphology and fragment, and hence, is a good
representative case for the accuracy of the interface calculation. The default values of χc,
χu , ε and N for all cases is set to 10−6, 10−3, 10−4 and 13, respectively, and the parameter
of concern is varied to test the independence of the solution with respect to it.

In figure 19 the drop interface at specific times is shown for different values of χc, N ,
χu and ε. Here χc is varied across 10−3, 10−6 and 10−9, and we observe that the interface
is identical for all three values. This indicates that the interface is converged with respect
to χc. The effect of N however is significant, with the drop showing far more numerical
diffusion for N = 12 compared with N = 13 and N = 14. This results in the drop achieving
less deformation and, thus, starts retracting earlier for N = 12. The effect of χu and ε is
negligible for the two time instances shown, with the interface being identical for all the
explored values of χu and ε.

Figure 20 shows the effect of N , χu and ε on the x coordinate of the centre of mass, x
velocity of the centre of mass and the aspect ratio of the drop, resulting in three sets of
plots for each parameter. Plots for χc are not shown since we have already established that
the interface is converged with respect to χc. It is also found that the computational costs
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Figure 19. Volume-of-fluid plots at specific times for different error thresholds for the volume fraction field c
(χc) and velocity fields (χu). The role of the tolerance of the Poisson solver (ε) is also shown through its effect
on the interface.

7

(a) (b)

(e)(d) ( f )

(c)

(g) (h) (i)

0.06

0.06

0.04

0.02

10−2

0

0.08

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0

0

0.04

0.02

0

12

10−2

10−3

10−4

10−5

13
14

6

5x c
m

x c
m

V
cm

,x

A
xr

V
cm

,x
V

cm
,x

A
xr

0.5

1.0

1.5

2.0

A
xr

4

10

8

6

4

x c
m

10

8

6

4

0 2 4 0 2 4

Time: t∗
0 2 4

Time: t∗Time: t∗

0 62 4

Time: t∗
0 62 4

Time: t∗
0 62 4

Time: t∗

0 62 4

Time: t∗
0 62 4

Time: t∗
0 62 4

Time: t∗

10−3

10−4

10−5

10−7

Figure 20. The x coordinates of the centre of mass, the x velocity of the centre-of-mass and the axis ratio are
shown for different thresholds for wavelet errors of the volume fraction fields (χc) (a–c), different threshold for
wavelet error of the velocity field (χu) (d–f ), and different tolerances of the Poisson solver (g–i), respectively.
In (a–c) the maximum allowed refinement level N refers to a minimum cell size of L/2N . Thus, 256, 512 and
1024 cells per diameter correspond to N = 12, N = 13 and N = 14 respectively, given L = 16 and D = 1.
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associated with the three χc values are within 1 % of each other. This makes the choice
of χc less critical, and hence, the default value of χc = 10−6 is chosen for the production
runs.

Figure 20(a,b,c) shows the effect of N on the x coordinates of the centre of mass, x
velocities of the centre of mass and aspect ratios of the drop, respectively. It is observed
that the three N values start to diverge as the drop reaches its minimum aspect ratio,
with N = 12 showing the highest values corresponding to the least deformation. As the
maximum allowed refinement increases, the drop starts to deform more, with N = 14
showing the highest deformation. This points to the larger numerical diffusion in the
N = 12 case. The N = 13 and N = 14 cases show much closer results for all three plots.
We find that N also has a dramatic effect on computational costs, with N = 14 requiring
approximately three times the computational time as required for N = 13. The N = 13
case, which is equivalent to 512 cells per diameter for L = 16, provides a good balance
between accuracy and computational costs. For all simulations in this study, N = 13 is
chosen as the default value for L = 16. For the highest Re0 cases (Oho = 0.0001), N = 14
is chosen to ensure that the low viscosity ambient flow is resolved accurately.

Figure 20(d,e, f ) plots xcm , Vcm,x and Axr for four different values of χu . We observe
that apart from the lowest value of χu = 10−2, the three properties are almost identical for
all values of χu . The χu = 10−2 case shows a lower Axr , resulting from higher dissipation
of the energy contained in the drop, compared with the other three cases, resulting in
a slightly higher xcm and Vcm,x . The results for χu = 10−4 and χu = 10−5 are almost
identical, with the computational cost for χu = 10−4 being approximately 2.5 times less
than that for χu = 10−5. Hence, χu = 10−4 is chosen for the production runs.

Finally, from the convergence plot for the tolerance of the Poisson solver in
figure 20(g,h,i), we observe that the x coordinates of the centre of mass, x velocities of the
centre of mass and axis ratios are almost identical for all three values of ε. We hence use
the lowest value of ε = 10−3 for the production runs, as it provides a converged result with
the least computational cost.

Appendix C. Comparison to 3-D simulations
To justify the use of axisymmetric simulations for the wide parameter space of
density ratios and viscosities under consideration, we conduct 3-D simulations for
some benchmark cases in order to verify if 3-D simulations produce similar non-trivial
morphologies as the axisymmetric simulations. A qualitative match with axisymmetric
simulations would justify their use for prediction in the respective pancake and bag
orientations for the parameter space. Jain et al. (2019) states that, ‘For the drops
with high ρ, flow around the drop has relatively low effect on the drop deformation,
morphology and the breakup’. If this is the case, the ideal benchmark drop-ambient
systems should have either low ρ drops in low Oho flows, or high ρ drops in high Oho
flows in order to magnify the role of ambient flow on the drop. This is a computationally
favourable scenario for us, since both low ρ and low Re0 systems have significantly
reduced computational requirements. Keeping this in mind, we specify the following six
benchmark cases in three dimensions.

(i) Two of the cases are designed to verify the formation of forward pancakes in
axisymmetric simulations, one is a large density-ratio drop (ρ = 1000) in a shear-
stress dominated (large Oho) system, another is a low density-ratio drop (ρ = 10) in
a pressure dominated system. These simulations are run at the same refinement level
as the axisymmetric simulations.
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Figure 21. The fluid interface for different time instances for axisymmetric (shown in black) and 3-D (shown
in red) simulations for five different cases, with the drop-ambient system properties mentioned in the figure
as {ρ, Oho, Ohd , We0}. Two of these cases, shown in (a) and (b), are chosen to verify if the axisymmetric
simulations can capture the formation of a forward pancake in two different contexts: a large density-ratio drop
(ρ = 500) and a low density-ratio drop (ρ = 10). The cases shown in (c) and (d) help us verify the physical
validity of forward bags observed during threshold fragmentation of low ρ drops and small Oho values. The
final case (e) serves to highlight the differences between axisymmetric and 3-D simulations for cases where
both the drop and ambient Ohnesorge numbers are the smallest. The pressure fields at t∗ ≈ 1 are also shown.

(ii) Two of the cases test the ability of axisymmetric simulations to correctly predict
the transition from a forward pancake to forward bag for low density-ratio drops in
high Re0 systems. Both the simulations are run at the same refinement level as the
axisymmetric simulations.

(iii) An additional case at an intermediate density ratio of ρ = 100 is used to highlight
the differences between the two simulation types for large ambient Reynolds number
cases (Oho = 0.0001) and a low viscosity drop (Ohd = 0.001). This choice renders
the ambient flow non-axisymmetric since the formation of turbulent vortices is
a purely 3-D phenomenon, making such a flow system impossible to perfectly
reproduce with only axisymmetric simulations. The high Re0 of the flow coupled
with an intermediate density ratio makes the simulations computationally extremely
expensive making a 3-D simulation until fragmentation unfeasible. These simulations
have been run only until t∗ ≈ 1, i.e. until the formation of the pancake.

Backward bag formation has not been tested here, since it has already been considered in
§ 2.3. The fluid interface for axisymmetric and 3-D simulations for the cases described
in (i) and (ii) are shown in figure 21(a–d), with a red colour representing the 3-D
simulations. All four cases show a good qualitative match between the two simulation
types, with the formation of a forward pancake observed in all cases. The cases with
Oho � 0.001 (shown in panels a and b) show an excellent match in the interface shape all
throughout the deformation process. For the Oho = 0.0001 cases (shown in panels c and
d), the interface shape differs more, with the 3-D simulations showing a more pronounced
forward pancake and a larger forward bag compared with the axisymmetric simulations.
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This can be attributed to the differences in viscous dissipation between axisymmetric
and 3-D simulations. However, most importantly, the 3-D simulations transition from a
forward pancake to a forward bag in a manner similar to axisymmetric simulations, thus
supporting the physical validity of forward bag morphology observed in the axisymmetric
simulations.

Figure 21(e) shows the pressure field at t∗ ≈ 1 for the Oho = 0.0001 case for ρ = 100,
as described in (iii). It is observed that the pressure fields even for such high Re0 cases
are close to toroidal and interact similarly with the periphery of the drop. However, the
downstream stagnation pressures are much higher for the axisymmetric simulations. This
is consistent with the observations of Ling & Mahmood (2023). Thus, for all very large Re0
simulations with low Ohd performed in this work, both the pancake shape and subsequent
fragmentation morphology are not well justified. All simulation results for such cases are
to be considered with this caveat in mind. It is hypothesised that highly turbulent ambient
flow in low Oho systems produces non-axisymmetric interfacial perturbations that are
not reproduced in the axisymmetric simulations. These perturbations however have little
significance for the high Ohd cases, since they are rapidly dissipated at time scales smaller
than the deformation time scale. However, for low Ohd drops, these surface perturbations
persist for longer time scales and, hence, can significantly influence the subsequent
deformation. Thus, the axisymmetric simulations are not expected to accurately predict
the fragmentation morphology for cases with high ambient Reynolds numbers coupled
with very low drop viscosities.
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