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Abstract

We study Kihler-Einstein metrics on singular projective varieties. We show that under an approximation property
with constant scalar curvature metrics, the metric completion of the smooth part is a noncollapsed RCD space, and
is homeomorphic to the original variety.

1. Introduction

A basic idea in complex geometry is to study complex manifolds using canonical Kéhler metrics, of
which perhaps the most important examples are Kéhler-Einstein metrics. Yau’s solution of the Calabi
conjecture [61] provides Kéhler-Einstein metrics on compact Kéhler manifolds with negative or zero
first Chern class, while Chen-Donaldson-Sun’s solution of the Yau-Tian-Donaldson conjecture [17]
shows that a Fano manifold admits a Kihler-Einstein metric if and only if it is K-stable. An example of
a geometric application of such metrics is Yau’s proof [60] of the Miyaoka-Yau inequality.

Recently there has been increasing interest in Kihler-Einstein metrics on singular varieties. In
particular Yau’s theorem was extended to the singular case by Eyssidieux-Guedj-Zeriahi [29], while the
singular case of the Yau-Tian-Donaldson conjecture was finally resolved by Liu-Xu-Zhuang [44] after
many partial results (see, for instance, [40]). There is now a substantial literature on singular Kéhler-
Einstein metrics, see, for example, [4, 3, 30, 40, 33].

In order to state our main results, suppose that X is an n-dimensional normal compact Kéhler space.
Let us recall that a singular Kihler-Einstein metric on X can be defined to be a positive current wg g
that is a smooth Kdhler metric on the regular set X" 4, has locally bounded potentials, and satisfies the
equation Ric(wg g) = dwg g on X" 8 for a constant A € R. The metric wk g defines a length metric dg g
on X"¢8, and an important problem is to understand the geometry of the metric completion (X7¢8, dg g).

In recent remarkable works, Guo-Phong-Song-Sturm [32, 33] showed that this metric completion
satisfies many important geometric estimates, such as bounds for their diameters, their heat kernels,
as well as Sobolev inequalities, even under far more general assumptions than the Einstein condition.
In particular, their results do not assume Ricci curvature bounds. It is natural to expect, however, that
singular Kéhler-Einstein metrics satisfy sharper results, similar to Riemannian manifolds with Ricci
lower bounds. We formulate the following conjecture, which is likely folklore among experts, although
we did not find it stated in the literature in this generality.

Conjecture 1. The metric completion (X"°8, dk ), equipped with the measure WY, ., extended trivially
from X" 8, is a noncollapsed RC D (A, 2n)-space, homeomorphic to X.

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/fmp.2025.10015 Published online by Cambridge University Press


doi:10.1017/fmp.2025.10015
https://orcid.org/0000-0001-6182-9195
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fmp.2025.10015&domain=pdf
https://doi.org/10.1017/fmp.2025.10015

2 G. Szekelyhidi

The notion of noncollapsed RCD-space is due to De Philippis-Gigli [23], building on many previous
works on synthetic notions of Ricci curvature lower bounds (see [53, 45, 1]). The conjecture is already
known in several special cases, where in fact (X"¢8, dg ) is shown to be a noncollapsed Ricci limit
space — these are noncollapsed Gromov-Hausdorff limits of Riemannian manifolds with Ricci lower
bounds, studied by Cheeger-Colding [ 12]. Settings where (X" 8, dk g) is a Ricci limit space are given, for
example, by K-stable Fano manifolds with admissible singularities (see Li-Tian-Wang [40], or Song [49]
for the case of crepant singularities), or smoothable K-stable Fano varieties, see Donaldson-Sun [27],
Spotti [51].

Our goal in this paper is to move beyond the setting of Ricci limit spaces, and to prove the conjecture in
situations where it is not clear whether the singular Kihler-Einstein space (X, wk g) can be approximated
by smooth, or mildly singular, spaces with Ricci curvature bounded below. Instead, our approach is to
use an approximation with constant scalar curvature Kdhler metrics. The main approximation property
that we require is the following.

Definition 2. We say that the singular Kihler-Einstein space (X, wg ) can be approximated by cscK
metrics, if there is a resolution 7 : ¥ — X, and a family of constant scalar curvature Kihler metrics w¢
on Y satisfying the following:

(a) We have we = ¢ + V-18du., where 1 converge smoothly to n*nx and . > n*nx. Here
nx € [wkEg] is a smooth metric on X in the sense that it is locally the restriction of smooth metrics
under local embeddings into Euclidean space.

(b) We have the estimates

" w" p
sup |u6| < C’ _nf >, / (_nf) 77;!’ < C’ (1)
Y Ny Yy \Tly

for constants C > 0, p > 1 independent of €, where ny is a fixed Kihler metric on Y, and y is a non-
negative continuous function on Y vanishing only along the exceptional divisor, also independent
of €.

(c) The metrics w, converge locally smoothly on 7~! (X" ¢8) to n*wk .

The cscK property of the approximating metrics w, is used to obtain integral bounds for the Ricci
and Riemannian curvatures as in Proposition 14. We expect that such an approximation is possible in all
cases of interest; however, at the moment this is only known in limited settings. We have the following
result.

Theorem 3. Suppose that (X, wkg) is a singular Kdhler-Einstein space with wgxg € c1(L) for a line
bundle over X, and such that X has discrete automorphism group. Assume that X admits a projective
resolution w . Y — X for which the anticanonical bundle —Ky is relatively nef over X. Then (X, wgg)
can be approximated by cscK metrics in the sense of the definition above.

Note that recently Boucksom-Jonsson-Trusiani [6] showed the existence of cscK metrics on res-
olutions in this setting (and even more generally), while Pan-T6 [47] showed estimates for these
approximating cscK metrics closely related to those in Definition 2, in a more general setting.

Our main result on Kihler-Einstein spaces that can be approximated by cscK metrics is the following.

Theorem 4. Suppose that (X, wkg) can be approximated by cscK metrics, and wgg € ¢1(L) for a
line bundle L on X. Then Conjecture 1 holds for (X"¢8,dkg). In addition the metric singular set of
(Xreg, dx ) agrees with the complex analytic singular set X \ X"¢8, and it has Hausdor{f codimension
at least 4.

It is natural to expect that Conjecture | can also be extended to the setting of singular Kihler-Einstein
metrics w with cone singularities along a divisor on kit pairs (X, D). In this case one can hope to
approximate w using cscK metrics with cone singularities on a log resolution of (X, D). Some results
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in this direction were obtained recently by Zheng [63], but we leave this extension of Theorem 4 for
future work.

The RCD property implies important geometric information about the metric completion
(X7e8,dgE), such as the existence of tangent cones (see De Philippis-Gigli [22]). Moreover, we expect
that with only minor modifications the work of Donaldson-Sun [28] and Li-Wang-Xu [41] on the tan-
gent cones of smoothable Kihler-Einstein spaces can be extended to the setting of Theorem 4, that is,
the tangent cones of (X" 8, dk g) are unique, and are determined by the algebraic structure. Knowledge
of the tangent cones can then be further leveraged to obtain more refined information about the metric,
such as in Hein-Sun [35], or [18].

Using results of Honda [36], which rely on different equivalent characterizations of RCD spaces
by Ambrosio-Gigli-Savaré [1], the main estimate that we need in order to prove the RCD property in
Theorem 4 is that eigenfunctions of the Laplacian are Lipschitz continuous on (X"°8, dgg). We will
review Honda’s result in Section 2. In order to prove a gradient estimate for eigenfunctions, we use the
approximating smooth cscK spaces (Y, w.). Note that these do not satisfy uniform gradient estimates,
since they do not have uniform Ricci curvature bounds from below. Instead we will prove a weaker
estimate on (Y, w¢ ), expressed in terms of the heat flow — roughly speaking we obtain an estimate that is
valid for times ¢t > t¢ > 0 along the heat flow, where 7. — 0 as € — 0. These estimates can be passed to
the limit as € — 0 using the uniform estimates of Guo-Phong-Song-Sturm [32, 33] for the heat kernels,
and in the limit we obtain the required gradient bound on (X" °8, wk ). This is discussed in Section 3.

In Section 4 we prove that (X"¢8, dk g) is homeomorphic to X, and that the metric singular set has
Hausdorft codimension at least 4. Some results of this type were shown by Song [49] and La Nave-
Tian-Zhang [39], based on applying Hérmander’s L2-estimates, following Donaldson-Sun [27]. The
main new difficulty in our setting is that a priori we do not have enough control of how large the set
(X7e8,dgg) \ X8 is in the metric sense. It was shown by Sturm [52] (see also [49]), that this set
has capacity zero, which already plays an important role in the RCD property. For the approach of
Donaldson-Sun [27] to apply, however, we need a slightly stronger effective bound that can be applied
uniformly at all scales. In previous related results this type of estimate relied on showing that the
metric regular set in (X"¢8,dgE) coincides with X”¢8, but this is not clear in our setting since our
approximating Riemannian manifolds (Y, w¢) do not have lower Ricci bounds.

The new ingredient that we exploit is that the algebraic singular set of X is locally cut out by
holomorphic (and therefore harmonic) functions. We show that these functions have finite order of
vanishing along the singular set, and therefore we can control the size of their zero sets in any ball that
is sufficiently close to a Euclidean ball, using a three annulus lemma argument, somewhat similarly
to [19]. This leads to the key result that the metric and algebraic regular sets of (X"¢8, dk ) coincide.
After this the proof follows by now familiar lines from Donaldson-Sun [27] and other subsequent works
such as [42].

In Section 5 we prove Theorem 3. The proof is based primarily on Chen-Cheng’s existence theorem
for cscK metrics [15] together with some extensions of their estimates by Zheng [62]. A similar result,
in more general settings, was obtained recently by Boucksom-Jonsson-Trusiani [6] and Pan-T6 [47].

In Section 6, as an example application, we discuss an extension of Donaldson-Sun’s partial
C¥-estimate to singular Kihler-Einstein spaces with the cscK approximation property. An additional
ingredient that we need is the gap result for the volume densities of (singular) Ricci flat Kéhler cone
metrics that arise as tangent cones, Theorem 36. This was shown very recently in the more general
algebraic setting by Xu-Zhuang [59].

2. Background
2.1. Noncollapsed RCD spaces
By a metric measure space we mean a triple (Z,d, m), where (Z, d) is a metric space, and m is a

measure on Z with suppm = Z. By now there are several different, but essentially equivalent, notions
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of synthetic lower bounds for the Ricci curvature of (Z, d, m), due to Sturm [53], Lott-Villani [45],
and Ambrosio-Gigli-Savaré [1]. We will be particularly concerned with the notion of noncollapsed
RCD(K, N) space introduced by De Philippis-Gigli [23]. These should be thought of as the synthetic
version of noncollapsed Gromov-Hausdorff limits of N-dimensional manifolds with Ricci curvature
bounded below by K.

More specifically we will be concerned with RCD spaces that are the metric completions of smooth
Riemannian manifolds. In fact the spaces that we study almost fit into the setting of almost smooth
metric measure spaces, studied by Honda [36], except we will use the standard notion of zero capacity
set instead of [36, Definition 3.1, 3(b)]. The results of [36] hold with this definition too, as we will
outline below. Thus we state the following slight modification of Honda’s definition.

Definition 5. A compact metric measure space (Z, d,m) is an n-dimensional almost smooth metric
measure space, if there is an open subset Q C Z satisfying the following conditions.

(1) There is a smooth n-dimensional Riemannian manifold (M, g) and ahomeomorphism ¢ : Q — M",
such that ¢ defines a local isometry between (€2, d) and (M", dg).

(2) The restriction of the measure m to € coincides with the n-dimensional Hausdorff measure.

(3) The complement Z \ Q has measure zero, that is, m(Z \ Q) = 0, and it has zero capacity in the
following sense: there is a sequence of smooth functions ¢; : Q — [0, 1] with compact support in

Q such that
(a) For any compact A C Q we have ¢;|4 = 1 for sufficiently large i,
(b) We have
lim [ |Vg;|>dH" = 0. )
1—00 Q

As a point of comparison we remark that in [36], the condition (b) is replaced by requiring that the
L'-norm of A¢; is uniformly bounded. Note that neither of these conditions implies the other one.

In our setting we will have an n-dimensional normal projective variety X equipped with a positive
current w that is a smooth Kihler metric on X" “8. In addition we will assume that w has locally bounded
Kihler potentials. We use w to define a metric structure d on the smooth locus X" ¢8:

d(x,y) = inf{€(y) | y is a smooth curve in X" 8 from x to y}, 3)

where £(y) denotes the length of y with respect to w. We define (X, d ¢) to be the metric completion of
(X"¢8,d), and we extend the volume form w" to X trivially. In this way (X, dy,w™) defines a metric
measure space. The complement of X" ¢4 has zero capacity, by the following result, due to Sturm [52]
(see also Song [49, Lemma 3.7]).

Lemma 6. There is a sequence of smooth functions ¢; : X" 8 — [0, 1] with compact support, such that

we have: for any compact A C X"°8 we have ¢;|o = 1 for sufficiently large i, and

lim |Vé;|*> w" = 0. 4

1—00 Xreg
From this we have the following.

Lemma 7. (X, dy,w") defines a 2n-dimensional almost smooth measure metric space in the sense of
Definition 5.

Proof. The open set Q C X is the smooth locus X"°2 viewed as a subset of its metric completion X,
equipped with the Kéhler metric w. The conditions (1) and (2) in Definition 5 are automatically
satisfied. The fact that X \ X4 has capacity zero follows from the existence of good cutoff functions
in Lemma 6. O
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In order to show that X is an RCD space, we will use the characterization of RCD spaces in Honda
[36, Corollary 3.10] (see also Ambrosio-Gigli-Savaré [1]). We state this Corollary here in our setting.
Note that our notion of almost smooth metric measure space is slightly different from that in [36].

Corollary 8 (See [36]). The metric completion (X, dg,w") is an RCD(K, 2n) space, where K € R,
if it is an almost smooth compact metric measure space associated with X"°8 in the sense of
[36, Definition 3.1], and the following conditions hold:

1. The Sobolev to Lipschitz property holds, that is, any f € WH2(X), with |V f|(x) < 1 for w"-almost
every x, has a 1-Lipschitz representative;
2. The L*-strong compactness condition holds, that is, the inclusion W"2(X) — L*(X) is a compact
operator;
. Any W2 eigenfunction of the Laplacian on X is Lipschitz;
4. Ric(w) = Kw on X"°8.

(O]

In these conditions the Sobolev space W'-2(X) is defined by taking the completion of the space
of compactly supported smooth functions C;°(X"“®) on the Riemannian manifold (X"¢,w) in the
W'2-norm. By [36, Proposition 3.3] this space coincides with the H"?(X, dg,w")-space defined using
the Cheeger energy.

Proof. The only place where the difference between our notion of capacity zero in Definition 5 and
Honda’s notion plays a role is in the proof of [36, Theorem 3.7] to deduce Equation (3.13), stating
that the Hessian of fy is in L? (see [36] for the meaning of fn). We can also deduce this by using
cutoff functions that satisfy our Condition (3b) in Definition 5. To simplify the notation we will write
Q = X"“8. Let us recall Equation (3.12) from [36], which in our notation states

1
5 [19mPagen > [ @(Hessy P+ (Tas. Vi) + KT E) o )
Q Q

where Ric(w) > Kw, and we used ¢? as the cutoff function instead of ¢;. Note that 0 < ¢$ < 1, and
V(ﬁ =2¢;V¢;, so qﬁf satisfies the same estimate as ¢;. In addition fj is a Lipschitz function such that
fn.Afn € W2 We have

/Q Vi PAGR " = - /Q 419 f|6:VIV fiv |, V) 0"

(6)
< / (¢§|Hesst >+ 4|VfN|2|V¢i|2) W".
Q
It follows using this in (5) that
1
[ otimessPor < [ (A0 PITOE - 6VA . V)
Q Q (7)
- 9KV v ) "
Letting i — oo and using that |V fiy| € L™, we obtain that
/ |Hesst|2w" < o0, (8)
Q
The rest of the argument is the same as in [36, Theorem 3.7]. ]

Note that in our setting we have the following. In Section 3 we will show the remaining Condition (3)
in the setting of Theorem 4.
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Proposition 9. The metric measure space (X, dyg,w") satisfies Conditions (1), (2), and (4) in
Corollary 8, for some K € R.

Proof. Condition (4) is satisfied by definition. To verify Condition (1), let f € W!2(X), such that
[V f](x) < 1 for w"-almost every x. On X"“8 the Sobolev to Lipschitz property holds, so we can assume
that f is 1-Lipschitz on X" 8. By the definition of the distance d, this implies that for any x,y € X"¢8
we have | f(x) — f(¥)] < |x — y|. We can then extend f uniquely to the completion X so that the same
condition continues to hold. Condition (2) follows from the Sobolev inequality shown by Guo-Phong-
Song-Sturm [33, Theorem 2.1]. O

Let us recall from De Philippis-Gigli [23] thatan RCD (K, N)-space (Z, d, m) is called noncollapsed,
if the N-dimensional Hausdorff measure on (Z, d) agrees with m. In particular, if an n-dimensional
almost smooth metric measure space in Definition 5 satisfies the RC D (K, n)-property, then it is automat-
ically noncollapsed. Noncollapsed RCD spaces satisfy many of the properties enjoyed by noncollapsed
Ricci limits spaces studied by Cheeger-Colding [12]. We will now recall some results that we will use.

De Philippis-Gigli [22] showed that in a noncollapsed RCD (K, N)-space (Z, d, m), the tangent
cones at every point z € Z are metric cones. In [23] they then showed that Z admits a stratification

SocSyc...cSy_-1 CZ, )

where S} denotes the set of points z € Z where no tangent cone splits off an isometric factor of R¥*!,
and the strata satisfy the Hausdorff dimension estimate dimy, Sy < k. Note that in contrast with the
setting of noncollapsed Ricci limit spaces, it is not necessarily the case that Sy_; = Sy_», since a
noncollapsed RCD-space can have boundary. In our setting, however, we have the following, which is
a consequence of Brue-Naber-Semola [8, Theorem 1.2].

Proposition 10. Suppose that (Z,d,m) is a noncollapsed RCD (K, N)-space, and also an
N-dimensional almost smooth metric measure space. Then Sy_1 = Sn—-2. Moreover any iterated tangent
cone Z' of Z also satisfies Sy-1 = Sn-2.

Proof. Using the notation of [8] we define 0Z = Sy_; \ Sy—2 to be the boundary of Z. Let Q C Z
denote the smooth Riemannian manifold in the definition of almost smooth metric measure space.
For z € Q the tangent cones are all RV, so dZ ¢ Z \ Q. In particular dZ has capacity zero. Using
[8, Theorem 1.2(i)] this implies that we must have dZ = 0. If an iterated tangent cone Z’ satisfied
0Z' # 0, then by [8, Theorem 1.2(i)] we would have 9Z # 0, which is a contradiction as above. O

We will be working with harmonic functions on RCD spaces, so we review some basic results. Let
us suppose that (Z, d, m) is a noncollapsed RCD (K, N)-space that is also an N-dimensional almost
smooth metric measure space. A function f : U — R on an open set U C Z is defined to be harmonic
if f e Wll(ﬁ (U), and for any Lipschitz function ¢ : U — R with compact support we have

/Vf~ledm=(). (10)
U

Note that in our setting the integration can be taken over U N Q, where Q C Z is the dense open set in
Definition 5 since Z \ © has measure zero. We will use the following result several times.

Lemma 11. Let u : U — R for an open set U C Z, such that u € L*(U). Suppose that Au = 0 on
U N Q, using the smooth Riemannian structure on Q. Then u is harmonic on U.

Proof. Let ¢; be functions as in Condition (3) of Definition 5, and ¢ a Lipschitz function with compact
support in U. We have

https://doi.org/10.1017/fmp.2025.10015 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.10015

Forum of Mathematics, Pi 7

/¢2¢?|Vu|2dm=—2/ w2¢iuV¢)i~Vudm—2/ ¢yuVu - Vi dm
U U U

(11)
1
< —/ W2 ¢ | Vul? dm +4/ WU |V | dm + cw/ u* dm,
2 Jy U U
where C,, depends on supy;~q |Vi/|. Letting i — oo, we obtain that u € Wll(f_(U ).
At the same time we have
/ ¢12Vu -V dm = —2/ oYV - Vudm
U U (12)
s/ |V¢,~|2dm+/ 2| Vul|* dm.
U supp(V ;)
Letting i — oo we get fU Vu - Vi =0, so u is harmonic on U. O

We will also need the following gradient estimate, generalizing Cheng-Yau’s gradient estimate.

Proposition 12 (Jiang [37], Theorem 1.1). Let u be a harmonic function on a ball B(p,2R) in an
RCD(N, K)-space. There is a constant C = C(R, N, K) such that

sup |Vu| < Cf lu| dm. (13)
B(p.R) B(p.2R)

Note that a similar estimate holds for solutions of Au = ¢ on U C Z for a constant c, by considering
u — ct*/2 on the space U X R;.

3. The RCD property of singular Kihler-Einstein spaces

The main result in this section will be that the completion of the Kéhler-Einstein metric on X"¢8
in Theorem 4 defines a noncollapsed RCD space. We will first need some estimates for the cscK
approximations of (X, wgEg).

3.1. Constant scalar curvature approximations

Let (X, wkE) be a singular Kahler-Einstein space, where Ric,,,, = dwkg. Suppose that (X, wk k)
can be approximated by cscK metrics as in Definition 2. In particular there is a resolution Y of X, that
admits a family of cscK metrics w in suitable Kihler classes [7¢ ], such that the n converge to 1.
Here 1x is a smooth metric on X in the sense that it is the restriction of a smooth metric under local
embeddings into CV.

We will need the following, which is immediate from the work of Guo-Phong-Song-Sturm
[33, Theorem 2.2].

Theorem 13. Let H(x,y,t) denote the heat kernel on (Y,w¢). There is a continuous function
H:(0,2] = R, depending on (X, wkE), but independent of €, such that we have the upper bound

H(x,y,t) < H(t), forx,yeYandtec (0,2]. (14)

Note that H(t) — oo ast — 0.

In addition the constant scalar curvature metrics w satisfy the following integral bounds for their
Ricci curvatures. We will use these integral bounds as a replacement for having lower bounds for the
Ricci curvature, when we approximate wg g with we.
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Proposition 14. Let us define Ric,, = Ric, — Aw. We have the following estimates:

lim / IRico, > + T J'jlif:]';l/z IA(1 + [Rico, P2 o =0, (15)
and
./Y|mef|2wﬁ <C, (16)
for C independent of €.

Proof. First recall the well-known result of Calabi [10] relating the L2-norms of the scalar curvature,
the Ricci and Riemannian curvature tensors of a Kihler metric. Let us denote by R, Ric, Rm the scalar
curvature, the Ricci form and the Riemannian curvature tensor. Since R,,_ is constant, we have

_ 2nre(Y)U [we]™!

R, = (17)
¢ [we]™
Note that we have
lim 2nmei(Y) U [we ]! _ 2nmei (X) U [wge]™! -y (18)
e—0 [we]” [wkE]"

-1

since [wgg]"™" vanishes when paired with the exceptional divisor of the map ¥ — X. In addition

/ IRicy, [*w? = R;,_[wel™ —4n(n - Dr*c1(Y)* U [we] "2,
Y (19)

/(|Ricw6 1> - [Rm,,_|*) " = n(n - 1)(4n%c;(¥)? = 87%c2(Y)) U [w]" 2.
Y

Since the cohomology classes [w¢ ] = [17¢] are uniformly bounded, and in addition [we]" > [nx]" > O,
it follows that R,,, , and the L? norms of |Ric,,,_ |, [Rm,,_ | are all uniformly bounded, independently of €.
To see the first claim in the Proposition, note that

/|R1cwe—ﬂwf|2 = (Ra, — 1) [we]" = n(n = 1) (27c1 (Y) - Awel)* U w2 (20)
Y

As € — 0, this converges to zero by (18) and the fact that 27¢1 (X) = A[wkE].
To estimate VRICw and ARICw note that we have the following equation satisfied by any constant
scalar curvature metric:

AlRic|? = V; Vi (RicpzRic, )

S _ 1)
= 2|ViRicpg/|” + Rm * Ric * Ric,
where * denotes a tensorial contraction. It follows that
A(1+|Ric])!2 = (1 + |Ric]?) "2 (|Vi€i?;|2 — |V[Ri¢|[? + Rm * Ric * R}E)
|V|§E||2 (22)
+ —_—

(1 +|Ric[2)3/2
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For a constant scalar curvature Kihler metric the form Ric is harmonic, so we have the following
refined Kato inequality (see Branson [7], Calderbank-Gauduchon-Herzlich [11], or Cibotaru-Zhu
[20, Theorem 3.8]):

|V|Ric||* < au|VRic|? (23)

for a dimensional constant ,, < 1. It follows from (22) that

_ VRic|? _
A1+ RicPH'? > (1 —an)% - C|Rm| |Ric]. (24)
(1 + |Ric|?)1/2
Integrating over Y, we get
. VRl < ¢y R, 2[R 2 — 0 5)
— - W, = (] My, |12 1Cuw,ll2 =V,
v (1+[Ric]3, )12 ¢ we LA el
as € — 0. It then follows from (22) that
ST 2\1/2), 0 |Vﬁ‘iéwe|2 n S5
|A(1+[Ricy, ) 7w £ | ——————— i + C|Rmy,_[Ip2]IRice, Iz — 0, (26)
Y Y (1+|Ricl2, )12
ase — 0. m]

3.2. Proof of the RCD property

In this section we assume that (X, wxg) is a singular Kahler-Einstein space, with Ric,,,, = AwkE,
that can be approximated with cscK metrics as in Definition 2. Our first result is the following.

Proposition 15. The metric completion (X, d, WY ) is an RCD(A,2n) space.

Proof. From Proposition 9 it follows that it is sufficient to check condition (3) in Corollary 8, that
is, to show that the eigenfunctions of the Laplacian on X are bounded. More precisely, suppose that
u € WH2(X) satisfies Au = —bu on X" 8 for a constant b. We will show that then |Vu| € L®(X"¢%).

For simplicity we can assume that |[u||;> = 1. Using that u € W'2(X), and also [33, Lemma 11.2],
we have

sup|u|+/ |Vul?wh . < C, (27)
Xreg

where C could depend on u (in particular on b).

Next we will use the approximating cscK metrics we on the resolution Y of X. Let us fix a large i,
and let f = ¢;u for the cutoff function ¢; in Lemma 6. We can view f as a function on Y, supported
away from the exceptional divisor, where the metrics w, converge smoothly to wg g. Note that we have
a uniform bound sup | f| < C, and also

/ 1V /]P0 < / 2([uV i+ ¢:Vul?) ot < 2C, 28)
Y Y

for sufficiently small e.

Let us fix a point xg € X where ¢;(xp) = 1. We can view xg € Y too. We will do the following
calculation on Y, using the metric w, for sufficiently small €. To simplify the notation we will omit the
subscript €. All geometric quantities are defined using the metric w.. We will write p, = H(xg, y,t)
for the heat kernel centered at xy on (Y, w,), and let f; denote the solution of the heat equation on
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(Y, w¢) with initial condition f. We will also omit the volume form «? in the integrals below. We have
the following.

1 1
o / LV s = / Vs VA fe)ps + 21V s Apy
,2 ; 2 09)
= [ (9P 4 Rie(T e Vim0

In order to compensate for the Ricci term, we let ¢ = (1 + |ﬁ6|2)1/ 2 where Ric = Ric,,, — dwe asin
Proposition 14. We have

ds /Y VA ps = /Y 202 fr_sA fi—s ps + U2 fE A ps

[ (bwAs v 200 952 ) 20209 ) (30)

v

c /Y (18] +V9P) ps + /Y WAV fis s,

where the constant C depends on the uniform supremum bound for f;_;.
Note that 2 > |Ric| — n|A], so if we combine (29) and (30), we get

1
o. [ (EIVﬁ-sI2+w2ﬁ2_s) po==C [0 +190P) .= [V P GD
Y Y Y

At this point, let us fix so > 0, and only work with s € [s9,2]. From Proposition 14 we know that
lAG2|1, IVl 2 — 0 as € — 0. From Theorem 13 we have a uniform upper bound for p;, depending
on s¢, but independent of €. Therefore, if we choose € sufficiently small, say € < €,, then we have

1
as/ (leﬁslzﬂﬁsz_S) Ps Z—I—nlﬁI/IVﬁﬂlzps, (32)
Y Y
and so
‘ 1
d; 2l / (§|Vﬁs|2+¢2ffs) ps > —C. (33)
Y

Applying this with # = 1 + 59 and integrating from s = sg to s = 1 + 50, it follows that for such € we have
1 1
eznws"/ (§|Vfl|2 +l//2f12) Psy < C + g2l (so+) / (§|Vf|2 +¢2f2) Plso- (34)
Y Y

Using the uniform upper bound for p1.,, together with the integral bound for |f€i€|2 from Proposition 14,
we obtain that

/Y IVAil* psy < C, (35)

where C is independent of €, sg. As € — 0, the heat kernels py, converge locally smoothly on X"8 to
the heat kernel on (X, wk g), and so in the limit we obtain the estimate

/ 9117 s, < C. (36)
Xreg
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where all the quantities are computed using wg g, and recall that f; is simply the solution f; of the heat
flow with initial condition f at time # = 1. Note that the constant C does not depend on s, so in fact, by
letting 5o — 0, we obtain the pointwise estimate

IV f1I*(x0) < C, (37)

and this holds uniformly for any xo € X" 8.

Recall that f = ¢;u, where u is the eigenfunction that we want to estimate, and ¢; is a cutoff function
from Lemma 6. To keep track of the dependence on i, let us now write f) = ¢;u, and write flm for
the corresponding solutions of the heat equation at time 1. Since ) — u in L2, it follows that for any
compact set K C X"°8 the solutions fl(i) converge smoothly to u#; on K. But u; = e ?u, so we obtain
the required pointwise bound |Vu|?(xg) < e??C for any xo € X" 8. O

Next we show that singular Kéhler-Einstein metrics on projective varieties, that can be approximated
by cscK metrics, define Kihler currents. This result was previously shown by Guedj-Guenancia-Zeriahi
[31] for singular Kéhler-Einstein metrics that are either globally smoothable, or that only have isolated
smoothable singularities.

Theorem 16. Let wi g denote a singular Kdihler-Einstein metric on a normal projective variety X, which
can be approximated by cscK metrics as in Definition 2. Let nrs denote the pullback of the Fubini-Study
metric to X under a projective embedding of X. Then there is a constant 6 > 0 such that wgg > OnFs.

Proof. By assumption we have cscK metrics we = 1¢ + \/—_1(95uE on a resolution 7 : Y — X, where
ne — n*nx for a smooth metric nx on X, where . > n*nx. We apply the Chern-Lu inequality to
the map 7 : ¥ — X, away from the exceptional divisor E, where on Y we use the metric w. and on X
we use the pullback 77rs of the Fubini-Study metric under a projective embedding of X. For simplicity
we write np s for n°n s, and we write g; 7 and &;; for the metric components of w, and nrs, respectively.

On Y \ E we then have |d7|? = tr, nrs. and (see, e.g., [46])

T
g g™ Ric(we);7h,7
Ay, logtr, nrs > M — Atry, nFs, (38)
try, Fs

where A is independent of €, using that nrgs has bisectional curvature bounded from above. It follows
that

gk (Ric(we);; — Ag;7) i

A, logt > + A — At
we 108Uy NFS 2 o 7S Tw NFS (39)
> —|Ric,,, — Awe|+ A — Atry,, nx.
We also have
Ap (mte) =try e —n2try nx —n 2 Cl_ltrwJ]FS —-n, (40)

for some C; > 0, using that locally both nrs and n7x are given by pullbacks of smooth metrics under
embeddings of X. This implies that

Ay (logtry nrs — ACiue) = —|Ricy, —Awe| + 41— ACin @)
> —|Ric,, —Awe| — Cy,
for some C, > 0. Let us define
F = max{0,logtr, nrs — ACiue}. 42)
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Since w, is a Kéhler metric, F is bounded from above, and by definition F is also bounded below.
In addition F satisfies the differential inequality

A, F > —|Ric,, —dwe| —C (43)

in a distributional sense on all of Y. To see this, note first that the differential inequality is satisfied in
the distributional sense on Y \ E by the definition of F as a maximum of two functions satisfying the
inequality. Then the differential inequality can be extended across E using that F' is bounded, by an
argument similar to Lemma 1 1.

Fixx € Y \ E, and let H(x, y, t) denote the heat kernel on (Y, w,). Fix some #y > 0. For ¢ € [f, 1]
we have

at fY F(y) H(x. y.1) dy = /Y F(y) AyH(x,y.1) dy
- /Y A F(y) H(x, y.1) dy (44)
> / (~Ric, — Awel(y) - C)H(x. y.1) dy.
Y

Using the uniform upper bound for H (see Theorem 13), together with Proposition 14, we find that there
exists an €y = €y(tp), depending on g, such that if € < €, then

Oy /Y F(y)H(x,y,t)dy = -2C», (45)
and so for € < €y we have
[ oty wa < [ Forey by (46)
Note that
F < e 4Ceqry nps, 47)

so we have (using the uniform upper bound for the heat kernel as well),

/F(y)H(x,y,to) dy < CseCroum el / tro Fs W +2C)
Y Y

< Cy.

(48)

Here we also used that we have a uniform bound for sup |u¢|, and the cohomology classes [w,] are
uniformly bounded. Crucially, the constant Cy4 is independent of 7.

Note that as € — 0, the heat kernels H(x, y, t) for (Y, w¢) converge locally smoothly on Y \ E to the
heat kernel for (X, wg ). At the same time, the function F(y) converges locally uniformly on Y \ E to

max{0, logtry,, . nFs — ACiukE}. (49)

It follows that in the limit, for any ¢ > 0, we have

/ (log trog znrs — AC1uk E)(Y) Hugp (%, 9, 1) Wk p (¥) < Ca. (50)
Xreg

Letting t — O we obtain a pointwise bound tr,,, . 77rs < Cs, as required. O
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4. Homeomorphism with the underlying variety

In this section our goal is to show that the metric completion X of the smooth locus of a singular
Kihler-Einstein metric (X, wk g) is homeomorphic to X, under suitable assumptions. These assumptions
hold in the setting of Theorem 4, where (X, wk g) can be approximated with cscK metrics.

We assume that X is a normal projective variety of dimension n, and we have a Kihler current w
on X with bounded local potentials, such that w € c¢;(L) for a line bundle L on X. We will write ngg
for the pullback of the Fubini-Study metric to X under a projective embedding. We make the following
assumptions:

(1) The Ricci form of w, as a current, satisfies Ric(w) = Aw for a constant A € R on the regular part
X 8 of X.

(2) w is aKihler current, that is, w > ¢nps on X for some ¢ > 0.

(3) The metric completion (X, dy) of (X"°8,w) is a noncollapsed RCD(2n, 1) space, where the
measure on X is the pushforward of w" from X" 8.

(4) We have " = Fn}., where F € LP (X, n7}.¢) for some p > 1.

We have seen that Conditions (1)—(3) are satisfied for singular Kihler-Einstein metrics (X, wgEg),
with wgg € c¢1(L), that can be approximated with cscK metrics in the sense of Definition 2. For
Condition (4), see Eyssidieux-Guedj-Zeriahi [29, Section 7].

The main result of this section is the following, and the proof will be completed after Proposition 27
below.

Theorem 17. Let (X, w) satisfy the conditions (1)~(4) above. Then the metric completion X is
homeomorphic to X.

Rescaling the metric w we can assume that L is a very ample line bundle on X. The sections of L
define a holomorphic embedding ®x : X — CP", and we can identify the image of this embedding
with X. By the assumption that w is a Kéhler current, we have that the map

Dy : (X%, w) > (X,nFs) € CPY (51)

is Lipschitz continuous, where we use the length metric as defined in (3). In particular ®x extends to a
Lipschitz continuous map

Oy : X - (X, nFs). (52)

Note that @ is surjective, since the image of X"¢ is dense in X, so our task is to prove that ®x is
injective, that is, to show that the sections of L separate points of X. In fact we will work with L* for
large k, however since L is very ample, the map defined by section of L is obtained by composing the
map defined by sections of L with an embedding of CP" into a larger projective space.

The general strategy for showing that sections of LX separate points of X is similar to the
work of Donaldson-Sun [27]. We will apply the following form of Hormander’s estimate (see, e.g.,
[25, Theorem 6.1]):

Theorem 18. Let (P, hp) be a Hermitian holomorphic line bundle on a Kdihler manifold (M, wyy),
which admits some complete Kdhler metric. Suppose that the curvature form of hp satisfies V-1F, p 2
cwy for some constant ¢ > 0. Let @ € Q' (P) be such that da = 0. Then there exists u € Q°(P)
such that du = «, and

1
lullZz < —lellZ,, (53)

provided the right hand side is finite.

We will apply this result to M = X", with the metric wys = kw. Note that it follows from Demailly
[24, Theorem 0.2], that X"¢8 admits a complete Kéhler metric. For the line bundle P we will take
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P=LF® KX/II , so that an (#, 0)-form valued in P is simply a section of L¥. For the metric on P we take
the metric induced by the metric 4% on L* whose curvature is kw, together with the metric given by w”"
on K. The curvature of hp then satisfies

1
V=1F, = kw +Ric,, = (k + Dw > FOM (54)

for large enough k.
We will need the following L™ and gradient estimates for holomorphic sections of LK.

Proposition 19. Let f be a holomorphic section of L* over M = X"¢%. We then have the following
estimates

SEP [flake + IV F ik wny < KilF L2 01 0, aong)» (55)

where we emphasize that we are using the metrics h* and wy; = kw to measure the various norms, and
K1 does not depend on k.

Proof. Note first that f extends to a holomorphic section of L¥ over X, using that X is normal. Using
that w has locally bounded potentials, we have that supy | f,x < co.

Next we show that |V f|,« ,,,, < co. Forany £ € X, let x = ®x (%) € X. We can find a section
s € H'(X,L) and some r > 0 such that s(y) # 0 for y € B.s(x,r). The assumption that w is a
Kéhler current implies that we have constants r’ > 0 and C > 0 (depending on %) such that if we write
|s|7 = e, then |u| < C on X"“¢ N B,,,, (%,r’). We have A, u = n on X" N B, (£,r'/2), and
since u is bounded, this equation extends to B,,,, (%,7’/2) by Lemma 11 and Lemma 6. The gradient
estimate in Proposition 12 then implies that [Vu| < C; on B,,,, (%,r’/2). This implies that [Vs| < C;
on By, (£,7/2). If f is any holomorphic section of L¥, then on B,,,, (£,7'/2) the ratio f/s* is a
bounded harmonic function, so using the gradient estimate again, together with the bounds for s, we
find that [V f| < C3 on B, (%,7’/4). We can cover X with finitely many balls of this type, showing
that |V fl« o, < oo globally.

We can obtain the effective estimates claimed in the proposition as follows. Since the curvature of
h* is wpy, on M we have

Ao fl =IVfle o =nlfl. (56)

WM

Let ¢; denote cutoff functions as in Lemma 6. We have, omitting the subscripts,
[ awstal, = [ @lsp sty ol
M M
= [ 4119019111+ G2l oy 57)
1
< / (§¢?IVfI2 + 81V ISP + ginl 17| iy
M
Letting i — oo, and using that | f| € L™, we get
/ VS oy <2n / 1wl (58)
M M

We also have the following Bochner-type formula on M (see, e.g., La Nave-Tian-Zhang
[39, Lemma 3.1]):

AIVFI 2 Ricwy (V) = (n+2)|VfP 2 —(n+2+ |ADIVFP, (59)
where we are using the metrics h* . wyy as above.

https://doi.org/10.1017/fmp.2025.10015 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2025.10015

Forum of Mathematics, Pi 15

Both (56) and (59) are of the form
Av > —Av, (60)

where v is a smooth L function on M. We can argue using the cutoff functions ¢;, as in the proof of
Lemma 11, to show that v satisfies this differential inequality on all of X in a weak sense, that is, for any
Lipschitz test function p > 0 we have

/ (=Vp - Vv+Apv)wy, > 0. (61)
M

Using this, together with estimates for the heat kernel on X, we can obtain the required L® bound for
v = |f|? and v = |Vf|>. More precisely, using [38, Theorem 1.2], together with the RCD property
in Proposition 15, we obtain an L?-bound for the heat kernel H (x,y,1) on M, independently of k.
Using (60), for any x € M we have

d
G [ om0 et 0) = [ vomHey ol 02 -4 [ voHE o0 ©)
M M M

SO
V() < /M VOV H(x, v, 1) ol (3) < eACIV]Ip2. 63)

as required. O

In order to show that sections of L¥ separate points of X for large k (and therefore also for k = 1),
we follow the approach of Donaldson-Sun [27], constructing suitable sections of L* using Hérmander’s
L?-estimate. For this the basic ingredient in [27] is to consider a tangent cone Z of X at x, and use
that the regular part of Z is a Kéhler cone, while at the same time the singular set can be excised by a
suitable cutoff function. The main new difficulty in our setting is that along the pointed convergence of
a sequence of rescalings

(X, idg,x) = (Z,dz,0), (64)

with 4; — oo, we do not know that compact subsets K C Z"8 of the (metric) regular set in Z are
obtained as smooth limits of subsets of the (complex analytic) regular set X" 8. For example, a priori it
may happen that along the convergence in (64), even if Z = R?", the singular set X \ X"¢% converges
to a dense subset of Z. This is similar to the issue dealt with in Chen-Donaldson-Sun [17], but in that
work it is used crucially that the singular spaces considered are limits of smooth manifolds with lower
Ricci bounds.

To deal with this issue in our setting, we exploit the fact that X \ X" 8 is locally contained in the zero
set of holomorphic functions, which also define harmonic functions on the RCD space X. Crucially,
these functions have a bound on their order of vanishing (Lemma 20), which can be used to control the
size of the zero set at different scales, at least on balls that are sufficiently close to a Euclidean ball. This
can be used to show that balls in X that are almost Euclidean are contained in X"¢8 (Proposition 24).
This is the main new ingredient in our argument. Given this, we can closely follow the arguments in
Donaldson-Sun [27] or [42] to construct holomorphic sections of Lk,

Let us write I' = X \ X"¢8 for the algebraic singular set. Observe that I" can locally be cut out by
holomorphic functions. Therefore, we can cover X with open sets U; and we have nonzero holomorphic
functions sg on U} such that I'nU; C s;l (0). We can assume that the sy are bounded, and that we have
relatively compact open sets Uy CC U, that still cover X. We let Ui, U . be the corresponding open sets
pulled back to X. Using Lemma 6, we can extend the s to complex valued harmonic functions on X,
which vanish along I'. Our first task will be to show that we have a bound for the order of vanishing of
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the sy at each point. Note first that by the assumption that w is a Kéhler current, there exists an ro > 0
such that if p € Uy, then B(p,ro) c U .- Here, and below, a ball B(p, r) always denotes the metric ball
using the metric dy on X induced by d,, on X"°8.

Lemma 20. There are constant c1, N > 0, depending on (X, w), such that forany % € Uy andr € (0, ro),
we have

/ skl @™ = err®, (65)
B(%,r)

forallr < ry.

Proof. First note that since X is a noncollapsed RCD space, we have a constant v > 0 such that
vol B(%,r) > vr¥* forallr < 1. Atthe same time we can bound the volume of sublevel sets U e Iskl <t}
from above, using the assumptions on w. Indeed, on U ,’C we have w" = F n} 50 and F € LP (X, n; S) for
some p > 1. It follows that for any 7 > 0 we have

vol(U;, N {[sk] < t},w") = / w"

Upn{Iskl<t}

= / Fgs
Un{Isk <t}

(66)
1/p
< Cyvol(Up, N {lsi| < t},n;s)l/p’ (/ F? 7]?,5)
u;
< Cvol(Uy N {lse] < t}. )P,
for suitable constants Cy, C; independent of 7, and p” is the conjugate exponent of p. Since [sx|™€ 1} g
is integrable for some € > 0, it follows that we have a bound
vol(Uy N {lskl <t} ngg) < Cst€, (67)
and so in sum we have
vol(U N {Isi] < 1}.00") < Cat®, (68)

for some Cy, @ > 0 independent of ¢. Given a small > 0 such that B(%,r) C U ]’( choose t,- such that
1

Cat® = —yr?", (69)
2

that is,

t, = v e an/rt:cSrQnrf1 (70)
r 2C4 ’

for suitable ¢5 > 0. By our estimates for the volumes, we then have

1

vol(B(x,r) N {|$k| = 1,}) > zvrz", (71)

and so

2 4dna”!
csr
/ ISP > 22—y =y, (72)
B(%,r) 2

for some ¢y, N > 0, independent of r, as required. ]
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Next we need a version of the three annulus lemma for almost Euclidean balls, similar to
[26, Theorem 0.7].

Lemma 21. For any u > 0, u ¢ Z, there is an € > 0 depending on u,n with the following property.
Suppose that B(p, 1) is a unit ball in a noncollapsed RCD (-1, 2n)-space such that

dou (B(p, 1), B(Ogan, 1)) <, (73)

where Og2n denotes the origin in Euclidean space. Letu : B(p, 1) — C be a harmonic function such that

1/2 1/2
(f |u|2) > oK (f |u|2) . (74)
B(p,1/2) B(p,1/4)
1/2 1/2
(f |u|2) > 2K (f |u|2) ) (75)
B(p.1) B(p,1/2)

Proof. The proof is by contradiction, similarly to [26], based on the fact that on the Euclidean space
R?" every homogeneous harmonic function has integer degree. O

Then

Combining the previous two results, we have the following, controlling the decay rate of the defining
functions §; around almost regular points.

Lemma 22. There exists an €y, ro > 0, depending on (X, w), such that if% € Uy, and for somer, € (0, ro)

we have
dGu (B(£,r1), B(Og2n,71)) < ri€o, (76)
then
lim sup Fan il <2V, (77
r—0 fB(f(,r/z) 18k [? "
for the N in Lemma 20.

Proof. Fix u € (N/2,N) such that u ¢ Z. If €y and ry are sufficiently small (depending on u), then the
inequality (76) implies that for any r < r; we have

deu (B(X,7), B(Ogan, 1)) < re, (78)

for the € in Lemma 21, and so the conclusion of that Lemma holds. It follows that if

1/2 1/2
( f |fk|2w") > 0¥ ( f |§k|2w") , (79)
B(%,r) B(%,r/2)

for some r < ry, then applying Lemma 21 inductively, we have

12 . 12
( f |fk|2w") > i ( f |§k|2w") , (80)
B(%,2/r) B(%,r/2)

as long as 2/r < ry. Given any r < ry, if we let j denote the largest j such that 2/r < ry, then we obtain

1/2 .
(f |§k|2w") <27kC, (81)
B(%,r/2)
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where C is independent of 7, but depends on the L?-norm of §; on B(%, r1). Applying Lemma 20 we then
have

27KC 2 e} (rj2)N 2, (82)

Since 27*!r > rq, it follows that 27/# < (2r/r)*, so
)2 (r/2)N? < 2r/rcC. (83)

Since p > N /2, this inequality implies a lower bound for r satisfying (79). The required conclusion (77)
follows. o

Using this result, we will show that almost Euclidean balls are contained in the complex analytically
regular set X"°¢ c X. Note that the assumption (85) will hold on sufficiently small balls around a given
point, by the previous lemma.

Proposition 23. There exists an €, > 0, depending on (X, w), with the following property. Suppose that
X € Uj and k > 0 is a large integer such that 62‘1k‘2 < €. Suppose in addition that

den (B()%, &' k72). Byan (0, eglk—z)) < ek, (84)

and that

A 12 2N A 12
f 15,0 0" <2 f 15, 0, 85)
B(%,6'k2) B(%,7 &'k

for the N in Lemma 20. Then £ € X"¢8, where X" °8 is the complex analytically regular set of X, viewed
as a subset of X.

Proof. We will argue by contradiction, similarly to [42, Proposition 3.1] which in turn is based on
Donaldson-Sun [27]. Suppose that no suitable €, exists. Then we have a sequence of points £;, and
integers k; > i such that the hypotheses are satisfied (with e; = 1/i). We will show that for sufficiently
large i we have £; € X"°8 by constructing holomorphic coordinates in a neighborhood of %;.

By a slight abuse of notation we will write U;, §; instead of U j; and 8, to simplify the notation. The
assumptions imply that the rescaled balls

k)P B(&, ik ?) — B2, (86)

in the pointed Gromov-Hausdorff sense. Using Lemma 21 together with the condition (85), we can
extract a nontrivial limit of the normalized functions

A

- Si
A
(f T wn)l/Z &7
B(%i,k; "% 11
Indeed, we have
f o lten =1, (88)
B(%:.k ')
and using Lemma 21 with some u € (N, 2N), together with (85), implies that for sufficiently large i we
have
P <2 f 5P o 89
va()?i,Z-f &'k ' B(%,277 ey k%) ' (89)

for all j > 0. In particular, viewed as functions on the rescaled balls kl.l/ ZB()Gi, ikl._l/ 2), the L? norms
of the §; are bounded independently of i on any R-ball. Using the gradient estimate, Proposition 12, it
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follows that up to choosing a subsequence, the functions §; converge locally uniformly to a harmonic
function 5 : R* — C. As a consequence, ., is smooth, and because of the normalization (88), §« is
NOnZzero.

Note that if we take a sequence of rescalings of R?" with factors going to infinity, and consider the
corresponding pullbacks of .., normalized to have unit L?-norm on the unit balls, then this new sequence
of harmonic functions will converge to the leading order homogeneous piece of the Taylor expansion
of § at the origin (up to a constant factor). This means that in the procedure above, up to replacing the
integers k; by suitable larger integers, we can assume that the limit 5, is in fact homogeneous.

Let us write ¥ = §7!(0). Our next goal is to show that under the convergence in (86), the set R>" \ £
is the locally smooth limit of subsets of X" ¢4, and that §, is actually a holomorphic function under an
identification R>” = C". Then we will be able to follow the argument in the proof of [42, Proposition 3.1]
with the cone V = C", but treating X as the singular set.

Note that since 5., is a nonzero harmonic function, the set R** \ X is open and dense in R?". Suppose
that V ¢ R?" is an open subset such that V is compact and |5.| > 0 on V. Then, because of the local
uniform convergence of §; to §., and the fact that the sets §; # 0 are contained in X"°¢, it follows
that we have open subsets V; cC ki‘zB(f,-, ikl._l/ 2) N X"¢8, which converge in the Gromov-Hausdorff
sense to V. The metrics on the V; are smooth noncollapsed Kéhler-Einstein metrics, so using Anderson’s
e-regularity result [2], up to choosing a subsequence, the complex structures on V; converge to a complex
structure on V with respect to which the Euclidean metric is Kihler. Note that we do not yet know that
R?" \ X is connected, and in principle we may get different complex structures on different connected
components. Our next goal is to show that the Hausdorff dimension of X is at most 2n — 2, which will
show that the complement of X is connected.

We can assume that the holomorphic functions §; on V; converge to a holomorphic function 5, on V.
Writing §eo = Uoo + V=1V, we therefore have (Vites, Vveo) = 0 and |Vveo| = |Vireo| on R?* \ 3, and by
density these relations extend to all of R2", We can assume that 1o, is nonconstant. Let & > 21 — 2, and
suppose that the Hausdorff measure H%(X) > 0. By Caffarelli-Friedman [9] (see also Han-Lin [34])
we know that H%(Z N |Vue|'(0)) = 0, and so we can find an a-dimensional point of density ¢ of
2\ |Viteo|71(0). Since Vi (g) # 0, it follows that Vv, (g) # 0 and (Vve(q), Vite(g)) = 0. Therefore
in a neighborhood of g the set X is a smooth 2n — 2-dimensional submanifold, contradicting that g is an
a-dimensional point of density. In conclusion dimy £ < 2n — 2, and so R?*~2 \ ¥ is connected.

We can therefore assume that in the argument above the complex structure that we obtain on R>" \ £
agrees with the standard structure on C", and 3, is a holomorphic function on C" \ X, but since it is
smooth, it is actually holomorphic on C". In particular §7!(0) is a complex hypersurface defined by a
homogeneous holomorphic function.

At this point we can closely follow the proof of [42, Proposition 3.1]), treating the zero set 57! (0) as
the singular set X in [42]. The properties of the set X that are used are that the tubular p-neighborhood
%, satisfies the volume bounds vol(X, N B(0,R)) < C rp>, where the constant Cr in our setting could
depend on R, 5. In addition if B(p,2r) € R?" \ X, then B(p,r) is the Gromov-Hausdorff limit of
balls B(p;,r) C (M, k;w) in Kéhler-Einstein manifolds, and so by Anderson’s result [2] we have good
holomorphic charts on the B(p;, r) for sufficiently large i, analogous to those in [42, Theorem 1.4]. The
rest of the proof is then identical to the argument in the proof of [42, Proposition 3.1] (see also Donaldson-
Sun [27]) to show that for sufficiently large i we can construct holomorphic sections s, ..., s, of Lki
for suitable powers k!, such that z—;, cee i—g define a generically one-to-one map from a neighborhood

of x; = by (%;) in X to a subset of C". Since X is normal, it follows that the map is one-to-one, and so
x; € X"¢8. Therefore x; € X"°8 as claimed. m]

For any € > 0, let us define the e-regular set R (Y) in a noncollapsed RCD space Y to be the set of
points p that satisfy

lir% r2ol(B(p,r)) > win — €, (90)

r—
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where wj,, is the volume of the 2n-dimensional Euclidean unit ball. Then R (Y) is an open set, and
from the previous result we obtain the following.

Proposition 24. There exists an €3 > 0, depending on (X, w), such that the e3-regular set R,(X) c X
coincides with the complex analytically regular set X" 8.

Proof. Itis clear that X"°8 C R, (X). To see the reverse inclusion, note that by Cheeger-Colding [12],
and De Philippis-Gigli [23] in the setting of noncollapsed RCD spaces, given the e, > 0in Proposition 23,
there exists an €3 > 0 such that if £ € R, then for all sufficiently large k (depending on %), we have

don (B(E&'k2), B (0,6'k72)) < k™2, o1)

Using also Lemma 22 (and choosing e3 smaller if necessary), we have the growth estimate (85).
Proposition 23 then implies that £ € X"“8. O

This has the following immediate corollary.

Corollary 25. There is an € > 0, depending on (X, w), such that the e-regular set R¢(X) coincides
with the metric regular set of X, that is, the points £ € X where the tangent cone is R*".

Given these preliminaries, we have the following result, analogous to [42, Proposition 3.1] in our
setting.

Proposition 26. Let (V,0) be a metric cone, such that for any € > 0 the singular set V \ R (V) has
zero capacity (in the sense of (3) in Definition 5). Let { > 0. There are K,e,C > 0, depending on
£, (X, w),V satisfying the following property. Suppose that k is a large integer such that € 'k='/? < €
and for some % € X

deu (B()?, e‘lk_l/z),B(o,e_lk_l/z)) < ek 2, 92)

Then for some m < K the line bundle L™* admits a holomorphic section s over M = X8 \ D such
that |||l 2 (pmk miw) < C and

5] — emka@ 02| < ¢ ©3)

forze M.

Given the results above, the argument is essentially the same as that in [42] (see also Donaldson-
Sun [27]). One main difference is that in the setting of noncollapsed RCD spaces the sharp estimates
of Cheeger-Jiang-Naber [14] do not yet seem to be available in the literature. However, the proof of
[42, Proposition 3.1] applies under the assumption that for any € > 0 the singular set X = V \ R (V)
has zero capacity.

We can rule out nonflat (iterated) tangent cones that split off a Euclidean factor of R?"~2, following
the approach of Chen-Donaldson-Sun [16, Proposition 12] (see also [42, Proposition 3.2]).

Proposition 27. Suppose that X; € X and for a sequence of integers k j — oo the rescaled pointed
sequence (X, k?d)g,)? ) converges to R 2 xC (Si,) in the pointed Gromov-Hausdor{f sense. Here
C(S;) is the cone over a circle of length y. Then y = 2n, that is, C(S;) =R2.

Proof. If V = R 2 x C (S%,), then the singular set of V has capacity zero, and so Proposition 26
can be applied. Then, as in [16, Proposition 12], it follows that for sufficiently large j, we can find
a biholomorphism F; from a neighborhood Q; of £; to the unit ball B(0,1) c C". In particular
B(%;, %k]‘.z) C X"°¢, and then the limit R?"~% x C(S}) of (X, k3dy,%;) must be smooth at the origin.
Therefore y = 2n. O

As a consequence of this result we can prove Theorem 17.
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Proof of Theorem 17. Using Propositions 10 and 27, and De Philippis-Gigli’s dimension estimate [23]
for the singular set (extending Cheeger-Colding [12]), it follows that the singular set of any iterated
tangent cone of X has Hausdorff codimension at least 3. Using Proposition 24 we know that the singular
set is closed, and so as in Donaldson-Sun [27, Proposition 3.5] we see that the singular set of any iterated
tangent cone has capacity zero. In particular Proposition 26 can be applied to any (V, o) that arises as a
rescaled limit of X.

Suppose that p # ¢ are points in X. Applying Proposition 26 to tangent cones at p, g, we can find
sections s, and s, of some powers L™», L™, such that |s,(p)| > |s,(q)], and |s4(q)| > Is4(p)I.
Taking powers we find that the sections s?" and le” of L™r™a separate the points p, g, and so the map
by is injective as required. O

To complete the proofs of Theorem 4, it remains to show the codimension bounds for the singular
set of X. By the dimension estimate of [23], it suffices to show the following. Note that this result would
follow from a version of Cheeger-Colding-Tian [13, Theorem 9.1] for RCD spaces, but in our setting
we can give a more direct proof.

Proposition 28. In the setting of Theorem 4, suppose that a tangent cone X patp € X splits off an
isometric factor of R*"=3. Then X p= R2". In particular in the stratification of the singular set of X we
have S»,_1 = Soy—4, and so dimy S < 2n — 4.

Proof. Suppose that X has a tangent cone of the form X, = C(Z) x R?"~3, where Z is two-dimensional.
If Z had a singular point, necessarily with tangent cone C(S}y) for some y < 2, then X would have an
iterated tangent cone of the form R*=2 x C(S},). This is ruled out by Proposition 27. Therefore Z is
actually a smooth two-dimensional Einstein manifold with metric satisfying Ric(%) = h. This implies
that Z is the unit 2-sphere, and it follows that X p= R2" so that p is a regular point. Therefore the singular
set of X coincides with Son-4, as required. O

5. CscK approximations

In this section we will prove Theorem 3. Thus, let (X, wkg) be an n-dimensional singular Kéhler-
Einstein space, such that the automorphism group of X is discrete and wg g € c¢1(L) for an ample Q-line
bundle on X. On the regular part we have Ric(wg ) = Awgg for a constant 4 € R. We will assume that
A € {0, -1, 1}. In the latter two cases we have L = +Kx. We first recall the properness of the Mabuchi
K-energy in this singular setting. This has been well studied in the Fano setting (see Darvas [21] for
example), but we were not able to find the corresponding much easier result in the literature for singular
varieties in the case when 4 < 0.

First recall the definitions of certain functionals (see Darvas [21] or Boucksom-Eyssidieux-Guedj-
Zeriahi [5] for instance). We choose a smooth representative w € ¢1(L). This means that mw is the
pullback of the Fubini-Study metric under an embedding using sections of L' for large m. In general
we define a function f : U — R on an open set U C X to be smooth, and write f € C*(U), if it is the
restriction of a smooth function under an embedding U ¢ CN. We let

He(X) = {u € C°(X) : wy :=w+V=18du > 0},

_ 94)
PSH,(X) ={ue L'(X) : w, :=w+V-18du > 0}.
We define the 7, functional on PSH,(X) N L* by setting J,,(0) = 0 and the variation
0T w(u) = n/ Su(w — wy) A (95)
Xreg
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Let us choose a smooth metric & on Kx, that is, if o~ is a local nonvanishing section of K}, then the
norm |o-|;2l, is a smooth function. The adapted measure y is defined using such local trivializing sections
to be (see [29, Section 6.2])

=2/r

pr o on X8, (96)

p=G"a A5 ||

extended trivially to X. Recall that if X has kIt singularities, then u has finite total mass. Moreover, if
n:Y — X is aresolution, and Q is a smooth volume form on Y, then we have

' =FQ onn ! (X"¢8), 97)

where F € LP(Q) for some p > 1 (see [29, Lemma 6.4]). In our three cases 2 € {0,—1,1} we can
choose the metric 4 in such a way that the curvature of 4 is given by —Aw for the smooth metric w.
We define the Mabuchi K-energy, for u € PSH,,(X) N L*®, by

n
M, () = / log (ﬁ) " = AT (). (98)
Xres Ju
The first term (the entropy) is defined to be oo, unless w), = fu and flog f is integrable with respect
to p. We have the following result.

Proposition 29. The functional M, is proper in the sense that there are constants 6, B > 0 such that
forallu € PSH,,(X) N L*® we have

My (u) > 60 (u) — B. 99)

Proof. The case when A = 1 is well known, going back to Tian [56] in the smooth setting, who proved
a weaker version of properness. The properness in the form (99) was shown by Phong-Song-Sturm-
Weinkove [48]. In the singular setting the result was shown in Darvas [21, Theorem 2.2]. Note that we
are assuming that X has discrete automorphism group and admits a Kéhler-Einstein metric.

The cases A = 0, —1 are much easier (see Tian [57] or Song-Weinkove [50, Theorem 1.2] for a similar
result). For this, note that 7, > 0, and so when A < 0, we have

1 wy\ L,
My, (u) > V'/XW log(;“)wu. (100)

At the same time, using Tian [54], we know that there are @, C; > 0 such that for all u € PSH,,(X)
with supy # = 0 we have

/e‘""*“ Q< (101)
Y

and so with p~! + ¢! = 1 (such that F in (97) is in L”) we have

—ag! vl
e @q U d/J — e ¥4 Tu ﬂ*/J
Xreg ”—l (Xreg)

=/ e T pQ
- (Xres) (102)
1/q 1/p
< ( / ey Q) ( / FPQ)
ﬂ—l(Xreg) ”—I(Xreg)
< G
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Using the convexity of the exponential function we then have, as in [50, Lemma 4.1],

‘”Z n -1 n
log| — | wy, > agq (—u) wy, — Cs, (103)
Xreg ll Xres

for all u € PSH,,(X) with supy u = 0. As the same time, if supy # = 0 and u € L*, then we have

/ (—u) wy = T (u). (104)
Xreg

To see this, note that

1
/ (—u) wiy = / 4 / (—tu) wy, dt
Xreg 0 d[ Xreg

1
= / / (—u) W}, — ntuN-180u A "' dt
0 Jxres

| (105)
> / n/ u(w — ) A de
0 Xreg
bd
:/ _jw(tu)dt:jw(u)~
0 dt
So combining the estimates above we obtain (99). m]

Suppose that 7 : ¥ — X is a projective resolution such that the anticanonical bundle —Ky is relatively
nef. Let us write E for the exceptional divisor. The relatively nef assumption implies (see Boucksom-
Jonsson-Trusiani [6]), that we have a smooth volume form Q on Y, whose Ricci form Ric(Q) satisfies

Ric(Q) > -Cr'w (106)

for suitable C > 0. Let us fix a smooth Kihler metric ny on Y, with volume form Q, and we let
e = T*w + eny, which is a smooth Kihler metric on Y. For any closed (1, 1)-form a on Y, we define
the functional J;,_ o on PSH,,_(Y) N L™ by letting 7,,_.«(0) = 0 and its variation

0T ne,au) = n/&u(a - Ca’]e,u) A nﬁ_ul (107)
Y

Here c,, is the constant determined by

/Y (@ = caneu) AL =0, (108)

and ey =1ne + V=18du.
We write J,. = Jy..5., Which is consistent with the earlier definition. The twisted Mabuchi K-
energy in the class [7¢] is defined, for u € PSH,,_(Y) N L™ by

Me u
MT]E’S(M) = -/Y log( ; ) Uz,u + s7175,s175—Ric(Q)- (109)
Note that
My, s(u) = My, =My o (110)
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for s > 0. The critical points of this functional are the twisted cscK metrics 77, € [17¢], satisfying
R(neu) — stry_,nMe = const. (111)

The following result uses our assumption that —Ky is relatively nef.

Lemma 30. Assuming that —Ky is relatively nef, there is a constant Co > 0 such that J,_ _Ric() =
-CoJy. on PSH, (Y) N L™. In particular there are constants so, €y > 0 (depending on (X, wkE))
such that for s > so and € < € the twisted K-energy is proper:

My, .s(u) = Ty, (u), (112)

forallu € PSH, (Y)NL"™.
Proof. Foru € PSH,_(Y) N L* with supy u = 0, we have

1
. Riotey (1) = /0 / (—0) (RIc(Q) — e pu) A"
Y

1
x n-1
>on [ ] cuenoranc) nn, 113
> ~Cin /O | /Y (=) (e +Teu) AL
> -CJy, (u).
Note that since the entropy term is nonnegative, we have M;,_ s > Jy_ 5. -Ric(@) and also
Tne.sne-Ric(@) = 5Tne,ne = Ine Ric(Q)- (114)
It follows that for s > C + 1,
My, s(u) =2 Jy (u). (115)
O

It follows from this result, using the work of Chen-Cheng [15], that if € < €y and s > s¢, then there
exists a twisted cscK metric n¢ , € [17¢] satisfying

R(1eu) — sty ne = const. (116)

We will use a continuity method to construct twisted cscK metrics in [ ] for sufficiently small €, that
satisfy (116) for s € [0, so], and so in particular we obtain a cscK metric in [7¢ |. For this we will need a
refinement of Chen-Cheng’s estimates, which are uniform in the degenerating cohomology classes [77¢ |
as € — 0. Such a refinement was shown by Zheng [62] who worked in the more complicated setting of
cscK metrics with cone singularities. See also Pan-T6 [47].

Note that in Zheng’s work the cscK metrics are expressed relative to metrics with a fixed volume form,
rather than metrics of the form 5. Let us write 1j¢ € [5¢] for the metrics with 17" = ¢ Q provided by
Yau [61], where the ¢, are bounded above and below uniformly. Note that we have 17 = ¢ + V=1 90,
with a uniform bound on sup |v¢|, independent of €, so it does not matter whether we obtain L* bounds
for potentials relative to 77 or relative to 7je.

In order to state the estimates in a form that we will use, we make the following definition.

Definition 31. Fix an exhaustion K; ¢ K, € ... c 7' (X"¢8) of 7~'(X"¢8) by compact sets. Let
ap,ai, ... be a sequence of positive numbers, and p > 1. We say that a potential u € PSH,,_(Y) is
{p,a;}j>0-bounded, if we have
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n

ns,u
Q

n

ns,u

log + ||u||C4(Kj,,7Y) < aj. (117)

+ sup |u| < ay, sup
LP(Q) Y K;

In other words such a potential is uniformly bounded globally, has volume formin L?, is locally bounded
in C*, and its volume form is locally bounded above and below away from the exceptional divisor E.

We then have the following.

Proposition 32. Suppose that € € (0,¢€),s € (0, s0l, and ¢, = ne + N—-100u satisfies the twisted
cscK equation

R(Tle,u) = Stry, e = Cs,e> (118)

where cg ¢ is a constant determined by s, € through cohomological data. Assume that supu = 0. Let
¢ = log|sg|?, where sg is a section of O(E) vanishing along E, and we are using a smooth metric on
O(E) to compute the norm. There are constants C,a > 0, p > 1, depending on'Y,ny, no, so, as well as

n
MNe.u

on the entropy fY log ( & ) n'e > but not on €, s, such that we have the following estimates:

1.
e u e u
sup [log +ag|+ +sup |u| < C, (119)
Y Q llermy) Y
2.
: e u
1rl}f log —a¢| > C, (120)
3.
||e“¢tr,,yne,u||Lq(,,y> < C, forany q > 1. (121)

In particular there exist p > 1 and aj > 0 such that u is {p, a;} j>o-bounded.

Proof. The estimates (1) are shown in [62, Proposition 5.12], the estimate (2) is in [62, Proposition 5.15],
and the estimate (3) is [62, Proposition 5.18]. Since the notation in [62] is quite different, and they
consider a more general situation including conical singularities along a divisor, we recall their setup.
In [62, Section 5], the author considers the equations

Me u
Q' (122)
AnwF = trné,uG) — Cse-

F =log

Here Q is a smooth volume form on Y as above, with Ricci curvature Ric(Q2) = 6, and we define
® = 6 — sn¢. The coupled equations then imply

~R(Meu) + trne,ue =1ry., (0 = sneu) = Cs,es (123)

which is (118). Note that in [62] the resolution is called X and the singular variety is Y, which is the
opposite of our notation. There is also an additional function f which we take to be zero. Zheng considers
a semipositive form wyg, on Y, which we can take to be 7*w, and a Kéhler form wg on Y, which we take
to be ny, so e = m*w + eny is what Zheng calls we.

In order to deal with the degeneracy of n7 as € — 0, Zheng uses the technique of Tsuji [58], relying
on the fact that if we choose a suitable smooth metric on the line bundle O(E) for a divisor supported
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on the exceptional set of 7, then for any a > 0 the current 7*w + aV—10 log |sg|> dominates a Kihler
form on Y, where sg vanishes along E. We can assume that on Y \ E we have

ny = n*w+aV-183log |sg|>. (124)

We apply [62, Proposition 5.12], to deduce the estimates (1). For this we need to check the condition
that e=% € LP° for some po > 1, where ¢; in Zheng’s notation is defined in his Lemma 5.6. Since in
that Lemma ¢,_ is uniformly bounded, it is enough to check the integrability of e P°?* where we define

e (,inf ©)(-alog Ise1?). (125)

We claim that the infimum inf x ., ) ® is bounded below, independently of the choice of small a > 0
(note that the choice of a affects the definition of ny and so also ®). To see this, we use the condition
0 = Ric(Q) > —Cr*w, so that we have

@z@—sn >—C+s7r*a)—sen
) € ( ) Y (123)
=—-C'ny,

for C’ depending on C and s¢. Here we also used that if a > 0 is sufficiently small, then 7y > %n*w X-
It follows from this that

—¢; < —C'a 10g|sE|2, (127)

and so if a > 0 is sufficiently small, then e~% e LPofor po > 1, asrequired in Zheng’s Proposition 5.12.
The conclusion is the estimates (1). Note that the quantities that the estimate in Proposition 5.12 depends
on are all uniformly bounded in s, € in our setting. Similarly, Propositions 5.15 and 5.18 imply the
estimates (2) and (3).

Note that the LP-bound on the trace of 17 ,, implies higher order estimates for # on compact sets away
from E, using Chen-Cheng’s local estimate [ 15, Proposition 6.1]. This leads to the {p, a ; }-boundedness
of u. See also [47, Theorem C] for similar estimates. |

Next we show that by Proposition 29, the Mabuchi energy M,,_ is proper on {p, a; }-bounded classes
of potentials, when € is sufficiently small.

Proposition 33. Given p > 1 and a sequence {a;}>o, let V.C PSH,_(Y) denote the {p,a;};>o-
bounded potentials. Then for sufficiently small €, depending on the p,a;, the K-energy M,,_ is proper
on Vin the sense that

My, (u) > 67y, (u) — B, forallu eV. (128)

Here 6 is the same constant as in Proposition 29, while B, is a constant depending on (X, w) and €,
but not onthe p,a;.

Proof. We argue by contradiction. Suppose that we have a sequence €; — 0, and u; € PSH,,_(Y) that
are {p, a;};>0-bounded, such that

My, (ui) <67y, (u) - Ba, (129)
for B, to be determined below. Up to choosing a subsequence we can assume that u; — U in L' and

also in C>“ on compact sets away from the exceptional divisor E. We have uo, € PSH ., (Y), and we
have an identification PSH +.,(Y) = PSH,(X). We will next show that in terms of F in (97) we have
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Mnei (”i) - Mw(uoo) + / IOgFr](')’,
Y

u77]€i (“l) - jw(uw)'

(130)

Let us first consider the relevant entropy terms. Note that

)7]2 u; r]z u; )72 u;
log [ 24| pn — [ oo | L6t | Tt o 131
/Y 0g ( %) ) Me;u; [/ og ( ) ) Q (131)

Our assumptions mean that the integrand has a uniform L? (Q)-bound for some p > 1. Using this, and
the C®-convergence u; — 1, on compact sets away from E, it follows that

n

/ log [Tz ) pn / log [ 10t | (132)
. g Q Me;u; . g Q 10,10
Using (97) we have
Mo wh
/log O | :/ 10g( Mm)w2w+/loan6lu. (133)
Y Q e xres U Y e

The last term can be computed by writing

1
n n d n
'/rloz‘%FUo,uoo =/logF170 +/ E/IOgFUO,tum dt
Y Y 0 Y

1
:/loan6’+/ n | uV-1801logF An7l dr
Y 0

0,1 U

T (134)
log F i1, +/ n/ Ueo(Ric(Q) — Ric(n*w) Anfy,L dt
0o Jr o

S— S

log F 778 + T Rie(Q) (o) = AT o (o).

For the last step note that 57 vanishes along E, so although Ric(7* 1) has current contributions along E,
the only part that survives in the integral is Ric(¢) = Aw on X. In conclusion we have that

T]n wn
log [ =222 "_,—>/ lo Yo | W +/10F"
‘/Y' g( Q )Ue,,ul res g( /,l) Uoo . g L' 1, (135)

+ jﬂ(),RiC(Q) (MOO) - /lju) (uoo)

Next we consider the 7-functional terms. Consider a general smooth, closed (1,1)-form a on Y. We
claim that we have J,,Ei,a(ui) — Jno,a(Ue). Using the variational definition of 7, the local c3e-
convergence, and the uniform L*-bound for the u;, it is enough to show that for every « > O there is a
compact set K C Y \ E, such that

/ nA nﬁ;,lh +/ New, < &, foralli. (136)
Y\K Y\K

To see this, let & = —log |sg|?, where s is a section of the line bundle O(E) over Y vanishing along
the exceptional divisor E, and we use a smooth metric on O(E). We have

V=184h = y - [E], (137)
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where y is a smooth form on Y. We can assume that 2 > 0, and note that 7 — oo along E. We show by
induction that for each k = 0, . . ., n there is a constant Cy > 0, independent of 7, such that

/ N A o (138)
Y

For k = 0 this is clear since & has logarithmic singularities. Suppose that the bound has been established
for a value of k. Then

'/h’]'ll_k_l A 77]2-114, = / hn’ll_k_l A (g, + N=13u;) A 77];,14{
Y Y
= / hnq‘_k_l Ane A n’;’ui + / uiN-1989h A r]?_k_l A 77];’,4!,
Y
: / hnrll_k A nI; w t / uix A n?_k_l A nlé ui / uin?_k_l A 77,; u; (139)
Y 1“1 Y 1M1 E 1M

< Ci(1+0) —/ uin’f’k’l A 77];,-,14,-
E
<C(1+0O)+C,
where C, C’ depend on y and the uniform L* bound for u;.

Since h — oo along E, it follows from (138) that for any x > 0 we can find a compactset K C Y \ E
such that (136) holds. It follows that

Z]E,—,—Ric(ﬂ) (”1) - "7770,—Ric(ﬂ) (”00)’ (140)
and also
'.71751. (i) = Jo(Uo). (141)

From this, together with (135), we have

wy
M, (u;) — log ( L”) Wy = AT (1) + / log F 17
! Xreg U ” Y

(142)
=M, (uw) +Lloan6’.
From (129) we therefore get
M, (1) + '/Y log F 1y < 8T (tteo) — Ba. (143)
Choosing B, = B — /Y log F'ny;; for the B in Proposition 29, we get a contradiction. O

We are now ready to combine the different ingredients to prove the main result of this section.

Proof of Theorem 3. We will choose suitable p > 0, a; > 0 shortly. By Proposition 33, for a given p, a
we have some €; > 0 such that once € < €; and for any s > 0, we have

My, s(u) > M, (u) >6F, (u) - B, (144)
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for {p.a;}-bounded potentials u. Recall that 6, B, do not depend on {p, a;}. For small x > 0 we have

"
MT]E,S(M) 2 K/ ( Su) TIZ,M + Kj17E,SI7E—Ric(SZ) (u) + (1 - K)éjz]e (”) - (1 - K)BZ
Y

n (145)
Te,
=« /Y ( Q) N+ (k5 + (1= K)0) Ty, () + kT —Rictey () = (1 = ©)Ba.
If « is chosen sufficiently small (depending on ¢), then by Lemma 30 we find that
771’!
My, .s(u) = K/log( ; )n'Z,u - B,. (146)
Y
We also have
nn
M, s(0) = /IOg(—e) ne < Cs, (147)
Y Q

for a constant C3 > 0 independent of €. Since twisted cscK metrics minimize the twisted Mabuchi
K-energy, it follows that if 7. ,, € [n¢] is a twisted cscK metric, then we have M,;_;(u) < C3. From
(146) we get

n
/log ("Q) nt, <k '(Cs+By), (148)
Y

and in particular the entropy of 7, is bounded independently of €. We apply Proposition 32. As long
as s < sp, for the so determined by Lemma 30, we find that if n.,, = ¢ + V—=183u is a solution of the
twisted cscK equation

R(neu) — stry,_,ne = const., (149)

then u is {p, a;}-bounded, for suitable p, a;, determined by s¢ and the entropy bound (148). From now
we fix this choice of p,a;.

We can now use a continuity method to show that if € < €, for the €, determined by {p, a j }, for all
s € [0, s9] we can solve the twisted cscK equation (149). To see this, let us fix € < €], and set

S={se€[0,s0] : the equation (149) has a solution}. (150)

We have s¢ € S, and it follows from the implicit function theorem that S is open. To see that it is
closed, note that the twisted cscK metrics for s € S automatically satisfy the entropy bound (148). Using
the main estimates of Chen-Cheng [15], we find that the potentials of the corresponding twisted cscK
metrics satisfy a priori CX-estimates, and the metrics are bounded below uniformly (these estimates
depend on €, but now e is fixed). It follows that S is closed.

It follows that for sufficiently small € > 0 the classes [1¢] on Y admit cscK metrics. The estimates
required by Definition 2 follow from Proposition 32. O

Remark 34. To conclude this section we give an example where the assumption that —Ky is relatively
nef is satisfied. Let M be a smooth Fano manifold, and suppose that P is a line bunde over M such that
P" = —K)y for some r > 0. We let V denote the total space of P~!, with the zero section blown down to
a point o. Suppose that X has one isolated singularity p, and a neighborhood of p is isomorphic to the
neighborhood of 0 € V. In this case we can consider a resolution 7 : ¥ — X, obtained by blowing up
the singular point. Then

Ky =7T*Kx+rE, (151)
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where the exceptional divisor E isomorphic to M, and is in particular irreducible. It follows that in this
case —Ky is relatively nef (in fact relatively ample). Note that this family of examples does not fit into
the framework of admissible singularities studied by Li-Tian-Wang [40].

6. Partial C?-estimate

An important result of Donaldson-Sun [27] is the partial C%-estimate for smooth Kihler-Einstein
manifolds, conjectured by Tian [55]. More precisely, suppose that (X, wk g ) is a smooth Kihler-Einstein
manifold, with wx g € ¢ (L) for an ample line bundle, and such that for some constant D > 0 we have

1. noncollapsing: vol B, (p, 1) > D! for a basepoint p € X,
2. bounded volume: vol(X, wgg) < D,
3. bounded Ricci curvature: Ric(wgg) = Awgg for [1| < D.

For any integer k > 0 the density of states function px, ., is defined by

Pk.wxr (X) = Z Is ;1% (x), (152)

J

where the s; form an L2-orthonormal basis of HO(X JLk ) in terms of the metric induced by kwgE.
Then, by Donaldson-Sun [27], there is a power kg = ko(n, D), and b = b(n, D) > 0, depending on the
dimension and the constant D, such that pg, . > b. In this section we show the following extension
of this result to singular Kéhler-Einstein spaces that admit good cscK approximations.

Theorem 35. Given n, D > 0 there are constants ko(n, D), b(n, D) > 0 with the following property.
Suppose that (X, wkg) is a singular Kdihler-Einstein variety of dimension n, such that wgg € ci(L)
Jor a line bundle L. Assume that (X,wgpg) can be approximated by cscK metrics, and in addition
the conditions (1), (2), (3) above hold. Then the corresponding density of states function satisfies
Pk,wkxe > b.

The proof of the result follows the same strategy as Donaldson-Sun [27], arguing by contradiction.
We suppose that the sequence (X;, wgg ;) satisfies the bounds (1)—(3), but no fixed power Ll’.‘ of the
corresponding line bundles is very ample. The corresponding metric completions X; are noncollapsed
RCD spaces by Proposition 15, and we can pass to the Gromov-HausdorfF limit X, along a subsequence.
We would then like to use the structure of the tangent cones of X, to construct suitable holomorphic
sections of a suitable power L{f for large i, leading to a contradiction.

The difficulty in executing this strategy is that we do not have good control of the convergence of
X; to X, on the regular set of X, because in Corollary 25 the constant ¢ depends on the singular
Kihler-Einstein space X that we are considering. As such it is a priori possible that the singular set of
X, consisting of points where the tangent cone is not given by R>”", is dense. In order to rule this out,
we prove the following. Note that recently this result was shown in the more general algebraic setting
by Xu-Zhuang [59] (see also Liu-Xu [43] for the three-dimensional case).

Theorem 36. There isan € > 0, depending only on the dimension n, with the following property. Suppose
that X is the metric completion of a singular Kdihler-Einstein space as in Theorem 17, that is, one that
can be approximated by cscK metrics. Let (X, 0) be a tangent cone of X, such that X, # R2". Then

volB(0, 1) < wyy, — €, (153)

where wyy, is the volume of the Euclidean unit ball in R2",

Proof. We will argue by contradiction. If the stated result is not true, then we can find a sequence X;,
and a sequence of singular points p; € X; with tangent cones V), such that V,, — R?" in the pointed
Gromov-Hausdorff sense.
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We will prove a more general statement about almost smooth metric measure spaces in the sense of
Definition 5, of any dimension, which satisfy the following conditions.

Definition 37. We say that an almost smooth metric measure space V satisfies Condition (x) if the
following conditions hold:

1. For some € > 0 (possibly depending on V), the e-regular set R C V, defined by (90), can be chosen
to be the set € in Definition 5.

2. The Riemannian metric on Q is Ricci flat.

3. If a tangent cone V’ of V is of the form C(S},) X R*""2, then V’ = R*".

Note that by Propositions 24 and 27, the (iterated) tangent cones of the spaces X; satisfy Condition
(*). Moreover, if a space V = W x R/ satisfies Condition (x), then so does W, and so do the tangent
cones of V.

We argue by induction on the dimension to show that if a sequence of k-dimensional cones V; satisfies
Condition (x), and V; — R* in the pointed Gromov-Hausdorff sense, then V; = R* for sufficiently
large i. For k = 2 this follows directly from Condition (x).

Assuming k > 2, suppose first that for all sufficiently large j the cones V; have smooth link (i.e.,
the singular set consists of only the vertex). In this case V; = C(Y;), where the (Y, h;) are (k — 1)-
dimensional smooth Einstein manifolds satisfying Ric(%;) = (k —2)h;. Moreover the (Y}, h;) converge
in the Gromov-Hausdorft sense to the unit (k — 1)-sphere. As long as k — 1 > 1, it follows that for
sufficiently large j we have vol(Y}, h;) = vol(S k=1 gqr-1), using that Einstein metrics are critical points
of the Einstein-Hilbert action. The Bishop-Gromov comparison theorem then implies that in fact (Y}, /)
is isometric to the unit (k — 1)-sphere for sufficiently large j, so that V; = R¥. If k — 1 =1, then Viisa
cone over a circle, so by Condition (x) we have V; = R2. Either way, we have a contradiction.

We can therefore assume, up to choosing a subsequence, that the V; all have singularities g; away
from the vertex. By taking tangent cones at the g;, we obtain a new sequence of cones, ij , which

still satisfy the Condition (), they converge to R¥, and they all split off an isometric factor of R,
that is, VJf = W; x R. The cones W; are then k — 1 dimensional, they also satisfy Condition (x), and

W, — R*~!. We can then apply the inductive hypothesis. It follows that W; = R*~! for large j, so
V]f = R, contradicting that the g j are singular points. O

Given this result, we can follow the argument of Donaldson-Sun [27] to prove Theorem 35.

Proof of Theorem 35. We argue by contradiction. Suppose that there are singular Kihler-Einstein spaces
(Xi, wkE,i), that can be approximated by cscK metrics, with wgg; € c1(L;), satisfying the conditions
(1)—(3) before the statement of Theorem 35, but such that there is no fixed power Ll’? of the line bundles L;
whose density of states functions are bounded away from zero uniformly. Up to choosing a subsequence,
we can assume that the corresponding RCD spaces X; converge to X, in the Gromov-Hausdorff sense.
Theorem 36 implies that for some € > 0, the e-regular subset of X,, coincides with the regular set
R c X (given by the points with tangent cone R?"). Therefore the set R is open, and by Theorem 36
together with Proposition 24, it follows that the convergence X; — X, is locally smooth on R. In
addition, using the argument in Proposition 27, we know that no iterated tangent cone of X, is given
by C (S;) x R?"=2 with y < 2z. This means that we are in essentially the same setting as Donaldson-
Sun [27], and can closely follow their arguments to show that there is a ko > 0, such that the density of
states functions of the sections of L{.‘O are bounded away from zero for all sufficiently large i. O
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