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In this paper, a phase-change model based on a geometric volume-of-fluid (VOF)
framework is extended to simulate nucleate boiling with a resolved microlayer and
conjugate heat transfer. Heat conduction in both the fluid and solid domains is
simultaneously solved, with interfacial heat-transfer resistance (IHTR) imposed. The
present model is implemented in the open-source software Basilisk with adaptive mesh
refinement (AMR), which significantly improves computational efficiency. However, the
approximate projection method required for AMR introduces strong oscillations within the
microlayer due to intense heat and mass transfer. This issue is addressed using a ghost fluid
method, allowing nucleate boiling experiments to be successfully replicated. Compared
with previous literature studies, the computational cost is reduced by three orders of
magnitude. We investigated the impact of contact angle on nucleate boiling through direct
numerical simulation (DNS). The results show that the contact angle primarily influences
the bubble growth by altering the hydrodynamic behaviour within the microlayer, rather
than the thermal effect. An increase in contact angle enhances contact line mobility,
resulting in a slower bubble growth, while maintaining an approximately constant total
average mass flux. Furthermore, the sensitivity of bubble dynamics to the contact angle
diminishes as the angle decreases. Finally, a complete bubble cycle from nucleation to

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1020 A30-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
54

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0009-0006-2004-255X
https://orcid.org/0009-0000-5367-375X
https://orcid.org/0000-0003-4976-2578
https://orcid.org/0000-0002-6423-1356
https://orcid.org/0000-0003-2004-9090
mailto:pan.jieyun@dalembert.upmc.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/jfm.2025.10542


T. Long, J. Pan, E. Cipriano, M. Bucci and S. Zaleski

detachment is simulated, which, to our knowledge, has not been reported in the open
literature. Reasonable agreement with experimental data is achieved, enabling key factors
affecting nucleate boiling simulations in the microlayer regime to be identified, which
were previously obscured by limited simulation time.

Key words: boiling, multiphase flow, condensation/evaporation

1. Introduction
Nucleate boiling is recognised as one of the most efficient heat-transfer processes due
to the significant latent heat of evaporation (Chen et al. 2024). Consequently, it plays
a critical role in various industrial applications, such as nuclear reactors (Manglik 2006),
electronics cooling (Cheng & Xia 2017) and thermal management subsystems in aerospace
engineering (Dhruv et al. 2019). In nucleate boiling, a very thin liquid layer, known as
the microlayer, may form between the heated wall and the liquid–vapour interface during
bubble growth (Hänsch & Walker 2019). This bubble growth regime is referred to as the
microlayer regime (Urbano et al. 2018). As depicted in figure 1, the microlayer, which is
merely a few microns thick, extends radially up to a few millimetres. The small thickness
of the microlayer leads to very high heat flux (Zupančič et al. 2022) and its considerable
radial extent over the heated surface results in a significant contribution to the overall heat
transfer (Yabuki & Nakabeppu 2014). In addition, the drying of the microlayer leads to
the spreading of dry spots, making its dynamics crucial for understanding critical heat
flux (CHF) (Zhao, Masuoka & Tsuruta 2002), which is the maximum heat flux that can
be transferred through nucleate boiling. These features of the microlayer have motivated
intense scientific investigation into it.

In recent decades, various modern high-resolution experimental techniques have been
developed, significantly advancing the understanding of the dynamics and heat-transfer
characteristics of the microlayer (Utaka, Kashiwabara & Ozaki 2013; Jung & Kim 2014;
Bucci et al. 2016). Despite these advances, experimental approaches still face several
limitations and shortcomings. For example, direct measurement of microlayer thickness
using laser interferometry (Jung & Kim 2018; Narayan & Srivastava 2021) inevitably in-
troduces systematic errors due to the loss of the first fringes near the contact line, where the
interface slope exceeds the observable limit (Tecchio et al. 2024). In addition, the inherent
uncertainties in experiments require careful evaluation (Kim et al. 2020). The range of
controllable parameters in experiments is also limited by achievable laboratory conditions
(Hänsch & Walker 2019), which may affect the generality of experimental findings.

Compared with experimental approaches, numerical simulations are more flexible
in changing operating conditions and can provide comprehensive physical information
(Bureš & Sato 2022). Nowadays, with rapid advances in high-performance computing,
direct numerical simulation (DNS) has become a powerful tool for studying nucleate
boiling and has gained increasing interest in academia (Chen et al. 2024). Despite
remarkable progress in recent years, DNS of nucleate boiling in the microlayer regime
remains a significant challenge due to the inherent multiscale nature of the problem.
To capture the entire bubble, the domain must extend to several millimetres, while
grid sizes below one micron are required to explicitly resolve the microlayer (Urbano
et al. 2018). Although a number of microlayer models have been developed to conduct
multiscale simulations of nucleate boiling (Sato & Niceno 2015; Chen et al. 2023),
their application to flow boiling, which involves bubble slipping and coalescence, is
not straightforward (Chen et al. 2024). In contrast, once a DNS code is validated, it
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Figure 1. Schematic of nucleate boiling with a microlayer (not to scale).

should be applicable across different scenarios. Without accounting for heat transfer,
Hänsch & Walker (2016) first performed a pioneering DNS study on the hydrodynamics of
microlayer formation in nucleate boiling. In their simulations, the bubble-growth rate was
calculated from the analytical solution of Scriven (1959). Subsequently, several researchers
have studied the hydrodynamics of the microlayer using the same modelling strategy,
except that the bubble-growth rate may be deduced from other models or experimental
results. Guion et al. (2018) performed simulations over a broad range of conditions and
identified the minimum set of dimensionless parameters governing the hydrodynamics of
microlayer formation. Giustini et al. (2020) simulated microlayer formation in the boiling
of industrially relevant fluids, whose properties differ significantly from typically studied
fluids such as water and ethanol. Following this, Giustini (2024) studied the formation
of a dewetting ridge near the contact line during bubble growth. Most recently, Saini
et al. (2024) investigated microlayer formation during heterogeneous bubble nucleation
triggered by a sudden drop in ambient pressure.

In contrast to previous studies, Urbano et al. (2018) were the first to successfully simulate
nucleate boiling in the microlayer regime with resolved thermal effects. A rigorous
parametric study was carried out to determine the criterion for microlayer formation.
Zhang et al. (2023a) developed an unstructured-mesh-based solver to simulate microlayer
formation and evaporation driven by the local temperature gradient. This solver was later
extended to study nucleate boiling on surfaces with micro-pillars (Zhang et al. 2023b),
where the microlayer may be disturbed or disrupted by the pillars. It should be noted
that in these works (Urbano et al. 2018; Zhang et al. 2023a,b), only heat transfer in
the fluid is considered, while conjugate heat transfer between the fluid and solid, which
has been shown to be important in microlayer evaporation (Sato & Niceno 2015; Ding,
Krepper & Hampel 2018), is neglected. Hänsch & Walker (2019) extended their previous
work (Hänsch & Walker 2016) to simulate the depletion of the microlayer, where the
evaporation of the microlayer is determined based on the solid temperature obtained by
solving the conjugate heat transfer. However, in this work, the bubble growth rate is
still approximated using the Scriven solution (Scriven 1959) instead of solving the heat
transfer in the liquid domain. Subsequently, significant progress was made by Bureš &
Sato (2022), who were the first to perform detailed DNS studies of nucleate boiling in
the microlayer regime by explicitly resolving heat and mass transfer in the fluid, along
with conjugate heat transfer. They simulated an experiment conducted at Massachusetts
Institute of Technology (MIT) (Bucci 2020), and their numerical results were in good
agreement with experimental measurements. The same experiment was later adopted by
Torres et al. (2024) and El Mellas et al. (2024) to validate their computational models with
resolved conjugate heat transfer. However, the microlayer was not the focus of Torres et al.
(2024) and El Mellas et al. (2024), and it was not studied in detail.

Although the above-mentioned works demonstrated the capabilities of DNS solvers in
modelling the microlayer in nucleate boiling, the computational cost of DNS still limits
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its application. As discussed earlier, the multiscale nature of nucleate boiling requires a
large computational domain with a small grid size, leading to significant computational
costs. Despite the efforts by Bureš & Sato (2022) to stretch the grid and minimise the
computational burden, the simulations remained highly time-consuming. For a simulation
at the finest resolution, 336 cores were used, requiring approximately 400 000 CPU hours
to advance the physical time to 0.5 ms (Bureš & Sato 2022). By contrast, a complete
bubble cycle from nucleation to detachment is typically of the order of 10 ms. In fact, to
the best of our knowledge, DNS of a complete bubble cycle with a resolved microlayer
and conjugate heat transfer has not been achieved before due to the high computational
cost. Employing a quad/octree-based AMR method, the free software Basilisk (Popinet
2009, 2015) provides a highly efficient framework for the DNS of multiphase flows (Wang
et al. 2023; Pan et al. 2024). Several phase-change models (Zhao, Zhang & Ni 2022;
Long, Pan & Zaleski 2024; Cipriano et al. 2024) have been developed using Basilisk,
demonstrating its potential for studying complex boiling problems. In this work, we aim to
extend the previous open-source phase-change model developed by Cipriano et al. (2024)
to include conjugate heat transfer and to simulate nucleate boiling with a microlayer.
In addition to incorporating conjugate heat transfer, the original phase-change model
requires careful modifications to correctly capture the physics within the microlayer. This
is due to the approximate projection method required by AMR, which leads to unphysical
oscillations in phase-change problems as the velocity is discontinuous across the interface
(Zhao et al. 2022; Long et al. 2024). Although the previous model of Cipriano et al. (2024)
appears to perform well in benchmark tests, the problem of interest in this paper is much
more challenging due to the intense heat and mass transfer within the microlayer. We will
demonstrate that the unphysical oscillations induced by the approximate projection method
lead to incorrect microlayer dynamics, resulting in inaccurate predictions of heat and
mass transfer. We adopt the ghost fluid method (Nguyen, Fedkiw & Kang 2001; Tanguy
et al. 2014) to address this issue, in which the singularity is removed by setting the ghost
velocity according to the jump condition. By doing so, we achieve highly efficient and
accurate DNS of nucleate boiling in the microlayer regime. With the present solver, we
have successfully simulated the experiment conducted at MIT (Bucci 2020). The results
of the present solver not only agree well with the numerical results of Bureš & Sato
(2022), but also achieve a remarkable reduction in computational cost by three orders
of magnitude, while significantly enhancing stability. The influence of the contact angle
is further investigated by analysing the contributions of different regions of the bubble to
evaporation for various contact angles. Moreover, a complete bubble cycle for nucleate
boiling in the microlayer regime is directly simulated with all effects explicitly resolved,
which, to our knowledge, is the first such study reported in the open literature.

The remainder of this paper is structured as follows. In § 2, we briefly review the original
phase-change model of Cipriano et al. (2024). Then, we introduce the implementation of
the ghost fluid method and the treatment of the solid. The extended model is verified in
§ 3, followed by the numerical results and related discussions presented in § 4. Finally,
concluding remarks are provided in § 5.

2. Numerical method

2.1. Governing equations
In nucleate boiling simulations, the fluid domain is occupied by the liquid and vapour
phases, which are separated by a zero-thickness interface, Γ . Both phases are assumed
to be incompressible and monocomponent. With phase change considered, the governing
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equations for fluids are as follows:

∇ · u = Spc, (2.1)

ρ

(
∂u
∂t

+ (u · ∇) u
)

= −∇p + ∇ · (μ(∇u + ∇uT ))+ ρg + fσ , (2.2)

ρCp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (λ∇T ). (2.3)

Here, u, ρ, μ, g, T , Cp and λ represent the fluid velocity, density, dynamic
viscosity, gravitational acceleration, temperature, specific heat and thermal conductivity,
respectively. The source term Spc, introduced due to phase change, will be elaborated
on later. The surface tension force is fσ = σκδsn, where σ is the surface tension, κ the
interface curvature, n the interface normal vector pointing from the liquid phase to the
vapour phase and δs the Dirac delta function concentrated at the interface. Following
previous studies (Bureš & Sato 2022; Torres et al. 2024), the surface tension σ is assumed
to be constant, implying that Marangoni convection effects are neglected. To resolve
conjugate heat transfer, the following energy equation in the solid domain is considered:

ρsCp,s
∂Ts

∂t
= ∇ · (λs∇Ts)+ Qh, (2.4)

where the subscript s denotes the prosperity of solid and Qh is a volumetric power term
due to electrical resistance heating.

2.2. Jump conditions
The main challenge in the simulations of boiling flows is the accurate implementation of
jump conditions at the interface. Let H represent the Heaviside function (Tanguy et al.
2014), defined as 1 in the liquid phase and 0 in the vapour phase. Accordingly, the jump
of a given fluid property φ, such as density and viscosity, across the interface can be
expressed as

φ = φl H + φv(1 − H), (2.5)

where the subscripts l and v indicate the physical properties of the liquid and vapour,
respectively. When phase change occurs, the mass balance at the interface gives

ṁ = ρl(ul − uΓ ) · n = ρv(uv − uΓ ) · n, (2.6)

where ṁ represents the mass flux. Introducing the jump operator [φ]Γ = φl − φv in (2.6),
the velocity jump can be formulated as

[u]Γ = ṁ

[
1
ρ

]
Γ

n. (2.7)

Moreover, the stress jump condition across the interface can be obtained by integrating the
momentum (2.2) and is usually given in the form of the pressure jump as

[p]Γ = σκ + 2
[
μ
∂un

∂n

]
Γ

− ṁ2
[

1
ρ

]
Γ

, (2.8)

where ∂un/∂n is the normal derivative of the normal velocity component un = u · n. Note
that the above-mentioned jump conditions are also validate in the absence of phase change,
i.e. ṁ = 0.
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Figure 2. Schematic for the concept of equivalent conductive resistance: (a) IHTR located at the
liquid–vapour interface; (b) IHTR located at the fluid–solid boundary.

For the temperature field, energy conservation across the liquid–vapour interface leads
to the jump condition

[q]Γ = ṁhlv, (2.9)

where q = λ∇T · n is the heat flux and hlv is the latent heat. It should be noted that
thermodynamic equilibrium,

TΓ,l = TΓ,v = Tsat, (2.10)

is assumed in the derivation of (2.9) (Tanguy et al. 2014), where Tsat denotes the
saturation temperature at the ambient system pressure. However, this assumption leads
to large deviations in thermodynamic characteristics from experimental observations in
the presence of a microlayer (Giustini et al. 2016). In fact, the degree of thermodynamic
non-equilibrium within the microlayer remains an open question. Currently, a widely used
modelling strategy to account for non-equilibrium effects is to introduce an additional
interfacial heat-transfer resistance (IHTR) (Hänsch & Walker 2019; Bureš & Sato 2022;
Giustini et al. 2016). As shown in figure 2(a), IHTR models assume that the vapour
temperature at the liquid–vapour interface remains the saturation temperature, while the
liquid temperature is higher. In the present study, a simplified IHTR model proposed
by Bureš & Sato (2022) is employed. Since IHTR is usually assumed to be localised
in the microlayer (Giustini et al. 2016), Bureš & Sato (2022) demonstrated that its
implementation could be simplified by introducing a numerically equivalent contact heat-
transfer resistance at the fluid–solid boundary. In the presence of conjugate heat transfer,
the heat flux is balanced between the solid and fluid domains (Torres et al. 2024), as
expressed in the following equation:

λs∇Ts · ns + δq = λf ∇Tf · ns ( f = l or v), (2.11)

where δq (W m−2) denotes a Dirac source term representing a heat source localised at
the solid–fluid boundary and ns is the normal vector at the fluid–solid boundary, pointing
from the solid domain to the fluid domain. As shown in figure 2(a), with the IHTR, the
heat flux from solid to vapour is

jq = Tb,s − Tsat

d/λl + RΓ
, (2.12)
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where Tb,s is the solid temperature at the fluid–solid boundary, d is the microlayer
thickness and RΓ is the IHTR factor. Assuming the existence of a contact heat-transfer
resistance Rc at the fluid–solid boundary, as shown in figure 2(b), the following equation
is obtained:

jq = Tb,s − Tsat

d/λl + Rc
= Tb,s − Tsat

d/λl + RΓ
, (2.13)

provided that Rc = RΓ . In this way, the temperature discontinuity due to heat-transfer
resistance is shifted from the liquid–vapour interface to the liquid–solid interface, while
the overall heat flux remains unchanged. With this simplified model, special care is only
needed for the implementation of conjugate heat transfer, while the original phase-change
model in the fluid domain (Cipriano et al. 2024), which assumes that temperature is
continuous across the interface, can be applied directly, as (2.10) still holds.

2.3. Numerical scheme

2.3.1. One-fluid method
In the phase-change model of Cipriano et al. (2024), a geometric VOF method with
piecewise linear interface construction (PLIC) was adopted to capture the liquid–vapour
interface. The VOF function f , defined as the volume fraction of the reference phase
(which is the liquid phase in the present study) in the control cell, is updated by solving

∂ f

∂t
+ uΓ · ∇f = 0 (2.14)

with a directional split advection method (Weymouth & Yue 2010; Zhao et al. 2022). By
considering the mass balance (2.6), the interfacial velocity is calculated as

uΓ = ul − ṁ

ρl
n = uv − ṁ

ρv
n. (2.15)

With the VOF function, the jumps of physical properties (2.5) can be approximated by

φ = φl f + φv(1 − f ), (2.16)

which gives the so-called one-fluid method (Tanguy et al. 2014). Accordingly, the mass
equation for the one-fluid velocity u can be obtained by considering the divergence-free
condition in the bulk region of each phase and the velocity jump at the interface (2.7), and
is given by

∇ · u = ṁδs

[
1
ρ

]
Γ

. (2.17)

Here, δs is the Dirac delta function concentrated at the interface, which is approximated as
δs = SΓ /Vc in the discretised formulation, where Vc is the volume of the computational
cell and SΓ denotes the area of the interface within it.

2.3.2. Solving the mass and momentum equations
The phase-change model of Cipriano et al. (2024) is developed in the free software
Basilisk (Popinet 2009, 2015), which employs a quad/octree grid with AMR, where the
velocity and pressure are collocated at cell centres. The incompressible Navier–Stokes
equations are solved using a time-staggered approximate projection method, leading to the
following discretisation:
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ρ
n+ 1

2
c

(
u∗ − un

	t
+
(

un+ 1
2 · ∇

)
un+ 1

2

)
c
= ∇c ·

[
μ

n+ 1
2

f

(∇u + ∇uT )∗]
+
[
(σκδsn)n− 1

2 − ∇pn− 1
2

]
f →c

, (2.18)

u∗∗
c = u∗

c − 	t

ρ
n+ 1

2
c

[
(σκδsn)n− 1

2 − ∇pn− 1
2

]
f →c

, (2.19)

u∗
f = u∗∗

c→ f + 	t

ρ
n+ 1

2
f

(σκδsn)n+ 1
2 , (2.20)

un+1
f = u∗

f − 	t

ρ
n+ 1

2
f

∇pn+ 1
2 , (2.21)

un+1
c = u∗∗

c + 	t

ρ
n+ 1

2
c

[
(σκδsn)n+ 1

2 − ∇pn+ 1
2

]
f →c

, (2.22)

where the superscripts n − (1/2), n + (1/2), n and n + 1 represent the states at different
time steps. The subscripts c and f denote the cell-centred and face-centred variables,
respectively, and the conversion between them is achieved by a second-order accurate
interpolation scheme (Zhao et al. 2022), denoted by the symbol c → f and f → c. At
each time step, the physical variables at n − (1/2) and n are known, and their values at
n + (1/2) and n + 1 are obtained by solving the Navier–Stokes equations.

To solve the above-mentioned equations, the advection term is discretised using the
Bell–Colella–Glaz (BCG) scheme (Bell, Colella & Glaz 1989), and the viscous term is
discretised using the implicit Crank–Nicolson scheme. Moreover, the pressure at time n +
(1/2) in (2.21) is obtained by solving the Poisson equation,

∇c ·
⎛⎝ 	t

ρ
n+ 1

2
f

∇pn+ 1
2

⎞⎠= ∇c · u∗
f − ∇c · un+1

f , (2.23)

where the second term on the right-hand side is determined according to the mass (2.17).
This is the so-called projection step, in which the intermediate velocity u∗

f is projected onto

a velocity field fulfilling the mass equation, un+1
f . However, as un+1

c is interpolated using
(2.22), it is only approximately projected (Zhao et al. 2022). The approximate projection
method is adopted to facilitate the implementation of AMR, as the cell-centred velocity
is difficult to project exactly due to the spatial decoupling of the stencils used for the
relaxation operator (Popinet 2003). It has been shown that the approximate projection
method introduces unphysical oscillations in the presence of phase change (Zhao et al.
2022; Long et al. 2024). As shown in Appendix A, although the original model of Cipriano
et al. (2024) performs well in many benchmark tests, it fails to correctly capture the physics
of the microlayer during bubble growth. In the present work, a ghost fluid method is
adopted and will be introduced later, enabling highly efficient and accurate simulations
of boiling flows.

2.3.3. Solving the energy equation
To solve the mass and momentum equations in the presence of phase change, the mass flux
ṁ is needed to determine the source term in (2.17). As the latent heat is usually given a
priori, the mass flux can be calculated using (2.9) based on the difference between the heat
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i – 1 i + 1i
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Sv, j + 1/2

Sv,Γ

Figure 3. Schematic for the discretisation of the diffusion terms in the energy equation.

fluxes across the interface. To compute the heat flux on both sides of the interface with a
Dirichlet boundary condition (2.10) imposed, the normal temperature gradient ∇T · n is
calculated using an embedded boundary method (Zhao et al. 2022; Cipriano et al. 2024).

To resolve the temperature evolution, the energy equation in the fluid domain is solved
using the finite volume method. In the phase-change model of Cipriano et al. (2024),
two temperature fields, one for the liquid phase and one for the vapour phase, are solved
separately using an operator splitting approach. This method handles the convective and
diffusive parts of the energy equation independently (Cipriano et al. 2024). For brevity,
the volume fractions of the liquid and vapour phases are defined as θl = f and θv = 1 − f .
First, the advection term is solved as(

(θk Tk)
∗ − (θk Tk)

n− 1
2

	t

)
c

= − 1
Vc

∑
cell faces

T n
k, f Fθk , f , (2.24)

where k = l or v indicates the phase of interest, Vc denotes the cell volume, T n
k, f represents

the face-centred temperature obtained using the BCG scheme (Bell et al. 1989) and Fθk , f is
the volume flux computed during the geometrical advection of the VOF function (Cipriano
et al. 2024). In this way, the energy is advected as a tracer associated with the VOF
advection, avoiding numerical diffusion across the interface.

Once we obtain the intermediate temperature field, which takes into account the
advection effect, we can solve the diffusion term using finite volume discretisation:⎛⎝ρkC p,kθ

n+ 1
2

k

T
n+ 1

2
k − T ∗

k

	t

⎞⎠
c

= − 1
Vc

⎡⎣ ∑
cell faces

λk∇T
n+ 1

2
k, f · Sk, f

+
(
λk
∂T

∂n

∣∣∣∣
Γ,k

n · SΓ,k

)n− 1
2
⎤⎦, (2.25)

where Sk, f and SΓ,k denote the area vectors of the cell face and the interface segment,
respectively, as illustrated in figure 3. The face-centred temperature gradient ∇Tk, f is
computed using a second-order accurate central difference method, and the normal
temperature gradient at the interface (∂T /∂n)|Γ,k is calculated using the embedded
boundary method (Zhao et al. 2022; Cipriano et al. 2024). Note that the second term
on the right-hand side of (2.25) is introduced only in the cells cut by the interface.
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2.3.4. Ghost fluid method
In previous sections, the original phase-change model of Cipriano et al. (2024) is briefly
reviewed. In this section, the modifications and extensions for simulating nucleate boiling
with a resolved microlayer and conjugate heat transfer are introduced. As mentioned
earlier, the source term in the mass equation induced by phase change (2.17) is singular and
non-zero only in the interfacial cells. As a result, numerical oscillations may arise near the
interface, especially for the cell-centred velocity, which is only approximately projected
(Zhao et al. 2022; Long et al. 2024). However, the approximate projection method is
required for the implementation of AMR, which can significantly improve computational
efficiency. To achieve a highly efficient and accurate phase-change model, the original
model of Cipriano et al. (2024) is improved by adopting the ghost fluid method (Nguyen
et al. 2001; Tanguy et al. 2014). As shown in Appendix A, this modification is crucial for
obtaining an accurate prediction of heat transfer within the microlayer. The principle of
the ghost fluid method is to solve two separate velocity fields for each phase. Let C denote
the colour function, which is computed by

C =
{

1 if f � 0.5,
0 if f < 0.5.

(2.26)

Accordingly, the velocity fields can be expressed as

ul = Cul + (1 − C)ug
l ,

uv = (1 − C)uv + Cug
v,

(2.27)

where the ghost velocities ug
l and ug

v are calculated as

ug
v = ul − ṁ

[
1
ρ

]
Γ

n,

ug
l = uv + ṁ

[
1
ρ

]
Γ

n.
(2.28)

Since the above-mentioned equation is obtained according to the velocity jump condition
(2.7), the singularity at the interface is removed (Nguyen et al. 2001; Tanguy et al. 2014),
leading to the new mass equations:

∇ · ul = ∇ · uv = 0. (2.29)

Consequently, during the projection step, (2.23) becomes

∇c ·
⎛⎝ 	t

ρ
n+ 1

2
f

∇pn+1

⎞⎠=
{∇c · u∗

f,l if C = 1,

∇c · u∗
f,v if C = 0,

(2.30)

where the singular source term due to phase change on the right-hand side is eliminated.
In practice, there is no need to populate ghost velocities throughout the domain. Equation
(2.28) is applied only within a narrow band near the interface, defined by whether a cell
or any of its neighbours is cut by the interface.

2.3.5. Treatment of solid
Finally, the solution of heat conduction in the solid domain and the implementation of
conjugate heat transfer between the fluid and solid domains are elaborated. Applying the

1020 A30-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
54

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10542


Journal of Fluid Mechanics

Solid Fluid

Tb,s Tb, f

Ts Tf

Figure 4. Schematic for the implicit discretisation of the heat diffusion terms at the fluid–solid boundary.

finite volume discretisation to (2.4) leads to⎛⎝ρsCp,s
T

n+ 1
2

s − T
n− 1

2
s

	t

⎞⎠
c

= − 1
Vc

⎛⎝ ∑
cell faces

λs∇T
n+ 1

2
s, f · Ss, f

⎞⎠+ Q
n− 1

2
h . (2.31)

It can be seen from (2.25) and (2.31) that the heat conduction terms are discretised
using an implicit scheme in both the fluid and solid domains, eliminating the strict
time step constraint imposed by these terms. During simulations, these two equations
are solved simultaneously with the associated boundary conditions. For fluid and solid
cells near the boundary, the discretisation stencil is incomplete when the face-centred
temperature gradient is computed with a central scheme. As shown in figure 4, this
issue is addressed by employing a one-sided difference scheme, relying on two associated
boundary temperatures, Tb,s and Tb, f . With the contact heat-transfer resistance and the
continuity of heat flux, the following equation is obtained:

2λs
Ts − Tb,s

Δ
= Tb,s − Tb, f

Rc
= 2λf

Tb, f − Tf

Δ
, (2.32)

where Δ is the grid size. This equation can be simplified by introducing Rs =Δ/(2λs)

and Rf =Δ/(2λf ). The solution of (2.32) yields the boundary values as follows:

Tb,s =(Rc + Rf )Ts + Rs Tf

Rc + Rf + Rs
,

Tb, f =(Rc + Rs)Tf + Rf Ts

Rc + Rf + Rs
.

(2.33)

The temperature gradient at the fluid–solid boundary can then be calculated using (2.32).
Note that the continuity of temperature (Huber et al. 2017) across the fluid–solid boundary
is automatically recovered when Rc = 0. In addition, all the above-mentioned procedures
can be directly applied when the solid consists of two different materials. Following
Bureš & Sato (2022), the properties of the solid are mixed based on the solid volume
fractions. In this study, binary mixed solids are considered, and the cell-specific values of
λs and Cp,s are computed by

λs = λ1 fs,1 + λ2(1 − fs,1),

Cp,s = Cp,1 fs,1 + Cp,2(1 − fs,1),
(2.34)

where fs,1 represent the volume fraction of material 1.
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Figure 5. Film evaporation with conjugate heat transfer. (a) Schematic of the one-dimensional film evaporation
with conjugate heat transfer. (b) Temperature distribution at t = 0.5 s. (c) Time history of the interface position.
(d) Relative error of the interface position on different grid resolutions. Grid levels 6–8 correspond to effective
grid resolutions ranging from 64 × 1 cells to 256 × 1 cells, resulting in minimum grid sizes from 0.05 to
0.0125.

2.3.6. Summary
For clarity, the numerical procedures for each time step are summarised as follows.

(i) Solve the advection of the VOF function using the split scheme (2.14).
(ii) Solve the advection term of the energy equation in the fluid domain (2.24).

(iii) Solve heat conduction in the fluid and solid domains simultaneously using an
implicitly coupled approach ((2.25) and (2.31)).

(iv) Compute the mass flux (2.9) and set the ghost velocities (2.28).
(v) Solve the mass and momentum equations (2.18)–(2.22).

3. Verification
The phase-change model of Cipriano et al. (2024) has been verified for the liquid–vapour
system using a wide range of benchmark tests, with all codes available on the Basilisk
website (Cipriano 2023). Here, we focus primarily on the validation of the conjugate
heat transfer extension. In this section, we consider a film evaporating in the presence
of conjugate heat transfer, as illustrated in figure 5(a). This benchmark case, proposed
by Burěs (2021), is specifically designed for code verification. The theoretical solution
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can be derived using the method of manufactured solutions (MMS) (Roache 1998).
Before detailing the case set-up, some notation is introduced for clarity. In the following
derivations, φ′(x, t) and φ̇(x, t) denote the derivatives of the variable φ with respect
to x and t , respectively. Additional primes and dots indicate corresponding higher-order
derivatives.

In this case, the interface position is specified as

xΓ (t)= x0 − Zt2, (3.1)

where x0 is the initial position and Z is a user-defined parameter. The vapour temperature
is maintained at the saturation temperature Tsat throughout the process, while the liquid
temperature is modelled with an exponential profile:

Tl(x, t)= Tsat E(x, t)= Tsat exp [MẋΓ (t) (x − xΓ (t))]. (3.2)

Here, the factor M is defined as

M = hlvρl

Tsatλl
, (3.3)

ensuring the Stefan condition

− λl

hlvρl
Tl(xΓ , t)= −ẋΓ (t) (3.4)

is satisfied. To enforce the flux and temperature jump conditions at the fluid–solid
boundary, the solid temperature distribution is given by

Ts(x, t)= Ts

[(
λl

λs
+ D(t)

)
E(x, t)+ C(t)E(0, t)

]
, (3.5)

where D(t) and C(t) are defined as

D(t)= δq(t)

λs Ts

1
E ′(0, t)

(3.6)

and

C(t)= −
[
λl Rc MẋΓ (t)+ D(t)+

(
λl

λs
− 1
)]
, (3.7)

respectively. Here, the wall source term δq(t) is chosen as δq(t)= −ψ ẋΓ (t), with ψ being
a given control parameter. To achieve the temperature evolution described here, additional
source terms must be imposed in both the liquid and solid domains during the simulation,
which are given by

Sl(x, t)= Cp,l Ṫl(x, t)− λl T
′′

l (x, t)= Ts
[
Cp,l Ė(x, t)− λl E ′′(x, t)

]
, (3.8)

Ss(x, t)= Cp,s Ṫs(x, t)− λs T ′′
s (x, t)

= Ts

{
Cp,s

[(
λl

λs
+ D(t)

)
Ė(x, t)+ Ḋ(t)E(x, t)+ Ċ(t)E(0, t)+ C(t)Ė(0, t)

]
−λs

(
λl

λs
+ D(t)

)
E ′′(x, t)

}
. (3.9)

In the simulation, the fluid–solid boundary is placed at the origin, with the lengths of
the fluid and solid domains chosen as 2.2 and 1, respectively. Following Burěs (2021),
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with viscosity neglected, the physical properties are set as⎧⎨⎩
ρl = 1, λl = 1,Cp,l = 2, ρv = 1, λv = 1,Cp,v = 2,
ρs = 4, λs = 7,Cp,s = 5, Ts = 1, hlv = 1, Rc = 2.3,
x0 = 1.03, Z = 1, ψ = 1.65.

(3.10)

Note that all the above-mentioned parameters are dimensionless. The simulation is
performed up to t = 0.5 with three grid levels ranging from 6 to 8, resulting in grid sizes
from 0.05 to 0.0125. Note that for a given grid level L , the corresponding number of
cells is N = 2L . In figure 5(b), the temperature distributions at the final time for different
grid refinements are compared with the theoretical solution. It can be observed that the
temperature discontinuity at the fluid–solid boundary is accurately and sharply captured by
the present method. Moreover, as shown in figure 5(c), the time evolutions of the interface
positions for all grid levels are in good agreement with the theoretical solution. For a
quantitative comparison, the relative error of the final interface position is computed by

E(xΓ (0.5))= |xΓ (0.5)− xΓ (0.5)num|
xΓ (0.5)

, (3.11)

where the superscript num represents the numerical solution. As can be observed from
figure 5(d), the present method exhibits a second-order convergence rate, demonstrating
its efficacy for phase-change problems involving conjugate heat transfer.

4. Results and discussion
After validating the phase-change model with conjugate heat transfer, it is applied to
simulate the experiments of Bucci (2020). In these experiments, the bubble growth in
pool boiling of water under atmospheric conditions was investigated. Note that all codes
used in this study are available from the Basilisk website (Long 2024).

4.1. Simulation set-up
As mentioned, the IHTR is considered in the simulations by imposing a temperature
contact discontinuity at the fluid–solid interface. The contact heat-transfer resistance
factor Rc is set equal to the IHTR factor RΓ to preserve the overall heat flux. In
the work of Bureš & Sato (2022), the Hertz–Knudsen relation is combined with the
Clausius–Clapeyron relation to model RΓ , leading to the following expression:

RΓ = 1
ω

1
ρvh2

lv

√
2πRgT 3

sat

Mv

, (4.1)

where Mv is the molar mass, Rg is the universal gas constant and ω is the so-
called accommodation coefficient, which is a priori unknown. By fitting experimental
data, Bureš & Sato (2022) evaluated the bounds of ω and selected two values for
their simulations: ω= 0.0345 and ω= 0.0460. In the present work, the same two
accommodation coefficients are adopted, referring to the cases with ω= 0.0345 and
ω= 0.0460 as case A and case B, respectively.

In addition to accommodation coefficients, the other physical properties considered
in the simulations are listed in table 1. The simulations are performed with a two-
dimensional (2-D) axisymmetric configuration, which accurately represents the real
experimental conditions, where perfect axial symmetry of the growing bubble has been
observed (Bucci 2020). As shown in figure 6, a rectangular domain of [0 mm, 1.3 mm] ×
[−1.0 mm, 1.3 mm] is employed, with the fluid–solid boundary placed at z = 0 mm.
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Property Liquid Vapour Two-phase Sapphire Titanium

ρ (kg m−3) 958 0.598 — 3980 4510
μ (Pa s) 2.82 × 10−4 1.22 × 10−5 — — —
C p (J (kg K)−1) 4220 2080 — 929 544
λ (W (m K)−1) 0.677 0.0246 — 25.1 17.0
hlv (J (kg)−1) — — 2.26 × 106 — —
Tsat (K) — — 373.15 — —
σ (N m−1) — — 0.0589 — —

Table 1. Physical properties used in the simulations of the experiment of Bucci (2020).

r

Z

1.3 mm

1 mm

1.3 mm

Outlet

Outlet

Liquid

Solid

Vapour seed

R0 = 20 µm

Heater (500 nm)

Axis

Figure 6. Schematic of the computational domain used for the simulations of the experiment of Bucci (2020)
(not to scale).

The solid phase consists of a 1 mm-thick sapphire substrate with a 500 nm-thick titanium
heater. The heater is modelled using a volumetric source term (Qh in (2.4)), and, following
Bureš & Sato (2022), we consider the case with an applied heat flux of 425 kW m−2. With
the left boundary as the axis of symmetry, outflow boundary conditions are applied to the
right and top boundaries of the fluid domain, while the fluid–solid boundary is treated as
a no-slip wall. Note that since the VOF function is advected using the discretised velocity
located half a grid spacing above the wall, an implicit slip condition is introduced for the
interface motion (Afkhami & Bussmann 2008). Generally, this implicit slip length of half
a grid spacing can lead to mesh-dependent contact line behaviour (Afkhami, Zaleski &
Bussmann 2009) for which more advanced contact line models are typically required.
However, several studies (Han et al. 2021; Huang et al. 2025) have shown that, in certain
contexts, accurate contact line dynamics can still be captured using this approach, provided
that the grid resolution is sufficiently high. In the present study, as shown in figure 13,
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Bureš & Sato (2022) Present
Coarse Medium Fine Level 10 Level 11 Level 12

Minimum grid size (µm) 1.05 0.749 0.475 2.246 1.123 0.562
Number of cores (−) 70 — 336 4 24 48
CPU time (core-h ∼20 000 — ∼400 000 ∼5 ∼80 ∼680

Table 2. Comparison of computational efficiency between the present work and the study of Bureš & Sato
(2022).

we observe the convergence of both contact line mobility and the microlayer profile
with increasing mesh resolution, indicating that this simplified treatment is adequate for
the nucleate boiling problems considered. In the solid domain, a Neumann boundary
condition (zero heat flux) is imposed on the right and bottom boundaries. At the fluid–
solid boundary, a three-phase contact line forms, requiring the specification of a contact
angle θC . In the work of Bureš & Sato (2022), a dynamic contact angle model is adopted,
yielding an angle of less than 1◦ throughout the simulations. However, as will be shown
in this paper, the influence of the contact angle is minimal when it is less than 10◦. In
this section, following El Mellas et al. (2024), a static contact angle model with θC = 5◦ is
used. The static contact angle is imposed using the height function approach of Afkhami &
Bussmann (2008), which is already implemented in Basilisk.

With the above-mentioned set-up, simulations have been conducted at increasing grid
levels from 10 to 12, with corresponding minimum grid sizes ranging from 2.246 to
0.562 µm. The number of CPU cores and the total CPU time are compared with those
reported by Bureš & Sato (2022) in table 2. It is observed that the number of CPU
cores and CPU hours required for the simulations are significantly reduced using the
present model. For the finest resolution, only approximately 680 core-hours are needed
with 48 cores, compared with approximately 400 000 core-hours with 336 cores reported
by Bureš & Sato (2022). The significant improvement in computational efficiency is
attributed to two factors. First, for the same effective resolution, the use of AMR greatly
reduces the total number of grid cells in the simulation. Second, the present model is more
robust and stable, allowing for a larger time step. During the simulation, as required by
numerical stability (Bureš & Sato 2022), the time step 	t is determined by

	t = min

⎛⎝Cadv
Δ

umax
,Cσ

√
(ρv + ρl)Δ3

σ

⎞⎠, (4.2)

where Δ is the minimum grid size used and umax is the maximum velocity component
in all directions. Here, Cadv and Cσ are the limiting coefficients for the advection and
capillary terms, which are set to Cadv = 0.5 and Cσ = 0.282 in the present study. In the
work of Bureš & Sato (2022), the time step limits are much more stringent (Cadv = 0.02
and Cσ = 0.063) due to the oscillations induced by the strong heat transfer involved in this
problem.

4.2. Initial condition
In the experiment, the system starts from saturated and stagnant conditions. After a
period of heating, the first bubble nucleates in a cavity on the heated surface and then
grows rapidly. Within the sharp-interface framework, an initial bubble seed is required to
trigger the phase-change process. To model the nucleation process, following Bureš &
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Figure 7. Evolution of the heater surface superheat before the onset of nucleation. The results of the present
study are compared with the experimental data of Bucci (2020) and the numerical results of Bureš & Sato
(2022).

Sato (2022), a transient heating problem without the vapour phase is solved until the
temperature at the nucleation site reaches the nucleation temperature of 112.55 ◦C. Given
the nucleation superheat of	T = 12.55 K, this problem can be characterised by the Jakob
number:

Ja = ρlCp,l	T

ρvhlg
, (4.3)

yielding a value of 37.5. Note that although the bubble growth results reported by Bucci
(2020) are axisymmetric, the heater geometry is rectangular. As a result, a uniform heat
flux distribution under the axisymmetric numerical configuration leads to deviations in the
calculated surface temperature distribution compared with experimental measurements. To
address this issue, Bureš & Sato (2022) adopted a modified heat flux distribution for the
initial temperature field calculation, given as

jini = max
(

4 − r

4
× 481, 0

)
(kW m−2). (4.4)

This linear power input is used to solve the liquid–solid heat transfer problem. To
compute the initial temperature field, the domain is extended to [0 mm, 7.0 mm] ×
[−1.0 mm, 6.0 mm]. The simulations are performed with three grid levels ranging from 10
to 12, ensuring grid convergence (not shown here). In figure 7, the superheat distribution
on the solid surface at different time instants, obtained at grid level 12, is compared
with experimental data (Bucci 2020) and the numerical results of Bureš & Sato (2022),
showing excellent agreement. The waiting time (the time from the beginning of heating
to nucleation) in the experiment (88.1 ms) is also well reproduced numerically. Since
the macroscopic sharp-interface method is employed in the present study, the actual
nucleation process can only be taken into account indirectly, i.e. by artificially introducing
a bubble embryo at the nucleation site (Bureš & Sato 2022) when its temperature reaches
a prescribed nucleation temperature. The same strategy has been adopted by Cai et al.
(2024) to simulate the experiment of Jung & Kim (2014), where multiple bubble cycles
were successfully replicated, demonstrating the effectiveness of this simple approach.
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t = 0.2 ms t = 0.4 ms

(a) (b)
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Figure 8. Superheat distributions at (a) t = 0.2 ms and (b) t = 0.4 ms for case A (ω= 0.0345), obtained at grid
level 12. The white dashed line and the black solid line represent the liquid–vapour interface and the fluid–solid
boundary, respectively. The results are mirrored about r = 0 for better visualisation.

More advanced models could be introduced to compute the nucleation time by considering
liquid metastability and the heat release rate. However, since our objective is to replicate
the bubble growth stage in the experiment of Bucci (2020) and the nucleation process is
not the main focus of this study, the incorporation of these models is left for future work. It
should also be emphasised that accurately simulating the nucleation process is challenging
even with more detailed microscopic methods, such as molecular dynamics (MD) (Zhang,
Xu & Lei 2018), phase field (PF) Zhang et al. (2025) or the lattice Boltzmann method
(LBM) (Mu et al. 2017), which can simulate nucleation without artificially introducing
a bubble embryo. To the authors’ knowledge, the nucleation temperatures obtained using
these methods still depend on the potential models employed and therefore require careful
validation against experimental results (Chen et al. 2024).

4.3. Numerical results
Using the temperature distribution at t = 88.1 ms as the initial condition, we position
a bubble seed with a radius of R0 = 20 µm at the origin to initiate bubble growth.
The simulations are performed up to t = 0.5 ms, during which a uniform heat flux of
425 kW m−2 is applied to the heater (Bureš & Sato 2022). In this section, the numerical
results obtained by the present model are validated against experimental data and previous
numerical studies. Before the quantitative comparison, the superheat distributions within
the computational domain at two time instants obtained at grid level 12 are shown in
figure 8 for case A (ω= 0.0345). As in previous studies (Bureš & Sato 2022; Torres
et al. 2024), the thermal boundary layer near the bubble surface becomes progressively
thinner as the bubble grows. Additionally, the solid surface beneath the bubble is cooled
due to vigorous evaporation within the microlayer. This phenomenon is more clearly
observed in the 2-D distribution of the superheat on the solid surface in figure 9, which is
generated by rotating the axisymmetric data. Notably, the highest superheat on the solid
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Figure 9. Three-dimensional (3-D) bubble interfaces and the superheat distributions on the solid surface at
different time instants for case A (ω= 0.0345), obtained at grid level 12. The plots are generated by rotating
the axisymmetric results.

surface is located at the outer edge of the microlayer rather than at the lateral edge of
the bubble.

We then turn to a quantitative comparison of growth characteristics. In figures 10 and 11,
the volume and lateral radius of the bubble are plotted against time for all grid resolutions,
demonstrating grid convergence. It should be noted that grid convergence was not achieved
in the results reported by Bureš & Sato (2022). This peculiar convergence behaviour is
probably caused by the one-fluid method used in their simulations, which, as shown in
the Appendix, can lead to numerical oscillations within the microlayer due to strong heat
transfer. In general, the convergent results obtained with the present method align well
with the experimental data of Bucci (2020) and the numerical results of Bureš & Sato
(2022) at their finest grid resolution with the smallest cell size of 0.475 µm. For case
A, the bubble volume and lateral radius are slightly overestimated before 0.3 ms and
underestimated thereafter, compared with the experimental results. In contrast, for case
B, the results show improved agreement in later stages. This is expected due to the higher
accommodation coefficient in case B, which leads to lower IHTR and thus larger heat flux
within the microlayer for the same superheat on the solid surface, according to (4.1). The
same trend is also observed in the results of Bureš & Sato (2022). In their simulations, for
case A, the bubble volume and lateral radius are underestimated after 0.2 ms, whereas
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Figure 10. Time histories of the bubble volume for (a) case A (ω= 0.0345) and (b) case B (ω= 0.0460) at
different grid levels, compared with the experimental data of Bucci (2020) and the numerical results of Bureš &
Sato (2022). Note that the results for case B are not reported in the work of Bureš & Sato (2022).

for case B, better agreement is observed in later stages. It is evident from figures 10
and 11 that the accommodation coefficient significantly influences the bubble growth.
The discrepancies between the convergent numerical results and the experimental data
may be attributed to the constant accommodation coefficient used throughout the
simulations. Constant accommodation coefficients are commonly used in numerical
simulations of microlayers (Bureš & Sato 2022; Hänsch & Walker 2019; El Mellas et al.
2024). Regarding experimental studies, Giustini et al. (2016) also reported a constant
accommodation coefficient of 0.02 based on their analysis of evaporation kinetics and data.
However, it is known that the accommodation coefficient can be influenced by various
factors, such as vapour–liquid relative velocity (Nie et al. 2019), local pressure (Marek &
Straub 2001) and temperature (Vaartstra et al. 2022), and can vary significantly from 0.01
to 1. In the work of Cai et al. (2024), the experiment of Jung & Kim (2014) is successfully
replicated using a more advanced IHTR model, where the accommodation coefficient
is determined by the free energy and the local interfacial temperature. Depending on
the local conditions, the accommodation varies in both space and time, with the time-
varying feature being the dominant effect observed. It is reasonable to deduce that a more
advanced model for predicting the accommodation coefficient instantaneously, based on
local conditions, can help accurately simulate real situations. However, to our knowledge,
while several theories exist (Nathanson et al. 1996; Persad & Ward 2016), accurately
modelling the accommodation coefficient remains an open question in the literature.
Moreover, it should also be emphasised that although the Schrage model, based on the
accommodation coefficient (Schrage 1953), is chosen by many researchers (Giustini et al.
2016; Hänsch & Walker 2019; Bureš & Sato 2022) to model the non-equilibrium effects at
the fluid interface, it might not be the most appropriate model for computing the phase
change mass flow rate in the microlayer. The assessment of the performance of other
models (Liu et al. 2020), such as the Lee model (Lee 1980) and the Tanasawa model
(Tanasawa 1991), within the same numerical framework will be left for future work.

A more detailed comparison of the bubble shape at t = 0.31 ms is presented in
figure 12. For case A, the bubble interfaces at different grid levels are compared with
the experimental data of Bucci (2020) and the numerical result of Bureš & Sato (2022).
In our results, the interfaces at grid levels 11 and 12 nearly overlap and agree well
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Figure 11. Time histories of the bubble lateral radius for (a) case A (ω= 0.0345) and (b) case B (ω= 0.0460)
at different grid levels, compared with the experimental data of Bucci (2020) and the numerical results of
Bureš & Sato (2022).

–1.0 1.00.50

r (mm)

z 
(m

m
)

–0.5

1.0

1.2

0.8

0.6

0.4

0.2

0

Experiment

Level 10

Level 11

Level 12

Bureš and Sato

Figure 12. Bubble interfaces at t = 0.31 ms for case A (ω= 0.0345) at different grid levels, compared with the
experimental data of Bucci (2020) and the numerical results of Bureš & Sato (2022). The results are mirrored
about r = 0 for better visualisation.

with the experimental data, demonstrating good grid convergence. Moreover, our results
show a smoother bubble shape compared with the result of Bureš & Sato (2022), which
is attributed to the reduced numerical oscillations achieved by the ghost fluid method.
The bubble shape obtained by Bureš & Sato (2022) is more flattened compared with
both our results and the experimental data. This explains why their results are in good
agreement with the experiment regarding the lateral radius, while the bubble volume is
significantly underestimated. In addition to macroscopic bubble shapes, the microlayer
profiles for case A at different time instants and grid levels are illustrated in figure 13.
The microlayer profile can be measured using laser interferometry (Jung & Kim 2018;
Narayan & Srivastava 2021), though this technique was not used in Bucci’s experiments
(Bucci 2020). Thus, we only compare our results with the numerical results of Bureš &
Sato (2022), showing good agreement. The step-like profiles observed are numerical
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Figure 13. Microlayer profiles at different time instants and grid levels for case A (ω= 0.0345), compared
with the numerical results of Bureš & Sato (2022).

artefacts associated with the finite grid resolution, as also noted in previous studies
(Bureš & Sato 2021, 2022). The result at grid level 10 for t = 0.21 ms exhibits oscillations
due to the coarse grid size (2.246 µm), which is insufficient to resolve the heat transfer
within the microlayer. It is emphasised that the current set-up is numerically challenging
due to the involvement of multiple spatial scales and intense mass and heat transfer. In the
work of Bureš & Sato (2022), strong spurious waves along the interface were reported.
To prevent simulation crashes, they imposed very strict time step limits (Cadv = 0.02 and
Cσ = 0.063) and applied an artificial averaging procedure for the phase-change rate during
the initial stage of bubble growth. In the present method, numerical stability is improved by
the ghost fluid method, allowing the use of a larger time step and eliminating the artificial
averaging procedure.

Finally, the thermodynamic characteristics for cases A and B are quantitatively
validated. The surface superheat distributions at various time instants and grid levels are
presented in figure 14. It is observed that as the grid resolution increases, our results
progressively converge to the experimental data of Bucci (2020), showing excellent
agreement with the numerical results of Bureš & Sato (2022). The extent of the microlayer
can be identified from surface temperature variations: the temperature decreases from
the origin to the contact line, increases along the microlayer and then declines beyond
the microlayer front. These results demonstrate that our method effectively captures the
evolution of the microlayer. As in the work of Bureš & Sato (2022), larger deviations
between numerical and experimental results are observed within the dry patch region
(from the origin to the contact line). Note that detailed measurement uncertainties are
not reported by Bucci (2020), and this discrepancy may be attributed to less accurate
measurements on surfaces not covered by liquid (Bureš & Sato 2022). Furthermore, the
heat flux distributions at different times and resolutions are also measured and shown in
figure 15. It can be seen that the heat flux peaks at the contact line and then decreases to
zero along the radial extent of the microlayer. Notably, the heat flux within the microlayer
region significantly exceeds the electrical power input. Before the bubble nucleation,
the energy released from electrical resistance is distributed between both the liquid and
solid. Given that the thermal diffusivity of the solid is considerably higher than that
of the liquid, a greater proportion of energy is transferred to the solid. The subsequent
cooling of the liquid due to boiling induces energy release from the solid, resulting in
a substantially higher heat flux on the solid surface. This highlights the importance of
including conjugate heat transfer between the fluid and solid in pool boiling simulations.
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Figure 14. Surface superheat distribution at different time instants and grid levels, compared with the
experimental data of Bucci (2020) and the numerical results of Bureš & Sato (2022). (a,b) Results of case
A (ω= 0.0345); (c,d) results of case B (ω= 0.0460).

It can be concluded from figure 15 that the experimental measurements are well bounded
by the simulation results of cases A and B, as observed by Bureš & Sato (2022). With
a smaller accommodation coefficient (case A), better agreement is achieved in the early
stages (t = 0.21 ms), while a larger accommodation coefficient (case B) yields improved
results in the later stages (t = 0.42 ms). In future work, we plan to improve the current
model by incorporating more advanced models to predict the accommodation coefficient
based on local conditions, as demonstrated by the work of Cai et al. (2024).

4.4. Effect of contact angle
In the work of Bureš & Sato (2022), a dynamic contact angle model was proposed, where
the predicted values of the contact angle throughout the simulation did not exceed 1◦. As
shown in § 4.3, our numerical results obtained with a static contact angle of 5◦ are in very
good agreement with those obtained using the dynamic contact angle model (Bureš &
Sato 2022). To further explore the influence of the contact angle, the same problem is
simulated with varying contact angles θC . Since it has been validated that grid level 11
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Figure 15. Surface heat flux distribution at different time instants and grid levels, compared with the
experimental data of Bucci (2020) and the numerical results of Bureš & Sato (2022). (a,b) Results of case
A (ω= 0.0345); (c,d) results of case B (ω= 0.0460).

is sufficient to capture the main physics of this problem, all simulations are performed at
this grid level, with an accommodation coefficient of ω= 0.0460. Seven contact angles,
equally distributed within [5◦, 35◦], are considered.

We begin with a quantitative analysis of growth characteristics, focusing on the effect
of the contact angle on microlayer development. In addition to the volume and lateral
radius of the bubble, the contact line position xCL and the microlayer length lML are also
measured. The microlayer length is determined as the distance from the contact line to
the microlayer front xMF (Urbano et al. 2018), which is defined as the position where
the interface slope exceeds 5◦ (see figure 18). The results for various contact angles
are presented in figure 16. It is demonstrated that the influence of the contact angle on
bubble growth diminishes as the angle decreases, particularly when it is less than 15◦.
As illustrated in figure 16(c), after a short transition stage, the contact line moves at a
constant velocity that is positively correlated with the contact angle. In particular, the
results for θC = 35◦ differ from others in the later stages due to the complete depletion
of the microlayer, as indicated in figure 16(d). Furthermore, a decrease in the growth
velocity of the bubble lateral radius is observed over time, which corresponds to the
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Figure 16. Time histories of (a) the bubble volume, (b) the bubble lateral radius, (c) the position of the contact
line and (d) the microlayer length for various contact angles. The results are obtained with ω= 0.0460 at grid
level 11.

bubble growth within the diffusion-controlled regime (Guion et al. 2018). As the bubble
growth velocity decreases, the contact line velocity remains constant and the extent of the
microlayer is influenced by the competition between these two velocities. Simultaneously,
evaporation contributes to microlayer depletion. At smaller contact angles, evaporation
effects become more pronounced due to reduced contact-line mobility (Bureš & Sato
2022), whereas dryout driven by hydrodynamic effects is more significant at larger contact
angles (Urbano et al. 2018). The microlayer profiles at various time instants for different
contact angles are presented in figure 17. The transition from the microlayer regime to the
contact line regime is observed for θC = 35◦. Notably, at large contact angles, a dewetting
ridge forms near the contact line, with its height increasing as the contact angle increases.
This phenomenon results from mass conservation in the presence of enhanced contact-line
mobility associated with larger contact angles (Giustini 2024). Additionally, the central
portions of the microlayer overlap for different contact angles, consistent with findings
from previous studies (Guion et al. 2018; Giustini 2024). In conclusion, different contact
angles primarily influence interface motion near the contact line.
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Figure 17. Microlayer profiles at different time instants for various contact angles. The results are obtained
with ω= 0.0460 at grid level 11.
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Figure 18. Schematic of region partitioning. Region 1 extends from the contact line to the microlayer front.
Region 2 spans from the microlayer front to the bubble nose, where the maximum width occurs. Region 3
extends from the bubble nose to the bubble apex.

Subsequently, to thoroughly investigate the influence of the contact angle on
thermodynamic characteristics, the bubble interface is divided into three regions, as
illustrated in figure 18. Region 1, the microlayer region, extends from the contact line
to the microlayer front. Region 2 spans from the microlayer front to the bubble nose,
which is the farthest point along the radial direction. The remaining area, from the bubble
nose to the bubble apex, is labelled as Region 3. It is important to note that the following
analyses primarily focus on bubble growth in the microlayer regime. Consequently, the
case of θC = 35◦ is excluded, as it involves the transition from the microlayer regime to
the contact line regime.

We begin the quantitative comparison by evaluating the evaporation rate, which is
calculated as follows:

re =
∫∫

ṁ dA. (4.5)
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Figure 19. Time histories of the evaporation rate over (a) region 1, (b) region 2, (c) region 3 and (d) the entire
bubble for various contact angles. The results are obtained with ω= 0.0460 at level 11.

The time histories of the evaporation rate within different regions are presented in
figure 19. It is observed that, generally, larger contact angles result in smaller evaporation
rates, a trend validated across all three regions. In region 1, the results vary more
significantly with different contact angles, while in regions 2 and 3, the results
are more consistent across various contact angles. This phenomenon is expected since the
evaporation rate is related to the integral area, and the microlayer extent is more sensitive
to variations in the contact angle compared with the bubble volume and lateral radius.
Following the trend of the microlayer length shown in figure 16(d), the evaporation rate
in region 1 increases at a decreasing rate over time. Notably, with a contact angle of 30◦,
the evaporation rate in region 1 begins to decrease after t = 0.3 ms, as the velocity of
the microlayer front falls below that of the contact line. In region 2, the evaporation rate
first increases and then stabilises at t = 0.2 ms. The situation in region 3 is noticeably
different: the evaporation rate initially increases, peaks at t = 0.13 ms and then decreases
rapidly. The different trends in the three regions arise because regions 1 and 2 are close
to the solid surface and remain within the thermal boundary layer. In contrast, region 3,
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Figure 20. Time histories of the average mass flux over (a) region 1, (b) region 2, (c) region 3 and (d) the
entire bubble for various contact angles. The results are obtained with ω= 0.0460 at grid level 11.

the upper surface region of the bubble, moves above the thermal boundary layer due to its
axial growth, as observed in figure 8.

As the evaporation rate is strongly related to the integral area, the average mass flux,
defined as

˜̇m =
∫∫

ṁ dA∫∫
dA

, (4.6)

is considered to further investigate the influence of the contact angle. The time histories
of the average mass flux within different regions are presented in figure 20. It is observed
that, for all regions, the average mass flux decreases at a decelerating rate, consistent with
the theoretical analysis (Scriven 1959) of bubble growth driven by heat diffusion. Notably,
as shown in figure 20, the average mass flux for different contact angles matches closely,
especially in regions 2 and 3. This suggests that the observed differences in evaporation
rates are primarily due to variations in integral area.
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Figure 21. (a) Total evaporated mass in different regions for different contact angles. (b) Percentage of the
evaporated mass in each region relative to the total evaporated mass for different various angles. (c) Time-
averaged surface area for different regions and contact angles. (d) Total average mass flux in different regions
for different contact angles. The results are obtained with ω= 0.0460 at grid level 11.

Additionally, beyond the temporal variations of thermal characteristics, the cumulative
behaviour is investigated. The total evaporated mass Me is calculated by integrating the
evaporation rate over time:

Me =
∫ tf

0

(∫∫
ṁ dA

)
dt, (4.7)

where tf = 0.5 ms is the final time of the simulations. For different contact angles, the
total evaporated mass in different regions is computed and shown in figure 21(a). It can be
seen that as the contact angle increases, the evaporated mass in the microlayer region is
most affected. The proportions of the evaporated mass in each region relative to the total
evaporated mass for different contact angles are detailed in figure 21(b). As the contact
angle increases from 5◦ to 30◦, the contribution from the microlayer region decreases
from 31 % to 25 %. In figure 21(c), the time-averaged surface area in different regions,

S = 1
tf

∫ tf

0

(∫∫
dA

)
dt, (4.8)

is evaluated for different contact angles. The correlation between the trends of the average
surface area and the evaporated mass relative to the contact angle is evident. To specifically
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investigate the influence of the contact angle on global thermal effects, we define the total
average mass flux as

ṁ = Me

Stf
=
∫ tf

0
(∫∫

ṁ dA
)

dt∫ tf
0
(∫∫

dA
)

dt
. (4.9)

The results for different regions are plotted against the contact angle in figure 21(d).
It is observed that, although the evaporated mass and surface area vary with different
contact angles, the total average mass flux remains consistent. In particular, in regions 2
and 3, the total average mass fluxes are almost constant, regardless of the contact angle.
As the contact angle increases from 5◦ to 30◦, the total average mass flux over the entire
bubble decreases slightly (from 0.47 to 0.44 kg (m2 s)−1), mainly due to minor changes in
the microlayer thickness. Overall, it can be concluded that the hydrodynamic effect is the
dominant factor influencing bubble growth over different contact angles, while the thermal
effect remains consistent regardless of the contact angle. A larger contact angle negatively
affects the evaporation process because the increased mobility of the contact line results
in a smaller surface area within the microlayer region. Over time, the reduction of area
in the microlayer region, region 1, slows down the bubble expansion due to the reduced
amount of vapour evaporated from this region, yielding a smaller area for regions 2 and 3.
The reduction of the evaporation rate in regions 2 and 3, in turn, further decelerates bubble
growth. This explains why the differences in results for different contact angles increase
with time, as shown in figure 16.

4.5. Complete bubble cycle
In previous DNS studies of nucleate boiling in the microlayer regime (Bureš & Sato
2022; Urbano et al. 2018), the total physical time simulated was generally quite short
(less than 2 ms) due to high computational costs. This duration is notably brief compared
with the entire bubble cycle from nucleation to detachment. In this section, using the
present, more efficient and stable solver, we perform DNS for the entire cycle of bubble
growth, which, to our knowledge, is the first reported in the open literature. It should
be noted that, in the present study, no additional physical model is included for the
bubble detachment process. The topological change associated with detachment occurs
numerically when the neck connecting the bubble to the heated wall becomes thinner
than the cell size. However, as shown by Eggers (1997), the cylinder pinching is a finite
time singularity which will happen in very similar ways and similar time at sufficiently
high grid resolutions. Moreover, as reported in previous studies (Rana, Das & Das 2017;
Allred, Weibel & Garimella 2021), this simplified treatment allows the interface evolution
up to the point of detachment to be correctly captured, provided that the mesh resolution
is sufficiently high. Since the detailed dynamics of detachment is not the primary focus of
this work, a more advanced detachment model is left for future development.

The set-up remains consistent with the previous configuration, as shown in
figure 6, except that the computational domain is extended to [0 mm, 5.5 mm] ×
[−1.0 mm, 4.5 mm] to capture the larger bubble encountered during the simulation. Three
grid levels, from 11 to 13, are adopted, resulting in minimum grid sizes ranging from 2.69
to 0.67 µm. The computational costs for simulations up to the physical time of 18 ms are
detailed in table 3 for different grid resolutions. The promising computational efficiency
demonstrates the potential applications of the present solver in studies of more challenging
nucleate boiling problems, such as flow boiling.
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Level 11 Level 12 Level 13

Minimum grid size (µm) 2.69 1.34 0.67
Number of cores (−) 24 48 64
CPU time (core-h) ∼500 ∼4900 ∼17 000

Table 3. Computational cost for the DNS of a complete bubble cycle.

In the experiment of Bucci (2020), after the depletion of the microlayer, contact angle
hysteresis is observed. The contact angle hysteresis effect is that a contact line can recede
(i.e. expansion of the dry region) only for contact angles lower than a critical value θrec and
advance (i.e. shrinkage of the dry region) for contact angles higher than another critical
value θadv . These two critical angles are referred to as the receding contact angle and
the advancing contact angle. Due to the presence of the microlayer, the receding contact
angle cannot be measured, while the advancing contact angle is measured at approximately
50◦−55◦. In the present work, a contact-angle hysteresis model (Bureš et al. 2024; Fang
et al. 2008) is adopted, and the contact angle is updated from time step n to n + 1 by

θn+1 = max

[
θrec,min

(
θadv, θ

n − 2 sin2 (θn) Hn+1
l − Hn

l

Δ

)]
, (4.10)

where Hl represents the total wall-parallel liquid height in the contact-line cell row. This
formula is derived based on the assumption that, for a contact angle between the receding
angle θrec and the advancing angle θadv , any change in the liquid content within the
contact-line cell row corresponds to a rotation of the interface rather than a shift in the
contact-line position. Following Bureš et al. (2024), we use θrec = 5◦ and θadv = 55◦ in
our simulations.

Subsequently, the numerical results are compared with the experimental data. With
ω= 0.0345, the time histories of the bubble volume and the bubble lateral radius at
different grid levels are presented in figures 22(a) and 22(b). It can be seen that the bubble
growth rate is underestimated after t = 2.0 ms, although good agreement is observed in
the early stages. The oscillations of the lateral radius in the later stages are caused by
deformations of the bubble after its detachment. In addition to ω= 0.0345, the other
accommodation coefficient used by Bureš & Sato (2022), ω= 0.0460, still leads to a
significant underestimation of the bubble growth rate, and the corresponding results are
not shown here for brevity. It is important to note that the modelling of the accommodation
coefficient remains an open question in the literature (Cai et al. 2024). Our goal here is not
to solve this problem, but to demonstrate the effect of the accommodation coefficient on
the DNS of complete bubble cycles in nucleate boiling. In previous studies (Bureš & Sato
2022; El Mellas et al. 2024; Torres et al. 2024), the physical time of the simulations was
not large enough to observe these differences. In the present work, the perfect evaporation
case (ω= 1.0) is also simulated, and the results are shown in figures 22(c) and 22(d). It
can be observed that, with perfect evaporation within the microlayer, the growth of the
bubble volume and the bubble lateral radius is in better agreement with the experimental
measurements. This is expected because diminishing interfacial heat-transfer resistance,
corresponding to an increasing accommodation coefficient, leads to a higher evaporation
rate.

In figure 23, the superheat distributions along the wall at different time instants are
compared with the experimental data. With ω= 0.0345, at t = 3 ms and t = 9 ms, despite
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Figure 22. Time histories of the bubble volume and the bubble lateral radius at different grid levels. The
simulation results obtained with (a,b) ω= 0.0345 and (c,d) ω= 1.0 are compared with the experimental data
of Bucci (2020).
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Figure 23. Superheat distributions at grid level 13 for different time instants. The simulation results obtained
with (a) ω= 0.0345 and (b) ω= 1.0 are compared with the experimental data of Bucci (2020).
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Figure 24. Bubble interfaces at grid level 13 for different time instants. The simulation results obtained with
(a) ω= 0.0345 and (b) ω= 1.0 are compared with the experimental data of Bucci (2020). The results are
mirrored about r = 0 for better visualisation.

the deviations in the positions of the contact line and the microlayer front (caused by
the underestimated bubble growth rate), the predicted lowest superheat on the wall is in
better agreement with the experiment compared with that in the perfect evaporation case.
A possible explanation for these deviations is that the rectangular heater is modelled as an
axisymmetric configuration in numerical simulations. Consequently, the energy input is
lower than in actual experiments due to the missing heater area. This accumulated effect
might not have been identified in previous studies due to the limited simulation time.
In the perfect evaporation case, this energy loss is compensated by a lower IHTR, allowing
more energy transfer from the solid to the fluid. However, in the current case, the selected
accommodation coefficient overcompensates for this loss, leading to an underestimation of
the superheat on the solid wall. These findings highlight the necessity of 3-D simulations to
better assess the cumulative effect of heater geometry. The highly efficient solver presented
in this paper provides a promising platform for tackling such challenging simulations
in future work. At t = 15 ms, the superheat distribution with ω= 0.0345 deviates more
from the experimental data than that with ω= 1.0. This deviation is due to the advanced
detachment of the bubble, as shown in figure 24, where the bubble interfaces at different
time instants are presented. It can be seen that at t = 3 ms and t = 9 ms, the interfaces
obtained with ω= 1.0 are in excellent agreement with the experimental measurements.
A larger deviation is observed at t = 15.6 ms, which could be attributed to the contact
angle model. During the detachment stage, according to (4.10), the contact angle in the
simulations is fixed at θC = θadv = 55◦. The time-dependent contact angle observed during
the detachment stage in the experiment (Bucci 2020) is not modelled in the present study.
Hence, it can be concluded that a better dynamic contact angle model is needed for
accurately predicting the detachment at the end of the bubble cycle. This has not been
discussed in previous DNS studies (Bureš & Sato 2022; Urbano et al. 2018; Torres et al.
2024; El Mellas et al. 2024), as the simulation time was not long enough to reach the
detachment stage.

Finally, to better visualise the depletion of the microlayer during the long-time
simulation, the microlayer profiles along with the velocity vectors in the liquid phase
at different times are shown in figure 25. It is evident that both the movement of the
contact line and the evaporation of the microlayer contribute to the dryout process,
consistent with previous studies (Urbano et al. 2018; Bureš & Sato 2022). Throughout the
simulation, the liquid velocity remains small, with the flow mainly driven by the contact
line movement directed radially outward. Parasitic currents are observed and become
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Figure 25. Microlayer profiles and velocity vectors in the liquid phase at different time instants, obtained at
grid level 13.

pronounced as the microlayer depletes, particularly when capillary waves are transported
along the interface and the microlayer becomes increasingly thin (Bureš & Sato 2022), as
shown in figures 25(b) and 25(c). As the microlayer thickness eventually approaches the
size of a computational cell, these parasitic currents cannot be fully resolved by simply
increasing mesh resolution. Instead, they may be addressed through the incorporation of
depletion models (Sato & Niceno 2015). However, the implementation of such models is
beyond the scope of the present study.

5. Conclusion
We have extended the open-source phase-change model developed by Cipriano et al.
(2024) to simulate nucleate boiling in the microlayer regime with resolved conjugate heat
transfer. Following Bureš & Sato (2022), heat transfer in the fluid and solid is coupled
in a fully implicit manner, with a temperature jump condition accounting for the IHTR.
The current work is based on the free software Basilisk (Popinet 2009, 2015), in which
the quad/octree-based AMR technique is employed to improve computational efficiency.
To facilitate the implementation of AMR, a cell-centred velocity is adopted, though it
can only be approximately projected (2.22). Based on the approximate projection method,
the original model of Cipriano et al. (2024) works well for numerous benchmark tests
(Cipriano et al. 2024). However, we have shown in the Appendix that the original model of
Cipriano et al. (2024) introduces significant numerical oscillations within the microlayer
(Zhao et al. 2022; Long et al. 2024), thereby failing to accurately predict its development.
The ghost fluid method, which removes the singularity at the interface by setting the ghost
velocity, is employed and effectively suppresses these oscillations. With the ghost fluid
method, we have successfully replicated the pool boiling experiments conducted at MIT
(Bucci 2020). The numerical results are in good agreement with the experimental data of
Bucci (2020) and the previous numerical results of Bureš & Sato (2022). With the help of
AMR, computational efficiency is significantly improved and the required CPU hours are
reduced by three orders of magnitude. We thus believe the current work makes the present
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model more applicable for complex phase-change problems with high fidelity. The codes
and configurations for all simulations are released in the Basilisk sandbox (Long 2024).

Subsequently, with the present model, the influence of the contact angle on nucleate
boiling in the microlayer regime is investigated. We have shown that the value of the
contact angle influences the results in a decelerating manner, and very small contact
angles, such as those predicted by the dynamic contact angle model proposed by Bureš &
Sato (2022), are not necessary for the current scenario. Moreover, by dividing the bubble
surface into three regions, we have shown that the influence of the contact angle is mainly
confined to the microlayer region. It is demonstrated that thermal effects exhibit similarity
across different contact angles, while hydrodynamic effects predominantly influence
bubble growth. As the contact angle increases, the growing contact line mobility leads to
a smaller surface area, while the total average mass flux remains approximately constant.
Moreover, a complete bubble cycle from nucleation to detachment has been directly
simulated with a resolved microlayer and conjugate heat transfer. The predicted bubble
shapes show a good agreement with the experimental data, and the influence of dynamic
contact angle models and accommodation coefficient on the long-term behaviour of the
bubble are discussed. These aspects were previously obscured by the challenges posed by
the high computational burden. To the best of our knowledge, the present work represents
the first such effort reported in the open literature. We believe the present study has
effectively demonstrated the capability of the DNS solver for nucleate boiling problems.
Several improvements are considered for our future work, including more advanced
IHTR models and dynamic contact angle models in the context of nucleate boiling.
Furthermore, the bubble growth rate is governed by the interplay between inertial and heat
diffusion effects, with the maximum expansion rate occurring during the initial inertial-
controlled stage (∼10–100 µs), where compressible effects may become important. In the
present set-up, characterised by atmospheric pressure and low superheat, the observed
bubble expansion speed is relatively low (∼1 m s−1), which justifies the use of the
incompressible assumption. This assumption is also supported by previous studies on
microlayer formation in nucleate boiling using an incompressible model (Guion et al.
2018). However, under more extreme conditions, such as high pressure and superheat,
rapid bubble expansion in the early inertial-controlled stage can generate acoustic waves
in the liquid, potentially leading to coupling effects between different nucleation sites
when multiple nucleating bubbles are present (Mallozzi, Judd & Balakrishnan 2000). In
such cases, compressible phase change solvers are desirable to accurately capture these
dynamics. Recent developments in this area (Bibal et al. 2024; Coseru et al. 2025) may be
considered for future extensions of the present model.
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Appendix. Ghost fluid method versus one-fluid method
In the present study, it is evident that the computational cost can be significantly reduced
using AMR. However, it is emphasised that the use of AMR necessitates a compromise:
the cell-centred velocity field can only be approximately projected, leading to unphysical
oscillations in the presence of phase change. Based on the well-balanced VOF framework
(Popinet 2009), the original model of Cipriano et al. (2024) performs well in a number of
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Figure 26. Time histories of (a) the bubble volume and (b) the bubble lateral radius for case A (ω = 0.0345) at
different grid levels. The results are obtained with the one-fluid method and are compared with the experimental
data of Bucci (2020) and the numerical results of Bureš & Sato (2022).
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Figure 27. Microlayer profiles at different time instants and grid levels for case A (ω= 0.0345). The results
are obtained with the one-fluid method and are compared with the numerical results of Bureš & Sato (2022).
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Figure 28. Surface superheat distribution at different time instants and grid levels for case A (ω= 0.0345). The
results are obtained with the one-fluid method and are compared with the experimental data of Bucci (2020)
and the numerical results of Bureš & Sato (2022).
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benchmark tests, even with the approximate projection method. However, as shown here,
the original model fails when applied to nucleate boiling with a microlayer, mainly due
to the intense heat and mass transfer within this thin layer. Here, the one-fluid method is
compared with the ghost fluid method. Using the same set-up as given in § 4.1, case A (ω=
0.0345) is simulated with the one-fluid method across grid levels 10–12. The time histories
of the volume and lateral radius of the bubble at these grid levels are presented in figure 26.
It is shown that the results at grid level 10 obtained with the one-fluid method agree better
with the experimental data of Bucci (2020). However, this better agreement is merely
a numerical artefact, as increasing grid resolution leads to significant deviations rather
than grid convergence. The microlayer profiles at various time instants and grid levels
are depicted in figure 27. It can be seen that the microlayer obtained with the one-fluid
method exhibits more oscillations and is thinner than that obtained with the ghost fluid
method (figure 13). As indicated in figures 28 and 29, compared with the experimental
data, larger heat fluxes and smaller surface temperatures are obtained using the one-fluid
method, attributed to the reduced microlayer thickness. Moreover, these oscillations in the
microlayer also lead to erroneous surface temperature and heat flux distributions.

For a better comparison between the one-fluid method and the ghost fluid method, the
magnitudes of the cell-centred velocity uc obtained with the two methods at t = 0.21 ms
and grid level 12 are given in figure 30. It can be observed from figures 30(a) and 30(b) that
more pronounced numerical oscillations are introduced by the one-fluid method. When
examining a selected region and comparing the velocity fields in figures 30(c) and 30(d),
we observe that the fluid within the microlayer is almost stagnant when using the ghost
fluid method, consistent with findings in previous studies (Urbano et al. 2018; Bureš &
Sato 2022). In contrast, significant oscillations are observed with the one-fluid method,
as indicated by the erroneous vertical component of the velocity. This vertical component
consequently results in an incorrect microlayer thickness.
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