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PETTY PROJECTION INEQUALITY ON THE SPHERE AND ON THE
HYPERBOLIC SPACE

YOUJIANG LIN AND YUCHI WU

Abstract. We define a spherical and hyperbolic analog to the Euclidean projection body

for star bodies via the gnomonic projection from the unit sphere and stereographic projec-

tion in the hyperbolid model of hyperbolic space. We then prove a spherical and hyperbolic

projection inequality for these notions by using an adaption of Steiner symmetrization for

spherical, respectively hyperbolic, star bodies.

1. Introduction

In the Brunn–Minkowski theory of the Euclidean spaceRn, the two classical inequalities

which connect the volume of a convex body with that of its polar projection body are the

Petty and Zhang projection inequalities, see e.g. [26, 39]. The Petty projection inequality

shows that among all convex bodies with the same volume, the ellipsoids have the largest

volume of the polar projection body. The Zhang projection inequality shows that the sim-

plices minimise the volume of the polar projection body. Petty projection inequalities have

been extended to the Lp Petty projection inequalities and Orlicz projection inequalities, see

e.g. [27, 29, 37]. Moreover, the functional versions of the Petty projection inequality—the

affine Pólya–Szegö inequality and the affine Sobolev inequality have been largely studied,

see e.g. [11, 20, 28, 38].

Recently some researches on isoperimetry in the Euclidean space have been extended

to spherical or hyperbolic space, see e.g. [2–4, 7, 8, 12, 14, 16, 18, 31, 34, 35]. F. Besau and

E. M. Werner [4, 5] introduced the spherical convex floating body for a convex body on

the Euclidean unit sphere and define a new spherical area measure—the floating area. We

are convinced that the floating area will become a powerful tool in the spherical convex
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2 Y. LIN AND Y. WU

geometry. F. Besau, T. Hack, P. Pivovarov and F. E. Schuster [3] introduced the spher-

ical centroid body of a centrally symmetric convex body in the Euclidean unit sphere,

studied a number of basic properties of spherical centroid bodies and proved a spherical

analogue of the classical polar Busemann–Petty centroid inequality. F. Gao, D. Hug and

R. Schneider [14] proved the Urysohn inequality and the Blaschke–Santaló inequality in

the spherical space. Their arguments using two-point symmetrization are also applicable

in the hyperbolic space which also yields the hyperbolic version of the Urysohn inequality.

Later, T. Hack and P. Pivovarov [18] proved a randomized version of the spherical and hy-

perbolic Urysohn-type inequalities. G. Wang and C. Xia [34] solved various isoperimetric

problems for the quermassintegrals and the curvature integrals in the hyperbolic space Hn

and established quite strong Alexandrov–Fenchel type inequalities.

In comparison with the Euclidean case there are very few results and techniques avail-

able in spherical and hyperbolic space. In [14] and [18], the authors use the two-point

symmetrization procedure together with rearrangement inequalities in order to prove their

result. In [3], the authors used a probabilistic approach to prove the spherical centroid in-

equality. In [34], the authors used quermassintegral-preserving curvature flows approach to

solve the isoperimetric type problems in the hyperbolic space. It is well-known that Steiner

symmetrization is a fundamental tool for attacking problems regarding isoperimetry and

related geometric inequalities in the Euclidean space Rn, see e.g. [6,9,10]. In this paper, we

define the spherical and hyperbolic Steiner symmetrizations on Sn and Hn which preserve

the property of star bodies, the volume invariance after a Steiner symmetrization and con-

vergence of iterative Steiner symmetrizations. Using the spherical and hyperbolic Steiner

symmetrizations, we prove the spherical projection inequality and hyperbolic projection

inequality, respectively.

The spherical and hyperbolic projection body operators are dependent on the center

chosen and is invariant only with respect to isometries of spherical space, respectively

hyperbolic space, that fix this center. In both cases this group of isometries O(n + 1)

is isomorphic to the orthogonal group O(n). In contrast the Euclidean projection body

operator Π does not depend on the origin and behaves affine equivalent, that is, if K ⊂ Rn

is a convex body, φ ∈ GL(n) and x ∈ Rn, then

Π(φK + x) = | det φ|φ−>ΠK,

where φ−> denotes the inverse transposition of φ. We also show that the notion of spherical

and hyperbolic projection body is continuous with respect to the Hausdorff metric on star

bodies with a fixed center. Another characteristic feature of the Euclidean projection body

is that it is a Minkowski valuation, see M. Ludwig [24]. However, because there is no

obvious analog to Minkowksi addition in spherical and hyperbolic space, it is not clear

how such a property may apply to the spherical or hyperbolic projection body.
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In this paper, first we study the spherical projection body in spherical space, which is a

natural analog of Petty projection body in the Euclidean space. Using the gnomonic pro-

jection from Sn onto Rn (see [32, Section 6.1]) and the definition of classical Euclidean

Petty projection body, we define the spherical Petty projection body. Using the mono-

tonic increasing property of the measures of the polar bodies of spherical projection bodies

after performing a spherical Steiner symmetrization and the continuity of spherical projec-

tion operator with respect to spherical Hausdorff distance, we proved the spherical Petty

projection inequality. Let SB(Sn
+) denote the set of spherical star bodies with respect to

a spherical cap in Sn
+ (see Definition 5). Let Π◦S(K) denote the spherical polar body of

spherical projection body of K (see Definition 3 and Definition 10).

Theorem 1. If K ∈ SB(Sn
+) and KF is the spherical cap centered at en+1 with the same

volume as K, then

Hn
(
Π◦S(K)

)
≤ Hn

(
Π◦S(K

F)
)
, (1)

with equality if and only if K = KF.

In hyperbolic geometry, we will use the Poincaré ball model. In this model, the hyper-

bolic space Hn is identified with the open Euclidean unit ball Bn equipped with a certain

metric. The Poincaré ball model can be obtained from the hyperboloid model of hyperbolic

space via the stereographic projection, see [32, Section 4.5]. We use the stereographic pro-

jection instead of the gnomonic projection because stereographic projections can maintain

hyperbolic convexity (see Section 2.3 for details). Similarly, we use the gnomonic pro-

jection instead of the stereographic projection in considering spherical projection bodies

because gnomonic projections can preserve spherical convexity (see Section 2.2 for de-

tails).

In this paper, in order to construct a map from the hyperboloid model of hyperbolic

space to Rn, we introduce a transformation Φ from Bn to the Euclidean space Rn. Com-

bining the Poincaré ball model and the transformation Φ, we define the transformation Φp

from hyperbolic space Hn to Rn (see Section 4.1 for the details). Therefore, we can use Eu-

clidean Steiner symmetrizations, Euclidean projection bodies and Euclidean polar bodies

in Rn to define hyperbolic Steiner symmetrizations, hyperbolic projection bodies and hy-

perbolic polar bodies inHn. Using the monotonic increasing property of the measure of the

polar bodies of hyperbolic star bodies and the continuity of hyperbolic projection operator

with respect to hyperbolic Hausdorff distance, we proved the hyperbolic Petty projection

inequality. Let SB(Hn) denote the set of hyperbolic star bodies with respect to a hyperbolic

ball in Hn (see Definition 8). Let Π◦H(K) denote the hyperbolic polar body of hyperbolic

projection body of K (see Definition 11 and Definition 13).
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Theorem 2. If K ∈ SB(Hn) and KF is the hyperbolic ball centered at en+1 with the same

volume as K, then

Hn (
Π◦H(K)

)
≤ Hn

(
Π◦H(KF)

)
, (2)

with equality if and only if K = KF.

In the proofs we rely, among other geometric observations in spherical space, respec-

tively hyperbolic space, on tools previously developed on the projection body of (Lips-

chitz) star bodies, see for example the work of the first author in [21], and an adaption

of Euclidean Steiner symmetrization by rescaling on the fibers, respectively radially, to

preserve the spherical, respectively hyperbolic volume.

Furthermore, we focus on a characteristic feature of the polar projection body which

was first observed by E. Lutwak [25] and strengthened by C. Haberl and F. Schuster [19].

That is, its volume gives an isoperimetric bound for the surface area that is better than the

classical isoperimetric inequality. Indeed, together with the Petty projection inequality, we

have for an Euclidean convex body K ⊂ Rn, that(
Hn−1(∂K)
Hn−1 (∂Bo(1))

) 1
n−1

≥

(
Hn (Π∗K)
Hn (Π∗Bo(1))

)− 1
n(n−1)

≥

(
Hn(K)
Hn (Bo(1))

) 1
n

, (3)

where Bo(1) is the Euclidean centered unit ball and Π∗K denotes the polar body of the

projection body ΠK. Note that (3) is equivalent to

Hn (Π∗B∂K) ≤ Hn (Π∗K) ≤ Hn (Π∗BK) , (4)

where B∂K , respectively BK , is a Euclidean ball with the same surface area, respectively

volume, as K.

In Theorem 1 and 2, we established isoperimetric inequalities for the notions of spher-

ical and hyperbolic polar projection body that can be seen as an extension of the Petty

projection inequality, that is, the second inequality in (4).

In Theorem 3 and Section 4.5, we attempt to also establish an analog of the first in-

equality of (4), we show that

Vol†n
(
Π◦†K

)
≥ Vol†n

(
Π◦†B∂K

)
,

where B∂K is a geodesic ball with the same Euclidean surface area as K, Vol†n denotes the

Lebesgue measure and Π◦
†

denotes the polar projection operator in spherical space, † = S,

respectively hyperbolic space, † = H. Note that this does not achieve the desired goal yet,

that is, showing that the volume of the spherical, respectively hyperbolic, polar projection

body strengthens the isoperimetric inequality in spherical, respectively hyperbolic space.

For this, let C†
∂K be a geodesic ball with the same spherical, respectively hyperbolic, surface

area as K, we give the following conjecture.
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Conjecture 1. Let K be a spherical, respectively hyperbolic convex body with en+1 as its

interior point. Then

Vol†n
(
Π◦†K

)
≥ Vol†n

(
Π◦†C

†

∂K

)
. (5)

2. Preliminaries

2.1. Basic facts from Euclidean convex geometry. We develop some notations and, for

quick later references, list some basic facts about convex bodies. Good general references

for the theory of convex bodies are provided by the books of Gardner [15], Gruber [17],

Schneider [33] and Artstein-Avidan, Giannopoulos and Milman [1].

Let Rn denote n-dimensional Euclidean space. Let o denote the origin of Rn. Let

e1, · · · , en denote the standard orthonormal basis of Rn. Let x · y denote the Euclidean

scalar product for x, y ∈ Rn. Let Rn−1 denote the subspace of Rn, where the n-th compo-

nent is 0, i.e., Rn−1 := {x ∈ Rn, x · en = 0}. Let u⊥ denote the orthogonal complementary

space of the unit vector u ∈ S n−1. Let Sn−1 denote the set of unit vectors of Rn. Let Bo(r)

denote the closed ball centered at the origin o with radius r in Rn. Let Hk denote the k-

dimensional Hausdorff measure. Let ωn denote the volume of Bo(1), i.e., ωn := Hn(Bo(1)).

A convex body K is a compact convex subset of Rn. The set of convex bodies in Rn is de-

noted by K (Rn). We denote by Ko (Rn) the set of convex bodies that contain the origin

in their interiors. Let ‖ · ‖ denote the Euclidean norm. For K ∈ K (Rn), K is uniquely

determined by its support function h(K, ·) defined by

h(K, x) := max{x · y : y ∈ K}, x ∈ Rn.

The support function is homogeneous of degree 1, i.e.,

h(K, rx) = rh(K, x), for r > 0. (6)

For K ∈ Ko (Rn), its radial function is defined by

ρ(K, x) := max{r > 0 : rx ∈ K}, x ∈ Rn\{o}. (7)

The radial function is homogeneous of degree −1, i.e.,

ρ(K, rx) =
1
r
ρ(K, x), for r > 0. (8)

A compact set K ⊂ Rn is a star-shaped set with respect to z ∈ K if the intersection of

every straight line through z with K is either a line segment or a single point set {z}. Let

K ⊂ Rn be a compact star shaped set with respect to z ∈ K, the radial function ρz(K, ·) :

Rn\{o} → R is defined by

ρz(K, x) := max{r ≥ 0 : z + rx ∈ K}. (9)

If ρz(K, ·) is strictly positive and continuous, then we call K a star body with respect to z,

denotes the class of star bodies in Rn by Sz(Rn). If K ⊂ Rn is a star body with respect
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to each point of ball Bo(r), then we say K is a star body with respect to a ball. The

class of star bodies with respect to ball Bo(r) will be denoted by SB(Rn). It is clear that

Ko(Rn) ⊂ SB(Rn), i.e., any convex body with the origin as its interior is a star body with

respect to a ball. For K ∈ SB(Rn), we have the following volume formula

Hn(K) =
1
n

∫
Sn−1

ρn(K, u)du (10)

and the surface area formula

Hn−1(∂K) =

∫
Sn−1

ρn−1(K, u)
[
u · νK (ρ(K, u)u)

]−1
du, (11)

where νK (ρ(K, u)u) denotes the outer unit normal vector of K at the boundary point ρ(K, u)u.

For K ∈ So (Rn), its polar body is defined by

K∗ := {y ∈ Rn : y · x ≤ 1 for any x ∈ K}.

It is well-known that if K ∈ Ko (Rn),

(K∗)∗ = K. (12)

The support function and radial function of K ∈ Ko(Rn) have the following relationship:

h(K, x)ρ (K∗, x) = 1, x ∈ Rn\{o}. (13)

The radial distance between K, L ∈ So(Rn) is defined by

dR(K, L) := max
u∈Sn−1

|ρ(K, u) − ρ(L, u)| . (14)

The Hausdorff distance between the compact sets K, L ⊂ Rn is defined by

dH(K, L) := min {r ≥ 0 : K ⊂ L + Bo(r), L ⊂ K + Bo(r)} . (15)

For K ∈ SB (Rn), its Petty projection body is defined with its support function:

h (ΠK, z) :=
1
2

∫
∂K

∣∣∣νK(x) · z
∣∣∣ dHn−1(x), (16)

where ∂K denotes the boundary of K, νK(x) denotes the unit outer normal vector of K at

the boundary point x ∈ ∂K. The polar body of ΠK will be denoted by Π∗K rather than

(ΠK)∗.

The following lemma shows that the Petty projection operator Π : SB (Rn) → Ko(Rn)

is continuous when Ki converges to K∞ in the Hausdorff distance.

Lemma 1. [21, Proposition 4.1] Let K∞,Ki ∈ SB(Rn), i ∈ N. If Ki → K∞ in the Hausdorff

distance andHn−1(∂Ki)→ Hn−1(∂K∞), then ΠKi → ΠK∞ in the Hausdorff distance.
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PETTY PROJECTION INEQUALITY ON Sn AND Hn 7

For K ∈ So (Rn), its Steiner symmetrization along the direction u ∈ Sn−1 is defined by

S uK :=
⋃

x′∈K|u⊥

{
x′ + tu : t ∈

[
−

1
2
H1(Ku,x′ ),

1
2
H1(Ku,x′ )

]}
, (17)

where u⊥ denotes the orthogonal complementary space of u, i.e., u⊥ := {z ∈ Rn : z ·u = 0};

K|u⊥ denotes the orthogonal projection of K onto u⊥, i.e.,

K|u⊥ := {x′ ∈ u⊥ : there exits some r ∈ R such that x′ + ru ∈ K};

Ku,x′ denotes the intersection of K and the straight line parallel to u and passing through

point x′, i.e.,

Ku,x′ := {x ∈ K : x = x′ + ru, r ∈ R}.

For simplicity of notation, we write S K, K′ and Kx′ instead of S en K, K|e⊥n and Ken,x′ ,

respectively.

Let K ∈ So (Rn). Its symmetric rearrangement KF is the closed centered ball whose

volume agrees with K,

KF := {x ∈ Rn : ωn‖x‖n ≤ Hn(K)} .

The following lemma provides some properties on the Steiner symmetrizations of star

bodies.

Lemma 2. [22, Lemma 5.1] If K ∈ SB(Rn), then S uK ∈ SB(Rn) for every u ∈ Sn−1.

Lemma 3. [22, Theorem 2.2] Let K,Ki ∈ SB(Rn), i ∈ N. Then, the fact that Ki converges

to K in Hausdorff distance is equivalent to the fact that Ki converges to K in radial distance.

Lemma 4. [22, Theroem 2.3] If K ∈ SB(Rn) and T is a dense subset of Sn−1, then there is

a sequence {ui} ⊂ T such that Ki := S ui · · · S u1 K converges to KF in radial distance.

The following lemma characterizes the structures of the boundaries of star bodies with

respect to a ball.

Lemma 5. [23, Theorem 3.1] Let K ∈ SB(Rn). Then, for almost all u ∈ Sn−1, there

is a sequence of disjoint open subsets Gm ⊂ K′, and two sequences of graph functions

fm, j, gm, j : Gm → R, 1 ≤ j ≤ m, satisfying

(i)
⋃∞

m=1 Gm is open dense in K′, and fm,1 < gm,1 < · · · < fm, j < gm, j;

(ii) K has the representation (if we neglect anHn-null set)

K =

∞⋃
m=1

⋃
x′∈Gm
1≤ j≤m

{
(x′, xn) : fm, j(x′) ≤ xn ≤ gm, j(x′)

}
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and ∂K has the representation (if we neglect anHn−1-null set)

∂K =

∞⋃
m=1

m⋃
j=1

{(
x′, fm, j

(
x′
))

: x′ ∈ Gm

}
∪

{(
x′, gm, j

(
x′
))

: x′ ∈ Gm

}
;

(iii) fm, j, gm, j are differentiable at each x′ ∈ Gm, and

νK(x′, fm, j(x′)) =
(∇ fm, j(x′),−1)√
1 +

∣∣∣∇ fm, j(x′)
∣∣∣2 , νK(x′, gm, j(x′)) =

(−∇gm, j(x′), 1)√
1 +

∣∣∣∇gm, j(x′)
∣∣∣2 .

The following well-known fact, which is provided by Lutwak, Yang and Zhang [29],

establishes the relationship between Steiner symmetrizations and polar bodies.

Lemma 6. [29, Lemma 1.1.] For two convex bodies K, L ∈ Ko(Rn),

S en L∗ ⊂ K∗

if and only if

h(L, (z′, t)) = h(L, (z′,−s)) = 1, with t , −s =⇒ h
(
K,

(
z′,

s + t
2

))
≤ 1.

In addition, if S en L∗ = K∗, then h(K, (z′, s+t
2 )) = 1 for any (z′, t), (z′,−s) ∈ Rn−1 × R

satisfying t , −s and h(L, (z′, t)) = h(L, (z′,−s)) = 1.

Let f : Rn → [0,+∞) be a nonnegative measurable function that vanishes at infinity, in

the sense that all its positive level sets have finite measure,

Hn ({x : f (x) > t}) < ∞, for all t > 0.

We define the symmetric decreasing rearrangement fF of f by symmetrizing its level sets,

fF(x) =

∫ ∞

0
χ{ f>t}F (x)dt, (18)

where χE denote the characteristic function of E ⊂ Rn, i.e.,

χE(x) =

1 if x ∈ E,

0 otherwise.
(19)

Lemma 7. (Hardy-Littlewood inequality) If f , g : Rn → [0,∞) are nonnegative measur-

able functions that vanish at infinity, then∫
Rn

f (x)g(x)dx ≤
∫
Rn

fF(x)gF(x)dx (20)

in the sense that the left hand side is finite whenever the right hand side is finite.
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2.2. Basic facts from Spherical convex geometry. Let us recall some facts about spher-

ical convex geometry; see e.g. [4, 30, 32]. Let Rn+1 denote (n + 1)-dimensional Euclidean

space. LetRn :=
{
x ∈ Rn+1 : x · en+1 = 0

}
. Let o denote the origin ofRn+1. Let e1, · · · , en, en+1

denote the standard orthonormal basis ofRn+1. We denote the Euclidean unit sphere inRn+1

by Sn, n ≥ 2. For u ∈ Sn, let Su denote the set {v ∈ Sn : v · u = 0}. Let S+
u denote the set

{v ∈ Sn : v · u > 0} and S−u denote the set {v ∈ Sn : v · u < 0}. To simplify notation, we let

Sn−1 denote Sen+1 and Sn
± denote S±en+1

. A set A ⊆ Sn is called (spherical) convex if its radial

extension

rad A =
{
rv ∈ Rn+1 : r ≥ 0 and v ∈ A

}
is convex in Rn+1. If A ⊆ Sn is convex, then rad A is a convex cone with o as its vertex in

Rn+1. A closed convex subset of Sn is called a (spherical) convex body. The set of convex

bodies is denoted by K (Sn). Furthermore, the set of convex bodies contained in Sn
+ with

en+1 as its interior point is denoted by Ko
(
Sn

+

)
. And the set of convex bodies contained in

Sn
− with −en+1 as its interior point is denoted by Ko

(
Sn
−

)
.

The natural spherical distance d̂s is given by d̂s(u, v) = arccos(u · v) for u, v ∈ Sn. For

spherical compact sets K, L ⊂ Sn, the spherical Hausdorff distance of K and L is defined

by

d̂s(K, L) := inf {r > 0 : K ⊆ Lr and L ⊆ Kr} , (21)

where Lr denotes the spherical parallel set of L, which is defined by

Lr := {w ∈ Sn : there exists v ∈ L such that d̂s(w, v) ≤ r}.

Let Bs(α) denote the spherical cap of radius α ∈ (0, π/2) and center en+1 in Sn, i.e.,

Bs(α) := {v ∈ Sn : d̂s(v, en+1) ≤ α}.

The convex hull conv A of A ⊆ Sn is the intersection of all convex bodies in Sn that

contain A. The convex hull of two spherical convex bodies K, L is denoted by conv(K, L),

i.e.,

conv(K, L) := conv(K ∪ L).

The segment spanned by two points u, v ∈ Sn, u , −v, is given by conv(u, v) = conv({u}, {v}).

A k-sphere S , k ∈ {0, . . . , n}, is the intersection of a (k + 1)-dimensional linear subspace of

Rn+1 with Sn. Let S be a k-sphere and let K ∈ K (Sn). Then the spherical projection K | S

is defined by

K | S := conv (S ◦,K) ∩ S ,

where S ◦ := {w ∈ Sn : w · u = 0 for all u ∈ S }. The spherical projection of a point is given

by x | S := {x} | S .
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Definition 1. For K ∈ Ko
(
Sn

+

)
, the spherical support function h(K, ·) : Sn−1 →

(
0, π2

)
of K

is defined by

hs(K, v) = max
{
sgn(v · w)d̂s

(
en+1,w | S1

en+1,v

)
: w ∈ K

}
, v ∈ Sn−1, (22)

where S1
en+1,v denotes the 1-sphere spanned by en+1 and v.

The intuitive interpretation of the spherical support function is as follows: If v ∈ Sn−1

then the projection K | S1
en+1,v is a spherical segment and the spherical support function

measures the width along the direction v with respect to en+1. We have

K | S1
en+1,v = {cos(α)en+1 + sin(α)v : α ∈ [−h(K,−v), h(K, v)]} .

Definition 2. For K ∈ Ko(Sn
+), its spherical radial function is defined by

ρs(K, v) := max
{
sgn(v · w)d̂s (en+1,w) : w ∈ K ∩ S1

en+1,v

}
, v ∈ Sn−1. (23)

Definition 3. For K ∈ Ko(Sn
+), its spherical polar body K◦ is defined by

K◦ = {v ∈ Sn : v · w ≤ 0 for all w ∈ K}. (24)

By the above definition, if K ∈ Ko(Sn
+), then K◦ ∈ Ko(Sn

−). Moreover, the spherical

polar body K◦ is the intersection of Sn and (rad A)∗, here

(rad A)∗ :=
{
z ∈ Rn+1 : z · x ≤ 0, x ∈ rad A

}
denotes the polar of the corresponding convex cone rad A.

Definition 4. The gnomonic projection g : Sn
+ → R

n is defined by

g(v) :=
v

en+1 · v
− en+1.

The inverse gnomonic projection g−1 : Rn → Sn
+ is defined by

g−1(x) :=
x + en+1

‖x + en+1‖
.

By the definition of gnomonic projection of K ∈ Ko(Sn
+), the following equalities show

the relations between spherical support function (spherical radial function) of K and the

Euclidean support function (Euclidean radial function) of g(K):

h(g(K), v) = tan hs(K, v), v ∈ Sn−1, (25)

ρ(g(K), v) = tan ρs(K, v), v ∈ Sn−1. (26)

Moreover, it is easy to prove that for K ∈ Ko(Sn
+),

g(K)∗ = −g(−K◦). (27)

By (12) and (27), for K ∈ Ko(Sn
+), we have

(K◦)◦ = K. (28)
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By (25), (26) and (27),

tan hs(K, v) = h(g(K), v) =
1

ρ(g(K)∗, v)
=

1
ρ(g(−K◦),−v)

=
1

tan ρs(−K◦,−v)
.

Therefore, for K ∈ Ko(Sn
+) and v ∈ Sn−1,

hs(K, v) + ρs(−K◦,−v) =
π

2
. (29)

By Definition 4 and the definitions of star bodies in Rn, we define spherical star bodies

as follows.

Definition 5. For a spherical compact set K ⊂ Sn
+, if its gnomonic projection g(K) is a star

body with respect to o in Rn, then K is called a spherical star body with respect to en+1. If

g(K) is a star body with respect to a ball Bo(tanα) in Rn, then K is called a spherical star

body with respect to a spherical cap Bs(α).

The set of spherical star bodies with respect to en+1 is denoted by So(Sn
+). The set of

spherical star bodies with respect to Bs(α) is denoted by SB(Sn
+). Similarly, Ko(Sn

+) ⊂

SB(Sn
+). For K ∈ So(Sn

+), its spherical radial function ρK can be defined as in (23).

Definition 6. For K̄ ∈ Ko(Rn), its spherical measure is defined by

µs,n(K̄) :=
∫

K̄

(
1 + ‖x‖2

)− n+1
2 dx. (30)

By [3, Lemma 2.3], the spherical measure of K̄ ∈ Ko(Rn) equals the n-Hausdorff mea-

sure of its inverse gnomonic projectionHn
(
g−1(K̄)

)
. Thus, for K ∈ Ko(Sn

+), we have

Hn(K) = µs,n(g(K)). (31)

Lemma 8. ( [36, Lemma 6.5.1]). Let S be a k-sphere, 0 ≤ k ≤ n − 1, and let f : Sn → R

be a non-negative measurable function. Then∫
Sn

f (w)dw =

∫
S

∫
conv(S ◦,v)

sin (ds (S ◦, u))k f (u)dudv. (32)

2.3. Basic facts from Hyperbolic convex geometry. Let us recall some facts about hy-

perbolic geometry; see e.g. [32]. Recall that Rn+1 = Rn × R, where

Rn :=
{
x ∈ Rn+1 : x · en+1 = 0

}
.

In Rn+1, let

Hn :=
{
(x, xn+1) ∈ Rn+1 : ‖x‖2 − x2

n+1 = −1, xn+1 > 0
}

denote the upper sheet of a two-sheet hyperboloid.
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12 Y. LIN AND Y. WU

Definition 7. (Poincaré ball model) Let o′ := −en+1. For any x̄ := (x, xn+1) ∈ Hn, the

Poincaré ball model projection point of x̄, denoted by P(x̄), is the intersection of the half-

line o′ x̄ and e⊥n+1. In the Poincaré ball model, Hn is identified with the following open unit

ball equipped with a certain metric

Bn := {(x, xn+1) ∈ Rn+1 : ‖x‖ < 1, xn+1 = 0}. (33)

We call the projection P : Hn → Bn as Poincaré ball model projection. In the Poincaré

ball model, the corresponding metric is

ds2 = 4
dx2

1 + · · · + dx2
n(

1 −
(
x2

1 + · · · + x2
n

))2 . (34)

In this metric, geodesic segments are arcs of the circles orthogonal to the boundary of the

ball Bn. If a segment passes through the origin, then the circle becomes a straight line. We

say that a body K̄ ⊂ Bn is hyperbolic convex if it is convex with respect to the metric (34).

The hyperbolic convexity means that for any two points x and y in K̄ the geodesic segment

connecting these two points is also in K̄.

For two compact sets K, L ⊂ Hn, their hyperbolic Hausdorff distance is defined by

dh(K, L) := inf {r > 0 : K ⊂ Lr, L ⊂ Kr} , (35)

where

Kr := {ȳ ∈ Hn : there exits x̄ ∈ K such that ds2(P(x̄), P(ȳ)) ≤ r2}.

Let Bh(α) ⊂ Hn denote the hyperbolic ball centered at en+1 with radius α, i.e.,

Bh(α) :=
{
x̄ ∈ Hn : ds2 (P(x̄), o) ≤ α2

}
.

The volume element of the metric (34) equals

dµh,n = 2n dx1 · · · dxn(
1 − (x2

1 + · · · + x2
n)
)n = 2n dx(

1 − ‖x‖2
)n . (36)

Therefore, for K̄ ⊂ Bn, the hyperbolic volume is then given by

hvoln(K̄) =

∫
K̄

dµh,n = 2n
∫

K̄

dx(
1 − ‖x‖2

)n . (37)

If K̄ is a star body in Bn, we can write its hyperbolic volume in polar coordinates,

hvoln(K̄) = 2n
∫
Sn−1

∫ ρK̄ (u)

0

rn−1(
1 − r2)n drdu, (38)

where ρK̄ denotes the radial function of K̄ in Rn given in (7).

Definition 8. For K ⊂ Hn, if P(K) is a star body with respect to the origin in Rn, then we

call K is a hyperbolic star body with respect to en+1. If P(K) is a star body with respect to a

ball Bo(r) in Rn, then K is called as a hyperbolic star body with respect to some hyperbolic

ball.
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We denote the class of hyperbolic star bodies with respect to en+1 in Hn by So(Hn) and

denote the class of hyperbolic star bodies with respect to a hyperbolic ball by SB(Hn).

3. Spherical projection body and Spherical projection inequality

3.1. Spherical Steiner symmetrization. In this section, we define the spherical Steiner

symmetrization for spherical star bodies and study some of its fundamental properties.

Without loss of generality, we only consider the Steiner symmetrization along the direction

en. If K ∈ SB(Sn
+), then g(K) ∈ SB(Rn). By Lemma 5, there is a sequence of disjoint open

subsets Gm ⊂ g(K)′, and two sequences of graph functions

fm, j, gm, j : Gm → R, 1 ≤ j ≤ m,

satisfying (i), (ii) and (iii) in Lemma 5. In particular, g(K) has the representation (if we

neglect anHn-null set)

g(K) =

∞⋃
m=1

⋃
x′∈Gm
1≤ j≤m

{
(x′, xn) : fm, j(x′) ≤ xn ≤ gm, j(x′)

}
. (39)

By (17), the Euclidean Steiner symmetrization S g(K) of g(K) along the direction en (if

we neglect anHn-null set)

S g(K) =

(x′, xn) ∈ Rn : x′ ∈
∞⋃

m=1

Gm, %(x′) ≤ xn ≤ %(x′)

 , (40)

where for x′ ∈ Gm,

%(x′) =

m∑
j=1

gm, j(x′) − fm, j(x′)
2

= −%(x′). (41)

The following lemma shows that the spherical measure of S g(K) is not less than the

spherical measure of g(K).

Lemma 9. For convex body K ∈ Ko(Sn), we have

µs,n (S g(K)) ≥ µs,n (g(K)) , (42)

with the equality if and only if S g(K) = g(K).

Proof. By Fubini’s theorem and the definition of spherical measure (30), we only need to

prove that for any x′ ∈ g(K)|Rn−1 ,∫
(S g(K))x′

(
1 + ‖x′‖2 + |xn|

2
)− n+1

2 dxn ≥

∫
g(K)x′

(
1 + ‖x′‖2 + |xn|

2
)− n+1

2 dxn. (43)

Let

f1(xn) :=
(
1 + ‖x′‖2 + |xn|

2
)− n+1

2 , f2(xn) := χg(K)x′ (xn).

Then

fF1 = f1, and fF2 = χS g(K)x′ ,
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14 Y. LIN AND Y. WU

where fF denotes the symmetric decreasing rearrangement of f (see (18) for specific

definition).

By Hardy-Littlewood inequality (see Lemma 7), we have∫
g(K)x′

(
1 + ‖x′‖2 + |xn|

2
)− n+1

2 dxn (44)

=

∫
R

f1(xn) f2(xn)dxn

≤

∫
R

fF1 (xn) fF2 (xn)dxn

=

∫
(S g(K))x′

(
1 + ‖x′‖2 + |xn|

2
)− n+1

2 dxn.

Moreover, since f1 is an even nonnegative unimodal integrable function, the equality in

(44) holds if and only if g(K)x′ = S g(K)x′ . Thus, the equality in (42) holds if and only if

S g(K) = g(K). �

By Lemma 9, µs,n (S g(K)) ≥ µs,n (g(K)). Thus, there exists some real number rK ∈ (0, 1]

such that

S̄ g(K) :=
{
(x′, xn) ∈ Rn : x′ ∈ g(K)|Rn−1 , rK%(x′) ≤ xn ≤ rK%(x′)

}
(45)

satisfies

µs,n

(
S̄ g(K)

)
= µs,n (g(K)) . (46)

Definition 9. For K ∈ Ko(Sn), its spherical Steiner symmetrization Ŝ en K along the direc-

tion en ∈ S
n−1 is defined by

Ŝ en (K) := g−1
(
S̄ g(K)

)
. (47)

For simplicity of notation, we write Ŝ K instead of Ŝ en (K). In Definition 9, g and g−1

denote the gnomonic projection and the inverse gnomonic projection (see Definition 4). If

K ∈ Ko(Sn), then g(K) ∈ Ko(Rn). Thus S g(K) ∈ Ko(Rn). By (45), S̄ g(K) ∈ Ko(Rn). Thus

by (47),

K ∈ Ko(Sn
+) =⇒ Ŝ K ∈ Ko(Sn

+). (48)

By Lemma 2, (45), (47) and the definition of spherical star bodies with respect to a spher-

ical cap (see Definition 5),

K ∈ SB(Sn
+) =⇒ Ŝ K ∈ SB(Sn

+). (49)

By (31) and (46), the spherical Steiner symmetrization maintains the invariance of n-

Hausdorff measure, i.e.,

Hn(Ŝ K) = Hn(K). (50)
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Similarly, for a compact set K ⊂ Sn, we define the spherical symmetric rearrangement

KF as follows

KF :=
{
v ∈ Sn : d̂s(v, en+1) ≤ α, Hn(K) = Hn(Bs(α))

}
. (51)

Lemma 10. For K ∈ SB(Sn
+), there exists a sequence of directions {ui}

∞
i=1 ⊂ S

n−1 such

that the sequence of successive spherical Steiner symmetrizations of K converges to KF in

spherical Hausdorff distance, i.e.,

lim
i→∞

ds(Ŝ ui · · · Ŝ u1 (K),KF) = 0. (52)

Proof. By Lemma 4, there exists a sequence of directions {ui}
∞
i=1 ⊂ S

n−1 such that

lim
i→∞

dR(S ui · · · S u1 (g(K)), g(K)F) = 0. (53)

Let r1 ∈ (0, 1] satisfy

µs,n

(
S̄ u1,r1 (g(K))

)
= Hn(K),

where S̄ u1,r1 (g(K)) denotes the star body with the overgraph function on the direction u1

%u1

(
S̄ u1,r1 (g(K)), ·

)
= r1%u1

(
S u1 (g(K)), ·

)
and the undergraph function on the direction u1

%
u1

(
S̄ u1,r1 (g(K)), ·

)
= r1%u1

(
S u1 (g(K)), ·

)
.

Let r′ ∈ (0, 1] satisfy

µs,n

(
S̄ u1,r1 (g(K))

)
= µs,n

(
r′g(K)F

)
. (54)

Let r2 ∈ (0, 1] satisfy

µs,n

(
S̄ u2,r2

(
g(Ŝ u1 (K))

))
= Hn(Ŝ u1 (K)).

Repeating the previous process, we can get a sequence of real numbers {ri}
∞
i=1 ⊂ (0, 1] such

that

µs,n

(
S̄ ui,ri

(
g
(
Ŝ ui−1 · · · Ŝ u1 (K)

)))
= Hn

(
Ŝ ui−1 · · · Ŝ u1 (K)

)
. (55)

By (53), (54) and (55), we have

lim
i→∞

dR

(
S̄ ui,ri · · · S̄ u1,r1 (g(K)), r′g(K)F

)
= 0. (56)

By the definition of spherical Steiner symmetrizations, we have

lim
i→∞

ds

(
Ŝ ui · · · Ŝ u1 (K), g−1

(
r′g(K)F

))
= lim

i→∞
ds

(
g−1

(
S̄ ui,ri

(
g
(
Ŝ ui−1 · · · Ŝ u1 (K)

)))
, g−1

(
r′g(K)F

))
...

= lim
i→∞

ds

(
g−1

(
S̄ ui,ri · · · S̄ u1,r1 (g(K))

)
, g−1

(
r′g(K)F

))
. (57)
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By (56), (57) and the continuity of inverse gnomonic projection, we have

lim
i→∞

ds

(
Ŝ ui · · · Ŝ u1 (K), g−1

(
r′g(K)F

))
= 0. (58)

Let KF = g−1
(
r′g(K)F

)
. The desired conclusion now follows from (58). �

3.2. Spherical projection bodies. In this section, using the Euclidean projection bodies,

we introduce the notion of spherical projection bodies and study some elementary proper-

ties.

Definition 10. For K ∈ SB(Sn
+), its spherical projection body ΠS(K) is defined by

ΠSK := g−1 (Πg(K)) . (59)

By the definition of spherical projection body (59), (25) and (16), for u ∈ Sn−1,

tan hs (ΠSK, u) =
1
2

∫
∂g(K)

∣∣∣u · νg(K)(y)
∣∣∣ dHn−1(y). (60)

The following lemma shows that the spherical projection operator ΠS : SB(Sn
+)→ Ko(Sn)

is continuous.

Lemma 11. For a sequence of spherical star bodies {Ki}
∞
i=0 ⊂ SB(Sn

+), if

lim
i→∞

ds(Ki,K∞) = 0, (61)

then

lim
i→∞

ds(ΠSKi,ΠSK∞) = 0. (62)

Proof. By the continuity of gnomonic projection and (61), we have

lim
i→∞

dH(g(Ki), g(K∞)) = 0. (63)

Since {Ki}
∞
i=0 ⊂ SB(Sn

+), g(Ki) ∈ SB(Rn). By Lemma 3 and (63), g(Ki) converges to g(K∞)

in radial distance. By (11) and Lemma 1, we have

lim
i→∞

dH (Π(g(Ki)),Π(g(K∞))) = 0.

Thus by the definition of spherical projection body and the continuity of gnomonic projec-

tion, we have

lim
i→∞

ds (ΠSKi,ΠSK∞) = lim
i→∞

ds

(
g−1 (Π(g(Ki))) , g−1 (Π(g(K∞)))

)
= lim

i→∞
dH (Π(g(Ki)),Π(g(K∞)))

= 0.

This is the desired conclusion. �

Let O(n+1) denote the set of rotation transformations around the xn+1-axis in Rn+1. The

following lemma demonstrates the rotation covariance of the spherical projection operator.
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Lemma 12. Let φ ∈ O(n + 1) be a rotation transformation on Rn+1 and K ∈ SB(Sn). Then

ΠS(φK) = φΠSK. (64)

Proof. For φ ∈ O(n + 1), there exists a rotation transformation φ̄ ∈ O(n) on Rn such that

g(φK) = φ̄ (g(K)) . (65)

By [23, Lemma 6.4], we have

Π
(
φ̄ (g(K))

)
= φ̄Π (g(K)) . (66)

Therefore,

ΠS(φK) = g−1 (Π(g(φK))) = g−1 (
Π(φ̄g(K))

)
= g−1 (

φ̄Π(g(K))
)

= φg−1 (Π(g(K))) = φΠSK,

where first equality is due to (59), the second is due to (65), the third is due to (66), the

fourth is due to (65) and the last equality is due to the definition of spherical projection

body (59). �

3.3. Spherical projection inequality.

Lemma 13. Let K ∈ SB(Sn
+). Then

Hn
(
Π◦S

(
Ŝ K

))
≥ Hn

(
Π◦SK

)
, (67)

with equality if and only if Ŝ K = K.

Proof. If K ∈ SB(Sn
+), then g(K) ∈ SB(Rn). For g(K), by Lemma 5, there is a sequence of

disjoint open subsets Gm ⊂ g(K)′, and two sequences of graph functions

fm, j, gm, j : Gm → R, 1 ≤ j ≤ m,

satisfying (i), (ii) and (iii) in Lemma 5. In particular, ∂g(K) has the representation (if we

neglect anHn−1-null set)

∂g(K) =

∞⋃
m=1

m⋃
j=1

{(
x′, fm, j

(
x′
))

: x′ ∈ Gm

}
∪

{(
x′, gm, j

(
x′
))

: x′ ∈ Gm

}
.

Let (z′, t), (z′,−s) ∈ ∂Π∗ (g(K)) and t , −s, s.t.,

h
(
Π (g(K)) , (z′, t)

)
= 1 = h

(
Π (g(K)) , (z′,−s)

)
. (68)

By the definition of projection body (68), (16) and (iii) in Lemma 5, we have

1 = h
(
Π (g(K)) , (z′, t)

)
(69)

=
1
2

∫
∂g(K)

∣∣∣(z′, t) · νg(K)(x)
∣∣∣ dHn−1(x)

=
1
2

∞∑
m=1

m∑
j=1

∫
{(x′, fm, j(x′)): x′∈Gm}

∣∣∣∣(z′, t) · (∇ fm, j(x′),−1
)∣∣∣∣√

1 +
∣∣∣∇ fm, j(x′)

∣∣∣2 dHn−1(x)
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+
1
2

∞∑
m=1

m∑
j=1

∫
{(x′,gm, j(x′)): x′∈Gm}

∣∣∣∣(z′, t) · (−∇gm, j(x′), 1
)∣∣∣∣√

1 +
∣∣∣∇gm, j(x′)

∣∣∣2 dHn−1(x)

=
1
2

∞∑
m=1

m∑
j=1

∫
Gm

∣∣∣∣(z′, t) · (∇ fm, j(x′),−1
)∣∣∣∣ dx′ +

1
2

∞∑
m=1

m∑
j=1

∫
Gm

∣∣∣∣(z′, t) · (−∇gm, j(x′), 1
)∣∣∣∣ dx′.

Similarly, we have

1 = h
(
Π (g(K)) , (z′,−s)

)
(70)

=
1
2

∞∑
m=1

m∑
j=1

∫
Gm

∣∣∣∣(z′,−s) ·
(
∇ fm, j(x′),−1

)∣∣∣∣ dx′ +
1
2

∞∑
m=1

m∑
j=1

∫
Gm

∣∣∣∣(z′,−s) ·
(
−∇gm, j(x′), 1

)∣∣∣∣ dx′.

Therefore, we have

h
(
Π

(
S̄ g(K)

)
,
(
z′,

t + s
2

))
(71)

=
1
2

∫
K′

∣∣∣∣∣(z′, t + s
2

)
·
(
−rK∇%(x′), 1

)∣∣∣∣∣ dx′ +
1
2

∫
K′

∣∣∣∣∣(z′, t + s
2

)
·
(
rK∇%(x′),−1

)∣∣∣∣∣ dx′

≤
1
2

∫
K′

∣∣∣∣∣(z′, t + s
2

)
·
(
−∇%(x′), 1

)∣∣∣∣∣ dx′ +
1
2

∫
K′

∣∣∣∣∣(z′, t + s
2

)
·
(
∇%(x′),−1

)∣∣∣∣∣ dx′

=
1
2

∫
K′

∣∣∣∣∣∣∣∣
(
z′,

t + s
2

)
·

− m∑
j=1

∇gm, j(x′) − ∇ fm, j(x′)
2

, 1


∣∣∣∣∣∣∣∣ dx′

+
1
2

∫
K′

∣∣∣∣∣∣∣∣
(
z′,

t + s
2

)
·

− m∑
j=1

∇gm, j(x′) − ∇ fm, j(x′)
2

,−1


∣∣∣∣∣∣∣∣ dx′

≤
1
4

∞∑
m=1

m∑
j=1

∫
Gm

∣∣∣∣(z′, t) · (−∇gm, j(x′), 1
)∣∣∣∣ dx′ +

1
4

∞∑
m=1

m∑
j=1

∫
Gm

∣∣∣∣(z′,−s
)
·
(
∇ fm, j(x′),−1

)∣∣∣∣ dx′

+
1
4

∞∑
m=1

m∑
j=1

∫
Gm

∣∣∣∣(z′, t) · (∇ fm, j(x′),−1
)∣∣∣∣ dx′ +

1
4

∞∑
m=1

m∑
j=1

∫
Gm

∣∣∣∣(z′,−s
)
·
(
−∇gm, j(x′), 1

)∣∣∣∣ dx′

=
1
2

h
(
Π(g(K)), (z′, t)

)
+

1
2

h
(
Π(g(K)), (z′,−s)

)
= 1,

where the first equality is due to (45) and the same reasoning process as (69), the first

inequality is due to rK ≤ 1 and the monotonically increasing property of |a + bt| + |a − bt|

on t > 0 for any a, b ∈ R, the second equality is due to (41), the second inequality is due to

the triangle inequalities for absolute value functions, the last two equalities are due to (69)

and (70).

By (71) and Lemma 6,

S Π∗ (g(K)) ⊆ Π∗
(
S̄ g(K)

)
. (72)

By Lemma 9 and the above containment relationship, we have

µs,n (Π∗ (g(K))) ≤ µs,n (S Π∗ (g(K))) ≤ µs,n

(
Π∗

(
S̄ g(K)

))
.
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By the above inequality, the definition of spherical projection body (59), the definition of

spherical Steiner symmetrization (47) and (27), we have

Hn
(
Π◦S(K)

)
≤ Hn

(
Π◦S(Ŝ K)

)
.

IfHn
(
Π◦S(K)

)
= Hn

(
Π◦S(Ŝ K)

)
, then the equality in the first inequality of (71) is estab-

lished. Thus by the arbitrariness of z′, rK = 1. By Lemma 9, S g(K) = g(K). Therefore,

Ŝ K = K. �

Proof of Theorem 1. By Lemma 10, there exists a sequence of directions {ui}
∞
i=1 such

that Ŝ ui · · · Ŝ u1 K converges to KF in spherical Hausdorff distance. By the continuity of

spherical projection operator (see Lemma 11), we have

lim
i→∞

ds

(
ΠS

(
Ŝ ui · · · Ŝ u1 K

)
,ΠS(KF)

)
= 0. (73)

By Lemma 13, Hn
(
Π◦S

(
Ŝ ui · · · Ŝ u1 K

))
is increasing with respect to i. Thus, by (73), we

have

Hn
(
Π◦S(K)

)
≤ Hn

(
Π◦S(K

F)
)
. (74)

If K , KF, then there exists some uo ∈ S
n−1 such that Ŝ uo (K) , K. By Lemma 13, we

have

Hn
(
Π◦S(K)

)
< Hn

(
Π◦S

(
Ŝ uo (K)

))
. (75)

By (74) and (75), we have

Hn
(
Π◦S(K)

)
< Hn

(
Π◦S(K

F)
)
.

Therefore, the equality in (74) holds if and only if K = KF. �

3.4. Spherical projection inequality and an inequality on surface areas. In this sec-

tion, we shall prove that spherical projection inequality is stronger than an inequality on

surface areas.

Let

F1(t) :=
π

2
− arctan t, t ∈ (0,∞)

and

F2(s) :=
∫ s

0
(sin r)n−1dr, s ∈ (0,

π

2
).

Let F := F2 ◦ F1 be the composition function of F1 and F2. It is easily to check that F1

and F2 are strictly convex functions, F2 is strictly increasing and F1 is strictly decreasing.

Thus F is strictly convex and strictly decreasing. Let F−1 be the inverse function of F, then

F−1 is also strictly convex and strictly decreasing.
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Theorem 3. Let K ∈ SB(Sn
+) and co = ωn−1/(nωn). Then

coH
n−1

(
∂g(KF)

)
= F−1

(
1

nωn
Hn

(
Π◦S(K

F)
))

(76)

≤ F−1
(

1
nωn
Hn

(
Π◦S(K)

))
≤ coH

n−1 (∂g(K)) .

Moreover,Hn−1
(
∂g(KF)

)
= Hn−1 (∂g(K)) if and only if KF = K.

Proof. For K ∈ SB(Sn
+), by Lemma 8, (29) and (60),

Hn
(
Π◦S(K)

)
= Hn

(
−Π◦S(K)

)
=

∫
Sn−1

∫
conv(en+1,v)

sin
(
d̂s (en+1, u)

)n−1
χ−Π◦

S
(K)(u)dudv (77)

=

∫
Sn−1

∫ ρs(−Π◦S(K),v)

0
(sin t)n−1dtdv

=

∫
Sn−1

∫ π
2−hs(ΠS(K),v)

0
(sin t)n−1dtdv

=

∫
Sn−1

∫ π
2−arctan

(
1
2

∫
∂g(K)|v·ν

g(K)(y)|dHn−1(y)
)

0
(sin t)n−1dtdv.

By (77), we have

Hn
(
Π◦S(K)

)
=

∫
Sn−1

F
(

1
2

∫
∂g(K)

∣∣∣v · νg(K)(y)
∣∣∣ dHn−1(y)

)
dv. (78)

By Theorem 1 and the strict decreasing and strictly convex properties of F−1,

F−1
(

1
nωn
Hn

(
Π◦S(K

F)
))
≤ F−1

(
1

nωn
Hn

(
Π◦S(K)

))
. (79)

By Jensen’s inequality, (78) and Fubini’s theorem, we have

F−1
(

1
nωn
Hn

(
Π◦S(K)

))
≤

1
nωn

∫
Sn−1

(
1
2

∫
∂g(K)

∣∣∣v · νg(K)(y)
∣∣∣ dHn−1(y)

)
dv

=
1

2nωn

∫
∂g(K)

(∫
Sn−1

∣∣∣v · νg(K)(y)
∣∣∣ dv

)
dHn−1(y)

=
ωn−1

nωn
Hn−1 (∂g(K)) . (80)

Similarly, by the equality case of Jensen’s inequality, (78) and Fubini’s theorem, we have

F−1
(

1
nωn
Hn

(
Π◦S(K

F)
))

=
1

nωn

∫
Sn−1

(
1
2

∫
∂g(KF)

∣∣∣∣v · νg(KF)(y)
∣∣∣∣ dHn−1(y)

)
dv

=
1

2nωn

∫
∂g(KF)

(∫
Sn−1

∣∣∣∣v · νg(KF)(y)
∣∣∣∣ dv

)
dHn−1(y)

=
ωn−1

nωn
Hn−1

(
∂g(KF)

)
. (81)
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Note that the first equality of (81) is due to the fact that the following integral is a constant

for any v ∈ Sn−1, ∫
∂g(KF)

∣∣∣∣v · νg(KF)(y)
∣∣∣∣ dHn−1(y).

Then, the desired inequality follows from (79), (80) and (81).

IfHn−1
(
∂g(KF)

)
= Hn−1 (∂g(K)), then by strict monotonicity of F−1 and (76), we have

Hn
(
Π◦S(K

F)
)

= Hn
(
Π◦S(K)

)
. Thus, the equality case of Theorem 1 gives KF = K. �

4. Hyperbolic projection body and Hyperbolic projection inequality

4.1. Transformation Φp of Hyperbolic space. First, we introduce a transformation from

the Poincaré ball model Bn onto Rn. Let Φ : Bn → Rn be a transformation given by

y = Φ(x) := tan (2 arctan ‖x‖)
x
‖x‖

=
2x

1 − ‖x‖2
. (82)

Then its inverse transformation Φ−1 : Rn → Bn is

x = Φ−1(y) =
y

1 +
√

1 + ‖y‖2
. (83)

Let Φp := Φ◦P denote the composite of transformation Φ defined in (82) and the Poincaré

ball model projection defined in Definition 7.

By (83), we have

dxi =
dyi

1 +
√

1 + ‖y‖2
−

yi(y · dy)(
1 +

√
1 + ‖y‖2

)2 √
1 + ‖y‖2

. (84)

Combining (34), (83) and (84), let |dx|2 := dx2
1 + · · · + dx2

n, the metric in the Poincaré ball

model

ds2 = 4
|dx|2(

1 − ‖x‖2
)2 =

n∑
i=1

dyi −
yi (y · dy)(

1 +
√

1 + ‖y‖2
) √

1 + ‖y‖2

2

= |dy|2 −
2
√

1 + ‖y‖2 + 2 + ‖y‖2(
1 +

√
1 + ‖y‖2

)2
(1 + ‖y‖2)

(y · dy)2

= |dy|2 −
(y · dy)2

1 + ‖y‖2
. (85)

By the above equality and the Cauchy-Schwarz inequality, we have

|dy|2 ≥ ds2 ≥ |dy|2 −
‖y‖2|dy|2

1 + ‖y‖2
=
|dy|2

1 + ‖y‖2
. (86)

By (83) and the area formula (see [13, Theorem 3.8]), we have the volume element

dx :=
1√

1 + ‖y‖2
(
1 +

√
1 + ‖y‖2

)n dy. (87)
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By (82) and (83), we have

1 − ‖x‖2

2
=

1√
1 + ‖y‖2 + 1

. (88)

Combining (36), (88) and (87) we obtain

dµh,n =
1√

1 + ‖y‖2
dy. (89)

Therefore, for K ∈ So(Hn),

µh,n(K) =

∫
Φp(K)

1√
1 + ‖y‖2

dy. (90)

Lemma 14. Let K ∈ So(Hn). Then∫
S Φp(K)

1√
1 + ‖y‖2

dy ≥
∫

Φp(K)

1√
1 + ‖y‖2

dy, (91)

with equality if and only if S Φp(K) = Φp(K).

Proof. By Fubini’s theorem, we only need to prove that for any y′ ∈ Φp(K)|Rn−1 ,∫
(S Φp(K))y′

(
1 + ‖y′‖2 + |yn|

2
)− 1

2 dyn ≥

∫
(Φp(K))y′

(
1 + ‖y′‖2 + |yn|

2
)− 1

2 dyn. (92)

Let

f1(yn) :=
(
1 + ‖y′‖2 + |yn|

2
)− 1

2 , f2(yn) := χ(Φp(K))y′ (yn).

Then

fF1 = f1, and fF2 = χ(S Φp(K))y′ ,

where fF denotes the symmetric decreasing rearrangement of f (see (18) for specific

definition).

By Hardy-Littlewood inequality (see Lemma 7), we have∫
(Φp(K))y′

(
1 + ‖y′‖2 + |yn|

2
)− 1

2 dyn (93)

=

∫
R

f1(yn) f2(yn)dyn

≤

∫
R

fF1 (yn) fF2 (yn)dyn

=

∫
(S Φp(K))y′

(
1 + ‖y′‖2 + |yn|

2
)− 1

2 dyn.

Moreover, since f1 is an even nonnegative unimodal integrable function, the equality in

(93) holds if and only if (Φp(K))y′ = (S Φp(K))y′ . Thus, the equality in (91) holds if and

only if S Φp(K) = Φp(K). �

Lemma 15. For K ⊂ Hn, K ∈ So(Hn) is equivalent to Φp(K) ∈ So(Rn). Moreover,

K ∈ SB(Hn) is equivalent to Φp(K) ∈ SB(Rn).
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Proof. By (82) and (83), P(K) is a star-shaped set with respect to origin if and only if

Φp(K) is a star-shaped set with respect to origin in Rn. Moreover, by (82) and (83), we

have

ρ(Φp(K), x) =
2ρ(P(K), x)

1 − ‖x‖2ρ2(P(K), x)
, x ∈ Rn\{o} (94)

and

ρ(P(K), x) =
ρ(Φp(K), x)

1 +
√

1 + ‖x‖2ρ2(Φp(K), x)
, x ∈ Rn\{o}. (95)

Therefore, ρ(P(K), ·) is strictly positive and continuous in Rn\{o} if and only if ρ(Φp(K), ·)

is strictly positive and continuous in Rn\{o}. Moreover, by (94) and (95), ρ(P(K), ·) is

locally Lipschitz continuous in Rn\{o} if and only if ρ(Φp(K), ·) is locally Lipschitz contin-

uous in Rn\{o}. By [22, Theorem 2.1], a Lipschitz star body (its radial function is locally

Lipschitz continuous in Rn\{o}) is a star body with respect to a ball and vice versa. This

shows the desired conclusion. �

Definition 11. For K ∈ So(Hn), its hyperbolic polar body K◦ is defined by

K◦ := Φ−1
p

((
Φp(K)

)∗)
. (96)

By the above definition and Lemma 15, if K ∈ So(Hn), then K◦ ∈ So(Hn).

4.2. Hyperbolic Steiner symmetrization.

Definition 12. For K ∈ SB(Hn), its hyperbolic Steiner symmetrization Š (K) is defined by

Š (K) := Φ−1
p

(
rKS Φp(K)

)
, (97)

where rK ∈ (0, 1] satisfies µh,n

(
Š (K)

)
= µh,n(K).

By [22, Lemma 5.1], if K̃ ∈ SB(Rn), then S K̃ ∈ SB(Rn). Moreover, it is clear that

rS K̃ ∈ SB(Rn) for r ∈ (0, 1]. Thus, the hyperbolic Steiner symmetrization maintains the

property of star bodies, i.e., if K ∈ SB(Hn), then Š (K) ∈ SB(Hn). Moreover, by Definition

12, the hyperbolic Steiner symmetrization maintains the invariance of µh,n measure.

Similarly, for compact set K ∈ Hn, we define the hyperbolic symmetric rearrangement

KF as following

KF :=
{
v ∈ Hn : ds2(P(v), o) ≤ α2, µh,n(K) = µh,n(Bh(α))

}
. (98)

Next, we prove the convergence of hyperbolic Steiner symmetrizations.

Lemma 16. For any K ∈ SB(Hn), there exists a sequence of directions {ui}
∞
i=1 ⊂ S

n−1 such

that

lim
i→∞

dh

(
Š ui · · · Š u1 (K),KF

)
= 0. (99)
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Proof. Since K ∈ SB(Hn), Φp(K) ∈ SB(Rn). By [21, Theorem 3.1], for the compact set

Φp(K), there exists a sequence of directions {ui}
∞
i=1 ⊂ S

n−1 and a ball B(ro) ⊂ Rn with the

same volume as Φp(K) such that

lim
i→∞

dH

(
S ui · · · S u1Φp(K), B(ro)

)
= 0. (100)

Let r1 ∈ (0, 1] satisfy

Φ−1
p

(
r1S u1Φp(K)

)
= Š u1 (K).

Let r2 ∈ (0, 1] satisfy

Φ−1
p

(
r2S u2Φp(Š u1 (K))

)
= Š u2 Š u1 (K).

Repeating the previous argument, we get a sequence of positive real numbers {ri}
∞
i=1 satis-

fying ri ∈ (0, 1] and

Φ−1
p

(
riS uiΦp(Š ui−1 · · · Š u1 (K))

)
= Š ui Š ui−1 · · · Š u1 (K). (101)

Let r̄ := limi→∞(riri−1 · · · r1), by (101), (86) and (100),

lim
i→∞

dh

(
Š ui · · · Š u1 (K),Φ−1

p (ri · · · r1B(ro))
)

= lim
i→∞

dh

(
Φ−1

p

(
ri · · · r1S ui · · · S u1Φp(K)

)
,Φ−1

p (ri · · · r1B(ro))
)

≤ lim
i→∞

dH

(
ri · · · r1S ui · · · S u1Φp(K), ri · · · r1B(ro)

)
= r̄ lim

i→∞
dH

(
S ui · · · S u1Φp(K), B(ro)

)
= 0.

Since µh,n

(
Š ui · · · Š u1 (K)

)
= µh,n(K) for any i ∈ N, KF = Φ−1

p (r̄B(ro)). This completes the

proof. �

4.3. Hyperbolic projection body.

Definition 13. For K ∈ SB(Hn), its hyperbolic projection body ΠH(K) is defined by

ΠH(K) := Φ−1
p

(
Π

(
Φp(K)

))
. (102)

By (90),

µh,n (ΠH(K)) =

∫
Π(Φp(K))

1√
1 + ‖y‖2

dy =

∫
Sn−1

∫ ρΠ(Φp (K))(u)

o

rn−1

√
1 + r2

drdu. (103)

Next, we show that the hyperbolic projection operator SB(Hn)→ SB(Hn) is continuous.

Lemma 17. For K∞,Ki ∈ SB(Hn), i = 0, 1, 2, . . . , if

lim
i→∞

dh (Ki,K∞) = 0, (104)

then

lim
i→∞

dh (ΠH(Ki),ΠH(K∞)) = 0. (105)
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Proof. By the relation between ds2 and |dy|2 (see (86)), if (104) holds, then

lim
i→∞

dH

(
Φp(Ki),Φp(K∞)

)
= 0.

By [22, Theorem 2.2] and the above equality, Φp(Ki) converges to Φp(K∞) in radial dis-

tance. Thus by (11), their surface areas satisfy

lim
i→∞
Hn

(
∂Φp(Ki)

)
= Hn

(
∂Φp(K∞)

)
.

By the above equality and the continuity of projection operator (see [21, Proposition 4.1]),

we have

lim
i→∞

dH

(
Π

(
Φp(Ki)

)
,Π

(
Φp(K∞)

))
= 0. (106)

By (102), (86) and (106),

lim
i→∞

dh (ΠH(Ki),ΠH(K∞)) = lim
i→∞

dh

(
Φ−1

p

(
Π

(
Φp(Ki)

))
,Φ−1

p

(
Π

(
Φp(K∞)

)))
≤ lim

i→∞
dH

(
Π

(
Φp(Ki)

)
,Π

(
Φp(K∞)

))
= 0.

This completes the proof. �

The following lemma shows that the rotation invariance of the hyperbolic projection

operator.

Lemma 18. If K ∈ SB(Hn) and φ ∈ O(n + 1), then

ΠH(φK) = φΠH(K). (107)

Proof. For φ ∈ O(n + 1), there exists a rotation transformation φ̄ ∈ O(n) in Rn such that

Φp(φ(K)) = φ̄
(
Φp(K)

)
.

By the definition of hyperbolic projection body (102) and the affine invariance of Euclidean

projection body on Lipschitz star bodies (see [23, Lemma 6.4]), we have

ΠH(φK) = Φ−1
p

(
Π

(
Φp (φK)

))
= Φ−1

p

(
Π

(
φ̄Φp (K)

))
= Φ−1

p

(
φ̄Π

(
Φp (K)

))
= φΦ−1

p

(
Π

(
Φp (K)

))
= φΠH(K).

This completes the proof. �

4.4. Hyperbolic projection inequality.

Lemma 19. For K ∈ SB(Hn), we have

µh,n
(
Π◦H(K)

)
≤ µh,n

(
Π◦H(Š K)

)
, (108)

with equality if and only if K = Š K.
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Proof. By Lemma 15, if K ∈ SB(Hn), then Φp(K) ∈ SB(Rn). By [23, Theorem 7.1],

S Π∗
(
Φp(K)

)
⊂ Π∗

(
S Φp(K)

)
. (109)

Therefore,

µh,n

(
Π◦H(Š K)

)
=

∫
Φp(Π◦H(Š K))

1√
1 + ‖y‖2

dy =

∫
Π∗(rK S Φp(K))

1√
1 + ‖y‖2

dy

≥

∫
Π∗(S Φp(K))

1√
1 + ‖y‖2

dy ≥
∫

S Π∗(Φp(K))

1√
1 + ‖y‖2

dy

≥

∫
Π∗(Φp(K))

1√
1 + ‖y‖2

dy = µh,n
(
Π◦H(K)

)
, (110)

where the first equality is from (89), the second equality from (96), (102) and (97), the first

inequality from rK ∈ (0, 1], the second inequality from (109), the third inequality from (91)

and the last equality is from (89) and (102).

If the equality in (108) holds, then the equality in the first inequality of (110) holds.

This implies rK = 1. By the sufficient and necessary conditions of the equality holds in

(91), S Φp(K) = Φp(K). Thus, K = Š K. �

Proof of Theorem 2. By the convergence of hyperbolic Steiner symmetrizations (see

Lemma 16), for K ∈ SB(Hn), there exists a sequence of directions {ui}
∞
i=1 ⊂ S

n−1 such

that the iterative hyperbolic Steiner symmetriztions Š ui · · · Š u1 K converge to KF in hyper-

bolic Hausdorff distance. Then by the continuity of hyperbolic projection operator (see

Lemma 17), the sequence of the hyperbolic projection bodies ΠH
(
Š ui · · · Š u1 K

)
converge

to ΠH
(
KF

)
in hyperbolic Hausdorff distance. By the monotonically increasing property of

µh,n

(
Π◦H(K)

)
with respect to hyperbolic Steiner symmetrization (see Lemma 19), we have

µh,n
(
Π◦H(K)

)
≤ µh,n

(
Π◦H(KF)

)
. (111)

If there exists u ∈ Sn−1 such that K , Š uK, then by Lemma 19, µh,n

(
Π◦H(K)

)
<

µh,n

(
Π◦H(Š uK)

)
. By (111) and the above inequality, µh,n

(
Π◦H(K)

)
< µh,n

(
Π◦H(KF

)
. There-

fore, if the equality in (111) holds, then for any direction u ∈ Sn−1, K = Š uK. By the

arbitrariness of u ∈ Sn−1, K = KF. �

4.5. Hyperbolic projection inequality and isoperimetric inequality on Hn. In this sec-

tion, we show that the hyperbolic projection inequality is stronger than the hyperbolic

isoperimetric inequality with respect to the transformation Φp.

On the one hand,

µh,n
(
Π◦H(K)

)
= µh,n

(
Φ−1

p

((
Φp (ΠH(K))

)∗))
= µh,n

(
Φ−1

p

((
ΠΦp(K)

)∗))
(112)

=

∫
Π∗(Φp(K))

1√
1 + ‖y‖2

dy =

∫
Sn−1

∫ 1/h(Π(Φp(K)),u)

0

rn−1

√
1 + r2

drdu,
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where the first equality is from the definition of hyperbolic polar body (96), the second

equality from the definition of hyperbolic projection body (102), the third from (89) and

the last equality from (103) and (13). Let G1(t) := 1
t , t > 0, then G1 is a strictly

decreasing convex function. Let

G2(s) :=
∫ s

0

rn−1

√
1 + r2

dr, s > 0,

then G2 is a strictly increasing convex function. Thus, the composite function G := G2 ◦

G1 is a strictly decreasing convex function. Then its inverse function G−1 is also strictly

decreasing convex function. Therefore, by (112), Jensen’s inequality, (16) and Fubini’s

theorem,

G−1
(

1
nωn

µh,n
(
Π◦H(K)

))
= G−1

 1
nωn

∫
Sn−1

∫ h−1(Π(Φp(K)),u)

0

rn−1

√
1 + r2

drdu

 (113)

= G−1
(

1
nωn

∫
Sn−1

G
(
h
(
Π

(
Φp(K)

)
, u

))
du

)
≤

1
nωn

∫
Sn−1

h
(
Π

(
Φp(K)

)
, u

)
du

=
1

2nωn

∫
Sn−1

∫
∂Φp(K)

∣∣∣u · νΦp(K)(x)
∣∣∣ dHn−1(x)

 du

=
1

2nωn

∫
∂Φp(K)

(∫
Sn−1

∣∣∣u · νΦp(K)(x)
∣∣∣ du

)
dHn−1(x)

=
ωn−1

nωn
Hn−1

(
∂Φp(K)

)
.

On the other hand, the same reasoning applies to KF, the only difference being the

equality in Jensen’s inequality, we have

G−1
(

1
nωn

µh,n

(
Π◦H(KF)

))
=
ωn−1

nωn
Hn−1

(
∂Φp(KF)

)
. (114)

Let co := ωn−1/(nωn). By (2), (113), (114) and the monotonicity of G−1,

coH
n−1

(
∂Φp(KF)

)
= G−1

(
1

nωn
µh,n

(
Π◦H(KF)

))
≤ G−1

(
1

nωn
µh,n

(
Π◦H(K)

))
≤ coH

n−1
(
∂Φp(K)

)
.

Therefore, hyperbolic projection inequality is stronger than the hyperbolic isoperimetric

inequality on transformation Φh.
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[8] K. J. Böröczky and Á. Sagmeister. The isodiametric problem on the sphere and in the hyperbolic space.

Acta Math. Hungar. 160 (2020), 13-32.

[9] M. Chlebı́k, A. Cianchi, N. Fusco, The perimeter inequality under Steiner symmetrization: cases of

equality, Ann. of Math. 162 (2005), 525-555.

[10] A. Cianchi, N. Fusco, Steiner symmetric extremals in Pólya-Szegő type inequalities, Adv. Math. 203
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