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Abstract

We introduce a new family of coalescent mean-field interacting particle systems by pro-
ducing a pinning property that acts over a chosen sequence of multiple time segments.
Throughout their evolution, these stochastic particles converge in time (i.e. get pinned)
to their random ensemble average at the termination point of any one of the given time
segments, only to burst back into life and repeat the underlying principle of convergence
in each of the successive time segments, until they are fully exhausted. Although the
architecture is represented by a system of piecewise stochastic differential equations, we
prove that the conditions generating the pinning property enable every particle to pre-
serve their continuity over their entire lifetime almost surely. As the number of particles
in the system increases asymptotically, the system decouples into mutually independent
diffusions, which, albeit displaying progressively uncorrelated behaviour, still close in
on, and recouple at, a deterministic value at each termination point. Finally, we pro-
vide additional analytics including a universality statement for our framework, a study
of what we call adjourned coalescent mean-field interacting particles, a set of results on
commutativity of double limits, and a proposal of what we call covariance waves.
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1. Introduction

A family of interacting diffusions that converge to their random ensemble average at the
end point of a finite time period has been studied in [26], which was proposed as a mathemat-
ical intersection between pinned diffusions [1, 2, 4, 14, 20, 23, 25] and mean-field interacting
systems [3, 7–10, 12, 16, 19, 32]. In this paper we shall significantly generalise the framework
of [26, 27] through a system of piecewise stochastic differential equations (SDEs) that allows
the pinning property to extend to multiple time segments fixed from the outset, while ensuring
that every path in the system remains continuous throughout their lifetime. In this context, a
time segment is defined as a finite slice of time, or a self-contained interval of habitation, with
a fixed initial and end point, which allows us to compartmentalise the evolution of stochastic
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particles without forfeiting their continuity; and gives us the flexibility to change the num-
ber and velocity (and other parametric dependences such as momentum or energy levels) of
particles subsequent to the rebirth of a system. As such, our framework represents a dynamic
structure with continual termination–renewal characteristics on a recurrent basis, whereby the
distribution attained at each termination–renewal time-point is driven solely by the ensem-
ble average of the system. Here, a termination–renewal time-point becomes an instance when
a system of stochastic particles collapses into a Gaussian random value (whose variance is
inversely proportional to the number of particles in the system) and gets reanimated back to
life, either instantaneously or after a certain suspension of time. To the best of our knowledge,
there is no other work that studies interacting diffusion systems with such behaviour. As such,
this paper generalises [26] considerably from a single time segment to any number of succes-
sive time segments, while sustaining the time-continuity of the running system with multiple
randomly determined collapse points – a mathematical consideration that did not arise in [26].
We also allow an additional flexibility in defining interaction as a weighted average of the par-
ticles, instead of solely a simple average used in [26]; this is relevant to encapsulating systems
in which the number, or the interaction-contribution, of particles may change from one time
segment to another. In addition, the current framework additionally provides a universality
statement, a connection to random n-bridges of [29], and what we call adjourned coalescent
mean-field interacting particles as well as covariance waves that could not arise in [26]. We
shall also highlight that the system we define here is in general not strictly an n-dimensional
pinned diffusion, since n-dimensional pinned diffusions do not interact on their pinning-point
(as it is a deterministic value given from the outset), whereby in our system, such a point, and
in fact a collection of such points, manifest randomly as a consequence of dynamic mean-
field interactions. However, as we take the limit of the number of particles asymptotically, we
prove that such systems converge to n-dimensional pinned diffusions, where they get pinned to
their initial values from their most recent time segment initiation (which coincides with their
termination point from the last time segment).

Our motivation arises from modelling any multivariate system where each unit advances
into a (possibly random) shared value that is dictated by the statistics of the whole flock of units
at multiple fixed time-points, where the termination (or suspension) of the movement of every
unit impregnates the renewal of another in a successive manner. The question is: What sort
of a system behaves in this way? An example for a composite physical system with continu-
ous termination–renewal behaviour has been studied in [29], where an alternative mathematical
approach (without mean-field interactions) is developed through so-called random n-bridges to
model sequential state reduction of commutative Hamiltonians in quantum measurement the-
ory. In [29], the authors achieve a generalised multi-period stochastic Schrödinger equation on
a complex Hilbert space that consistently captures sequential collapse dynamics of eigenstates
through a single wave function. In this current paper, we retain our interest in multi-period
architectures that produce recurrent interchanges between future collapses and regenerations,
but provide a different approach which can also embed mean-field interactions between every
existing particle – a non-trivial trait that could not be addressed in [29]. Accordingly, the family
of processes proposed in this paper may find use in representing coalescent interacting particle
systems where the distribution of the values of members over a sequence of fixed future time-
points are driven by mean-fields. The framework, though not only constrained to phenomenon
that occur in particle physics, may also carve out an alternative view to the Einstein–Rosen
bridges [11, 31], multi-particle collision (MPC) dynamics [13, 21, 22], interacting information
flows that encapsulate noisy observations [6, 15, 24, 25, 28], and mean-field games that attain
sequential equilibria when optimal decisions involve infinite agents in the limit [17, 18, 30].
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Mean-field interacting systems with sequential coalescence at future ensemble averages 3

Although we humbly envision these connections, we reserve this paper for mainly establishing
the mathematical machinery, and leave these possible applications for future research.

In the classical literature on interacting particles, as the number of particles increases
asymptotically, one typically obtains mutually independent Ornstein–Uhlenbeck processes that
display uncoupled and divergent behaviour in the limit (leading to propagation of chaos, see
[32]), thereby lacking any form of coalescing behaviour. On the other hand, in our framework,
owing to the introduction of an additional dimension of time-convergence property through a
class of strictly non-constant functions satisfying particular integration conditions that dynam-
ically regulate the dominance of mean-field interactions, we can enforce mutually independent
diffusions to culminate into a single point, at the cessation of every time segment, allowing a
degree of control and foresight from the outset of the entire particle evolution. Accordingly, as
the number of units in the system trends to infinity, these units grow into independent diffu-
sions that necessarily recouple and nestle at a fixed value at each successive terminus, before
passing into the next time segment. As an example, in the mean-field limit, we prove that we
can reach a family of α-Wiener bridges that are continuously glued to each other across the
whole span of time. This framework, being flexibly parametric in its constitution, also prompts
various interesting questions around the commutativity of double limits, the adjournment of
termination–renewal points, the oscillation of what we call covariance waves, and the dynamic
allocation of what can be viewed as particle inventories, which will be introduced and dis-
cussed with various examples in the paper. As such, the paper also touches on the following
questions, which manifest as natural by-products of the framework.

(i) Does the system satisfy a consistency property regarding the exchangeability of double
limits across time and space? In other words, is the system commutative at its limits?

(ii) Given that the mean-field communication between particles is foundational, how
do the induced covariance matrices behave in time? Can we infer the coalescence
characteristics of the system through covariance trajectories?

(iii) In the case of being constrained by a limited ‘inventory’ of particles, how many par-
ticles must one add successively into each time segment to ensure the same degree of
convergence under a certain confidence interval?

These questions will be addressed rigorously in the coming sections. The paper is organised as
follows. Section 2 provides the mathematical model and the main results. Section 3 provides
additional mathematical analysis and numerical simulations. Section 4 concludes.

2. Mathematical framework

We work over a finite time horizon T= [0, T] for some fixed T <∞, and choose multiple
time-points in T denoted as T (k)

start and T (k)
end for k ∈K with K= {1, . . . ,m} such that

0 = T (1)
start < T (1)

end ≤ T (2)
start < T (2)

end ≤ · · · ≤ T (m)
start < T (m)

end = T (2.1)

for some m ∈N+. If m = 1 or m = 2, the relationship in (2.1) should be understood by the
reader accordingly. We collect each T (k)

start and T (k)
end in the following:

T
(k) = [

T (k)
start, T (k)

end

)
and T

start = {
T (k)

start : ∀k ∈K} and T
end = {

T (k)
end : ∀k ∈K}.

Each element of Tend will be interpreted as a termination (or a suspension) time-point when all
the stochastic units in the interacting system converge to their random ensemble average, and
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4 L. MENGÜTÜRK AND M. MENGÜTÜRK

each element of Tstart will be interpreted as a revival time-point when the system is restored
to a dynamic state with all the units picking up their stochastic movements; this remark will
be clarified later on in the paper. The relationship given by T (k)

end ≤ T (k+1)
start for k ∈K allows the

possibility of representing non-zero durations between termination and renewal times.

2.1. Main model

The number of particles in the system is given by n ∈N+, where the process (i.e. path) of
each R-valued particle X(i,n) over time is denoted by

{X(i,n)
t }t∈T = {X(i,n)

t : ∀t ∈T} with X(i,n)
0 = x ∈R. (2.2)

We shall note that the initial points can be generalised to random variables, and each parti-
cle can be extended to take values in R

d for some d ∈N+, which we skip in this paper for
parsimony. For the rest of the paper, {A(n)

t }t∈T models the ensemble average

A(n)
t = 1

n

n∑
j=1

β(j,n)X(j,n)
t for all t ∈T, (2.3)

with the conditions

|β(i,n)|<∞ and
n∑

i=1

β(i,n) = n,

which dynamically quantifies the weighted empirical average state of the particle system. If
β(i,n) = 1 for every i ∈ I, then A(n)

t is the standard simple ensemble average for any t ∈T.
We work on a filtered probability space (�,F, {Ft}t≤∞, P), where a time-shifted (P, {Ft})-
Brownian motion is denoted by

{W(i,k)
t }t∈T = {W(i,k)

t : ∀t ∈T} with W(i,k)
s = 0 for all s ≤ T (k)

start, (2.4)

for all i ∈ I= {1, . . . , n}. We can collect every {W(i,k)
t }t∈T in the R

n×m-valued {Wt}t∈T
given by

Wt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W(1,1)
t , . . . ,W(1,k)

t , . . . ,W(1,m)
t

...
...

...

W(i,1)
t , . . . ,W(i,k)

t , . . . ,W(i,m)
t

...
...

...

W(n,1)
t , . . . ,W(n,k)

t , . . . ,W(n,m)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We assume that each {W(i,k)
t }t∈T is mutually independent across i ∈ I for a fixed k ∈K, i.e.

across the rows of {Wt}t∈T. On the other hand, unless stated otherwise, {W(i,k)
t }t∈T does not

have to be mutually independent across k ∈K for a fixed i ∈ I, i.e. across the columns of
{Wt}t∈T. We are now in a position to construct a stochastic system of interacting particles
pinned sequentially to A(n)

t at every t ∈T
end. We shall first propose the following system of

SDEs and later specify certain conditions on it for our purposes:

dX(i,n)
t = f (k)(t)

(
A(n)

t − X(i,n)
t

)
dt + σ

(k)
t

(
ρ(k) dB(k)

t +
√

1 − (ρ(k))2 dW(i,k)
t

)
, (2.5)
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Mean-field interacting systems with sequential coalescence at future ensemble averages 5

for t ∈T
(k), k ∈K, and

X(i,n)
e = A(n)

T(k−1)
end

for all e ∈ [
T (k−1)

end , T (k)
start

]
, k ∈K, (2.6)

for all i ∈ I with T (0)
end = T (1)

start = 0, where

lim
t→T(k)

end

∫ t

T(k)
start

(
σ (k)

s

)2ds<∞.

Here ρ(k) ∈ [ − 1, 1], {B(k)
t }t∈T is a mutually independent time-shifted (P, {Ft})-Brownian

motion (as in (2.4)) that represents common noise in the system, and f (k) : T(k) →R+ is a
measurable map that is continuous. Note that we have∫ t

T(k)
start

exp

(
−
∫ t

s
f (k)(u) du

)
ds<∞ for all t ∈T

(k), k ∈K,

since f (k) is non-negative. For parsimony, we shall set σ (k)
t = σ (k) �= 0 for the rest of this work.

From (2.5)–(2.6), we see that each particle takes the value A(n)
e at each e ∈T

end \ {T (m)
end},

which are unknown prior to any of these time-points. Hence (2.6) may appear ill-defined at
first since (2.5) defines the dynamics of X(i,n)

t only up to some t strictly smaller than T (k)
end for

k ∈K. However, the system is in fact well-defined since we can show (see (2.10) below) that

lim
t→T(k)

end

A(n)
t = A(n)

T(k)
start

+ σ (k)ρ(k)B(k)

T(k)
end

+ σ (k)
√

1 − (ρ(k))2

n

n∑
j=1

β(j,n)W(j,k)

T(k)
end

, (2.7)

which is well-defined. This property of being able to write the limit of the ensemble average
exogenously through B(k)

T(k)
end

and W(j,k)

T(k)
end

is a key component for (2.5)–(2.6) to be well-defined for

every t ∈T. On the other hand, even if we can achieve a well-defined system, these processes
are a priori not necessarily time-continuous P⊗ dt everywhere for an arbitrary choice of f (k),
which possibly makes the system jump to A(n)

e at e ∈T
end \ {T (m)

end} in an ad hoc manner, rather
than converge to these values in a continuous manner. To address this, we shall impose suf-
ficiency conditions on f (k) to achieve time-continuity P⊗ dt everywhere for the entire system
with convergence to A(n)

e at every e ∈T
end (including T (m)

end) given by (2.7), which will make

(2.5)–(2.6) a well-defined continuous system with consistent limits for each t → T (k)
end.

2.2. Temporal analysis

As part of Definition 2.1 below, we are now in a position to highlight the sufficiency condi-
tions on f (k) to achieve time-continuity for the system; for example, f (k) cannot be constant – an
uncommon restriction one would typically not be concerned about in the classical mean-field
setting.

Definition 2.1. Let F(k) be the space of measurable, non-negative, continuous functions on T
(k)

that satisfy the following properties:

(i) lim
t→T(k)

end

∫ t
T(k)

start
f (k)(s) ds = ∞,

(ii)
∫ τ

T(k)
start

f (k)(s) ds<∞ for any τ ∈T
(k).

Unless stated otherwise, t → T (k)
end should be understood as the limit from the left for t ∈T

(k).
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6 L. MENGÜTÜRK AND M. MENGÜTÜRK

Proposition 2.1. Let f (k) ∈ F(k) for every k ∈K. Then each {X(i,n)
t }t∈T is time-continuous P⊗ dt

everywhere, such that

X(i,n)
e = A(n)

e for all e ∈T
end, i ∈ I. (2.8)

Proof. If we write (2.5) in the integral form and use (2.2) and (2.3), we have

X(i,n)
t = A(n)

T(k)
start

+
∫ t

T(k)
start

f (k)(s)
(
A(n)

s − X(i,n)
s

)
ds + σ (k)

(
ρ(k)B(k)

t +
√

1 − (ρ(k))2W(i,k)
t

)
(2.9)

for every t ∈T
(k) and k ∈K. Then, using

∑n
j=1 β

(j,n) = n and (2.9), we can rewrite the weighted
ensemble average as

A(n)
t = A(n)

T(k)
start

+ σ (k)ρ(k)B(k)
t + σ (k)

√
1 − (ρ(k))2

n

n∑
j=1

β(j,n)W(j,k)
t (2.10)

for t ∈T
(k), where the time-shifted Brownian motions in (2.10) satisfy

B
T(k)

start
= 0 and W(i,k)

T(k)
start

= 0

for all i ∈ I. Hence, in solving the system of SDEs in (2.5)–(2.6), we generalise the solution in
[26, Proposition 2.1] through the ansatz maps

1

n

n∑
j=1

W(j)
t 
→ 1∑n

j=1 β
(j,n)

n∑
j=1

β(j,n)W(j,k)
t , t ∈T

(k)

1

n

n∑
j=1

∫ t

0

γ (t)

γ (s)
dW(j)

s 
→ 1∑n
j=1 β

(j,n)

n∑
j=1

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
β(j,n) dW(j,k)

s , t ∈T
(k),

which, by verifying against (2.5)–(2.6) using Itô’s lemma, gives us the integral representation

X(i,n)
t = A(n)

T(k)
start

+ σ (k)ρ(k)B(k)
t + σ (k)

√
1 − (ρ(k))2

(
1

n

n∑
j=1

β(j,n)W(j,k)
t

)

+ σ (k)
√

1 − (ρ(k))2

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(i,k)

s − 1

n

n∑
j=1

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
β(j,n) dW(j,k)

s

)

= A(n)

T(k)
start

+ σ (k)ρ(k)B(k)
t + σ (k)

√
1 − (ρ(k))2

(
1

n

n∑
j=1

β(j,n)W(j,k)
t

)

+ σ (k)
√

1 − (ρ(k))2

(
γ (k)(t)Y (i,k)

t − 1

n

n∑
j=1

β(j,n)γ (k)(t)Y (j,k)
t

)
(2.11)

for t ∈T
(k), where γ (k) : T(k) →R+ and {Y (i,k)

t }t∈T(k) are given by

γ (k)(t) = exp

(
−
∫ t

T(k)
start

f (k)(u) du

)
, Y (i,k)

t =
∫ t

T(k)
start

γ (k)(s)−1 dW(i,k)
s ,
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given
∑n

j=1 β
(j,n) = n, and having the time-shift property of {W(i,k)

t }t∈T from (2.4). Denoting
the first derivative by

(γ (k))
′
(t) = dγ (k)(t)

dt
,

and applying Itô’s integration-by-parts formula as in [14, 20], we obtain

d
(
γ (k)(t)−1W(i,k)

t
)= dY (i,k)

t − W(i,k)
t

(γ (k))
′
(t)

(γ (k))2(t)
dt

for t ∈T
(k), where we have

(γ (k))
′
(t) = −f (k)(t) exp

(
−
∫ t

T(k)
start

f (k)(u) du

)

for t ∈T
(k). By integration, it thus follows that

γ (k)(t)−1W(i,k)
t = Y (i,k)

t −
∫ t

T(k)
start

W(i,k)
s

(γ (k))
′
(s)

(γ (k))2(s)
ds

= Y (i,k)
t +

∫ t

T(k)
start

W(i,k)
s

f (k)(s)

γ (k)(s)
ds. (2.12)

For the following, define the map U(k) : T(k) ×T
(k) →R by

U(k)(s, t) = f (k)(s)
γ (k)(t)

γ (k)(s)
. (2.13)

If we rearrange (2.12) and multiply both sides by γ (t), we can write

Y (i,k)
t = γ (k)(t)−1W(i,k)

t −
∫ t

T(k)
start

W(i,k)
s

f (k)(s)

γ (k)(s)
ds

⇒ γ (k)(t)Y (i,k)
t = W(i,k)

t −
∫ t

T(k)
start

W(i,k)
s U(k)(s, t) ds. (2.14)

From (2.13), we have ∫ τ

T(k)
start

U(k)(s, t) ds = γ (k)(t)

γ (k)(τ )
− γ (k)(t), (2.15)

and since f (k) ∈ F(k) for every k ∈K, we have

lim
t−→T(k)

end

γ (k)(t) = lim
t−→T(k)

end

exp

(
−
∫ t

T(k)
start

f (k)(u) du

)
= 0, (2.16)

which, using (2.15), implies

lim
t−→T(k)

end

∫ τ

T(k)
start

U(k)(s, t) ds = 0 (2.17)
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8 L. MENGÜTÜRK AND M. MENGÜTÜRK

for τ ∈T
(k), given that t− → T (k)

end indicates the limit from the left with t ∈T
(k); we specify the

directional notation of the limit for the purpose of this proof rather than just using t → T (k)
end. In

addition, ∫ t

T(k)
start

U(k)(s, t) ds = 1 − γ (k)(t), (2.18)

and hence, using (2.16) and (2.18), we have

lim
t−→T(k)

end

∫ t

T(k)
start

U(k)(s, t) ds = 1. (2.19)

From (2.17) and (2.19), the map U(k) is an approximation to the identity in the sense of [20].
Accordingly, using [20], if there is a continuous function λ : [ρ1, ρ2] →R, with 0 ≤ ρ1 <ρ2 <

∞, and a function 
 : [ρ1, ρ2) × [ρ1, ρ2) →R+ that satisfy

lim
t→ρ2

∫ t

ρ1


(s, t) ds = 1 and lim
t→ρ2

∫ ρ∗

ρ1


(s, t) ds = 0, ρ∗ ∈ [ρ1, ρ2),

it is an approximation to the identity, so that

lim
t→ρ2

(
λ(t) −

∫ t

ρ1

λ(s)
(s, t) ds

)
= 0. (2.20)

Since the time-shifted Brownian motion {W(i,k)
t }t∈T has continuous sample paths P-a.s. on T,

using (2.20), we thus have

P

(
lim

t−→T(k)
end

(
W(i,k)

t −
∫ t

T(k)
start

W(i,k)
s U(k)(s, t) ds

)
= 0

)
= 1. (2.21)

Note that, using (2.14), we have

lim
t−→T(k)

end

γ (k)(t)Y (i,k)
t = lim

t−→T(k)
end

W(i,k)
t − lim

t−→T(k)
end

∫ t

T(k)
start

W(i,k)
s U(k)(s, t) ds,

which, by using (2.21), implies

P

(
lim

t−→T(k)
end

γ (k)(t)Y (i,k)
t = 0

)
= 1, P

(
lim

t−→T(k)
end

1

n

n∑
j=1

γ (k)(t)Y (j,k)
t = 0

)
= 1,

which further means

lim
t−→T(k)

end

(
γ (k)(t)Y (i,k)

t − 1

n

n∑
j=1

β(j,n)γ (k)(t)Y (j,k)
t

)
= 0, P-a.s. (2.22)
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Since affine transformations of Gaussian processes are Gaussian, X(i,n)
t is Gaussian for all

t ∈T
(k) and i ∈ I. Taking the limit from the left t− → T (k)

end of X(i,n)
t in (2.11), and using (2.22),

lim
t−→T(k)

end

X(i,n)
t = A(n)

T(k)
start

+ σ (k)ρ(k)B(k)

T(k)
end

+ σ (k)
√

1 − (ρ(k))2

(
1

n

n∑
j=1

β(j,n)W(j,k)

T(k)
end

)
, P-a.s.

= A(n)

T(k)
end

, (2.23)

which provides L1-convergence due to the Gaussian property. On the other hand, since the
limit from the right t+ → T (k)

end with t> T (k)
end gives

lim
t+→T(k)

end

X(i,n)
t = A(n)

T(k)
end

,

using the SDE in (2.5)–(2.6), each {X(i,n)
t }t∈T must be time-continuous P⊗ dt everywhere.

Since the above arguments hold for every k ∈K and i ∈ I, the equality in (2.8) holds. �

Proposition 2.1 proves that solution to (2.5)–(2.6) exists for all t ∈T, and in turn provides
us with a system of particles with continuous paths, where each unit converges to the random
ensemble average of the system at every t ∈T

end. We shall now make sense of the distribution
of the ensemble average at t ∈T

end recursively, as we pass along k ∈K. Let

‖β(n)‖2
L2 =

n∑
j=1

(β(j,n))2,

as the squared L2-norm of the averaging weights, and define, for every k ∈K,

V (k,n) =
k∑

l=1

(σ (l))2(T (l)
end − T (l)

start
)(

(ρ(l))2 + 1 − (ρ(l))2

n2
‖β(n)‖2

L2

)
. (2.24)

The results for the rest of this section require the Brownian motions in (2.5) to be mutually
independent.

Proposition 2.2. Let every time-shifted Brownian motion {B(k)
t }t∈T and {W(i,k)

t }t∈T in the
system be mutually independent for every k ∈K and i ∈ I. Then

A(n)

T(k)
end

∼N(x, V (k,n)),

given that N(.) stands for the Gaussian distribution.

Proof. We prove this result recursively. As a start, fix k = 1 as the base case. Using (2.10),
we have

A(n)

T(1)
end

= x + σ (1)ρ(1)B(1)

T(1)
end

+ σ (1)
√

1 − (ρ(1))2

(
1

n

n∑
j=1

β(j,n)W(j,1)

T(1)
end

)

law= x + σ (1)

√
(ρ(1))2 + 1 − (ρ(1))2

n2
‖β(n)‖2

L2Z(1)

T(1)
end

∼N
(

x, (σ (1))2T (1)
end

(
(ρ(1))2 + 1 − (ρ(1))2

n2
‖β(n)‖2

L2

))
, (2.25)
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where Z(1)

T(1)
end

is a Gaussian random variable such that

Z(1)

T(1)
end

∼N(
0, T (1)

end − T (1)
start

)=N(
0, T (1)

end

)
.

Now fix k = 2. From (2.5)–(2.6), we know that

A(n)

T(1)
end

= A(n)

T(2)
start
, (2.26)

even when T (1)
end �= T (2)

start. We can now evaluate the distribution of A(n)

T(2)
end

using (2.10), (2.25), and

(2.26) as follows:

A(n)

T(2)
end

= x + σ (1)ρ(1)B(1)

T(1)
end

+ σ (1)
√

1 − (ρ(1))2

(
1

n

n∑
j=1

β(j,n)W(j,1)

T(1)
end

)

+ σ (2)ρ(2)B(2)

T(2)
end

+ σ (2)
√

1 − (ρ(2))2

(
1

n

n∑
j=1

β(j,n)W(j,2)

T(2)
end

)

law= x + σ (1)

√
(ρ(1))2 + 1 − (ρ(1))2

n2
‖β(n)‖2

L2 Z(1)

T(1)
end

+ σ (2)

√
(ρ(2))2 + 1 − (ρ(2))2

n2
‖β(n)‖2

L2Z(2)

T(2)
end

∼N
(

x, (σ (1))2T (1)
end

(
(ρ(1))2 + 1 − (ρ(1))2

n2
‖β(n)‖2

L2

))

+N
(

x, (σ (2))2(T (2)
end − T (2)

start
)(

(ρ(2))2 + 1 − (ρ(2))2

n2
‖β(n)‖2

L2

))
, (2.27)

since all Brownian motions in the system are mutually independent, including the ones across
the columns of {Wt}t∈T. We can see that for any k> 2 the additive structure to the variance of
the Gaussian distribution continues, and the result follows. �

The following result provides the covariance structure of the system over every time
segment T(k). For the statement below, we shall denote

1i,j � 1(i = j) for i, j ∈ I

as the indicator function. Moreover, we denote the covariance between X(i,n)
t and X(j,n)

t as

C(i,j,n)
t =E

[
X(i,n)

t X(j,n)
t

]−E
[
X(i,n)

t
]
E
[
X(j,n)

t
]

for t ∈T
(k). We are now in a position to state the following.

Proposition 2.3. Keep the conditions of Proposition 2.1 and let every time-shifted Brownian
motion {B(k)

t }t∈T and {W(i,k)
t }t∈T in the system be mutually independent for every k ∈K and
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i ∈ I. Then

C(i,j,n)
t

= (σ (k))2(t − T (k)
start

)(
(ρ(k))2 + (1 − (ρ(k))2)‖β(n)‖2

L2

n2

)

+ (σ (k))2(1 − (ρ(k))2)1i,j

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds + V (k−1,n)

+ (σ (k))2(1 − (ρ(k))2)

n

(
(β(i,n) + β(j,n))

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
ds − 2

‖β(n)‖2
L2

n

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
ds

)

− (σ (k))2(1 − (ρ(k))2)

n

(
(β(i,n) + β(j,n))

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds − ‖β(n)‖2

L2

n

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds

)
(2.28)

for t ∈T
(k) and i, j ∈ I, where V (k,n) is defined as in (2.24) and V (0,n) = 0.

Proof. First of all, for E
[
X(i,n)

t X(j,n)
t

]
, we define the following functions:

φ
(i,j)
t =

(
A(n)

T(k)
start

)2 + 2A(n)

T(k)
start
σ (k)ρ(k)B(k)

t + A(n)

T(k)
start
σ (k)

√
1 − (ρ(k))2

(
1

n

n∑
p=1

β(p,n)W(p,k)
t

)

+ A(n)

T(k)
start
σ (k)

√
1 − (ρ(k))2

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(i,k)

s − 1

n

n∑
p=1

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
β(p,n) dW(p,k)

s

)

+ A(n)

T(k)
start
σ (k)

√
1 − (ρ(k))2

(
1

n

n∑
r=1

β(r,n)W(r,k)
t

)

+ A(n)

T(k)
start
σ (k)

√
1 − (ρ(k))2

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(j,k)

s − 1

n

n∑
r=1

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
β(r,n) dW(r,k)

s

)

for t ∈T
(k), i, j ∈ I, and

ψ
(i,j)
t

= (
σ (k)ρ(k)B(k)

t
)2 + σ (k)ρ(k)B(k)

t σ
(k)
√

1 − (ρ(k))2

(
1

n

n∑
p=1

β(p,n)W(p,k)
t

)

+ σ (k)ρ(k)B(k)
t σ

(k)
√

1 − (ρ(k))2

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(i,k)

s − 1

n

n∑
p=1

∫ t

T(k)
start

β(p,n) γ
(k)(t)

γ (k)(s)
dW(p,k)

s

)

+ σ (k)ρ(k)B(k)
t σ

(k)
√

1 − (ρ(k))2

(
1

n

n∑
r=1

β(r,n)W(r,k)
t

)

+ σ (k)ρ(k)B(k)
t σ

(k)
√

1 − (ρ(k))2

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(j,k)

s − 1

n

n∑
r=1

∫ t

T(k)
start

β(r,n) γ
(k)(t)

γ (k)(s)
dW(r,k)

s

)
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for t ∈T
(k), i, j ∈ I, and finally

κ
(i,j)
t = (σ (k))2(1 − (ρ(k))2)

n2

n∑
p=1

n∑
r=1

β(p,n)β(r,n)W(p,k)
t W(r,k)

t

+ (σ (k))2(1 − (ρ(k))2)

n

n∑
p=1

β(p,n)
∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
W(p,k)

t dW(j,k)
s

− (σ (k))2(1 − (ρ(k))2)

n2

n∑
p=1

n∑
r=1

β(p,n)β(r,n)
∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
W(p,k)

t dW(r,k)
s

+ (σ (k))2(1 − (ρ(k))2)

n

n∑
r=1

β(r,n)
∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
W(r,k)

t dW(i,k)
s

+ (σ (k))2(1 − (ρ(k))2)
∫ t

T(k)
start

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
dW(i,k)

s dW(j,k)
s

− (σ (k))2(1 − (ρ(k))2)

n

n∑
r=1

β(r,n)
∫ t

T(k)
start

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
dW(i,k)

s dW(r,k)
s

− (σ (k))2(1 − (ρ(k))2)

n2

n∑
p=1

n∑
r=1

β(p,n)β(r,n)
∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
W(r,k)

t dW(p,k)
s

− (σ (k))2(1 − (ρ(k))2)

n

n∑
p=1

β(p,n)
∫ t

T(k)
start

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
dW(j,k)

s dW(p,k)
s

+ (σ (k))2(1 − (ρ(k))2)

n2

n∑
p=1

n∑
r=1

β(p,n)β(r,n)
∫ t

T(k)
start

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
dW(r,k)

s dW(p,k)
s (2.29)

for t ∈T
(k), i, j ∈ I. Therefore we have

X(i,n)
t X(j,n)

t = φ
(i,j)
t +ψ

(i,j)
t + κ

(i,j)
t ⇒ E

[
X(i,n)

t X(j,n)
t

]=E
[
φ

(i,j)
t

]+E
[
ψ

(i,j)
t

]+E
[
κ

(i,j)
t

]
.

(2.30)

We shall now compute each expectation in (2.30). First, note that

A(n)

T(k)
start

= A(n)

T(k−1)
start

+ σ (k−1)ρ(k−1)B(k−1)

T(k−1)
end

+ σ (k−1)
√

1 − (ρ(k−1))2

n

n∑
j=1

β(j,n)W(j,k−1)

T(k−1)
end

. (2.31)

Since each time-shifted Brownian motion {B(k)
t }t∈T and {W(i,k)

t }t∈T in the system is mutually
independent for every k ∈K and i ∈ I, we have

E

[
A(n)

T(k)
start

B(k)
t

]
=E

[
A(n)

T(k−1)
end

B(k)
t

]

=E

[(
A(n)

T(k−1)
start

+ σ (k−1)ρ(k−1)B(k−1)

T(k−1)
end

+ σ (k−1)
√

1 − (ρ(k−1))2

(
1

n

n∑
j=1

β(j,n)W(j,k−1)

T(k)
end

))
B(k)

t

]
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=E

[(
A(n)

T(k−1)
start

)
B(k)

t

]
+E

[
σ (k−1)ρ(k−1)B(k−1)

T(k−1)
end

]
E
[
B(k)

t
]

+E

[
σ (k−1)

√
1 − (ρ(k−1))2

(
1

n

n∑
j=1

β(j,n)W(j,k−1)

T(k)
end

)]
E
[
B(k)

t
]

=E

[(
A(n)

T(k−1)
start

)
B(k)

t

]
, (2.32)

Now note that (2.32) itself collapses to zero recursively at E
[
xB(1)

t
]= 0, and hence

E

[
A(n)

T(k)
start

B(k)
t

]
= 0.

Following similar steps, we also have

E

[
A(n)

T(k)
start

(
1

n

n∑
p=1

β(p,n)W(p,k)
t

)]
=E

[
A(n)

T(k−1)
end

(
1

n

n∑
p=1

β(p,n)W(p,k)
t

)]
= 0.

Therefore we have

E
[
φ

(i,j)
t

]=E

[
(A(n)

T(k)
start

)2
]

= x2 +
k−1∑
l=1

(σ (l))2(T (l)
end − T (l)

start
)(

(ρ(l))2 + 1 − (ρ(l))2

n2
‖β(n)‖2

L2

)
,

which follows recursively from (2.31), which can also be verified using Proposition 2.2. In
addition, since

E

[
B(k)

t

(
1

n

n∑
p=1

β(p,n)W(p,k)
t

)]
=E

[
B(k)

t
]
E

[(
1

n

n∑
p=1

β(p,n)W(p,k)
t

)]
= 0,

and the same for similar terms in ψ (i,j)
t , we have

E
[
ψ

(i,j)
t

]=E
[
(σ (k)ρ(k)B(k)

t )2]
= (
σ (k)ρ(k))2(

t − T (k)
start

)
.

To compute the third term in (2.30), we use the mutual independence of Brownian motions and
Itô isometry to get the following:

n∑
p=1

β(p,n)
E

[∫ t

T(k)
start

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(p,k)

s dW(j,k)
s

]
= β(j,n)

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
ds,

n∑
p=1

n∑
r=1

β(p,n)β(r,n)
E

[∫ t

T(k)
start

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(p,k)

s dW(r,k)
s

]
= ‖β(n)‖2

L2

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
ds.

We also get

E

[
n∑

r=1

β(r,n)
∫ t

T(k)
start

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
dW(i,k)

s dW(r,k)
s

]
= β(i,n)

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds.
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Thus, taking the expectation of (2.29) provides

E
[
κ

(i,j)
t

]= (σ (k))2(1 − (ρ(k))2)

n2

n∑
p=1

(β(p,n))2
E
[
W(p,k)

t W(p,k)
t

]

+ (σ (k))2(1 − (ρ(k))2)

n
(β(i,n) + β(j,n))

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
ds

− 2
(σ (k))2(1 − (ρ(k))2)‖β(n)‖2

L2

n2

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
ds

+ (σ (k))2(1 − (ρ(k))2)1(i = j)
∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds

− (σ (k))2(1 − (ρ(k))2)

n
(β(i,n) + β(j,n))

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds

+ (σ (k))2(1 − (ρ(k))2)‖β(n)‖2
L2

n2

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds,

where we have the following:

E
[
W(p,k)

t W(p,k)
t

]= t − T (k)
start.

Finally, from (2.5)–(2.6), (2.10) and (2.11), we get

A(n)

T(1)
start

= x and A(n)

T(k−1)
end

= A(n)

T(k)
start

∀k ∈K \ {1} ⇒ E
[
X(i,n)

t
]
E
[
X(j,n)

t
]= x2

for t ∈T
(k) and i, j ∈ I, which can also be verified from (2.27). Putting all terms together under

C(i,j,n)
t =E

[
X(i,n)

t X(j,n)
t

]−E
[
X(i,n)

t
]
E
[
X(j,n)

t
]=E

[
φ

(i,j)
t

]+E
[
ψ

(i,j)
t

]+E
[
κ

(i,j)
t

]− x2

provides the result for t ∈T
(k) and i, j ∈ I. �

We defined V (0,n) = 0. For compact representation, we shall always allow expressions of
the form

0∑
l=1

z(l) � 0 for any z(l) ∈R.

Now, as an example, where σ (k) = 1, ρ(k) = 0 for every k ∈K and β(i,n) = 1 for every i ∈ I,
we get an interacting particle system with no common noise component, where the ensemble
average is given by the equally weighted simple average. Accordingly, using Proposition 2.3,
we have the covariance structure

C(i,j,n)
t = 1

n

k−1∑
l=1

(
T (l)

end − T (l)
start

)+ t − T (k)
start

n
+ 1i,j

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds − 1

n

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds
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for t ∈T
(k) and i, j ∈ I; we shall provide simulations of such a system in the next section due

to its fundamental standing in our framework.

Proposition 2.4. Keep the conditions of Proposition 2.3. Then

lim
t→T(k)

end

C(i,j,n)
t = V (k,n)

for t ∈T
(k) and i, j ∈ I.

Proof. Since f (k) ∈F(k) for all k ∈K, we must also have

lim
t→T(k)

end

∫ t

T(k)
start

yf (k)(s) ds = ∞ and
∫ τ

T(k)
start

yf (k)(s) ds<∞ (2.33)

for any τ ∈T
(k) and 1 ≤ y<∞. Accordingly, we introduce a scaled map g by

g(k)
y (t) = yf (k)(t) (2.34)

for all t ∈T
(k), and define the following:

�(k)
y (t) � γ (k)

y (t) = exp

(
−
∫ t

T(k)
start

g(k)
y (u) du

)
,

Zt � T (k)
start +

∫ t

T(k)
start

�(k)
y (s)−1 ds.

We denote

(
�(k)

y

)′
(t) = d�(k)

y (t)

dt

as the first derivative. If we apply integration by parts, then

d

(
t

�
(k)
y (t)

)
= dZt − t

(�(k)
y )

′
(t)

(�(k)
y (t))2

dt ⇒ t

�
(k)
y (t)

= Zt −
∫ t

T(k)
start

s
(�(k)

y )
′
(s)

(�(k)
y (s))2

ds, (2.35)

which, by using (2.34), implies

t

�
(k)
y (t)

= Zt +
∫ t

T(k)
start

s
g(k)

y (s)

�
(k)
y (s)

ds ⇒ �(k)
y (t)Zt = t −

∫ t

T(k)
start

sQ(k)
y (s, t) ds,

where we defined the function Q(k)
y : T(k) ×T

(k) →R as follows:

Q(k)
y (s, t) = g(k)

y (s)
�

(k)
y (t)

�
(k)
y (s)

.

Taking similar steps as in Proposition 2.1, we have

∫ τ

T(k)
start

Q(k)
y (s, t) ds = �

(k)
y (t)

�
(k)
y (τ )

−�(k)
y (t) ⇒ lim

t−→T(k)
end

∫ τ

T(k)
start

Q(k)
y (s, t) ds = 0 (2.36)
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16 L. MENGÜTÜRK AND M. MENGÜTÜRK

for τ ∈T
(k), and∫ t

T(k)
start

Q(k)
y (s, t) ds = 1 −�(k)

y (t) ⇒ lim
t−→T(k)

end

∫ t

T(k)
start

Q(k)
y (s, t) ds = 1, (2.37)

since, using (2.33)–(2.34), we have

lim
t−→T(k)

end

�(k)
y (t) = lim

t−→T(k)
end

exp

(
−
∫ t

T(k)
start

g(k)
y (u) du

)
= 0.

From (2.36)–(2.37), Q(k)
y approximates the identity as in [20], and hence, using the continuity

of t and (2.35), we get the following:

lim
t→T(k)

end

(
t −

∫ t

T(k)
start

sQ(k)
y (s, t) ds

)
= lim

t→T(k)
end

(
�(k)

y (t)Zt
)= 0. (2.38)

Using (2.38) and setting y = 1, we have

lim
t→T(k)

end

(
(β(i,n) + β(j,n))

∫ t

T(k)
start

�
(k)
1 (t)

�
(k)
1 (s)

ds − 2
‖β(n)‖2

L2

n

∫ t

T(k)
start

�
(k)
1 (t)

�
(k)
1 (s)

ds

)

= lim
t→T(k)

end

(
(β(i,n) + β(j,n))

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
ds − 2

‖β(n)‖2
L2

n

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
ds

)

= 0, (2.39)

and by setting y = 2, we have

lim
t→T(k)

end

1i,j

∫ t

T(k)
start

�
(k)
2 (t)

�
(k)
2 (s)

ds = lim
t→T(k)

end

1i,j

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds = 0

as well as

lim
t→T(k)

end

(
(β(i,n) + β(j,n))

∫ t

T(k)
start

�
(k)
2 (t)

�
(k)
2 (s)

ds − ‖β(n)‖2
L2

n

∫ t

T(k)
start

�
(k)
2 (t)

�
(k)
2 (s)

ds

)

lim
t→T(k)

end

(
(β(i,n) + β(j,n))

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds − ‖β(n)‖2

L2

n

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds

)
= 0. (2.40)

Using (2.39)–(2.40), and (2.28) in Proposition 2.3, we have

lim
t→T(k)

end

C(i,j,n)
t = (σ (k))2 lim

t→T(k)
end

(
t − T (k)

start
)(

(ρ(k))2 + (1 − (ρ(k))2)‖β(n)‖2
L2

n2

)
+ V (k−1,n),

and the result follows. �

The following corollary provides a fundamental scenario with simple ensemble average and
no common noise. We omit its proof as it follows directly from Proposition 2.4.

Corollary 2.1. Keep the conditions of Proposition 2.3 with (2.28), where σ (k) = 1, ρ(k) = 0 for
every k ∈K and β(i,n) = 1 for every i ∈ I. Then

lim
t→T(k)

end

C(i,j,n)
t = 1

n

k∑
l=1

(
T (l)

end − T (l)
start

)
(2.41)

for t ∈T
(k) and i, j ∈ I.
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Mean-field interacting systems with sequential coalescence at future ensemble averages 17

From (2.41), if n = k, the limiting covariance as t → T (k)
end becomes the average of the

distance between the termination and revival time-points at each time segment until T (k)
end.

Remark 2.1 The limiting values from Propositions 2.1, 2.2, and 2.4 do not depend on the
choice of f (k) ∈F(k); rather, f (k) controls the speed of convergence to these values. We also see
from Proposition 2.3 that f (k) ∈F(k) impacts the covariance trajectories of the system.

Regarding the effect of f (k) on the convergence rate, we shall leave a detailed study for
future research.

2.3. Spatial limits

Thus far, we have considered the behaviour of the interacting particle system over time
limits. We shall also study the limit as n → ∞, that is, as the number of particles in the system
grows asymptotically.

Assumption 2.1. Kolmogorov’s strong law property holds:

K=
∞∑

j=1

(β(j))2

j2
<∞, where β(j) = β(j,n) for all j ≤ n. (2.42)

As an example, for the simple ensemble average in (2.3) with β(j) = 1, (2.42) holds with
K= π2/6.

Proposition 2.5. Keep the conditions of Proposition 2.1 where (2.42) holds. Then

lim
n→∞ X(i,n)

t = ξ
(i)
t (2.43)

exists for every t ∈T and i ∈ I, and {ξ (i)
t }t∈T is time-continuous P⊗ dt everywhere such that

ξ
(i)
t = x +

k−1∑
l=1

σ (l)ρ(l)B(l)

T(l)
end

+ σ (k)ρ(k)B(k)
t + σ (k)

√
1 − (ρ(k))2

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(i,k)

s

)
(2.44)

for all t ∈T
(k) and i ∈ I.

Proof. Using Kolmogorov’s strong law property in (2.42), the limit

lim
n→∞

σ (k)
√

1 − (ρ(k))2

n

n∑
j=1

β(j,n)W(j,k)
t = 0 (2.45)

holds P-a.s., due to the strong law of large numbers. Then, using (2.5)–(2.6) and (2.10)
recursively, and the P⊗ dt everywhere time-continuity of {X(i)

t }t∈T, we get

lim
n→∞ A(n)

t = A(n)

T(k)
start

+ σ (k)ρ(k)B(k)
t

= A(n)

T(k−1)
start

+ σ (k−1)ρ(k−1)B(k−1)

T(k−1)
end

+ σ (k)ρ(k)B(k)
t

...

= x +
k−1∑
l=1

σ (l)ρ(l)B(l)

T(l)
end

+ σ (k)ρ(k)B(k)
t (2.46)
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18 L. MENGÜTÜRK AND M. MENGÜTÜRK

for every t ∈T
(k) for k ∈K. In addition, employing Kolmogorov’s strong law property in (2.42),

we further have

lim
n→∞

σ (k)
√

1 − (ρ(k))2

n

n∑
j=1

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
β(j,n) dW(j,k)

s = 0, P-a.s. (2.47)

From (2.11), (2.46), and (2.47), we have the representation in (2.44), which also proves the
existence of {ξ (i)

t }t∈T. Finally, the P⊗ dt everywhere time-continuity of {ξ (i)
t }t∈T is due to the

P⊗ dt everywhere time-continuity of {X(i)
t }t∈T. �

The convergence in (2.43) is pointwise; we shall leave it for future research to study the
convergence rate.

Corollary 2.2. Keep the conditions of Proposition 2.5. If ρ(k) = 0 for all k ∈K, then each
{ξ (i)

t }t∈T is mutually independent.

Proof. If ρ(k) = 0 for every k ∈K, we have from (2.44)

ξ
(i)
t = x + σ (k)

√
1 − (ρ(k))2

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(i,k)

s

)

for t ∈T
(k) and i ∈ I, where each {W(i)

t }t∈T is mutually independent across i ∈ I for k ∈K. �

We are now in a position to prove an important consistency property: the time and space lim-
its are commutative. More specifically, the limits t → T (k)

end and n → ∞ are exchangeable; that
is, the limiting values are the same irrespective of the order we take these limits. In Section 4
we shall discuss the interrelation of the limits n → ∞ vs. m → ∞, for which commutativity
may break.

Proposition 2.6. Keep the conditions of Proposition 2.1 where (2.42) holds. Then

lim
t→T(k)

end

lim
n→∞ X(i,n)

t = lim
n→∞ lim

t→T(k)
end

X(i,n)
t

= x +
k∑

l=1

σ (l)ρ(l)B(l)

T(l)
end

for all t ∈T
(k) and i ∈ I, P-a.s.

Proof. Using Proposition 2.5 and (2.21), we have

lim
t→T(k)

end

lim
n→∞ X(i,n)

t = lim
t→T(k)

end

ξ
(i)
t

= x +
k−1∑
l=1

σ (l)ρ(l)B(l)

T(l)
end

+ σ (k)ρ(k) lim
t→T(k)

end

B(k)
t

+ σ (k)
√

1 − (ρ(k))2 lim
t→T(k)

end

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(i,k)

s

)

= x +
k∑

l=1

σ (l)ρ(l)B(l)

T(l)
end
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for all t ∈T
(k) and i ∈ I, P-a.s. Exchanging the order of the limits and using (2.23) and the

strong law of large numbers in (2.45) due to (2.42), we have the following:

lim
n→∞ lim

t→T(k)
end

X(i,n)
t

= lim
n→∞ A(n)

T(k)
start

+ σ (k)ρ(k)B(k)

T(k)
end

+ lim
n→∞ σ (k)

√
1 − (ρ(k))2

(
1

n

n∑
j=1

β(j,n)W(j,k)

T(k)
end

)

= lim
n→∞ A(n)

T(k−1)
start

+ σ (k−1)ρ(k−1)B(k−1)

T(k−1)
end

+ σ (k−1)
√

1 − (ρ(k−1))2 lim
n→∞

1

n

(
n∑

j=1

β(j,n)W(j,k−1)
t

)

+ σ (k)ρ(k)B(k)

T(k)
end

+ lim
n→∞ σ (k)

√
1 − (ρ(k))2

(
1

n

n∑
j=1

β(j,n)W(j,k)

T(k)
end

)

= x +
k∑

l=1

σ (l)ρ(l)B(l)

T(l)
end

for all t ∈T
(k) and i ∈ I, P-a.s., which proves the commutativity of the double limits. �

Proposition 2.7. Keep the conditions of Proposition 2.3 with (2.28), where β(i,n) = 1 for every
i ∈ I. Then the following holds:

lim
t→T(k)

end

lim
n→∞ C(i,j,n)

t = lim
n→∞ lim

t→T(k)
end

C(i,j,n)
t

=
k∑

l=1

(σ (l))2(T (l)
end − T (l)

start
)
(ρ(l))2 (2.48)

for t ∈T
(k) and i, j ∈ I.

Proof. First, β(i,n) = 1 for every i ∈ I implies ‖β(n)‖2
L2 = n. From Proposition 2.3, (2.38),

and the strong law of large numbers, we have

lim
t→T(k)

end

lim
n→∞ C(i,j,n)

t = lim
t→T(k)

end

(σ (l))2(t − T (l)
start

)
(ρ(l))2 +

k−1∑
l=1

(σ (l))2(T (l)
end − T (l)

start
)
(ρ(l))2

+ lim
t→T(k)

end

(σ (k))2(1 − (ρ(k))2)1i,j

∫ t

T(k)
start

γ (k)(t)2

γ (k)(s)2
ds,

=
k∑

l=1

(σ (l))2(T (l)
end − T (l)

start
)
(ρ(l))2

for t ∈T
(k) and i, j ∈ I. Using Proposition 2.4 and the strong law of large numbers, we get

lim
n→∞ lim

t→T(k)
end

C(i,j,n)
t = lim

n→∞ V (k,n)

=
k∑

l=1

(σ (l))2(T (l)
end − T (l)

start
)
(ρ(l))2

for t ∈T
(k) and i, j ∈ I. �
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We shall highlight an important subclass of the proposed family of interacting particles; the
case ρ(k) = 0 for every k ∈K such that there is no common noise component in the system.
The statements below follow directly from Propositions 2.6 and 2.7.

Corollary 2.3. Keep the conditions in Proposition 2.6 and let ρ(k) = 0 for every k ∈K. Then
the following holds:

ρ(k) = 0 for all k ∈K ⇒ lim
t→T(k)

end

lim
n→∞ X(i,n)

t = lim
n→∞ lim

t→T(k)
end

X(i,n)
t = x

for all t ∈T
(k) and i ∈ I, P-a.s.

Corollary 2.4. Keep the conditions in Proposition 2.7 with (2.48), and let ρ(k) = 0 for every
k ∈K. Then the following holds:

ρ(k) = 0 for all k ∈K ⇒ lim
t→T(k)

end

lim
n→∞ C(i,j,n)

t = lim
n→∞ lim

t→T(k)
end

C(i,j,n)
t = 0

for all t ∈T
(k) and i ∈ I, P-a.s.

Corollaries 2.3 and 2.4 indicate a key property of the proposed system of interacting par-
ticles: when there is no common noise, as the size of the system grows asymptotically with
n → ∞, each and every particle in the system converges to their initial value x at every termi-
nation time-point in T

end. More precisely, each particle becomes an independent diffusion that
converges to x at each T

end, where the covariance of the system vanishes, only for the system
to be reanimated back to its stochastic behaviour between T

start and T
end.

Thus far, we have kept our presentation fairly abstract; we shall now provide a concrete
example of such a system. First, using (2.11), we combine the piecewise representation over
the entire T using indicator functions as follows:

X(i,n)
t

=
∑
k∈K

(
A(n)

T(k)
start

+ σ (k)ρ(k)B(k)
t + σ (k)

√
1 − (ρ(k))2

(
1

n

n∑
j=1

β(j,n)W(j,k)
t

))
1k

+
∑
k∈K

(
σ (k)

√
1 − (ρ(k))2

(∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
dW(i,k)

s − 1

n

n∑
j=1

∫ t

T(k)
start

γ (k)(t)

γ (k)(s)
β(j,n) dW(j,k)

s

))
1k

�
∑
k∈K

(
A(n)

T(k)
start

+ σ (k)ρ(k)B(k)
t + σ (k)

√
1 − (ρ(k))2

(
1

n

n∑
j=1

β(j,n)W(j,k)
t

)
+R(i, k, t)

)
1k

for t ∈T, where 1k � 1(t ∈T
(k)) is the indicator function.

Example 2.1. Let f (k) ∈ F(k) be given by

f (k)(t) = α(k)

T (k)
end − t

, t ∈T
(k), (2.49)
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for some α(k) ∈ (0,∞). Then we have

γ (k)(t) = exp

(
−
∫ t

T(k)
start

α(k)(T (k)
end − u

)−1 du

)

= exp

(
−α(k) log

(
T (k)

end − T (k)
start

T (k)
end

)
+ α(k) log

(
T (k)

end − t

T (k)
end

))

=
(

T (k)
end − t

T (k)
end

)α(k)(
T (k)

end − T (k)
start

T (k)
end

)−α(k)

.

Therefore we have

R(i, k, t) = σ (k)
√

1 − (ρ(k))2

×
(∫ t

T(k)
start

(
T (k)

end − t
)α(k)

(
T (k)

end − s
)α(k) dW(i,k)

s − 1

n

n∑
j=1

∫ t

T(k)
start

(
T (k)

end − t
)α(k)

(
T (k)

end − s
)α(k) β

(j,n) dW(j,k)
s

)
.

In Example 2.1, if we take n → ∞ and ρ(k) = 0 for all k ∈K, each particle behaves as a
collection of α-Wiener bridges that are continuously glued to each other across successive
time segments. We shall clarify that the process {Qt}t∈T given by

Qt =
∫ t

0

(T − t)α

(T − s)α
dWs

is an α-Wiener bridge with initial and terminal values at zero, with {Wt}t∈T a standard
(P, {Ft})-Brownian motion and α ∈ (0,∞).

3. Additional analysis

3.1. Numerical illustration

We shall provide a numerical exercise for Example 2.1 for demonstration purposes, where
we choose f (k) ∈ F(k) as given in (2.49) and use the Euler–Maruyama method to approxi-
mate (2.5)–(2.6) over the mesh 0 = t0 ≤ t1 ≤ · · · ≤ tE ≤ T for some E ∈N+. For parsimony,
we set α(k) = 1, σ (k) = σ and ρ(k) = ρ for every k ∈K. Finally, we let {X̂(i,n)

td }td∈T represent the

discretised version of {X(i,n)
t }t∈T for i ∈ I, where

X̂(i,n)
td+1

= X̂(i,n)
td + f (td)

(
A(n)

td − X̂(i,n)
td

)
δ+ σ

(
ρ
(
Btd+1 − Btd

)+
√

1 − ρ2
(
W(i,n)

td+1
− W(i,n)

td

))

for every i ∈ I, where we set X̂(i,n)
t0 = x = 0, β(i,n) = 1 for every i ∈ I, δ = T/E, td = δd and K=

{1, 2, 3}. For the simulations below, we set ρ = 0 to exclude common noise; the case where
ρ �= 0 can equally be studied, but we shall omit it from this paper to focus on demonstrating
how the system converges to x = 0 at each T

end as we increase the number of particles n.
For the scenarios below, we set T = 3, E = 3000, and σ = 1. In addition, we set Tstart =

{0, 1, 2} and T
end = {1, 2, 3}; hence the termination time-points coincide with the revival time-

points. In Figure 1 we show samples of the system for n = 10, n = 50, n = 100, and n = 1000.
At every termination time-point, the system converges to the ensemble average; that is, we get
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FIGURE 1. (a, b) n = 10 and n = 50, (c, d) n = 100 and n = 1000.

X(i,n)
e = A(n)

e for every e ∈T
end and every i ∈ I, as proved in Proposition 2.1. We also see that

the convergence points tend to 0 as we increase the number of particles, since we have

A(n)

T(k)
end

∼N(0, V (k,n)), where lim
n→∞ V (k,n) → 0 (3.1)

from Proposition 2.2, which means that (3.1) converges to the Dirac measure centred at 0.
With a slight modification on the terminal and revival time-points, we can produce what we
call adjourned coalescent mean-field interacting particles, where the system gets suspended at
its ensemble average over longer time periods before it is restored back to its stochastic nature.
Accordingly, in Figure 2, we set Tstart = {0, 1.1, 2.1} and T

end = {1, 2, 3}, again for n = 10,
n = 50, n = 100, and n = 1000. The system sticks to its ensemble average between T(1)

end = 1

until T (2)
start = 1.1 as well as between T (2)

end = 2 until T (3)
start = 2.1; this suspension is centred at 0

as n → ∞.
These processes can be useful in modelling multivariate systems where each particle

requires a non-zero amount of time before they get reanimated; for example, for interacting
particle collision systems, the environment may need to accumulate enough energy after each
collision time before the system can become active again.

3.2. Changing particles across time segments

We are interested in a scenario where we incrementally add particles into the system as we
move forward from one time segment T(k) to T

(k+1), without ever surpassing a finite number of
particle inventory n in total, while ensuring a fixed confidence of convergence within a given
epsilon ball. Before clarifying this further, we shall first extend our framework to account for
a transformation from n to n(k), where the latter specifies the number of particles that we have
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FIGURE 2. (a, b) n = 10 and n = 50, (c, d) n = 100 and n = 1000.

over the time segment T(k) such that

n =
m∑

k=1

n(k), n(k)> 0.

In this spirit, we rewrite the ensemble average process as

A(n(k))
t = 1

n(k)

n(k)∑
j=1

β(j,n(k))X(j,n(k))
t

for t ∈T
(k), with |β(i,n(k))|<∞ and

∑n(k)
i=1 β

(i,n(k)) = n(k), and the SDE in (2.5)–(2.6) as
follows:

dX(i,n(k))
t = f (k)(t)

(
A(n(k))

t − X(i,n(k))
t

)
dt + σ (k)

(
ρ(k) dB(k)

t +
√

1 − (ρ(k))2 dW(i,k)
t

)

for t ∈T
(k), k ∈K, and

X(i,n(k))
e = A(n(k−1))

T(k−1)
end

for all e ∈ [
T (k−1)

end , T (k)
start

]
, k ∈K,

for all i ∈ I(k) = {1, . . . , n(k)}, with T (0)
end = T (1)

start = 0 and n(0) = n(1). We demonstrate how this
interacting particle system behaves under different n(k) sequences, when we choose f (k) ∈ F(k)

as in (2.49) as before. We set the initial value X̂(i,n)
t0 = x = 0 as before. In Figure 3, we see exam-

ples of different particle numbers across different time segments. Figure 3(a) (resp. Figure 3(b))
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FIGURE 3. (a, b) [2, 25, 100] and [100, 25, 2], (c, d) [1000, 2, 1000] and [2, 1000, 2].

represents an interacting system that scatters into more (resp. fewer) particles after each colli-
sion. Figures 3(c) and 3(d) model situations where the number of particles changes significantly
from one regime to another.

The following result extends Proposition 2.1 with a similar proof that we shall omit to avoid
repetition. We shall note that Proposition 3.1 below provides us with a universality statement
for our proposed framework.

Proposition 3.1. Let f (k) ∈ F(k) for every k ∈K. Then each {X(i,n(k))
t }t∈T is time-continuous

P⊗ dt everywhere, such that

X(i,n(k))
e = A(n(k))

e for all e ∈T
end, i ∈ I(k), k ∈K,

where the ensemble average at each e ∈T
end is given by

A(n(k))

T(k)
end

= A(n(k))

T(k)
start

+ σ (k)ρ(k)B(k)

T(k)
end

+ σ (k)
√

1 − (ρ(k))2

n(k)

n(k)∑
j=1

β(j,n(k))W(j,k)

T(k)
end

.

By virtue of Proposition 3.1, we can now take the space limits n(k) → ∞ only over chosen
time segments T

(k). Surely, if we take n(k) → ∞ for every k ∈K, we recover the limiting
behaviours as proved in the previous section. In essence, every result in the previous section can
be generalised to account for this extended framework. For example, Proposition 2.2 becomes
the following.

Proposition 3.2. Let every time-shifted Brownian motion {B(k)
t }t∈T and {W(i,k)

t }t∈T in the
system be mutually independent for every i ∈ I(k) and k ∈K. Then

A(n(k))

T(k)
end

∼N(
x, V (k,n(k))),
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given that N(.) stands for the Gaussian distribution, where

V (k,n(k)) =
k∑

l=1

(σ (l))2(T (l)
end − T (l)

start
)(

(ρ(l))2 + 1 − (ρ(l))2

n(l)2
‖β(n(l))‖2

L2

)
.

In this extended model, we are specifically interested in understanding if we can construct
a system where we only need to add fewer additional particles n(k + 1) − n(k) into the system
as we move forward from T

(k) to T
(k+1), while sustaining a fixed confidence interval that all

the particles will converge within a fixed epsilon ball around the initial value x at every T (k)
end

for k ∈K. That is, for Bε(x) = ( − ε, ε) being the epsilon ball around x, with ε > 0, we would
like to achieve

n∗(k) = argminn(k)P

(
lim

t→T(k)
end

X(i,n(k))
t ∈ Bε(x)

)
≥ λ for t ∈T

(k), λ ∈ (0, 1).

Proposition 3.3. Let ρ(l) = 0, β(i,n(l)) = 1 for every i ∈ I(l) and l = 1, . . . , k. Also, let
σ (l) = σ (k),

(
T (l)

end − T (l)
start

)= (
T (k)

end − T (k)
start

)
and n(l) = n(k) for l = 1, . . . , k. Then n∗(k) exists

for every k ∈K.

Proof. The result follows from Propositions 3.1 and 3.2, since λ< 1. �

In addition, defining δ(k)∗ = n∗(k + 1) − n∗(k), we also aim to keep the following order:

δ(1)∗ ≥ · · · ≥ δ(m−1)∗ ,

which we shall show is possible when σ (k) is inversely proportional to n(k), such that

σ (l) = a

n(k)b
for l = 1, . . . , k and 0< a, b<∞.

In the analysis below; x = 0, ε = 0.01, λ= 0.99, a = 50, b = 1/2, ρ(k) = 0, β(i,n(k)) = 1, Tstart =
{0, 1, 2}, and T

end = {1, 2, 3}. In Figure 4(a), for each T
(k), we see the probabilities that the

system will converge to a value between ( − 0.01, 0.01) across different numbers of particles
within that time segment, and in Figure 4(b) we see the difference between these probability
curves as we move from T

(k) to T
(k+1). As expected, we see these probabilities increase as

we increase the number of particles within that T(k), and the rate of convergence is slower as
we move from T

(k) to T
(k+1); we need more particles in total for the system to converge to

( − ε, ε) as k increases. However, the additional number of particles we require to reach the
confidence interval of λ= 0.99 reduces as we move from T

(k) to T
(k+1), such that δ(1)∗ > · · ·>

δ
(6)∗ . Essentially, the more time segments we add to the system (as we increase k), the fewer

additional particles δ(k)∗ are required in each consecutive time segment to achieve the same
confidence of convergence within Bε(x).

3.3. Number of particles vs. time segments

Thus far, we have analysed double limits across the number of particles n vs. time t, which
we have shown to commute. We shall now direct our attention to the relationship between
the number of particles n vs. the number of time segments m that define the cardinality of K.
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FIGURE 4. (a) Probability curves for ( − ε, ε); (b) difference of probability curves.

It turns out that the double limits between n and m are not necessarily commutative, where we
may have

lim
n→∞ lim

k→∞ lim
t→T(k)

end

X(i,n)
t �= lim

k→∞ lim
n→∞ lim

t→T(k)
end

X(i,n)
t (3.2)

for t ∈T
(k). To show this, we set β(i,n) = 1 for every i ∈ I, ρ(k) = 0, σ (k) = σ > 0 for all k ∈K,

and fix the distance between each termination and revival time-points:

(
T (k)

end − T (k)
start

)=�> 0

for any k ∈K. Then, using Proposition 2.2, we observe

lim
n→∞ lim

k→∞ V (k,n) = lim
n→∞ lim

k→∞

k∑
l=1

σ 2�

n
= undefined,

lim
k→∞ lim

n→∞ V (k,n) = lim
k→∞ lim

n→∞

k∑
l=1

σ 2�

n
= 0,

and since from Proposition 2.1 we know that

X(i,n)
t → A(n)

T(k)
end

as t → T (k)
end for t ∈T

(k),

we have constructed an example where the non-commutativity in (3.2) manifests. We can still
maintain a commutative relationship between the limits across n vs. m; that is, if we do not fix
σ and � as above, and construct a sequence where

lim
k→∞

k∑
l=1

(σ (l))2(T (l)
end − T (l)

start
)= c<∞,

while keeping β(i,n) = 1 for every i ∈ I and ρ(k) = 0 for all k ∈K, we can still achieve

lim
n→∞ lim

k→∞ lim
t→T(k)

end

X(i,n)
t = lim

k→∞ lim
n→∞ lim

t→T(k)
end

X(i,n)
t = 0.
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3.4. Covariance waves

We shall show how our proposed framework gives rise to what we call covariance waves,
which are continuous curves across time generated by the covariance function in (2.28), whose
trajectories resemble wave-like behaviour. First, using Proposition 2.3, we have

C(i,j,n)

T(k)
start

= V (k−1,n) with V (0,n) = 0, k ∈ K,

and using Proposition 2.4, we also have

lim
t→T(k)

end

C(i,j,n)
t = V (k,n) for t ∈T

(k), k ∈ K.

These results confirm that the covariance function is continuous in time, where the dependence
structure at any termination point becomes the dependence structure of the revival time-point of
the next time segment. Therefore we can naturally reach covariance trajectories that are pinned
at each T

end, which can in turn provide wave-like covariance trajectories. We demonstrate this
via Example 2.1 with σ (k) = σ , ρ(k) = 0, α(k) = α for all k ∈K and β(i,n) = 1 for all i ∈ I, so
that

X(i,n)
t =

∑
k∈K

(
A(n)

T(k)
start

+ σ

n

n∑
j=1

W(j,k)
t

)
1(t ∈T

(k))

+
∑
k∈K

σ

(∫ t

T(k)
start

(
T (k)

end − t
)α(

T (k)
end − s

)α dW(i,k)
s − 1

n

n∑
j=1

∫ t

T(k)
start

(
T (k)

end − t
)α(

T (k)
end − s

)α dW(j,k)
s

)
1(t ∈T

(k))

for t ∈T for i ∈ I. Using Proposition 2.3, for α �= 1
2 we have

C(i,j,n)
t

= σ 2(t − T (k)
start)

n

+ 1i,jσ
2

⎛
⎜⎜⎝

T (k)
end

(
1 −

(
T(k)

end−t

T(k)
end

)2α)− t

2α − 1
−

(
T (k)

end − t
)2α(

T (k)
end − T (k)

start
)2α

T (k)
end

(
1 −

(
T(k)

end−T(k)
start

T(k)
end

)2α)− T (k)
start

2α − 1

⎞
⎟⎟⎠

+ V (k−1,n)

− σ 2

n

⎛
⎜⎜⎝

T (k)
end

(
1 −

(
T(k)

end−t

T(k)
end

)2α)− t

2α − 1
−

(
T (k)

end − t
)2α(

T (k)
end − T (k)

start
)2α

T (k)
end

(
1 −

(
T(k)

end−T(k)
start

T(k)
end

)2α)− T (k)
start

2α − 1

⎞
⎟⎟⎠,
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and for α= 1
2 we have

C(i,j,n)
t = σ 2(t − T (k)

start)

n

+ 1i,jσ
2

((
t − T (k)

end

)
log

(
T (k)

end − t

T (k)
end

)
− (

t − T (k)
end

)
log

(
T (k)

end − T (k)
start

T (k)
end

))

+ V (k−1,n) − σ 2

n

((
t − T (k)

end

)
log

(
T (k)

end − t

T (k)
end

)
− (

t − T (k)
end

)
log

(
T (k)

end − T (k)
start

T (k)
end

))

for t ∈T
(k). We shall now check the properties we expect from C(i,j,n)

t given above. For the case
where α �= 1

2 , we have the following:

lim
t→T(k)

end

T (k)
end

(
1 −

(
T(k)

end−t

T(k)
end

)2α)− t

2α − 1
= lim

t→T(k)
end

T (k)
end − t

2α − 1
− lim

t→T(k)
end

T (k)
end

(
T(k)

end−t

T(k)
end

)2α

2α − 1

= 0.

For the case where α = 1
2 , we use L’Hôpital’s rule to get

lim
t→T(k)

end

(
t − T (k)

end

)
log

(
T (k)

end − t

T (k)
end

)
=

log
(

T(k)
end−t

T(k)
end

)
(
t − T (k)

end

)−1
= lim

t→T(k)
end

∂
∂t log

(
T(k)

end−t

T(k)
end

)
∂
∂t

(
t − T (k)

end

)−1

= lim
t→T(k)

end

(
t − T (k)

end

)−1

−(
t − T (k)

end

)−2
= lim

t→T(k)
end

(
T (k)

end − t
)= 0.

Hence, for any α ∈ (0,∞), we have the limit

lim
t→T(k)

end

C(i,j,n)
t =

k−1∑
l=1

σ 2

(
T (l)

end − T (l)
start

)
n

+ σ 2

(
T (k)

end − T (k)
start

)
n

= V (k,n),

as expected. In addition, for any α ∈ (0,∞),

C(i,j,n)

T(k)
start

= V (k−1,n),

as expected. Note that we also have, for α �= 1
2 ,

lim
n→∞ C(i,j,n)

t

= 1i,jσ
2

⎛
⎝ T (k)

end

(
1 −

(
T(k)

end−t

T(k)
end

)2α)− t

2α − 1
−

(
T (k)

end − t
)2α(

T (k)
end − T (k)

start
)2α

T (k)
end

(
1 −

(
T(k)

end−T(k)
start

T(k)
end

)2α)− T (k)
start

2α − 1

⎞
⎠,

and for α= 1
2 ,

lim
n→∞ C(i,j,n)

t = 1i,jσ
2

((
t − T (k)

end

)
log

(
T (k)

end − t

T (k)
end

)
− (

t − T (k)
end

)
log

(
T (k)

end − T (k)
start

T (k)
end

))
.
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FIGURE 5. (a) n = 10 000 across different α, (b) α = 1 across different n.

Finally, this leads us to the commutativity relation

lim
t→T(k)

end

lim
n→∞ C(i,j,n)

t = lim
n→∞ lim

t→T(k)
end

C(i,j,n)
t = 0,

as Proposition 2.7 provides. We shall now demonstrate how the covariance process studied
above produces wave-like behaviour across time. In Figure 5 we set σ = 1, Tstart = {0, 1, 2},
and T

end = {1, 2, 3}.
In Figure 5 we see wave-like behaviour of covariance trajectories due to the multi-pinning

property of the interacting system. In Figure 5(a) we see the trajectories for a fixed n = 10 000
across different α values that change the shape of the waves, and in Figure 5(b) we see the
influence of the number of particles for a fixed α. From Corollary 2.2, we know that as n → ∞,
the limiting particles are mutually independent, and accordingly, from Figure 5(b), we see how
the end points of the covariance waves approach zero as n increases (from 20 to 10 000), as
expected; also, we know this directly from Corollary 2.4. Building up on the extension given in
Proposition 3.1, we can also consider different n(k) per each time segment that would influence
wave magnitudes.

3.5. A view from partial differential equations

Denoting X(n)
t = [

X(1,n)
t , . . . , X(n,n)

t
]� for every t ∈T, one can work with a system of

conditional expectation problems

v(k)(t, x(n)) =E

[
exp

(
−
∫ T(k)

end

t
h(k)(s) ds

)
ς (k)

(
A(n)

T(k)
end

) ∣∣∣∣ X(n)
t = x(n)

]
, t ∈T

(k)
⋃

T (k)
end

for some ς (k) : R→R and integrable function h(k) : T(k) →R, that can be computed by solving
the sequence of partial differential equations given by

∂v(k)(t, x(n))

∂t
− h(k)(t)v(k)(t, x(n)) +

∑
i∈I

∂v(k)(t, x(n))

∂x(i,n)
f (k)(t)

(
1

n

∑
i∈I

β(i,n)x(i,n) − x(i,n)

)

+ 1

2
(σ (k))2

∑
i∈I

∂2v(k)(t, x(n))

∂x(i,n)∂x(i,n)
+ 1

2
(σ (k))2(ρ(k))2

∑
i∈I

∑
j∈I,j �=i

∂2v(k)(t, x(n))

∂x(i,n)∂x(j,n)
= 0,
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where the sequence of boundary conditions are given by

v(k)(T (k)
end, x(n))= ς (k)

(
1

n

∑
i∈I

β(i,n)x(i,n)

)

for k ∈K. Also note that we have

v(k)(T (k)
start, .

)=E

[
exp

(
−
∫ T(k)

end

T(k)
start

h(k)(s) ds

)
ς (k)

(
A(n)

T(k)
end

) ∣∣∣∣ A(n)

T(k−1)
end

]
, k ∈K.

If we set h(k) = 0 and ς (k)(x) = x as the identity map, then

v(k)(T (k)
start, .

)=E
[
A(n)(T (k)

end

) | A(n)(T (k−1)
end

)]
for k ∈K; such computations are straightforward via the results presented in this paper.

3.6. Connection to random n-bridges

A wide family of stochastic processes called random n-bridges (RnBs) were introduced in
[29] and have led to a programme of producing stochastic Schrödinger dynamics on a com-
plex Hilbert space for explaining sequential quantum reduction of commutative observables.
Although RnBs and the family of interacting particle systems studied in this paper are not the
same, we shall nonetheless discuss an intriguing connection between these two, since both
exhibit convergence behaviour to a set of random variables over a set of predetermined time-
points. First, we recall the definition of RnBs (with notational adjustments to fit this paper) and
leave any missing detail for the reader to fill in from [29].

Definition 3.1. Let {G(i)
t }t≥0 be an R-valued càdlàg stochastic process and let

X = [X(1), . . . , X(m)]�

be a vector of R-valued random variables X(k) ∈L2(�,F, P) with a joint probability ν(dx), for
i ∈ I and k ∈K. A stochastic process {ξ (i)

t }t∈T is said to be a random n-bridge (RnB) to X over
T

end if the following hold.

(i) ξ (i)

T(k)
end

law= X(k) for k ∈K such that

P

(
ξ

(i)

T(1)
end

∈ dx1, . . . , ξ
(i)

T(k)
end

∈ dxk, . . . , ξ
(i)

T(m)
end

∈ dxm

)
= ν(dx1, . . . , dxk, . . . , dxm).

(ii) For all m(k) ∈N+, every T (k−1)
end < tk,1 < · · ·< tk,m(k) < T (k)

end, every (yk,1, . . . , yk,m(k)) ∈
R

m(k) for k ∈K, and for all x such that ν(dx)> 0, it holds that

P

({
ξ

(i)
tk,1 ≤ yk,1, . . . , ξ

(i)
tk,m(k)

≤ yk,m(k) : k ∈K} ∣∣
ξ

(i)

T(1)
end

= x1, . . . , ξ
(i)

T(k)
end

= xk, . . . , ξ
(i)

T(m)
end

= xm

)
= P

({
G(i)

tk,1 ≤ yk,1, . . . ,G(i)
tk,m(k)

≤ yk,m(k) : k ∈K} ∣∣
G(i)

T(1)
end

= x1, . . . ,G(i)

T(k)
end

= xk, . . . ,G(i)

T(m)
end

= xm

)
.
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In this setup, T (k)
end = T (k+1)

start . Note that there is no (mean-field) interaction between {ξ (i)
t }t∈Ts

for i ∈ I, but each {ξ (i)
t }t∈T is probabilistically conditioned to take the law of X over Tend. As

an example, if we choose {G(i)
t }t≥0 (and thus {ξ (i)

t }t∈T) to be a purely continuous process and
let P(X(k) = x) = 1, we can interpret each {ξ (i)

t }t∈T to be continuously pinned to the value x at
each T (k)

end for k ∈K. In fact, if we choose

X(k) � A(n)

T(k)
end

= A(n)

T(k)
start

+ σ (k)ρ(k)B(k)

T(k)
end

+ σ (k)
√

1 − (ρ(k))2

n

n∑
j=1

β(j,n)W(j,k)

T(k)
end

and set X(0) = x, let {G(i)
t }t≥0 be the càdlàg process given by

G(i)
t =

∑
k∈K

X(k−1)1
(
t = T (k)

start
)+

∑
k∈K

W(i,k)
t 1(t ∈T

(k)) + X(m)1
(
t = T (m)

end

)
,

we reach a system of RnBs having certain similarities to the aforementioned family of pro-
cesses studied in this paper – e.g. pinning points having the same distribution – but we still
cannot recover the mean-field interaction property or the same system of SDEs as given in
(2.5)–(2.6). However, the SDEs we would get from the above RnB would still have some func-
tional similarities to (2.5), for which we shall leave a more detailed analysis for future research.
Our foresight here stems from an observation made in [26], where there is only a single time
segment with m = 1, and where we see a discussion of an SDE of the form

dξ (i)
t = 1

T (1)
end − t

(
E
[
X(1) |Fξ (i)

t
]− ξ

(i)
t
)

dt + dW(i,1)
t for t ∈T

(1)

= 1

T (1)
end − t

(
E
[
X(1) | ξ (i)

t
]− ξ

(i)
t
)

dt + dW(i,1)
t for t ∈T

(1), (3.3)

with Fξ (i)

t = σ ({ξ (i,n)
s } : 0 ≤ s ≤ t) for the so-called Brownian random bridge {ξ (i)

t }t∈T for i ∈ I
(see [4–6]), satisfying the following anticipative representation:

ξ
(i)
t = X(1) t

T (1)
end

+ Z(i)

tT(1)
end

, (3.4)

where each {Z(i)
tT }t∈T is a mutually independent standard Brownian bridge. From (3.4), we can

see that the following hold:

ξ
(i)
t → X(1) as t → T (1)

end, since Z(i)

tT(1)
end

→ 0 as t → T (1)
end.

The SDE in (3.3) has similarities to the SDE in (2.5) when we choose m = 1, x = 0, ρ(1) = 0,
σ (1) = 1, and f (1)(t) = 1/

(
T (1)

end − t
)
. In this specific case, the main difference between (2.5)

and (3.3) remains the presence of the ensemble average {A(n)
t }t∈T in (2.5) that is replaced by

a marginal conditional expectation process {E[X(1) | ξ (i)
t ]}t∈T in (3.3), which essentially loses

the mean-field interaction component. As for the case of m> 1, any such connection will be
of a more complicated nature, which deserves a separate study.
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4. Conclusion

In this paper we have introduced and studied a family of coalescent interacting stochastic
processes where each particle continuously converges to the ensemble average of the system
over a set of successive sequence of fixed time-points. We proved numerous results that show
how this random system behaves under space and time limits, and provided a universality
statement for our framework when studying aspects of a different number of particles across
different time segments. In addition, we illustrate several intriguing properties of these systems
through numerical simulations and what we call covariance waves. One of our main narratives
goes that, in any finite time segment, the more particles you throw into the system the more
independent and decoupled each particle becomes in the interim, while at the same time, the
more assuredly one tends to secure all particles to converge to, and recouple at, the same
deterministic value, simultaneously, at each terminus.

We envision several directions for future research. For instance, one can model the end
points of the time segments as an increasing sequence of random variables, which would pro-
duce anticipative SDE representations when the limiting behaviour of f (k) ∈ F(k) is defined in
terms of such random sequences. In addition, it would be interesting to study whether the
framework can be generalised to include pure-jump processes with pinning properties. Finally,
one can construct examples of such systems and study their specific properties; we have already
provided Example 2.1 within the main body of this paper, and shall provide another one below
to motivate the interested reader.

Example 4.1. Let f (k) ∈ F(k) be given by

f (k)(t) = θ t log (θ )

θT(k)
end − θ t

, t ∈T
(k).

Then we have

γ (k)(t) = exp

(
−
∫ t

T(k)
start

θu log (θ )

θT(k)
end − θu

du

)

= exp
(− log

(
θT(k)

end − θT(k)
start

)+ log
(
θT(k)

end − θ t))
= θT(k)

end − θ t

θT(k)
end − θT(k)

start

.

Therefore we have

R(i, k, t) = σ (k)
√

1 − (ρ(k))2

×
(∫ t

T(k)
start

θT(k)
end − θ t

θT(k)
end − θ s

dW(i,k)
s − 1

n

n∑
j=1

∫ t

T(k)
start

θT(k)
end − θ t

θT(k)
end − θ s

β(j,n) dW(j,k)
s

)
.

We emphasise that Examples 2.1 and 4.1 are certainly far from being exhaustive; many
others can be constructed and studied within the proposed framework.
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