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Abstract
We study Kähler-Einstein metrics on singular projective varieties. We show that under an approximation property
with constant scalar curvature metrics, the metric completion of the smooth part is a noncollapsed RCD space, and
is homeomorphic to the original variety.

1. Introduction

A basic idea in complex geometry is to study complex manifolds using canonical Kähler metrics, of
which perhaps the most important examples are Kähler-Einstein metrics. Yau’s solution of the Calabi
conjecture [61] provides Kähler-Einstein metrics on compact Kähler manifolds with negative or zero
first Chern class, while Chen-Donaldson-Sun’s solution of the Yau-Tian-Donaldson conjecture [17]
shows that a Fano manifold admits a Kähler-Einstein metric if and only if it is K-stable. An example of
a geometric application of such metrics is Yau’s proof [60] of the Miyaoka-Yau inequality.

Recently there has been increasing interest in Kähler-Einstein metrics on singular varieties. In
particular Yau’s theorem was extended to the singular case by Eyssidieux-Guedj-Zeriahi [29], while the
singular case of the Yau-Tian-Donaldson conjecture was finally resolved by Liu-Xu-Zhuang [44] after
many partial results (see, for instance, [40]). There is now a substantial literature on singular Kähler-
Einstein metrics, see, for example, [4, 3, 30, 40, 33].

In order to state our main results, suppose that X is an n-dimensional normal compact Kähler space.
Let us recall that a singular Kähler-Einstein metric on X can be defined to be a positive current 𝜔𝐾𝐸
that is a smooth Kähler metric on the regular set 𝑋𝑟𝑒𝑔, has locally bounded potentials, and satisfies the
equation Ric(𝜔𝐾𝐸 ) = 𝜆𝜔𝐾𝐸 on 𝑋𝑟𝑒𝑔 for a constant 𝜆 ∈ R. The metric𝜔𝐾𝐸 defines a length metric 𝑑𝐾𝐸
on 𝑋𝑟𝑒𝑔, and an important problem is to understand the geometry of the metric completion (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ).

In recent remarkable works, Guo-Phong-Song-Sturm [32, 33] showed that this metric completion
satisfies many important geometric estimates, such as bounds for their diameters, their heat kernels,
as well as Sobolev inequalities, even under far more general assumptions than the Einstein condition.
In particular, their results do not assume Ricci curvature bounds. It is natural to expect, however, that
singular Kähler-Einstein metrics satisfy sharper results, similar to Riemannian manifolds with Ricci
lower bounds. We formulate the following conjecture, which is likely folklore among experts, although
we did not find it stated in the literature in this generality.

Conjecture 1. The metric completion (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ), equipped with the measure 𝜔𝑛𝐾𝐸 , extended trivially
from 𝑋𝑟𝑒𝑔, is a noncollapsed 𝑅𝐶𝐷 (𝜆, 2𝑛)-space, homeomorphic to X.
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The notion of noncollapsed RCD-space is due to De Philippis-Gigli [23], building on many previous
works on synthetic notions of Ricci curvature lower bounds (see [53, 45, 1]). The conjecture is already
known in several special cases, where in fact (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ) is shown to be a noncollapsed Ricci limit
space – these are noncollapsed Gromov-Hausdorff limits of Riemannian manifolds with Ricci lower
bounds, studied by Cheeger-Colding [12]. Settings where (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ) is a Ricci limit space are given, for
example, by K-stable Fano manifolds with admissible singularities (see Li-Tian-Wang [40], or Song [49]
for the case of crepant singularities), or smoothable K-stable Fano varieties, see Donaldson-Sun [27],
Spotti [51].

Our goal in this paper is to move beyond the setting of Ricci limit spaces, and to prove the conjecture in
situations where it is not clear whether the singular Kähler-Einstein space (𝑋, 𝜔𝐾𝐸 ) can be approximated
by smooth, or mildly singular, spaces with Ricci curvature bounded below. Instead, our approach is to
use an approximation with constant scalar curvature Kähler metrics. The main approximation property
that we require is the following.

Definition 2. We say that the singular Kähler-Einstein space (𝑋, 𝜔𝐾𝐸 ) can be approximated by cscK
metrics, if there is a resolution 𝜋 : 𝑌 → 𝑋 , and a family of constant scalar curvature Kähler metrics 𝜔𝜖
on Y satisfying the following:

(a) We have 𝜔𝜖 = 𝜂𝜖 +
√
−1𝜕𝜕𝑢𝜖 , where 𝜂𝜖 converge smoothly to 𝜋∗𝜂𝑋 and 𝜂𝜖 ≥ 𝜋∗𝜂𝑋 . Here

𝜂𝑋 ∈ [𝜔𝐾𝐸 ] is a smooth metric on X in the sense that it is locally the restriction of smooth metrics
under local embeddings into Euclidean space.

(b) We have the estimates

sup
𝑌

|𝑢𝜖 | < 𝐶,
𝜔𝑛𝜖
𝜂𝑛𝑌
> 𝛾,

∫
𝑌

(
𝜔𝑛𝜖
𝜂𝑛𝑌

) 𝑝
𝜂𝑛𝑌 < 𝐶, (1)

for constants 𝐶 > 0, 𝑝 > 1 independent of 𝜖 , where 𝜂𝑌 is a fixed Kähler metric on Y, and 𝛾 is a non-
negative continuous function on Y vanishing only along the exceptional divisor, also independent
of 𝜖 .

(c) The metrics 𝜔𝜖 converge locally smoothly on 𝜋−1 (𝑋𝑟𝑒𝑔) to 𝜋∗𝜔𝐾𝐸 .

The cscK property of the approximating metrics 𝜔𝜖 is used to obtain integral bounds for the Ricci
and Riemannian curvatures as in Proposition 14. We expect that such an approximation is possible in all
cases of interest; however, at the moment this is only known in limited settings. We have the following
result.

Theorem 3. Suppose that (𝑋, 𝜔𝐾𝐸 ) is a singular Kähler-Einstein space with 𝜔𝐾𝐸 ∈ 𝑐1 (𝐿) for a line
bundle over X, and such that X has discrete automorphism group. Assume that X admits a projective
resolution 𝜋 : 𝑌 → 𝑋 for which the anticanonical bundle −𝐾𝑌 is relatively nef over X. Then (𝑋, 𝜔𝐾𝐸 )
can be approximated by cscK metrics in the sense of the definition above.

Note that recently Boucksom-Jonsson-Trusiani [6] showed the existence of cscK metrics on res-
olutions in this setting (and even more generally), while Pan-Tô [47] showed estimates for these
approximating cscK metrics closely related to those in Definition 2, in a more general setting.

Our main result on Kähler-Einstein spaces that can be approximated by cscK metrics is the following.

Theorem 4. Suppose that (𝑋, 𝜔𝐾𝐸 ) can be approximated by cscK metrics, and 𝜔𝐾𝐸 ∈ 𝑐1 (𝐿) for a
line bundle L on X. Then Conjecture 1 holds for (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ). In addition the metric singular set of
(𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ) agrees with the complex analytic singular set 𝑋 \ 𝑋𝑟𝑒𝑔, and it has Hausdorff codimension
at least 4.

It is natural to expect that Conjecture 1 can also be extended to the setting of singular Kähler-Einstein
metrics 𝜔 with cone singularities along a divisor on klt pairs (𝑋, 𝐷). In this case one can hope to
approximate 𝜔 using cscK metrics with cone singularities on a log resolution of (𝑋, 𝐷). Some results
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in this direction were obtained recently by Zheng [63], but we leave this extension of Theorem 4 for
future work.

The RCD property implies important geometric information about the metric completion
(𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ), such as the existence of tangent cones (see De Philippis-Gigli [22]). Moreover, we expect
that with only minor modifications the work of Donaldson-Sun [28] and Li-Wang-Xu [41] on the tan-
gent cones of smoothable Kähler-Einstein spaces can be extended to the setting of Theorem 4, that is,
the tangent cones of (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ) are unique, and are determined by the algebraic structure. Knowledge
of the tangent cones can then be further leveraged to obtain more refined information about the metric,
such as in Hein-Sun [35], or [18].

Using results of Honda [36], which rely on different equivalent characterizations of RCD spaces
by Ambrosio-Gigli-Savaré [1], the main estimate that we need in order to prove the RCD property in
Theorem 4 is that eigenfunctions of the Laplacian are Lipschitz continuous on (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ). We will
review Honda’s result in Section 2. In order to prove a gradient estimate for eigenfunctions, we use the
approximating smooth cscK spaces (𝑌, 𝜔𝜖 ). Note that these do not satisfy uniform gradient estimates,
since they do not have uniform Ricci curvature bounds from below. Instead we will prove a weaker
estimate on (𝑌, 𝜔𝜖 ), expressed in terms of the heat flow – roughly speaking we obtain an estimate that is
valid for times 𝑡 > 𝑡𝜖 > 0 along the heat flow, where 𝑡𝜖 → 0 as 𝜖 → 0. These estimates can be passed to
the limit as 𝜖 → 0 using the uniform estimates of Guo-Phong-Song-Sturm [32, 33] for the heat kernels,
and in the limit we obtain the required gradient bound on (𝑋𝑟𝑒𝑔, 𝜔𝐾𝐸 ). This is discussed in Section 3.

In Section 4 we prove that (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ) is homeomorphic to X, and that the metric singular set has
Hausdorff codimension at least 4. Some results of this type were shown by Song [49] and La Nave-
Tian-Zhang [39], based on applying Hörmander’s 𝐿2-estimates, following Donaldson-Sun [27]. The
main new difficulty in our setting is that a priori we do not have enough control of how large the set
(𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ) \ 𝑋𝑟𝑒𝑔 is in the metric sense. It was shown by Sturm [52] (see also [49]), that this set
has capacity zero, which already plays an important role in the RCD property. For the approach of
Donaldson-Sun [27] to apply, however, we need a slightly stronger effective bound that can be applied
uniformly at all scales. In previous related results this type of estimate relied on showing that the
metric regular set in (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ) coincides with 𝑋𝑟𝑒𝑔, but this is not clear in our setting since our
approximating Riemannian manifolds (𝑌, 𝜔𝜖 ) do not have lower Ricci bounds.

The new ingredient that we exploit is that the algebraic singular set of X is locally cut out by
holomorphic (and therefore harmonic) functions. We show that these functions have finite order of
vanishing along the singular set, and therefore we can control the size of their zero sets in any ball that
is sufficiently close to a Euclidean ball, using a three annulus lemma argument, somewhat similarly
to [19]. This leads to the key result that the metric and algebraic regular sets of (𝑋𝑟𝑒𝑔, 𝑑𝐾𝐸 ) coincide.
After this the proof follows by now familiar lines from Donaldson-Sun [27] and other subsequent works
such as [42].

In Section 5 we prove Theorem 3. The proof is based primarily on Chen-Cheng’s existence theorem
for cscK metrics [15] together with some extensions of their estimates by Zheng [62]. A similar result,
in more general settings, was obtained recently by Boucksom-Jonsson-Trusiani [6] and Pan-Tô [47].

In Section 6, as an example application, we discuss an extension of Donaldson-Sun’s partial
𝐶0-estimate to singular Kähler-Einstein spaces with the cscK approximation property. An additional
ingredient that we need is the gap result for the volume densities of (singular) Ricci flat Kähler cone
metrics that arise as tangent cones, Theorem 36. This was shown very recently in the more general
algebraic setting by Xu-Zhuang [59].

2. Background

2.1. Noncollapsed RCD spaces

By a metric measure space we mean a triple (𝑍, 𝑑,𝔪), where (𝑍, 𝑑) is a metric space, and 𝔪 is a
measure on Z with supp𝔪 = 𝑍 . By now there are several different, but essentially equivalent, notions
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of synthetic lower bounds for the Ricci curvature of (𝑍, 𝑑,𝔪), due to Sturm [53], Lott-Villani [45],
and Ambrosio-Gigli-Savaré [1]. We will be particularly concerned with the notion of noncollapsed
RCD(𝐾, 𝑁) space introduced by De Philippis-Gigli [23]. These should be thought of as the synthetic
version of noncollapsed Gromov-Hausdorff limits of N-dimensional manifolds with Ricci curvature
bounded below by K.

More specifically we will be concerned with RCD spaces that are the metric completions of smooth
Riemannian manifolds. In fact the spaces that we study almost fit into the setting of almost smooth
metric measure spaces, studied by Honda [36], except we will use the standard notion of zero capacity
set instead of [36, Definition 3.1, 3(b)]. The results of [36] hold with this definition too, as we will
outline below. Thus we state the following slight modification of Honda’s definition.

Definition 5. A compact metric measure space (𝑍, 𝑑,𝔪) is an n-dimensional almost smooth metric
measure space, if there is an open subset Ω ⊂ 𝑍 satisfying the following conditions.

(1) There is a smooth n-dimensional Riemannian manifold (𝑀, 𝑔) and a homeomorphism 𝜙 : Ω → 𝑀𝑛,
such that 𝜙 defines a local isometry between (Ω, 𝑑) and (𝑀𝑛, 𝑑𝑔).

(2) The restriction of the measure 𝔪 to Ω coincides with the n-dimensional Hausdorff measure.
(3) The complement 𝑍 \ Ω has measure zero, that is, 𝔪(𝑍 \ Ω) = 0, and it has zero capacity in the

following sense: there is a sequence of smooth functions 𝜙𝑖 : Ω → [0, 1] with compact support in
Ω such that

(a) For any compact 𝐴 ⊂ Ω we have 𝜙𝑖 |𝐴 = 1 for sufficiently large i,
(b) We have

lim
𝑖→∞

∫
Ω
|∇𝜙𝑖 |2 𝑑H𝑛 = 0. (2)

As a point of comparison we remark that in [36], the condition (b) is replaced by requiring that the
𝐿1-norm of Δ𝜙𝑖 is uniformly bounded. Note that neither of these conditions implies the other one.

In our setting we will have an n-dimensional normal projective variety X equipped with a positive
current𝜔 that is a smooth Kähler metric on 𝑋𝑟𝑒𝑔. In addition we will assume that𝜔 has locally bounded
Kähler potentials. We use 𝜔 to define a metric structure d on the smooth locus 𝑋𝑟𝑒𝑔:

𝑑 (𝑥, 𝑦) = inf{ℓ(𝛾) | 𝛾 is a smooth curve in 𝑋𝑟𝑒𝑔 from 𝑥 to 𝑦}, (3)

where ℓ(𝛾) denotes the length of 𝛾 with respect to 𝜔. We define ( 𝑋̂, 𝑑𝑋̂ ) to be the metric completion of
(𝑋𝑟𝑒𝑔, 𝑑), and we extend the volume form 𝜔𝑛 to 𝑋̂ trivially. In this way ( 𝑋̂, 𝑑𝑋̂ , 𝜔𝑛) defines a metric
measure space. The complement of 𝑋𝑟𝑒𝑔 has zero capacity, by the following result, due to Sturm [52]
(see also Song [49, Lemma 3.7]).

Lemma 6. There is a sequence of smooth functions 𝜙𝑖 : 𝑋𝑟𝑒𝑔 → [0, 1] with compact support, such that
we have: for any compact 𝐴 ⊂ 𝑋𝑟𝑒𝑔 we have 𝜙𝑖 |𝐴 = 1 for sufficiently large i, and

lim
𝑖→∞

∫
𝑋𝑟𝑒𝑔

|∇𝜙𝑖 |2 𝜔𝑛 = 0. (4)

From this we have the following.

Lemma 7. ( 𝑋̂, 𝑑𝑋̂ , 𝜔𝑛) defines a 2𝑛-dimensional almost smooth measure metric space in the sense of
Definition 5.

Proof. The open set Ω ⊂ 𝑋̂ is the smooth locus 𝑋𝑟𝑒𝑔 viewed as a subset of its metric completion 𝑋̂ ,
equipped with the Kähler metric 𝜔. The conditions (1) and (2) in Definition 5 are automatically
satisfied. The fact that 𝑋̂ \ 𝑋𝑟𝑒𝑔 has capacity zero follows from the existence of good cutoff functions
in Lemma 6. �
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In order to show that 𝑋̂ is an 𝑅𝐶𝐷 space, we will use the characterization of 𝑅𝐶𝐷 spaces in Honda
[36, Corollary 3.10] (see also Ambrosio-Gigli-Savaré [1]). We state this Corollary here in our setting.
Note that our notion of almost smooth metric measure space is slightly different from that in [36].

Corollary 8 (See [36]). The metric completion ( 𝑋̂, 𝑑𝑋̂ , 𝜔𝑛) is an 𝑅𝐶𝐷 (𝐾, 2𝑛) space, where 𝐾 ∈ R,
if it is an almost smooth compact metric measure space associated with 𝑋𝑟𝑒𝑔 in the sense of
[36, Definition 3.1], and the following conditions hold:

1. The Sobolev to Lipschitz property holds, that is, any 𝑓 ∈ 𝑊1,2( 𝑋̂), with |∇ 𝑓 | (𝑥) ≤ 1 for 𝜔𝑛-almost
every x, has a 1-Lipschitz representative;

2. The 𝐿2-strong compactness condition holds, that is, the inclusion𝑊1,2 ( 𝑋̂) ↩→ 𝐿2 ( 𝑋̂) is a compact
operator;

3. Any𝑊1,2-eigenfunction of the Laplacian on 𝑋̂ is Lipschitz;
4. Ric(𝜔) ≥ 𝐾𝜔 on 𝑋𝑟𝑒𝑔.

In these conditions the Sobolev space 𝑊1,2 ( 𝑋̂) is defined by taking the completion of the space
of compactly supported smooth functions 𝐶∞

0 (𝑋𝑟𝑒𝑔) on the Riemannian manifold (𝑋𝑟𝑒𝑔, 𝜔) in the
𝑊1,2-norm. By [36, Proposition 3.3] this space coincides with the 𝐻1,2 ( 𝑋̂, 𝑑𝑋̂ , 𝜔𝑛)-space defined using
the Cheeger energy.

Proof. The only place where the difference between our notion of capacity zero in Definition 5 and
Honda’s notion plays a role is in the proof of [36, Theorem 3.7] to deduce Equation (3.13), stating
that the Hessian of 𝑓𝑁 is in 𝐿2 (see [36] for the meaning of 𝑓𝑁 ). We can also deduce this by using
cutoff functions that satisfy our Condition (3b) in Definition 5. To simplify the notation we will write
Ω = 𝑋𝑟𝑒𝑔. Let us recall Equation (3.12) from [36], which in our notation states

1
2

∫
Ω
|∇ 𝑓𝑁 |2Δ𝜙2

𝑖 𝜔
𝑛 ≥

∫
Ω
𝜙2
𝑖

(
|Hess 𝑓𝑁 |2 + 〈∇Δ 𝑓𝑁 ,∇ 𝑓𝑁 〉 + 𝐾 |∇ 𝑓𝑁 |2

)
𝜔𝑛, (5)

where Ric(𝜔) ≥ 𝐾𝜔, and we used 𝜙2
𝑖 as the cutoff function instead of 𝜙𝑖 . Note that 0 ≤ 𝜙2

𝑖 ≤ 1, and
∇𝜙2

𝑖 = 2𝜙𝑖∇𝜙𝑖 , so 𝜙2
𝑖 satisfies the same estimate as 𝜙𝑖 . In addition 𝑓𝑁 is a Lipschitz function such that

𝑓𝑁 ,Δ 𝑓𝑁 ∈ 𝑊1,2. We have∫
Ω
|∇ 𝑓𝑁 |2Δ𝜙2

𝑖 𝜔
𝑛 = −

∫
Ω

4|∇ 𝑓𝑁 |𝜙𝑖 〈∇|∇ 𝑓𝑁 |,∇𝜙𝑖〉𝜔𝑛

≤
∫
Ω

(
𝜙2
𝑖 |Hess 𝑓𝑁 |2 + 4|∇ 𝑓𝑁 |2 |∇𝜙𝑖 |2

)
𝜔𝑛.

(6)

It follows using this in (5) that∫
Ω

1
2
𝜙2
𝑖 |Hess 𝑓𝑁 |2 𝜔𝑛 ≤

∫
Ω

(
2|∇ 𝑓𝑁 |2 |∇𝜙𝑖 |2 − 𝜙2

𝑖 〈∇Δ 𝑓𝑁 ,∇ 𝑓𝑁 〉

− 𝜙2
𝑖𝐾 |∇ 𝑓𝑁 |2

)
𝜔𝑛.

(7)

Letting 𝑖 → ∞ and using that |∇ 𝑓𝑁 | ∈ 𝐿∞, we obtain that∫
Ω
|Hess 𝑓𝑁 |2 𝜔𝑛 < ∞. (8)

The rest of the argument is the same as in [36, Theorem 3.7]. �

Note that in our setting we have the following. In Section 3 we will show the remaining Condition (3)
in the setting of Theorem 4.
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Proposition 9. The metric measure space ( 𝑋̂, 𝑑𝑋̂ , 𝜔𝑛) satisfies Conditions (1), (2), and (4) in
Corollary 8, for some 𝐾 ∈ R.

Proof. Condition (4) is satisfied by definition. To verify Condition (1), let 𝑓 ∈ 𝑊1,2( 𝑋̂), such that
|∇ 𝑓 | (𝑥) ≤ 1 for 𝜔𝑛-almost every x. On 𝑋𝑟𝑒𝑔 the Sobolev to Lipschitz property holds, so we can assume
that f is 1-Lipschitz on 𝑋𝑟𝑒𝑔. By the definition of the distance d, this implies that for any 𝑥, 𝑦 ∈ 𝑋𝑟𝑒𝑔
we have | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ |𝑥 − 𝑦 |. We can then extend f uniquely to the completion 𝑋̂ so that the same
condition continues to hold. Condition (2) follows from the Sobolev inequality shown by Guo-Phong-
Song-Sturm [33, Theorem 2.1]. �

Let us recall from De Philippis-Gigli [23] that an 𝑅𝐶𝐷 (𝐾, 𝑁)-space (𝑍, 𝑑,𝔪) is called noncollapsed,
if the N-dimensional Hausdorff measure on (𝑍, 𝑑) agrees with 𝔪. In particular, if an n-dimensional
almost smooth metric measure space in Definition 5 satisfies the 𝑅𝐶𝐷 (𝐾, 𝑛)-property, then it is automat-
ically noncollapsed. Noncollapsed RCD spaces satisfy many of the properties enjoyed by noncollapsed
Ricci limits spaces studied by Cheeger-Colding [12]. We will now recall some results that we will use.

De Philippis-Gigli [22] showed that in a noncollapsed 𝑅𝐶𝐷 (𝐾, 𝑁)-space (𝑍, 𝑑,𝔪), the tangent
cones at every point 𝑧 ∈ 𝑍 are metric cones. In [23] they then showed that Z admits a stratification

𝑆0 ⊂ 𝑆1 ⊂ . . . ⊂ 𝑆𝑁−1 ⊂ 𝑍, (9)

where 𝑆𝑘 denotes the set of points 𝑧 ∈ 𝑍 where no tangent cone splits off an isometric factor of R𝑘+1,
and the strata satisfy the Hausdorff dimension estimate dimH 𝑆𝑘 ≤ 𝑘 . Note that in contrast with the
setting of noncollapsed Ricci limit spaces, it is not necessarily the case that 𝑆𝑁−1 = 𝑆𝑁−2, since a
noncollapsed 𝑅𝐶𝐷-space can have boundary. In our setting, however, we have the following, which is
a consequence of Bruè-Naber-Semola [8, Theorem 1.2].

Proposition 10. Suppose that (𝑍, 𝑑,𝔪) is a noncollapsed 𝑅𝐶𝐷 (𝐾, 𝑁)-space, and also an
N-dimensional almost smooth metric measure space. Then 𝑆𝑁−1 = 𝑆𝑁−2. Moreover any iterated tangent
cone 𝑍 ′ of Z also satisfies 𝑆𝑁−1 = 𝑆𝑁−2.

Proof. Using the notation of [8] we define 𝜕𝑍 = 𝑆𝑁−1 \ 𝑆𝑁−2 to be the boundary of Z. Let Ω ⊂ 𝑍
denote the smooth Riemannian manifold in the definition of almost smooth metric measure space.
For 𝑧 ∈ Ω the tangent cones are all R𝑁 , so 𝜕𝑍 ⊂ 𝑍 \ Ω. In particular 𝜕𝑍 has capacity zero. Using
[8, Theorem 1.2(i)] this implies that we must have 𝜕𝑍 = ∅. If an iterated tangent cone 𝑍 ′ satisfied
𝜕𝑍 ′ ≠ ∅, then by [8, Theorem 1.2(i)] we would have 𝜕𝑍 ≠ ∅, which is a contradiction as above. �

We will be working with harmonic functions on RCD spaces, so we review some basic results. Let
us suppose that (𝑍, 𝑑,𝔪) is a noncollapsed 𝑅𝐶𝐷 (𝐾, 𝑁)-space that is also an N-dimensional almost
smooth metric measure space. A function 𝑓 : 𝑈 → R on an open set 𝑈 ⊂ 𝑍 is defined to be harmonic
if 𝑓 ∈ 𝑊1,2

𝑙𝑜𝑐 (𝑈), and for any Lipschitz function 𝜓 : 𝑈 → R with compact support we have∫
𝑈
∇ 𝑓 · ∇𝜓 𝑑𝔪 = 0. (10)

Note that in our setting the integration can be taken over 𝑈 ∩ Ω, where Ω ⊂ 𝑍 is the dense open set in
Definition 5 since 𝑍 \Ω has measure zero. We will use the following result several times.

Lemma 11. Let 𝑢 : 𝑈 → R for an open set 𝑈 ⊂ 𝑍 , such that 𝑢 ∈ 𝐿∞(𝑈). Suppose that Δ𝑢 = 0 on
𝑈 ∩Ω, using the smooth Riemannian structure on Ω. Then u is harmonic on U.

Proof. Let 𝜙𝑖 be functions as in Condition (3) of Definition 5, and 𝜓 a Lipschitz function with compact
support in U. We have
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∫
𝑈
𝜓2𝜙2

𝑖 |∇𝑢 |2 𝑑𝔪 = −2
∫
𝑈
𝜓2𝜙𝑖𝑢∇𝜙𝑖 · ∇𝑢 𝑑𝔪 − 2

∫
𝑈
𝜙2
𝑖𝜓𝑢∇𝑢 · ∇𝜓 𝑑𝔪

≤ 1
2

∫
𝑈
𝜓2𝜙2

𝑖 |∇𝑢 |2 𝑑𝔪 + 4
∫
𝑈
𝜓2𝑢2 |∇𝜙𝑖 |2 𝑑𝔪 + 𝐶𝜓

∫
𝑈
𝑢2 𝑑𝔪,

(11)

where 𝐶𝜓 depends on sup𝑈∩Ω |∇𝜓 |. Letting 𝑖 → ∞, we obtain that 𝑢 ∈ 𝑊1,2
𝑙𝑜𝑐 (𝑈).

At the same time we have∫
𝑈
𝜙2
𝑖∇𝑢 · ∇𝜓 𝑑𝔪 = −2

∫
𝑈
𝜙𝑖𝜓∇𝜙𝑖 · ∇𝑢 𝑑𝔪

≤
∫
𝑈
|∇𝜙𝑖 |2 𝑑𝔪 +

∫
supp(∇𝜙𝑖)

𝜓2 |∇𝑢 |2 𝑑𝔪.
(12)

Letting 𝑖 → ∞ we get
∫
𝑈
∇𝑢 · ∇𝜓 = 0, so u is harmonic on U. �

We will also need the following gradient estimate, generalizing Cheng-Yau’s gradient estimate.

Proposition 12 (Jiang [37], Theorem 1.1). Let u be a harmonic function on a ball 𝐵(𝑝, 2𝑅) in an
𝑅𝐶𝐷 (𝑁, 𝐾)-space. There is a constant 𝐶 = 𝐶 (𝑅, 𝑁, 𝐾) such that

sup
𝐵 (𝑝,𝑅)

|∇𝑢 | ≤ 𝐶
⨏
𝐵 (𝑝,2𝑅)

|𝑢 | 𝑑𝔪. (13)

Note that a similar estimate holds for solutions of Δ𝑢 = 𝑐 on𝑈 ⊂ 𝑍 for a constant c, by considering
𝑢 − 𝑐𝑡2/2 on the space𝑈 × R𝑡 .

3. The RCD property of singular Kähler-Einstein spaces

The main result in this section will be that the completion of the Kähler-Einstein metric on 𝑋𝑟𝑒𝑔
in Theorem 4 defines a noncollapsed RCD space. We will first need some estimates for the cscK
approximations of (𝑋, 𝜔𝐾𝐸 ).

3.1. Constant scalar curvature approximations

Let (𝑋, 𝜔𝐾𝐸 ) be a singular Kähler-Einstein space, where Ric𝜔𝐾𝐸 = 𝜆𝜔𝐾𝐸 . Suppose that (𝑋, 𝜔𝐾𝐸 )
can be approximated by cscK metrics as in Definition 2. In particular there is a resolution Y of X, that
admits a family of cscK metrics 𝜔𝜖 in suitable Kähler classes [𝜂𝜖 ], such that the 𝜂𝜖 converge to 𝜋∗𝜂𝑋 .
Here 𝜂𝑋 is a smooth metric on X in the sense that it is the restriction of a smooth metric under local
embeddings into C𝑁.

We will need the following, which is immediate from the work of Guo-Phong-Song-Sturm
[33, Theorem 2.2].

Theorem 13. Let 𝐻 (𝑥, 𝑦, 𝑡) denote the heat kernel on (𝑌, 𝜔𝜖 ). There is a continuous function
𝐻̄ : (0, 2] → R, depending on (𝑋, 𝜔𝐾𝐸 ), but independent of 𝜖 , such that we have the upper bound

𝐻 (𝑥, 𝑦, 𝑡) ≤ 𝐻̄ (𝑡), for 𝑥, 𝑦 ∈ 𝑌 and 𝑡 ∈ (0, 2] . (14)

Note that 𝐻̄ (𝑡) → ∞ as 𝑡 → 0.

In addition the constant scalar curvature metrics 𝜔𝜖 satisfy the following integral bounds for their
Ricci curvatures. We will use these integral bounds as a replacement for having lower bounds for the
Ricci curvature, when we approximate 𝜔𝐾𝐸 with 𝜔𝜖 .
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Proposition 14. Let us define R̃ic𝜔 = Ric𝜔 − 𝜆𝜔. We have the following estimates:

lim
𝜖→0

∫
𝑌
|R̃ic𝜔𝜖 |2 +

|∇R̃ic𝜔𝜖 |2

(1 + |R̃ic𝜔𝜖 |2)1/2
+ |Δ (1 + |R̃ic𝜔𝜖 |2)1/2 | 𝜔𝑛𝜖 = 0, (15)

and ∫
𝑌
|Rm𝜔𝜖 |2 𝜔𝑛𝜖 < 𝐶, (16)

for C independent of 𝜖 .

Proof. First recall the well-known result of Calabi [10] relating the 𝐿2-norms of the scalar curvature,
the Ricci and Riemannian curvature tensors of a Kähler metric. Let us denote by 𝑅,Ric,Rm the scalar
curvature, the Ricci form and the Riemannian curvature tensor. Since 𝑅𝜔𝜖 is constant, we have

𝑅𝜔𝜖 =
2𝑛𝜋𝑐1 (𝑌 ) ∪ [𝜔𝜖 ]𝑛−1

[𝜔𝜖 ]𝑛
. (17)

Note that we have

lim
𝜖→0

2𝑛𝜋𝑐1 (𝑌 ) ∪ [𝜔𝜖 ]𝑛−1

[𝜔𝜖 ]𝑛
=

2𝑛𝜋𝑐1 (𝑋) ∪ [𝜔𝐾𝐸 ]𝑛−1

[𝜔𝐾𝐸 ]𝑛
= 𝑛𝜆, (18)

since [𝜔𝐾𝐸 ]𝑛−1 vanishes when paired with the exceptional divisor of the map 𝑌 → 𝑋 . In addition∫
𝑌
|Ric𝜔𝜖 |2 𝜔𝑛𝜖 = 𝑅2

𝜔𝜖 [𝜔𝜖 ]
𝑛 − 4𝑛(𝑛 − 1)𝜋2𝑐1 (𝑌 )2 ∪ [𝜔𝜖 ]𝑛−2,∫

𝑌
(|Ric𝜔𝜖 |2 − |Rm𝜔𝜖 |2) 𝜔𝑛𝜖 = 𝑛(𝑛 − 1)

(
4𝜋2𝑐1(𝑌 )2 − 8𝜋2𝑐2(𝑌 )

)
∪ [𝜔𝜖 ]𝑛−2.

(19)

Since the cohomology classes [𝜔𝜖 ] = [𝜂𝜖 ] are uniformly bounded, and in addition [𝜔𝜖 ]𝑛 ≥ [𝜂𝑋 ]𝑛 > 0,
it follows that 𝑅𝜔𝜖 , and the 𝐿2 norms of |Ric𝜔𝜖 |, |Rm𝜔𝜖 | are all uniformly bounded, independently of 𝜖 .

To see the first claim in the Proposition, note that∫
𝑌
|Ric𝜔𝜖 − 𝜆𝜔𝜖 |2 𝜔𝑛𝜖 = (𝑅𝜔𝜖 − 𝑛𝜆)2 [𝜔𝜖 ]𝑛 − 𝑛(𝑛 − 1)

(
2𝜋𝑐1 (𝑌 ) − 𝜆[𝜔𝜖 ]

)2 ∪ [𝜔𝜖 ]𝑛−2. (20)

As 𝜖 → 0, this converges to zero by (18) and the fact that 2𝜋𝑐1 (𝑋) = 𝜆[𝜔𝐾𝐸 ].
To estimate ∇R̃ic𝜔𝜖 and ΔR̃ic𝜔𝜖 note that we have the following equation satisfied by any constant

scalar curvature metric:

Δ |R̃ic|2 = ∇𝑘∇𝑘̄ (R̃ic𝑝𝑞̄R̃ic𝑞 𝑝̄)
= 2|∇𝑘 R̃ic𝑝𝑞̄ |2 + Rm ∗ R̃ic ∗ R̃ic,

(21)

where ∗ denotes a tensorial contraction. It follows that

Δ (1 + |R̃ic|2)1/2 = (1 + |R̃ic|2)−1/2
(
|∇R̃ic|2 − |∇|R̃ic| |2 + Rm ∗ R̃ic ∗ R̃ic

)
+ |∇|R̃ic| |2

(1 + |R̃ic|2)3/2
.

(22)
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For a constant scalar curvature Kähler metric the form R̃ic is harmonic, so we have the following
refined Kato inequality (see Branson [7], Calderbank-Gauduchon-Herzlich [11], or Cibotaru-Zhu
[20, Theorem 3.8]):

|∇|R̃ic| |2 ≤ 𝛼𝑛 |∇R̃ic|2 (23)

for a dimensional constant 𝛼𝑛 < 1. It follows from (22) that

Δ (1 + |R̃ic|2)1/2 ≥ (1 − 𝛼𝑛)
|∇R̃ic|2

(1 + |R̃ic|2)1/2
− 𝐶 |Rm| |R̃ic|. (24)

Integrating over Y, we get∫
𝑌

|∇R̃ic𝜔𝜖 |2

(1 + |R̃ic|2𝜔𝜖 )1/2
𝜔𝑛𝜖 ≤ 𝐶1‖Rm𝜔𝜖 ‖𝐿2 ‖R̃ic𝜔𝜖 ‖𝐿2 → 0, (25)

as 𝜖 → 0. It then follows from (22) that∫
𝑌
|Δ (1 + |R̃ic𝜔𝜖 |2)1/2 | 𝜔𝑛𝜖 ≤

∫
𝑌

|∇R̃ic𝜔𝜖 |2

(1 + |R̃ic|2𝜔𝜖 )1/2
𝜔𝑛𝜖 + 𝐶‖Rm𝜔𝜖 ‖𝐿2 ‖R̃ic𝜔𝜖 ‖𝐿2 → 0, (26)

as 𝜖 → 0. �

3.2. Proof of the RCD property

In this section we assume that (𝑋, 𝜔𝐾𝐸 ) is a singular Kähler-Einstein space, with Ric𝜔𝐾𝐸 = 𝜆𝜔𝐾𝐸 ,
that can be approximated with cscK metrics as in Definition 2. Our first result is the following.

Proposition 15. The metric completion ( 𝑋̂, 𝑑, 𝜔𝑛𝐾𝐸 ) is an 𝑅𝐶𝐷 (𝜆, 2𝑛) space.

Proof. From Proposition 9 it follows that it is sufficient to check condition (3) in Corollary 8, that
is, to show that the eigenfunctions of the Laplacian on 𝑋̂ are bounded. More precisely, suppose that
𝑢 ∈ 𝑊1,2( 𝑋̂) satisfies Δ𝑢 = −𝑏𝑢 on 𝑋𝑟𝑒𝑔 for a constant b. We will show that then |∇𝑢 | ∈ 𝐿∞(𝑋𝑟𝑒𝑔).

For simplicity we can assume that ‖𝑢‖𝐿2 = 1. Using that 𝑢 ∈ 𝑊1,2 ( 𝑋̂), and also [33, Lemma 11.2],
we have

sup |𝑢 | +
∫
𝑋𝑟𝑒𝑔

|∇𝑢 |2𝜔𝑛𝐾𝐸 < 𝐶, (27)

where C could depend on u (in particular on b).
Next we will use the approximating cscK metrics 𝜔𝜖 on the resolution Y of X. Let us fix a large i,

and let 𝑓 = 𝜙𝑖𝑢 for the cutoff function 𝜙𝑖 in Lemma 6. We can view f as a function on Y, supported
away from the exceptional divisor, where the metrics 𝜔𝜖 converge smoothly to 𝜔𝐾𝐸 . Note that we have
a uniform bound sup | 𝑓 | < 𝐶, and also∫

𝑌
|∇ 𝑓 |2𝜔𝑛𝜖 ≤

∫
𝑌

2(|𝑢∇𝜙𝑖 |2 + |𝜙𝑖∇𝑢 |2) 𝜔𝑛𝜖 < 2𝐶, (28)

for sufficiently small 𝜖 .
Let us fix a point 𝑥0 ∈ 𝑋 where 𝜙𝑖 (𝑥0) = 1. We can view 𝑥0 ∈ 𝑌 too. We will do the following

calculation on Y, using the metric 𝜔𝜖 for sufficiently small 𝜖 . To simplify the notation we will omit the
subscript 𝜖 . All geometric quantities are defined using the metric 𝜔𝜖 . We will write 𝜌𝑡 = 𝐻 (𝑥0, 𝑦, 𝑡)
for the heat kernel centered at 𝑥0 on (𝑌, 𝜔𝜖 ), and let 𝑓𝑡 denote the solution of the heat equation on
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(𝑌, 𝜔𝜖 ) with initial condition f. We will also omit the volume form 𝜔𝑛𝜖 in the integrals below. We have
the following.

𝜕𝑠

∫
𝑌

1
2
|∇ 𝑓𝑡−𝑠 |2 𝜌𝑠 =

∫
𝑌
−〈∇ 𝑓𝑡−𝑠 ,∇Δ 𝑓𝑡−𝑠〉𝜌𝑠 +

1
2
|∇ 𝑓𝑡−𝑠 |2 Δ𝜌𝑠

=
∫
𝑌

(
|∇2 𝑓𝑡−𝑠 |2 + Ric(∇ 𝑓𝑡−𝑠 ,∇ 𝑓𝑡−𝑠)

)
𝜌𝑠 .

(29)

In order to compensate for the Ricci term, we let 𝜓2 = (1 + |R̃ic|2)1/2, where R̃ic = Ric𝜔𝜖 − 𝜆𝜔𝜖 as in
Proposition 14. We have

𝜕𝑠

∫
𝑌
𝜓2 𝑓 2

𝑡−𝑠 𝜌𝑠 =
∫
𝑌
−2𝜓2 𝑓𝑡−𝑠Δ 𝑓𝑡−𝑠 𝜌𝑠 + 𝜓2 𝑓 2

𝑡−𝑠Δ𝜌𝑠

=
∫
𝑌

(
Δ (𝜓2) 𝑓 2

𝑡−𝑠 + 2〈∇𝜓2,∇ 𝑓 2
𝑡−𝑠〉 + 2𝜓2 |∇ 𝑓𝑡−𝑠 |2

)
𝜌𝑠

≥ −𝐶
∫
𝑌
(|Δ𝜓2 | + |∇𝜓 |2) 𝜌𝑠 +

∫
𝑌
𝜓2 |∇ 𝑓𝑡−𝑠 |2 𝜌𝑠 ,

(30)

where the constant C depends on the uniform supremum bound for 𝑓𝑡−𝑠 .
Note that 𝜓2 ≥ |Ric| − 𝑛|𝜆 |, so if we combine (29) and (30), we get

𝜕𝑠

∫
𝑌

(
1
2
|∇ 𝑓𝑡−𝑠 |2 + 𝜓2 𝑓 2

𝑡−𝑠

)
𝜌𝑠 ≥ −𝐶

∫
𝑌
(|Δ𝜓2 | + |∇𝜓 |2) 𝜌𝑠 −

∫
𝑌
𝑛|𝜆 | |∇ 𝑓𝑡−𝑠 |2 𝜌𝑠 . (31)

At this point, let us fix 𝑠0 > 0, and only work with 𝑠 ∈ [𝑠0, 2]. From Proposition 14 we know that
‖Δ𝜓2‖𝐿1 , ‖∇𝜓‖𝐿2 → 0 as 𝜖 → 0. From Theorem 13 we have a uniform upper bound for 𝜌𝑠 , depending
on 𝑠0, but independent of 𝜖 . Therefore, if we choose 𝜖 sufficiently small, say 𝜖 < 𝜖𝑠0 , then we have

𝜕𝑠

∫
𝑌

(
1
2
|∇ 𝑓𝑡−𝑠 |2 + 𝜓2 𝑓 2

𝑡−𝑠

)
𝜌𝑠 ≥ −1 − 𝑛|𝜆 |

∫
𝑌
|∇ 𝑓𝑡−𝑠 |2 𝜌𝑠 , (32)

and so

𝜕𝑠 𝑒
2𝑛 |𝜆 |𝑠

∫
𝑌

(
1
2
|∇ 𝑓𝑡−𝑠 |2 + 𝜓2 𝑓 2

𝑡−𝑠

)
𝜌𝑠 ≥ −𝐶. (33)

Applying this with 𝑡 = 1+ 𝑠0 and integrating from 𝑠 = 𝑠0 to 𝑠 = 1+ 𝑠0, it follows that for such 𝜖 we have

𝑒2𝑛 |𝜆 |𝑠0

∫
𝑌

(
1
2
|∇ 𝑓1 |2 + 𝜓2 𝑓 2

1

)
𝜌𝑠0 ≤ 𝐶 + 𝑒2𝑛 |𝜆 | (𝑠0+1)

∫
𝑌

(
1
2
|∇ 𝑓 |2 + 𝜓2 𝑓 2

)
𝜌1+𝑠0 . (34)

Using the uniform upper bound for 𝜌1+𝑠0 , together with the integral bound for |R̃ic|2 from Proposition 14,
we obtain that ∫

𝑌
|∇ 𝑓1 |2 𝜌𝑠0 ≤ 𝐶, (35)

where C is independent of 𝜖, 𝑠0. As 𝜖 → 0, the heat kernels 𝜌𝑠0 converge locally smoothly on 𝑋𝑟𝑒𝑔 to
the heat kernel on ( 𝑋̂, 𝜔𝐾𝐸 ), and so in the limit we obtain the estimate∫

𝑋𝑟𝑒𝑔
|∇ 𝑓1 |2 𝜌𝑠0 ≤ 𝐶, (36)
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where all the quantities are computed using 𝜔𝐾𝐸 , and recall that 𝑓1 is simply the solution 𝑓𝑡 of the heat
flow with initial condition f at time 𝑡 = 1. Note that the constant C does not depend on 𝑠0, so in fact, by
letting 𝑠0 → 0, we obtain the pointwise estimate

|∇ 𝑓1 |2 (𝑥0) ≤ 𝐶, (37)

and this holds uniformly for any 𝑥0 ∈ 𝑋𝑟𝑒𝑔.
Recall that 𝑓 = 𝜙𝑖𝑢, where u is the eigenfunction that we want to estimate, and 𝜙𝑖 is a cutoff function

from Lemma 6. To keep track of the dependence on i, let us now write 𝑓 (𝑖) = 𝜙𝑖𝑢, and write 𝑓 (𝑖)1 for
the corresponding solutions of the heat equation at time 1. Since 𝑓 (𝑖) → 𝑢 in 𝐿2, it follows that for any
compact set 𝐾 ⊂ 𝑋𝑟𝑒𝑔 the solutions 𝑓 (𝑖)1 converge smoothly to 𝑢1 on K. But 𝑢1 = 𝑒−𝑏𝑢, so we obtain
the required pointwise bound |∇𝑢 |2 (𝑥0) ≤ 𝑒2𝑏𝐶 for any 𝑥0 ∈ 𝑋𝑟𝑒𝑔. �

Next we show that singular Kähler-Einstein metrics on projective varieties, that can be approximated
by cscK metrics, define Kähler currents. This result was previously shown by Guedj-Guenancia-Zeriahi
[31] for singular Kähler-Einstein metrics that are either globally smoothable, or that only have isolated
smoothable singularities.

Theorem 16. Let𝜔𝐾𝐸 denote a singular Kähler-Einstein metric on a normal projective variety X, which
can be approximated by cscK metrics as in Definition 2. Let 𝜂𝐹𝑆 denote the pullback of the Fubini-Study
metric to X under a projective embedding of X. Then there is a constant 𝛿 > 0 such that 𝜔𝐾𝐸 > 𝛿𝜂𝐹𝑆 .

Proof. By assumption we have cscK metrics 𝜔𝜖 = 𝜂𝜖 +
√
−1𝜕𝜕𝑢𝜖 on a resolution 𝜋 : 𝑌 → 𝑋 , where

𝜂𝜖 → 𝜋∗𝜂𝑋 for a smooth metric 𝜂𝑋 on X, where 𝜂𝜖 ≥ 𝜋∗𝜂𝑋 . We apply the Chern-Lu inequality to
the map 𝜋 : 𝑌 → 𝑋 , away from the exceptional divisor E, where on Y we use the metric 𝜔𝜖 and on X
we use the pullback 𝜂𝐹𝑆 of the Fubini-Study metric under a projective embedding of X. For simplicity
we write 𝜂𝐹𝑆 for 𝜋∗𝜂𝐹𝑆 , and we write 𝑔𝑖 𝑗 and ℎ𝑖 𝑗 for the metric components of𝜔𝜖 and 𝜂𝐹𝑆 , respectively.
On 𝑌 \ 𝐸 we then have |𝜕𝜋 |2 = tr𝜔𝜖 𝜂𝐹𝑆 , and (see, e.g., [46])

Δ𝜔𝜖 log tr𝜔𝜖 𝜂𝐹𝑆 ≥
𝑔𝑖𝑙𝑔𝑘 𝑗Ric(𝜔𝜖 )𝑖 𝑗ℎ𝑘𝑙

tr𝜔𝜖 𝜂𝐹𝑆
− 𝐴tr𝜔𝜖 𝜂𝐹𝑆 , (38)

where A is independent of 𝜖 , using that 𝜂𝐹𝑆 has bisectional curvature bounded from above. It follows
that

Δ𝜔𝜖 log tr𝜔𝜖 𝜂𝐹𝑆 ≥
𝑔𝑖𝑙𝑔𝑘 𝑗 (Ric(𝜔𝜖 )𝑖 𝑗 − 𝜆𝑔𝑖 𝑗 )ℎ𝑘𝑙

tr𝜔𝜖 𝜂𝐹𝑆
+ 𝜆 − 𝐴tr𝜔𝜖 𝜂𝐹𝑆

≥ −|Ric𝜔𝜖 − 𝜆𝜔𝜖 | + 𝜆 − 𝐴tr𝜔𝜖 𝜂𝑋 .
(39)

We also have

Δ𝜔𝜖 (−𝑢𝜖 ) = tr𝜔𝜖 𝜂𝜖 − 𝑛 ≥ tr𝜔𝜖 𝜂𝑋 − 𝑛 ≥ 𝐶−1
1 tr𝜔𝜖 𝜂𝐹𝑆 − 𝑛, (40)

for some 𝐶1 > 0, using that locally both 𝜂𝐹𝑆 and 𝜂𝑋 are given by pullbacks of smooth metrics under
embeddings of X. This implies that

Δ𝜔𝜖 (log tr𝜔𝜖 𝜂𝐹𝑆 − 𝐴𝐶1𝑢𝜖 ) ≥ −|Ric𝜔𝜖 − 𝜆𝜔𝜖 | + 𝜆 − 𝐴𝐶1𝑛

≥ −|Ric𝜔𝜖 − 𝜆𝜔𝜖 | − 𝐶2,
(41)

for some 𝐶2 > 0. Let us define

𝐹 = max{0, log tr𝜔𝜖 𝜂𝐹𝑆 − 𝐴𝐶1𝑢𝜖 }. (42)
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Since 𝜔𝜖 is a Kähler metric, F is bounded from above, and by definition F is also bounded below.
In addition F satisfies the differential inequality

Δ𝜔𝜖 𝐹 ≥ −|Ric𝜔𝜖 − 𝜆𝜔𝜖 | − 𝐶2 (43)

in a distributional sense on all of Y. To see this, note first that the differential inequality is satisfied in
the distributional sense on 𝑌 \ 𝐸 by the definition of F as a maximum of two functions satisfying the
inequality. Then the differential inequality can be extended across E using that F is bounded, by an
argument similar to Lemma 11.

Fix 𝑥 ∈ 𝑌 \ 𝐸 , and let 𝐻 (𝑥, 𝑦, 𝑡) denote the heat kernel on (𝑌, 𝜔𝜖 ). Fix some 𝑡0 > 0. For 𝑡 ∈ [𝑡0, 1]
we have

𝜕𝑡

∫
𝑌
𝐹 (𝑦) 𝐻 (𝑥, 𝑦, 𝑡) 𝑑𝑦 =

∫
𝑌
𝐹 (𝑦) Δ 𝑦𝐻 (𝑥, 𝑦, 𝑡) 𝑑𝑦

=
∫
𝑌
Δ 𝑦𝐹 (𝑦) 𝐻 (𝑥, 𝑦, 𝑡) 𝑑𝑦

≥
∫
𝑌
(−|Ric𝜔𝜖 − 𝜆𝜔𝜖 | (𝑦) − 𝐶2)𝐻 (𝑥, 𝑦, 𝑡) 𝑑𝑦.

(44)

Using the uniform upper bound for H (see Theorem 13), together with Proposition 14, we find that there
exists an 𝜖0 = 𝜖0 (𝑡0), depending on 𝑡0, such that if 𝜖 < 𝜖0, then

𝜕𝑡

∫
𝑌
𝐹 (𝑦) 𝐻 (𝑥, 𝑦, 𝑡) 𝑑𝑦 ≥ −2𝐶2, (45)

and so for 𝜖 < 𝜖0 we have∫
𝑌
𝐹 (𝑦)𝐻 (𝑥, 𝑦, 𝑡0) 𝑑𝑦 ≤

∫
𝑌
𝐹 (𝑦)𝐻 (𝑥, 𝑦, 1) 𝑑𝑦 + 2𝐶2. (46)

Note that

𝐹 ≤ 𝑒−𝐴𝐶1𝑢𝜖 tr𝜔𝜖 𝜂𝐹𝑆 , (47)

so we have (using the uniform upper bound for the heat kernel as well),∫
𝑌
𝐹 (𝑦)𝐻 (𝑥, 𝑦, 𝑡0) 𝑑𝑦 ≤ 𝐶3𝑒

𝐴𝐶1 sup |𝑢𝜖 |
∫
𝑌

tr𝜔𝜖 𝜂𝐹𝑆 𝜔
𝑛
𝜖 + 2𝐶2

≤ 𝐶4.

(48)

Here we also used that we have a uniform bound for sup |𝑢𝜖 |, and the cohomology classes [𝜔𝜖 ] are
uniformly bounded. Crucially, the constant 𝐶4 is independent of 𝑡0.

Note that as 𝜖 → 0, the heat kernels 𝐻 (𝑥, 𝑦, 𝑡) for (𝑌, 𝜔𝜖 ) converge locally smoothly on 𝑌 \ 𝐸 to the
heat kernel for (𝑋, 𝜔𝐾𝐸 ). At the same time, the function 𝐹 (𝑦) converges locally uniformly on 𝑌 \ 𝐸 to

max{0, log tr𝜔𝐾𝐸𝜂𝐹𝑆 − 𝐴𝐶1𝑢𝐾𝐸 }. (49)

It follows that in the limit, for any 𝑡 > 0, we have∫
𝑋𝑟𝑒𝑔

(log tr𝜔𝐾𝐸𝜂𝐹𝑆 − 𝐴𝐶1𝑢𝐾𝐸 ) (𝑦) 𝐻𝜔𝐾𝐸 (𝑥, 𝑦, 𝑡) 𝜔𝑛𝐾𝐸 (𝑦) ≤ 𝐶4. (50)

Letting 𝑡 → 0 we obtain a pointwise bound tr𝜔𝐾𝐸𝜂𝐹𝑆 < 𝐶5, as required. �
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4. Homeomorphism with the underlying variety

In this section our goal is to show that the metric completion 𝑋̂ of the smooth locus of a singular
Kähler-Einstein metric (𝑋, 𝜔𝐾𝐸 ) is homeomorphic to X, under suitable assumptions. These assumptions
hold in the setting of Theorem 4, where (𝑋, 𝜔𝐾𝐸 ) can be approximated with cscK metrics.

We assume that X is a normal projective variety of dimension n, and we have a Kähler current 𝜔
on X with bounded local potentials, such that 𝜔 ∈ 𝑐1 (𝐿) for a line bundle L on X. We will write 𝜂𝐹𝑆
for the pullback of the Fubini-Study metric to X under a projective embedding. We make the following
assumptions:
(1) The Ricci form of 𝜔, as a current, satisfies Ric(𝜔) = 𝜆𝜔 for a constant 𝜆 ∈ R on the regular part

𝑋𝑟𝑒𝑔 of X.
(2) 𝜔 is a Kähler current, that is, 𝜔 ≥ 𝑐𝜂𝐹𝑆 on X for some 𝑐 > 0.
(3) The metric completion ( 𝑋̂, 𝑑𝑋̂ ) of (𝑋𝑟𝑒𝑔, 𝜔) is a noncollapsed 𝑅𝐶𝐷 (2𝑛, 𝜆) space, where the

measure on 𝑋̂ is the pushforward of 𝜔𝑛 from 𝑋𝑟𝑒𝑔.
(4) We have 𝜔𝑛 = 𝐹𝜂𝑛𝐹𝑆 , where 𝐹 ∈ 𝐿 𝑝 (𝑋, 𝜂𝑛𝐹𝑆) for some 𝑝 > 1.

We have seen that Conditions (1)–(3) are satisfied for singular Kähler-Einstein metrics (𝑋, 𝜔𝐾𝐸 ),
with 𝜔𝐾𝐸 ∈ 𝑐1 (𝐿), that can be approximated with cscK metrics in the sense of Definition 2. For
Condition (4), see Eyssidieux-Guedj-Zeriahi [29, Section 7].

The main result of this section is the following, and the proof will be completed after Proposition 27
below.
Theorem 17. Let (𝑋, 𝜔) satisfy the conditions (1)–(4) above. Then the metric completion 𝑋̂ is
homeomorphic to X.

Rescaling the metric 𝜔 we can assume that L is a very ample line bundle on X. The sections of L
define a holomorphic embedding Φ𝑋 : 𝑋 → CP𝑁 , and we can identify the image of this embedding
with X. By the assumption that 𝜔 is a Kähler current, we have that the map

Φ𝑋 : (𝑋𝑟𝑒𝑔, 𝜔) → (𝑋, 𝜂𝐹𝑆) ⊂ CP𝑁 (51)

is Lipschitz continuous, where we use the length metric as defined in (3). In particular Φ𝑋 extends to a
Lipschitz continuous map

Φ̂𝑋 : 𝑋̂ → (𝑋, 𝜂𝐹𝑆). (52)

Note that Φ̂𝑋 is surjective, since the image of 𝑋𝑟𝑒𝑔 is dense in X, so our task is to prove that Φ̂𝑋 is
injective, that is, to show that the sections of L separate points of 𝑋̂ . In fact we will work with 𝐿𝑘 for
large k, however since L is very ample, the map defined by section of 𝐿𝑘 is obtained by composing the
map defined by sections of L with an embedding of CP𝑁 into a larger projective space.

The general strategy for showing that sections of 𝐿𝑘 separate points of 𝑋̂ is similar to the
work of Donaldson-Sun [27]. We will apply the following form of Hörmander’s estimate (see, e.g.,
[25, Theorem 6.1]):
Theorem 18. Let (𝑃, ℎ𝑃) be a Hermitian holomorphic line bundle on a Kähler manifold (𝑀,𝜔𝑀 ),
which admits some complete Kähler metric. Suppose that the curvature form of ℎ𝑃 satisfies

√
−1𝐹ℎ𝑃 ≥

𝑐𝜔𝑀 for some constant 𝑐 > 0. Let 𝛼 ∈ Ω𝑛,1 (𝑃) be such that 𝜕𝛼 = 0. Then there exists 𝑢 ∈ Ω𝑛,0(𝑃)
such that 𝜕𝑢 = 𝛼, and

‖𝑢‖2
𝐿2 ≤ 1

𝑐
‖𝛼‖2

𝐿2 , (53)

provided the right hand side is finite.
We will apply this result to 𝑀 = 𝑋𝑟𝑒𝑔, with the metric 𝜔𝑀 = 𝑘𝜔. Note that it follows from Demailly

[24, Theorem 0.2], that 𝑋𝑟𝑒𝑔 admits a complete Kähler metric. For the line bundle P we will take
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𝑃 = 𝐿𝑘 ⊗ 𝐾−1
𝑀 , so that an (𝑛, 0)-form valued in P is simply a section of 𝐿𝑘 . For the metric on P we take

the metric induced by the metric ℎ𝑘 on 𝐿𝑘 whose curvature is 𝑘𝜔, together with the metric given by 𝜔𝑛
on 𝐾𝑀 . The curvature of ℎ𝑃 then satisfies

√
−1𝐹ℎ𝑃 = 𝑘𝜔 + Ric𝜔 = (𝑘 + 𝜆)𝜔 > 1

2
𝜔𝑀 , (54)

for large enough k.
We will need the following 𝐿∞ and gradient estimates for holomorphic sections of 𝐿𝑘 .

Proposition 19. Let f be a holomorphic section of 𝐿𝑘 over 𝑀 = 𝑋𝑟𝑒𝑔. We then have the following
estimates

sup
𝑀

| 𝑓 |ℎ𝑘 + |∇ 𝑓 |ℎ𝑘 ,𝜔𝑀 ≤ 𝐾1‖ 𝑓 ‖𝐿2 (𝑀,ℎ𝑘 ,𝜔𝑀 ) , (55)

where we emphasize that we are using the metrics ℎ𝑘 and 𝜔𝑀 = 𝑘𝜔 to measure the various norms, and
𝐾1 does not depend on k.

Proof. Note first that f extends to a holomorphic section of 𝐿𝑘 over X, using that X is normal. Using
that 𝜔 has locally bounded potentials, we have that sup𝑋 | 𝑓 |ℎ𝑘 < ∞.

Next we show that |∇ 𝑓 |ℎ𝑘 ,𝜔𝑀 < ∞. For any 𝑥 ∈ 𝑋̂ , let 𝑥 = Φ̂𝑋 (𝑥) ∈ 𝑋 . We can find a section
𝑠 ∈ 𝐻0(𝑋, 𝐿) and some 𝑟 > 0 such that 𝑠(𝑦) ≠ 0 for 𝑦 ∈ 𝐵𝜂𝐹𝑆 (𝑥, 𝑟). The assumption that 𝜔 is a
Kähler current implies that we have constants 𝑟 ′ > 0 and 𝐶 > 0 (depending on 𝑥) such that if we write
|𝑠 |2ℎ = 𝑒−𝑢 , then |𝑢 | < 𝐶 on 𝑋𝑟𝑒𝑔 ∩ 𝐵𝜔𝑀 (𝑥, 𝑟 ′). We have Δ𝜔𝑀 𝑢 = 𝑛 on 𝑋𝑟𝑒𝑔 ∩ 𝐵𝜔𝑀 (𝑥, 𝑟 ′/2), and
since u is bounded, this equation extends to 𝐵𝜔𝑀 (𝑥, 𝑟 ′/2) by Lemma 11 and Lemma 6. The gradient
estimate in Proposition 12 then implies that |∇𝑢 | < 𝐶1 on 𝐵𝜔𝑀 (𝑥, 𝑟 ′/2). This implies that |∇𝑠 | < 𝐶2
on 𝐵𝜔𝑀 (𝑥, 𝑟 ′/2). If f is any holomorphic section of 𝐿𝑘 , then on 𝐵𝜔𝑀 (𝑥, 𝑟 ′/2) the ratio 𝑓 /𝑠𝑘 is a
bounded harmonic function, so using the gradient estimate again, together with the bounds for s, we
find that |∇ 𝑓 | < 𝐶3 on 𝐵𝜔𝑀 (𝑥, 𝑟 ′/4). We can cover 𝑋̂ with finitely many balls of this type, showing
that |∇ 𝑓 |ℎ𝑘 ,𝜔𝑀 < ∞ globally.

We can obtain the effective estimates claimed in the proposition as follows. Since the curvature of
ℎ𝑘 is 𝜔𝑀 , on M we have

Δ𝜔𝑀 | 𝑓 |2
ℎ𝑘

= |∇ 𝑓 |2
ℎ𝑘 ,𝜔𝑀

− 𝑛| 𝑓 |2
ℎ𝑘
. (56)

Let 𝜙𝑖 denote cutoff functions as in Lemma 6. We have, omitting the subscripts,∫
𝑀
𝜙2
𝑖 |∇ 𝑓 |2𝜔𝑛𝑀 =

∫
𝑀
𝜙2
𝑖 (Δ | 𝑓 |2 + 𝑛| 𝑓 |2) 𝜔𝑛𝑀

=
∫
𝑀
(−4𝜙𝑖 | 𝑓 |∇𝜙𝑖 · ∇| 𝑓 | + 𝜙2

𝑖 𝑛| 𝑓 |2) 𝜔𝑛𝑀

≤
∫
𝑀

(
1
2
𝜙2
𝑖 |∇ 𝑓 |2 + 8|∇𝜙𝑖 |2 | 𝑓 |2 + 𝜙2

𝑖 𝑛| 𝑓 |2
)
𝜔𝑛𝑀 .

(57)

Letting 𝑖 → ∞, and using that | 𝑓 | ∈ 𝐿∞, we get∫
𝑀

|∇ 𝑓 |2 𝜔𝑛𝑀 ≤ 2𝑛
∫
𝑀

| 𝑓 |2 𝜔𝑛𝑀 . (58)

We also have the following Bochner-type formula on M (see, e.g., La Nave-Tian-Zhang
[39, Lemma 3.1]):

Δ |∇ 𝑓 |2 ≥ Ric𝜔𝑀 (∇ 𝑓 ,∇ 𝑓 ) − (𝑛 + 2) |∇ 𝑓 |2 ≥ −(𝑛 + 2 + |𝜆 |) |∇ 𝑓 |2, (59)

where we are using the metrics ℎ𝑘 , 𝜔𝑀 as above.
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Both (56) and (59) are of the form

Δ𝑣 ≥ −𝐴𝑣, (60)

where v is a smooth 𝐿∞ function on M. We can argue using the cutoff functions 𝜙𝑖 , as in the proof of
Lemma 11, to show that v satisfies this differential inequality on all of 𝑋̂ in a weak sense, that is, for any
Lipschitz test function 𝜌 ≥ 0 we have∫

𝑀
(−∇𝜌 · ∇𝑣 + 𝐴𝜌𝑣) 𝜔𝑛𝑀 ≥ 0. (61)

Using this, together with estimates for the heat kernel on 𝑋̂ , we can obtain the required 𝐿∞ bound for
𝑣 = | 𝑓 |2 and 𝑣 = |∇ 𝑓 |2. More precisely, using [38, Theorem 1.2], together with the RCD property
in Proposition 15, we obtain an 𝐿2-bound for the heat kernel 𝐻 (𝑥, 𝑦, 1) on M, independently of k.
Using (60), for any 𝑥 ∈ 𝑀 we have

𝑑

𝑑𝑡

∫
𝑀
𝑣(𝑦)𝐻 (𝑥, 𝑦, 𝑡) 𝜔𝑛𝑀 (𝑦) =

∫
𝑀
𝑣(𝑦)Δ 𝑦𝐻 (𝑥, 𝑦, 𝑡) 𝜔𝑛𝑀 (𝑦) ≥ −𝐴

∫
𝑀
𝑣(𝑦)𝐻 (𝑥, 𝑦, 𝑡) 𝜔𝑛𝑀 (𝑦), (62)

so

𝑣(𝑥) ≤ 𝑒𝐴
∫
𝑀
𝑣(𝑦)𝐻 (𝑥, 𝑦, 1) 𝜔𝑛𝑀 (𝑦) ≤ 𝑒𝐴𝐶‖𝑣‖𝐿2 , (63)

as required. �

In order to show that sections of 𝐿𝑘 separate points of 𝑋̂ for large k (and therefore also for 𝑘 = 1),
we follow the approach of Donaldson-Sun [27], constructing suitable sections of 𝐿𝑘 using Hörmander’s
𝐿2-estimate. For this the basic ingredient in [27] is to consider a tangent cone Z of 𝑋̂ at x, and use
that the regular part of Z is a Kähler cone, while at the same time the singular set can be excised by a
suitable cutoff function. The main new difficulty in our setting is that along the pointed convergence of
a sequence of rescalings

( 𝑋̂, 𝜆𝑖𝑑𝑋̂ , 𝑥) → (𝑍, 𝑑𝑍 , 𝑜), (64)

with 𝜆𝑖 → ∞, we do not know that compact subsets 𝐾 ⊂ 𝑍𝑟𝑒𝑔 of the (metric) regular set in Z are
obtained as smooth limits of subsets of the (complex analytic) regular set 𝑋𝑟𝑒𝑔. For example, a priori it
may happen that along the convergence in (64), even if 𝑍 = R2𝑛, the singular set 𝑋 \ 𝑋𝑟𝑒𝑔 converges
to a dense subset of Z. This is similar to the issue dealt with in Chen-Donaldson-Sun [17], but in that
work it is used crucially that the singular spaces considered are limits of smooth manifolds with lower
Ricci bounds.

To deal with this issue in our setting, we exploit the fact that 𝑋 \ 𝑋𝑟𝑒𝑔 is locally contained in the zero
set of holomorphic functions, which also define harmonic functions on the RCD space 𝑋̂ . Crucially,
these functions have a bound on their order of vanishing (Lemma 20), which can be used to control the
size of the zero set at different scales, at least on balls that are sufficiently close to a Euclidean ball. This
can be used to show that balls in 𝑋̂ that are almost Euclidean are contained in 𝑋𝑟𝑒𝑔 (Proposition 24).
This is the main new ingredient in our argument. Given this, we can closely follow the arguments in
Donaldson-Sun [27] or [42] to construct holomorphic sections of 𝐿𝑘 .

Let us write Γ = 𝑋 \ 𝑋𝑟𝑒𝑔 for the algebraic singular set. Observe that Γ can locally be cut out by
holomorphic functions. Therefore, we can cover X with open sets𝑈 ′

𝑘 and we have nonzero holomorphic
functions 𝑠𝑘 on𝑈 ′

𝑘 such that Γ∩𝑈 ′
𝑘 ⊂ 𝑠−1

𝑘 (0). We can assume that the 𝑠𝑘 are bounded, and that we have
relatively compact open sets𝑈𝑘 ⊂⊂ 𝑈 ′

𝑘 that still cover X. We let 𝑈̂𝑘 , 𝑈̂ ′
𝑘 be the corresponding open sets

pulled back to 𝑋̂ . Using Lemma 6, we can extend the 𝑠𝑘 to complex valued harmonic functions on 𝑋̂ ,
which vanish along Γ. Our first task will be to show that we have a bound for the order of vanishing of
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the 𝑠𝑘 at each point. Note first that by the assumption that 𝜔 is a Kähler current, there exists an 𝑟0 > 0
such that if 𝑝 ∈ 𝑈̂𝑘 , then 𝐵(𝑝, 𝑟0) ⊂ 𝑈̂ ′

𝑘 . Here, and below, a ball 𝐵(𝑝, 𝑟) always denotes the metric ball
using the metric 𝑑𝑋̂ on 𝑋̂ induced by 𝑑𝜔 on 𝑋𝑟𝑒𝑔.

Lemma 20. There are constant 𝑐1, 𝑁 > 0, depending on (𝑋, 𝜔), such that for any 𝑥 ∈ 𝑈̂𝑘 and 𝑟 ∈ (0, 𝑟0),
we have ∫

𝐵 ( 𝑥̂,𝑟 )
|𝑠𝑘 |2 𝜔𝑛 ≥ 𝑐1𝑟

𝑁, (65)

for all 𝑟 < 𝑟0.

Proof. First note that since 𝑋̂ is a noncollapsed RCD space, we have a constant 𝜈 > 0 such that
vol 𝐵(𝑥, 𝑟) > 𝜈𝑟2𝑛 for all 𝑟 < 1. At the same time we can bound the volume of sublevel sets𝑈 ′

𝑘∩{|𝑠𝑘 | < 𝑡}
from above, using the assumptions on 𝜔. Indeed, on 𝑈 ′

𝑘 we have 𝜔𝑛 = 𝐹𝜂𝑛𝐹𝑆 , and 𝐹 ∈ 𝐿 𝑝 (𝑋, 𝜂𝑛𝐹𝑆) for
some 𝑝 > 1. It follows that for any 𝑡 > 0 we have

vol(𝑈 ′
𝑘 ∩ {|𝑠𝑘 | < 𝑡}, 𝜔𝑛) =

∫
𝑈 ′
𝑘
∩{ |𝑠𝑘 |<𝑡 }

𝜔𝑛

=
∫
𝑈 ′
𝑘
∩{ |𝑠𝑘 |<𝑡 }

𝐹 𝜂𝑛𝐹𝑆

≤ 𝐶1vol(𝑈 ′
𝑘 ∩ {|𝑠𝑘 | < 𝑡}, 𝜂𝑛𝐹𝑆)

1/𝑝′
(∫
𝑈 ′
𝑘

𝐹 𝑝 𝜂𝑛𝐹𝑆

)1/𝑝

≤ 𝐶2vol(𝑈 ′
𝑘 ∩ {|𝑠𝑘 | < 𝑡}, 𝜂𝑛𝐹𝑆)

1/𝑝′,

(66)

for suitable constants 𝐶1, 𝐶2 independent of t, and 𝑝′ is the conjugate exponent of p. Since |𝑠𝑘 |−𝜖 𝜂𝑛𝐹𝑆
is integrable for some 𝜖 > 0, it follows that we have a bound

vol(𝑈 ′
𝑘 ∩ {|𝑠𝑘 | < 𝑡}, 𝜂𝑛𝐹𝑆) ≤ 𝐶3𝑡

𝜖 , (67)

and so in sum we have

vol(𝑈 ′
𝑘 ∩ {|𝑠𝑘 | < 𝑡}, 𝜔𝑛) ≤ 𝐶4𝑡

𝛼, (68)

for some 𝐶4, 𝛼 > 0 independent of t. Given a small 𝑟 > 0 such that 𝐵(𝑥, 𝑟) ⊂ 𝑈̂ ′
𝑘 , choose 𝑡𝑟 such that

𝐶4𝑡
𝛼
𝑟 =

1
2
𝜈𝑟2𝑛, (69)

that is,

𝑡𝑟 =

(
𝜈

2𝐶4

)1/𝛼
𝑟2𝑛/𝛼 = 𝑐5𝑟

2𝑛𝛼−1
, (70)

for suitable 𝑐5 > 0. By our estimates for the volumes, we then have

vol(𝐵(𝑥, 𝑟) ∩ {|𝑠𝑘 | ≥ 𝑡𝑟 }) ≥
1
2
𝜈𝑟2𝑛, (71)

and so ∫
𝐵 ( 𝑥̂,𝑟 )

|𝑠𝑘 |2 𝜔𝑛 ≥
𝑐2

5𝑟
4𝑛𝛼−1

2
𝜈𝑟2𝑛 = 𝑐1𝑟

𝑁 , (72)

for some 𝑐1, 𝑁 > 0, independent of r, as required. �
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Next we need a version of the three annulus lemma for almost Euclidean balls, similar to
[26, Theorem 0.7].

Lemma 21. For any 𝜇 > 0, 𝜇 ∉ Z, there is an 𝜖 > 0 depending on 𝜇, 𝑛 with the following property.
Suppose that 𝐵(𝑝, 1) is a unit ball in a noncollapsed 𝑅𝐶𝐷 (−1, 2𝑛)-space such that

𝑑𝐺𝐻 (𝐵(𝑝, 1), 𝐵(0R2𝑛 , 1)) < 𝜖, (73)

where 0R2𝑛 denotes the origin in Euclidean space. Let 𝑢 : 𝐵(𝑝, 1) → C be a harmonic function such that(⨏
𝐵 (𝑝,1/2)

|𝑢 |2
)1/2

≥ 2𝜇
(⨏

𝐵 (𝑝,1/4)
|𝑢 |2

)1/2
. (74)

Then (⨏
𝐵 (𝑝,1)

|𝑢 |2
)1/2

≥ 2𝜇
(⨏

𝐵 (𝑝,1/2)
|𝑢 |2

)1/2
. (75)

Proof. The proof is by contradiction, similarly to [26], based on the fact that on the Euclidean space
R2𝑛 every homogeneous harmonic function has integer degree. �

Combining the previous two results, we have the following, controlling the decay rate of the defining
functions 𝑠𝑘 around almost regular points.

Lemma 22. There exists an 𝜖0, 𝑟0 > 0, depending on (𝑋, 𝜔), such that if 𝑥 ∈ 𝑈̂𝑘 and for some 𝑟1 ∈ (0, 𝑟0)
we have

𝑑𝐺𝐻 (𝐵(𝑥, 𝑟1), 𝐵(0R2𝑛 , 𝑟1)) < 𝑟1𝜖0, (76)

then

lim sup
𝑟→0

⨏
𝐵 ( 𝑥̂,𝑟 ) |𝑠𝑘 |

2 𝜔𝑛⨏
𝐵 ( 𝑥̂,𝑟/2) |𝑠𝑘 |

2 𝜔𝑛
≤ 22𝑁 , (77)

for the N in Lemma 20.

Proof. Fix 𝜇 ∈ (𝑁/2, 𝑁) such that 𝜇 ∉ Z. If 𝜖0 and 𝑟0 are sufficiently small (depending on 𝜇), then the
inequality (76) implies that for any 𝑟 ≤ 𝑟1 we have

𝑑𝐺𝐻 (𝐵(𝑥, 𝑟), 𝐵(0R2𝑛 , 𝑟)) < 𝑟𝜖, (78)

for the 𝜖 in Lemma 21, and so the conclusion of that Lemma holds. It follows that if(⨏
𝐵 ( 𝑥̂,𝑟 )

|𝑠𝑘 |2 𝜔𝑛
)1/2

≥ 2𝜇
(⨏

𝐵 ( 𝑥̂,𝑟/2)
|𝑠𝑘 |2 𝜔𝑛

)1/2
, (79)

for some 𝑟 ≤ 𝑟1, then applying Lemma 21 inductively, we have(⨏
𝐵 ( 𝑥̂,2 𝑗𝑟 )

|𝑠𝑘 |2 𝜔𝑛
)1/2

≥ 2 𝑗𝜇
(⨏

𝐵 ( 𝑥̂,𝑟/2)
|𝑠𝑘 |2 𝜔𝑛

)1/2
, (80)

as long as 2 𝑗𝑟 ≤ 𝑟1. Given any 𝑟 ≤ 𝑟1, if we let 𝑗 denote the largest j such that 2 𝑗𝑟 ≤ 𝑟1, then we obtain(⨏
𝐵 ( 𝑥̂,𝑟/2)

|𝑠𝑘 |2 𝜔𝑛
)1/2

≤ 2− 𝑗𝜇𝐶, (81)
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where C is independent of r, but depends on the 𝐿2-norm of 𝑠𝑘 on 𝐵(𝑥, 𝑟1). Applying Lemma 20 we then
have

2− 𝑗𝜇𝐶 ≥ 𝑐1/2
1 (𝑟/2)𝑁 /2. (82)

Since 2 𝑗+1𝑟 > 𝑟1, it follows that 2− 𝑗𝜇 < (2𝑟/𝑟1)𝜇, so

𝑐1/2
1 (𝑟/2)𝑁 /2 < (2𝑟/𝑟1)𝜇𝐶. (83)

Since 𝜇 > 𝑁/2, this inequality implies a lower bound for r satisfying (79). The required conclusion (77)
follows. �

Using this result, we will show that almost Euclidean balls are contained in the complex analytically
regular set 𝑋𝑟𝑒𝑔 ⊂ 𝑋̂ . Note that the assumption (85) will hold on sufficiently small balls around a given
point, by the previous lemma.
Proposition 23. There exists an 𝜖2 > 0, depending on (𝑋, 𝜔), with the following property. Suppose that
𝑥 ∈ 𝑈̂ 𝑗 and 𝑘 > 0 is a large integer such that 𝜖−1

2 𝑘
−2 < 𝜖2. Suppose in addition that

𝑑𝐺𝐻

(
𝐵(𝑥, 𝜖−1

2 𝑘
−2), 𝐵R2𝑛 (0, 𝜖−1

2 𝑘
−2)

)
< 𝜖2𝑘

−2, (84)

and that ⨏
𝐵 ( 𝑥̂, 𝜖 −1

2 𝑘−2)
|𝑠 𝑗 |2 𝜔𝑛 ≤ 22𝑁

⨏
𝐵 ( 𝑥̂, 1

2 𝜖
−1
2 𝑘−2)

|𝑠 𝑗 |2 𝜔𝑛, (85)

for the N in Lemma 20. Then 𝑥 ∈ 𝑋𝑟𝑒𝑔, where 𝑋𝑟𝑒𝑔 is the complex analytically regular set of X, viewed
as a subset of 𝑋̂ .
Proof. We will argue by contradiction, similarly to [42, Proposition 3.1] which in turn is based on
Donaldson-Sun [27]. Suppose that no suitable 𝜖2 exists. Then we have a sequence of points 𝑥𝑖 , and
integers 𝑘𝑖 > 𝑖 such that the hypotheses are satisfied (with 𝜖2 = 1/𝑖). We will show that for sufficiently
large i we have 𝑥𝑖 ∈ 𝑋𝑟𝑒𝑔 by constructing holomorphic coordinates in a neighborhood of 𝑥𝑖 .

By a slight abuse of notation we will write 𝑈̂𝑖 , 𝑠𝑖 instead of 𝑈̂ 𝑗𝑖 and 𝑠 𝑗𝑖 to simplify the notation. The
assumptions imply that the rescaled balls

𝑘1/2
𝑖 𝐵(𝑥𝑖 , 𝑖𝑘−1/2

𝑖 ) → R2𝑛, (86)

in the pointed Gromov-Hausdorff sense. Using Lemma 21 together with the condition (85), we can
extract a nontrivial limit of the normalized functions

𝑠𝑖 =
𝑠𝑖(⨏

𝐵 ( 𝑥̂𝑖 ,𝑘−1/2
𝑖 ) |𝑠𝑖 |

2 𝜔𝑛
)1/2 . (87)

Indeed, we have ⨏
𝐵 ( 𝑥̂𝑖 ,𝑘−1/2

𝑖 )
|𝑠𝑖 |2 𝜔𝑛 = 1, (88)

and using Lemma 21 with some 𝜇 ∈ (𝑁, 2𝑁), together with (85), implies that for sufficiently large i we
have ⨏

𝐵 ( 𝑥̂𝑖 ,2− 𝑗 𝜖 −1
2 𝑘

−1/2
𝑖 )

|𝑠𝑖 |2 𝜔𝑛 ≤ 24𝑁
⨏
𝐵 ( 𝑥̂𝑖 ,2− 𝑗−1 𝜖 −1

2 𝑘
−1/2
𝑖 )

|𝑠𝑖 |2 𝜔𝑛, (89)

for all 𝑗 ≥ 0. In particular, viewed as functions on the rescaled balls 𝑘1/2
𝑖 𝐵(𝑥𝑖 , 𝑖𝑘−1/2

𝑖 ), the 𝐿2 norms
of the 𝑠𝑖 are bounded independently of i on any R-ball. Using the gradient estimate, Proposition 12, it
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follows that up to choosing a subsequence, the functions 𝑠𝑖 converge locally uniformly to a harmonic
function 𝑠∞ : R2𝑛 → C. As a consequence, 𝑠∞ is smooth, and because of the normalization (88), 𝑠∞ is
nonzero.

Note that if we take a sequence of rescalings of R2𝑛 with factors going to infinity, and consider the
corresponding pullbacks of 𝑠∞, normalized to have unit 𝐿2-norm on the unit balls, then this new sequence
of harmonic functions will converge to the leading order homogeneous piece of the Taylor expansion
of 𝑠∞ at the origin (up to a constant factor). This means that in the procedure above, up to replacing the
integers 𝑘𝑖 by suitable larger integers, we can assume that the limit 𝑠∞ is in fact homogeneous.

Let us write Σ = 𝑠−1
∞ (0). Our next goal is to show that under the convergence in (86), the set R2𝑛 \ Σ

is the locally smooth limit of subsets of 𝑋𝑟𝑒𝑔, and that 𝑠∞ is actually a holomorphic function under an
identificationR2𝑛 = C𝑛. Then we will be able to follow the argument in the proof of [42, Proposition 3.1]
with the cone 𝑉 = C𝑛, but treating Σ as the singular set.

Note that since 𝑠∞ is a nonzero harmonic function, the set R2𝑛 \Σ is open and dense in R2𝑛. Suppose
that 𝑉 ⊂ R2𝑛 is an open subset such that 𝑉̄ is compact and |𝑠∞| > 0 on 𝑉̄ . Then, because of the local
uniform convergence of 𝑠𝑖 to 𝑠∞, and the fact that the sets 𝑠𝑖 ≠ 0 are contained in 𝑋𝑟𝑒𝑔, it follows
that we have open subsets 𝑉𝑖 ⊂⊂ 𝑘−2

𝑖 𝐵(𝑥𝑖 , 𝑖𝑘
−1/2
𝑖 ) ∩ 𝑋𝑟𝑒𝑔, which converge in the Gromov-Hausdorff

sense to V. The metrics on the𝑉𝑖 are smooth noncollapsed Kähler-Einstein metrics, so using Anderson’s
𝜖-regularity result [2], up to choosing a subsequence, the complex structures on𝑉𝑖 converge to a complex
structure on V with respect to which the Euclidean metric is Kähler. Note that we do not yet know that
R2𝑛 \ Σ is connected, and in principle we may get different complex structures on different connected
components. Our next goal is to show that the Hausdorff dimension of Σ is at most 2𝑛 − 2, which will
show that the complement of Σ is connected.

We can assume that the holomorphic functions 𝑠𝑖 on𝑉𝑖 converge to a holomorphic function 𝑠∞ on V.
Writing 𝑠∞ = 𝑢∞ +

√
−1𝑣∞, we therefore have 〈∇𝑢∞,∇𝑣∞〉 = 0 and |∇𝑣∞| = |∇𝑢∞| on R2𝑛 \ Σ, and by

density these relations extend to all of R2𝑛. We can assume that 𝑢∞ is nonconstant. Let 𝛼 > 2𝑛 − 2, and
suppose that the Hausdorff measure H𝛼 (Σ) > 0. By Caffarelli-Friedman [9] (see also Han-Lin [34])
we know that H𝛼 (Σ ∩ |∇𝑢∞|−1 (0)) = 0, and so we can find an 𝛼-dimensional point of density q of
Σ \ |∇𝑢∞|−1 (0). Since ∇𝑢∞(𝑞) ≠ 0, it follows that ∇𝑣∞(𝑞) ≠ 0 and 〈∇𝑣∞(𝑞),∇𝑢∞(𝑞)〉 = 0. Therefore
in a neighborhood of q the set Σ is a smooth 2𝑛 − 2-dimensional submanifold, contradicting that q is an
𝛼-dimensional point of density. In conclusion dimH Σ ≤ 2𝑛 − 2, and so R2𝑛−2 \ Σ is connected.

We can therefore assume that in the argument above the complex structure that we obtain on R2𝑛 \ Σ
agrees with the standard structure on C𝑛, and 𝑠∞ is a holomorphic function on C𝑛 \ Σ, but since it is
smooth, it is actually holomorphic on C𝑛. In particular 𝑠−1

∞ (0) is a complex hypersurface defined by a
homogeneous holomorphic function.

At this point we can closely follow the proof of [42, Proposition 3.1]), treating the zero set 𝑠−1
∞ (0) as

the singular set Σ in [42]. The properties of the set Σ that are used are that the tubular 𝜌-neighborhood
Σ𝜌 satisfies the volume bounds vol(Σ𝜌 ∩ 𝐵(0, 𝑅)) ≤ 𝐶𝑅𝜌2, where the constant 𝐶𝑅 in our setting could
depend on 𝑅, 𝑠∞. In addition if 𝐵(𝑝, 2𝑟) ∈ R2𝑛 \ Σ, then 𝐵(𝑝, 𝑟) is the Gromov-Hausdorff limit of
balls 𝐵(𝑝𝑖 , 𝑟) ⊂ (𝑀, 𝑘𝑖𝜔) in Kähler-Einstein manifolds, and so by Anderson’s result [2] we have good
holomorphic charts on the 𝐵(𝑝𝑖 , 𝑟) for sufficiently large i, analogous to those in [42, Theorem 1.4]. The
rest of the proof is then identical to the argument in the proof of [42, Proposition 3.1] (see also Donaldson-
Sun [27]) to show that for sufficiently large i we can construct holomorphic sections 𝑠0, . . . , 𝑠𝑛 of 𝐿𝑘′𝑖
for suitable powers 𝑘 ′𝑖 , such that 𝑠1

𝑠0
, . . . , 𝑠𝑛𝑠0

define a generically one-to-one map from a neighborhood
of 𝑥𝑖 = Φ̂𝑋 (𝑥𝑖) in X to a subset of C𝑛. Since X is normal, it follows that the map is one-to-one, and so
𝑥𝑖 ∈ 𝑋𝑟𝑒𝑔. Therefore 𝑥𝑖 ∈ 𝑋𝑟𝑒𝑔 as claimed. �

For any 𝜖 > 0, let us define the 𝜖-regular set R𝜖 (𝑌 ) in a noncollapsed RCD space Y to be the set of
points p that satisfy

lim
𝑟→0
𝑟−2𝑛vol(𝐵(𝑝, 𝑟)) > 𝜔2𝑛 − 𝜖, (90)
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where 𝜔2𝑛 is the volume of the 2𝑛-dimensional Euclidean unit ball. Then R𝜖 (𝑌 ) is an open set, and
from the previous result we obtain the following.
Proposition 24. There exists an 𝜖3 > 0, depending on (𝑋, 𝜔), such that the 𝜖3-regular set R𝜖3 ( 𝑋̂) ⊂ 𝑋̂
coincides with the complex analytically regular set 𝑋𝑟𝑒𝑔.
Proof. It is clear that 𝑋𝑟𝑒𝑔 ⊂ R𝜖3 ( 𝑋̂). To see the reverse inclusion, note that by Cheeger-Colding [12],
and De Philippis-Gigli [23] in the setting of noncollapsed RCD spaces, given the 𝜖2 > 0 in Proposition 23,
there exists an 𝜖3 > 0 such that if 𝑥 ∈ R𝜖3 , then for all sufficiently large k (depending on 𝑥), we have

𝑑𝐺𝐻

(
𝐵(𝑥, 𝜖−1

2 𝑘
−2), 𝐵R2𝑛 (0, 𝜖−1

2 𝑘
−2)

)
< 𝜖2𝑘

−2. (91)

Using also Lemma 22 (and choosing 𝜖3 smaller if necessary), we have the growth estimate (85).
Proposition 23 then implies that 𝑥 ∈ 𝑋𝑟𝑒𝑔. �

This has the following immediate corollary.
Corollary 25. There is an 𝜖 > 0, depending on (𝑋, 𝜔), such that the 𝜖-regular set R𝜖 ( 𝑋̂) coincides
with the metric regular set of 𝑋̂ , that is, the points 𝑥 ∈ 𝑋̂ where the tangent cone is R2𝑛.

Given these preliminaries, we have the following result, analogous to [42, Proposition 3.1] in our
setting.
Proposition 26. Let (𝑉, 𝑜) be a metric cone, such that for any 𝜖 > 0 the singular set 𝑉 \ R𝜖 (𝑉) has
zero capacity (in the sense of (3) in Definition 5). Let 𝜁 > 0. There are 𝐾, 𝜖, 𝐶 > 0, depending on
𝜁, (𝑋, 𝜔), 𝑉 satisfying the following property. Suppose that k is a large integer such that 𝜖−1𝑘−1/2 < 𝜖
and for some 𝑥 ∈ 𝑋̂

𝑑𝐺𝐻

(
𝐵(𝑥, 𝜖−1𝑘−1/2), 𝐵(𝑜, 𝜖−1𝑘−1/2)

)
< 𝜖𝑘−1/2. (92)

Then for some 𝑚 < 𝐾 the line bundle 𝐿𝑚𝑘 admits a holomorphic section s over 𝑀 = 𝑋𝑟𝑒𝑔 \ 𝐷 such
that ‖𝑠‖𝐿2 (ℎ𝑚𝑘 ,𝑚𝑘𝜔) < 𝐶 and 


|𝑠(𝑧) | − 𝑒−𝑚𝑘𝑑 (𝑧, 𝑥̂)2/2




 < 𝜁 (93)

for 𝑧 ∈ 𝑀 .
Given the results above, the argument is essentially the same as that in [42] (see also Donaldson-

Sun [27]). One main difference is that in the setting of noncollapsed RCD spaces the sharp estimates
of Cheeger-Jiang-Naber [14] do not yet seem to be available in the literature. However, the proof of
[42, Proposition 3.1] applies under the assumption that for any 𝜖 > 0 the singular set Σ = 𝑉 \R𝜖 (𝑉)
has zero capacity.

We can rule out nonflat (iterated) tangent cones that split off a Euclidean factor of R2𝑛−2, following
the approach of Chen-Donaldson-Sun [16, Proposition 12] (see also [42, Proposition 3.2]).
Proposition 27. Suppose that 𝑥 𝑗 ∈ 𝑋̂ and for a sequence of integers 𝑘 𝑗 → ∞ the rescaled pointed
sequence ( 𝑋̂, 𝑘2

𝑗𝑑𝑋̂ , 𝑥 𝑗 ) converges to R2𝑛−2 × 𝐶 (𝑆1
𝛾) in the pointed Gromov-Hausdorff sense. Here

𝐶 (𝑆1
𝛾) is the cone over a circle of length 𝛾. Then 𝛾 = 2𝜋, that is, 𝐶 (𝑆1

𝛾) = R2.

Proof. If 𝑉 = R2𝑛−2 × 𝐶 (𝑆1
𝛾), then the singular set of V has capacity zero, and so Proposition 26

can be applied. Then, as in [16, Proposition 12], it follows that for sufficiently large j, we can find
a biholomorphism 𝐹𝑗 from a neighborhood Ω 𝑗 of 𝑥 𝑗 to the unit ball 𝐵(0, 1) ⊂ C𝑛. In particular
𝐵(𝑥 𝑗 , 1

2 𝑘
−2
𝑗 ) ⊂ 𝑋𝑟𝑒𝑔, and then the limit R2𝑛−2 × 𝐶 (𝑆1

𝛾) of ( 𝑋̂, 𝑘2
𝑗𝑑𝑋̂ , 𝑥 𝑗 ) must be smooth at the origin.

Therefore 𝛾 = 2𝜋. �

As a consequence of this result we can prove Theorem 17.
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Proof of Theorem 17. Using Propositions 10 and 27, and De Philippis-Gigli’s dimension estimate [23]
for the singular set (extending Cheeger-Colding [12]), it follows that the singular set of any iterated
tangent cone of 𝑋̂ has Hausdorff codimension at least 3. Using Proposition 24 we know that the singular
set is closed, and so as in Donaldson-Sun [27, Proposition 3.5] we see that the singular set of any iterated
tangent cone has capacity zero. In particular Proposition 26 can be applied to any (𝑉, 𝑜) that arises as a
rescaled limit of 𝑋̂ .

Suppose that 𝑝 ≠ 𝑞 are points in 𝑋̂ . Applying Proposition 26 to tangent cones at 𝑝, 𝑞, we can find
sections 𝑠𝑝 and 𝑠𝑞 of some powers 𝐿𝑚𝑝 , 𝐿𝑚𝑞 , such that |𝑠𝑝 (𝑝) | > |𝑠𝑝 (𝑞) |, and |𝑠𝑞 (𝑞) | > |𝑠𝑞 (𝑝) |.
Taking powers we find that the sections 𝑠𝑚𝑞𝑝 and 𝑠𝑚𝑝𝑞 of 𝐿𝑚𝑝𝑚𝑞 separate the points 𝑝, 𝑞, and so the map
Φ̂𝑋 is injective as required. �

To complete the proofs of Theorem 4, it remains to show the codimension bounds for the singular
set of 𝑋̂ . By the dimension estimate of [23], it suffices to show the following. Note that this result would
follow from a version of Cheeger-Colding-Tian [13, Theorem 9.1] for RCD spaces, but in our setting
we can give a more direct proof.

Proposition 28. In the setting of Theorem 4, suppose that a tangent cone 𝑋̂𝑝 at 𝑝 ∈ 𝑋̂ splits off an
isometric factor of R2𝑛−3. Then 𝑋̂𝑝 = R2𝑛. In particular in the stratification of the singular set of 𝑋̂ we
have 𝑆2𝑛−1 = 𝑆2𝑛−4, and so dimH 𝑆 ≤ 2𝑛 − 4.

Proof. Suppose that 𝑋̂ has a tangent cone of the form 𝑋̂𝑝 = 𝐶 (𝑍) ×R2𝑛−3, where Z is two-dimensional.
If Z had a singular point, necessarily with tangent cone 𝐶 (𝑆1

𝛾) for some 𝛾 < 2𝜋, then 𝑋̂ would have an
iterated tangent cone of the form R2𝑛−2 × 𝐶 (𝑆1

𝛾). This is ruled out by Proposition 27. Therefore Z is
actually a smooth two-dimensional Einstein manifold with metric satisfying Ric(ℎ) = ℎ. This implies
that Z is the unit 2-sphere, and it follows that 𝑋̂𝑝 = R2𝑛 so that p is a regular point. Therefore the singular
set of 𝑋̂ coincides with 𝑆2𝑛−4, as required. �

5. CscK approximations

In this section we will prove Theorem 3. Thus, let (𝑋, 𝜔𝐾𝐸 ) be an n-dimensional singular Kähler-
Einstein space, such that the automorphism group of X is discrete and𝜔𝐾𝐸 ∈ 𝑐1 (𝐿) for an ampleQ-line
bundle on X. On the regular part we have Ric(𝜔𝐾𝐸 ) = 𝜆𝜔𝐾𝐸 for a constant 𝜆 ∈ R. We will assume that
𝜆 ∈ {0,−1, 1}. In the latter two cases we have 𝐿 = ±𝐾𝑋 . We first recall the properness of the Mabuchi
K-energy in this singular setting. This has been well studied in the Fano setting (see Darvas [21] for
example), but we were not able to find the corresponding much easier result in the literature for singular
varieties in the case when 𝜆 ≤ 0.

First recall the definitions of certain functionals (see Darvas [21] or Boucksom-Eyssidieux-Guedj-
Zeriahi [5] for instance). We choose a smooth representative 𝜔 ∈ 𝑐1(𝐿). This means that 𝑚𝜔 is the
pullback of the Fubini-Study metric under an embedding using sections of 𝐿𝑚 for large m. In general
we define a function 𝑓 : 𝑈 → R on an open set 𝑈 ⊂ 𝑋 to be smooth, and write 𝑓 ∈ 𝐶∞(𝑈), if it is the
restriction of a smooth function under an embedding𝑈 ⊂ C𝑁 . We let

H𝜔 (𝑋) = {𝑢 ∈ 𝐶∞(𝑋) : 𝜔𝑢 := 𝜔 +
√
−1𝜕𝜕𝑢 > 0},

𝑃𝑆𝐻𝜔 (𝑋) = {𝑢 ∈ 𝐿1 (𝑋) : 𝜔𝑢 := 𝜔 +
√
−1𝜕𝜕𝑢 ≥ 0}.

(94)

We define the J𝜔 functional on 𝑃𝑆𝐻𝜔 (𝑋) ∩ 𝐿∞ by setting J𝜔 (0) = 0 and the variation

𝛿J𝜔 (𝑢) = 𝑛
∫
𝑋𝑟𝑒𝑔

𝛿𝑢(𝜔 − 𝜔𝑢) ∧ 𝜔𝑛−1
𝑢 . (95)
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Let us choose a smooth metric h on 𝐾𝑋 , that is, if 𝜎 is a local nonvanishing section of 𝐾𝑟𝑋 , then the
norm |𝜎 |2ℎ𝑟 is a smooth function. The adapted measure 𝜇 is defined using such local trivializing sections
to be (see [29, Section 6.2])

𝜇 = (𝑖𝑟𝑛2
𝜎 ∧ 𝜎̄)1/𝑟 |𝜎 |−2/𝑟

ℎ𝑟 on 𝑋𝑟𝑒𝑔, (96)

extended trivially to X. Recall that if X has klt singularities, then 𝜇 has finite total mass. Moreover, if
𝜋 : 𝑌 → 𝑋 is a resolution, and Ω is a smooth volume form on Y, then we have

𝜋∗𝜇 = 𝐹Ω on 𝜋−1 (𝑋𝑟𝑒𝑔), (97)

where 𝐹 ∈ 𝐿 𝑝 (Ω) for some 𝑝 > 1 (see [29, Lemma 6.4]). In our three cases 𝜆 ∈ {0,−1, 1} we can
choose the metric h in such a way that the curvature of h is given by −𝜆𝜔 for the smooth metric 𝜔.

We define the Mabuchi K-energy, for 𝑢 ∈ 𝑃𝑆𝐻𝜔 (𝑋) ∩ 𝐿∞, by

𝑀𝜔 (𝑢) =
∫
𝑋𝑟𝑒𝑔

log
(
𝜔𝑛𝑢
𝜇

)
𝜔𝑛𝑢 − 𝜆J𝜔 (𝑢). (98)

The first term (the entropy) is defined to be ∞, unless 𝜔𝑛𝑢 = 𝑓 𝜇 and 𝑓 log 𝑓 is integrable with respect
to 𝜇. We have the following result.

Proposition 29. The functional 𝑀𝜔 is proper in the sense that there are constants 𝛿, 𝐵 > 0 such that
for all 𝑢 ∈ 𝑃𝑆𝐻𝜔 (𝑋) ∩ 𝐿∞ we have

𝑀𝜔 (𝑢) > 𝛿J𝜔 (𝑢) − 𝐵. (99)

Proof. The case when 𝜆 = 1 is well known, going back to Tian [56] in the smooth setting, who proved
a weaker version of properness. The properness in the form (99) was shown by Phong-Song-Sturm-
Weinkove [48]. In the singular setting the result was shown in Darvas [21, Theorem 2.2]. Note that we
are assuming that X has discrete automorphism group and admits a Kähler-Einstein metric.

The cases 𝜆 = 0,−1 are much easier (see Tian [57] or Song-Weinkove [50, Theorem 1.2] for a similar
result). For this, note that J𝜔 ≥ 0, and so when 𝜆 ≤ 0, we have

𝑀𝜔 (𝑢) ≥
1
𝑉

∫
𝑋𝑟𝑒𝑔

log
(
𝜔𝑛𝑢
𝜇

)
𝜔𝑛𝑢 . (100)

At the same time, using Tian [54], we know that there are 𝛼,𝐶1 > 0 such that for all 𝑢 ∈ 𝑃𝑆𝐻𝜔 (𝑋)
with sup𝑋 𝑢 = 0 we have ∫

𝑌
𝑒−𝛼𝜋

∗𝑢 Ω < 𝐶1, (101)

and so with 𝑝−1 + 𝑞−1 = 1 (such that F in (97) is in 𝐿 𝑝) we have∫
𝑋𝑟𝑒𝑔

𝑒−𝛼𝑞
−1𝑢 𝑑𝜇 =

∫
𝜋−1 (𝑋𝑟𝑒𝑔)

𝑒−𝛼𝑞
−1 𝜋∗𝑢 𝜋∗𝜇

=
∫
𝜋−1 (𝑋𝑟𝑒𝑔)

𝑒−𝛼𝑞
−1 𝜋∗𝑢 𝐹Ω

≤
(∫

𝜋−1 (𝑋𝑟𝑒𝑔)
𝑒−𝛼𝜋

∗𝑢 Ω

)1/𝑞 (∫
𝜋−1 (𝑋𝑟𝑒𝑔)

𝐹 𝑝Ω

)1/𝑝

≤ 𝐶2.

(102)
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Using the convexity of the exponential function we then have, as in [50, Lemma 4.1],∫
𝑋𝑟𝑒𝑔

log
(
𝜔𝑛𝑢
𝜇

)
𝜔𝑛𝑢 ≥ 𝛼𝑞−1

∫
𝑋𝑟𝑒𝑔

(−𝑢) 𝜔𝑛𝑢 − 𝐶3, (103)

for all 𝑢 ∈ 𝑃𝑆𝐻𝜔 (𝑋) with sup𝑋 𝑢 = 0. As the same time, if sup𝑋 𝑢 = 0 and 𝑢 ∈ 𝐿∞, then we have∫
𝑋𝑟𝑒𝑔

(−𝑢) 𝜔𝑛𝑢 ≥ J𝜔 (𝑢). (104)

To see this, note that∫
𝑋𝑟𝑒𝑔

(−𝑢) 𝜔𝑛𝑢 =
∫ 1

0

𝑑

𝑑𝑡

∫
𝑋𝑟𝑒𝑔

(−𝑡𝑢) 𝜔𝑛𝑡𝑢 𝑑𝑡

=
∫ 1

0

∫
𝑋𝑟𝑒𝑔

(−𝑢) 𝜔𝑛𝑡𝑢 − 𝑛𝑡𝑢
√
−1𝜕𝜕𝑢 ∧ 𝜔𝑛−1

𝑡𝑢 𝑑𝑡

≥
∫ 1

0
𝑛

∫
𝑋𝑟𝑒𝑔

𝑢(𝜔 − 𝜔𝑡𝑢) ∧ 𝜔𝑛−1
𝑡𝑢 𝑑𝑡

=
∫ 1

0

𝑑

𝑑𝑡
J𝜔 (𝑡𝑢) 𝑑𝑡 = J𝜔 (𝑢).

(105)

So combining the estimates above we obtain (99). �

Suppose that 𝜋 : 𝑌 → 𝑋 is a projective resolution such that the anticanonical bundle−𝐾𝑌 is relatively
nef. Let us write E for the exceptional divisor. The relatively nef assumption implies (see Boucksom-
Jonsson-Trusiani [6]), that we have a smooth volume form Ω on Y, whose Ricci form Ric(Ω) satisfies

Ric(Ω) ≥ −𝐶𝜋∗𝜔 (106)

for suitable 𝐶 > 0. Let us fix a smooth Kähler metric 𝜂𝑌 on Y, with volume form Ω, and we let
𝜂𝜖 = 𝜋∗𝜔 + 𝜖𝜂𝑌 , which is a smooth Kähler metric on Y. For any closed (1, 1)-form 𝛼 on Y, we define
the functional J𝜂𝜖 ,𝛼 on 𝑃𝑆𝐻𝜂𝜖 (𝑌 ) ∩ 𝐿∞ by letting J𝜂𝜖 ,𝛼 (0) = 0 and its variation

𝛿J𝜂𝜖 ,𝛼 (𝑢) = 𝑛
∫
𝑌
𝛿𝑢

(
𝛼 − 𝑐𝛼𝜂𝜖 ,𝑢

)
∧ 𝜂𝑛−1

𝜖 ,𝑢 . (107)

Here 𝑐𝛼 is the constant determined by∫
𝑌

(
𝛼 − 𝑐𝛼𝜂𝜖 ,𝑢

)
∧ 𝜂𝑛−1

𝜖 ,𝑢 = 0, (108)

and 𝜂𝜖 ,𝑢 = 𝜂𝜖 +
√
−1𝜕𝜕𝑢.

We write J𝜂𝜖 = J𝜂𝜖 ,𝜂𝜖 , which is consistent with the earlier definition. The twisted Mabuchi K-
energy in the class [𝜂𝜖 ] is defined, for 𝑢 ∈ 𝑃𝑆𝐻𝜂𝜖 (𝑌 ) ∩ 𝐿∞ by

𝑀𝜂𝜖 ,𝑠 (𝑢) =
∫
𝑌

log
(
𝜂𝑛𝜖 ,𝑢
Ω

)
𝜂𝑛𝜖 ,𝑢 + J𝜂𝜖 ,𝑠𝜂𝜖 −Ric(Ω) . (109)

Note that

𝑀𝜂𝜖 ,𝑠 (𝑢) ≥ 𝑀𝜂𝜖 := 𝑀𝜂𝜖 ,0 (110)
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for 𝑠 ≥ 0. The critical points of this functional are the twisted cscK metrics 𝜂𝜖 ,𝑢 ∈ [𝜂𝜖 ], satisfying

𝑅(𝜂𝜖 ,𝑢) − 𝑠 tr𝜂𝜖 ,𝑢𝜂𝜖 = const. (111)

The following result uses our assumption that −𝐾𝑌 is relatively nef.

Lemma 30. Assuming that −𝐾𝑌 is relatively nef, there is a constant 𝐶2 > 0 such that J𝜂𝜖 ,−Ric(Ω) ≥
−𝐶2J𝜂𝜖 on 𝑃𝑆𝐻𝜂𝜖 (𝑌 ) ∩ 𝐿∞. In particular there are constants 𝑠0, 𝜖0 > 0 (depending on (𝑋, 𝜔𝐾𝐸 ))
such that for 𝑠 ≥ 𝑠0 and 𝜖 < 𝜖0 the twisted K-energy is proper:

𝑀𝜂𝜖 ,𝑠 (𝑢) ≥ J𝜂𝜖 (𝑢), (112)

for all 𝑢 ∈ 𝑃𝑆𝐻𝜂𝜖 (𝑌 ) ∩ 𝐿∞.

Proof. For 𝑢 ∈ 𝑃𝑆𝐻𝜂𝜖 (𝑌 ) ∩ 𝐿∞ with sup𝑌 𝑢 = 0, we have

−J𝜂𝜖 ,Ric(Ω) (𝑢) = 𝑛
∫ 1

0

∫
𝑌
(−𝑢) (Ric(Ω) − 𝑐𝜂𝜖 ,𝑡𝑢) ∧ 𝜂𝑛−1

𝜖 ,𝑡𝑢

≥ −𝑛
∫ 1

0

∫
𝑌
(−𝑢) (𝐶𝜋∗𝜔 + 𝑐𝜂𝜖 ,𝑡𝑢) ∧ 𝜂𝑛−1

𝜖 ,𝑡𝑢

≥ −𝐶1𝑛

∫ 1

0

∫
𝑌
(−𝑢) (𝜂𝜖 + 𝜂𝜖 ,𝑡𝑢) ∧ 𝜂𝑛−1

𝜖 ,𝑡𝑢

≥ −𝐶2𝐽𝜂𝜖 (𝑢).

(113)

Note that since the entropy term is nonnegative, we have 𝑀𝜂𝜖 ,𝑠 ≥ J𝜂𝜖 ,𝑠𝜂𝜖 −Ric(Ω) and also

J𝜂𝜖 ,𝑠𝜂𝜖 −Ric(Ω) = 𝑠J𝜂𝜖 ,𝜂𝜖 − J𝜂𝜖 ,Ric(Ω) . (114)

It follows that for 𝑠 > 𝐶2 + 1,

𝑀𝜂𝜖 ,𝑠 (𝑢) ≥ 𝐽𝜂𝜖 (𝑢). (115)

�

It follows from this result, using the work of Chen-Cheng [15], that if 𝜖 < 𝜖0 and 𝑠 > 𝑠0, then there
exists a twisted cscK metric 𝜂𝜖 ,𝑢 ∈ [𝜂𝜖 ] satisfying

𝑅(𝜂𝜖 ,𝑢) − 𝑠 tr𝜂𝜖 ,𝑢𝜂𝜖 = const. (116)

We will use a continuity method to construct twisted cscK metrics in [𝜂𝜖 ] for sufficiently small 𝜖 , that
satisfy (116) for 𝑠 ∈ [0, 𝑠0], and so in particular we obtain a cscK metric in [𝜂𝜖 ]. For this we will need a
refinement of Chen-Cheng’s estimates, which are uniform in the degenerating cohomology classes [𝜂𝜖 ]
as 𝜖 → 0. Such a refinement was shown by Zheng [62] who worked in the more complicated setting of
cscK metrics with cone singularities. See also Pan-Tô [47].

Note that in Zheng’s work the cscK metrics are expressed relative to metrics with a fixed volume form,
rather than metrics of the form 𝜂𝜖 . Let us write 𝜂𝜖 ∈ [𝜂𝜖 ] for the metrics with 𝜂𝜖 𝑛 = 𝑐𝜖Ω provided by
Yau [61], where the 𝑐𝜖 are bounded above and below uniformly. Note that we have 𝜂𝜖 = 𝜂𝜖 +

√
−1𝜕𝜕𝑣 𝜖

with a uniform bound on sup |𝑣 𝜖 |, independent of 𝜖 , so it does not matter whether we obtain 𝐿∞ bounds
for potentials relative to 𝜂𝜖 or relative to 𝜂𝜖 .

In order to state the estimates in a form that we will use, we make the following definition.

Definition 31. Fix an exhaustion 𝐾1 ⊂ 𝐾2 ⊂ . . . ⊂ 𝜋−1 (𝑋𝑟𝑒𝑔) of 𝜋−1(𝑋𝑟𝑒𝑔) by compact sets. Let
𝑎0, 𝑎1, . . . be a sequence of positive numbers, and 𝑝 > 1. We say that a potential 𝑢 ∈ 𝑃𝑆𝐻𝜂𝜖 (𝑌 ) is
{𝑝, 𝑎 𝑗 } 𝑗≥0-bounded, if we have
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����𝜂𝑛𝜖 ,𝑢Ω

����
𝐿𝑝 (Ω)

+ sup
𝑌

|𝑢 | ≤ 𝑎0, sup
𝐾 𝑗





log
𝜂𝑛𝜖 ,𝑢
Ω





 + ‖𝑢‖𝐶4 (𝐾 𝑗 ,𝜂𝑌 ) ≤ 𝑎 𝑗 . (117)

In other words such a potential is uniformly bounded globally, has volume form in 𝐿𝑝 , is locally bounded
in 𝐶4, and its volume form is locally bounded above and below away from the exceptional divisor E.

We then have the following.

Proposition 32. Suppose that 𝜖 ∈ (0, 𝜖0), 𝑠 ∈ (0, 𝑠0], and 𝜂𝜖 ,𝑢 := 𝜂𝜖 +
√
−1𝜕𝜕𝑢 satisfies the twisted

cscK equation

𝑅(𝜂𝜖 ,𝑢) − 𝑠 tr𝜂𝜖 ,𝑢𝜂𝜖 = 𝑐𝑠, 𝜖 , (118)

where 𝑐𝑠, 𝜖 is a constant determined by 𝑠, 𝜖 through cohomological data. Assume that sup 𝑢 = 0. Let
𝜙 = log |𝑠𝐸 |2, where 𝑠𝐸 is a section of O(𝐸) vanishing along E, and we are using a smooth metric on
O(𝐸) to compute the norm. There are constants 𝐶, 𝑎 > 0, 𝑝 > 1, depending on 𝑌, 𝜂𝑌 , 𝜂0, 𝑠0, as well as
on the entropy

∫
𝑌

log
(
𝜂𝑛𝜖 ,𝑢
Ω

)
𝜂𝑛𝜖 ,𝑢 , but not on 𝜖, 𝑠, such that we have the following estimates:

1.

sup
𝑌

(
log
𝜂𝑛𝜖 ,𝑢
Ω

+ 𝑎𝜙
)
+

����𝜂𝑛𝜖 ,𝑢Ω

����
𝐿𝑝 (𝜂𝑌 )

+ sup
𝑌

|𝑢 | < 𝐶, (119)

2.

inf
𝑌

(
log
𝜂𝑛𝜖 ,𝑢
Ω

− 𝑎𝜙
)
> 𝐶, (120)

3.

‖𝑒𝑎𝜙tr𝜂𝑌 𝜂𝜖 ,𝑢 ‖𝐿𝑞 (𝜂𝑌 ) < 𝐶, for any 𝑞 > 1. (121)

In particular there exist 𝑝 > 1 and 𝑎 𝑗 > 0 such that u is {𝑝, 𝑎 𝑗 } 𝑗≥0-bounded.

Proof. The estimates (1) are shown in [62, Proposition 5.12], the estimate (2) is in [62, Proposition 5.15],
and the estimate (3) is [62, Proposition 5.18]. Since the notation in [62] is quite different, and they
consider a more general situation including conical singularities along a divisor, we recall their setup.
In [62, Section 5], the author considers the equations

𝐹 = log
𝜂𝑛𝜖 ,𝑢
Ω
,

Δ 𝜂𝜖 ,𝑢𝐹 = tr𝜂𝜖 ,𝑢Θ − 𝑐𝑠, 𝜖 .
(122)

Here Ω is a smooth volume form on Y as above, with Ricci curvature Ric(Ω) = 𝜃, and we define
Θ = 𝜃 − 𝑠𝜂𝜖 . The coupled equations then imply

−𝑅(𝜂𝜖 ,𝑢) + tr𝜂𝜖 ,𝑢 𝜃 = tr𝜂𝜖 ,𝑢 (𝜃 − 𝑠𝜂𝜖 ,𝑢) − 𝑐𝑠, 𝜖 , (123)

which is (118). Note that in [62] the resolution is called X and the singular variety is Y, which is the
opposite of our notation. There is also an additional function f which we take to be zero. Zheng considers
a semipositive form 𝜔𝑠𝑟 on Y, which we can take to be 𝜋∗𝜔, and a Kähler form 𝜔𝐾 on Y, which we take
to be 𝜂𝑌 , so 𝜂𝜖 = 𝜋∗𝜔 + 𝜖𝜂𝑌 is what Zheng calls 𝜔𝜖 .

In order to deal with the degeneracy of 𝜂𝜖 as 𝜖 → 0, Zheng uses the technique of Tsuji [58], relying
on the fact that if we choose a suitable smooth metric on the line bundle O(𝐸) for a divisor supported
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on the exceptional set of 𝜋, then for any 𝑎 > 0 the current 𝜋∗𝜔 + 𝑎
√
−1𝜕𝜕 log |𝑠𝐸 |2 dominates a Kähler

form on Y, where 𝑠𝐸 vanishes along E. We can assume that on 𝑌 \ 𝐸 we have

𝜂𝑌 = 𝜋∗𝜔 + 𝑎
√
−1𝜕𝜕 log |𝑠𝐸 |2. (124)

We apply [62, Proposition 5.12], to deduce the estimates (1). For this we need to check the condition
that 𝑒−𝜙𝑙 ∈ 𝐿 𝑝0 for some 𝑝0 > 1, where 𝜙𝑙 in Zheng’s notation is defined in his Lemma 5.6. Since in
that Lemma 𝜙𝜃𝜖 is uniformly bounded, it is enough to check the integrability of 𝑒−𝑝0 𝜙̃𝑙 where we define

𝜙𝑙 = ( inf
(𝑋,𝜂𝑌 )

Θ) (−𝑎 log |𝑠𝐸 |2). (125)

We claim that the infimum inf (𝑋,𝜂𝑌 ) Θ is bounded below, independently of the choice of small 𝑎 > 0
(note that the choice of a affects the definition of 𝜂𝑌 and so also Θ). To see this, we use the condition
𝜃 = Ric(Ω) ≥ −𝐶𝜋∗𝜔, so that we have

Θ = 𝜃 − 𝑠𝜂𝜖 ≥ −(𝐶 + 𝑠)𝜋∗𝜔 − 𝑠𝜖𝜂𝑌
= −𝐶 ′𝜂𝑌 ,

(126)

for 𝐶 ′ depending on C and 𝑠0. Here we also used that if 𝑎 > 0 is sufficiently small, then 𝜂𝑌 > 1
2𝜋

∗𝜔𝑋 .
It follows from this that

−𝜙𝑙 ≤ −𝐶 ′𝑎 log |𝑠𝐸 |2, (127)

and so if 𝑎 > 0 is sufficiently small, then 𝑒−𝜙̃𝑙 ∈ 𝐿 𝑝0 for 𝑝0 > 1, as required in Zheng’s Proposition 5.12.
The conclusion is the estimates (1). Note that the quantities that the estimate in Proposition 5.12 depends
on are all uniformly bounded in 𝑠, 𝜖 in our setting. Similarly, Propositions 5.15 and 5.18 imply the
estimates (2) and (3).

Note that the 𝐿 𝑝-bound on the trace of 𝜂𝜖 ,𝑢 implies higher order estimates for u on compact sets away
from E, using Chen-Cheng’s local estimate [15, Proposition 6.1]. This leads to the {𝑝, 𝑎 𝑗 }-boundedness
of u. See also [47, Theorem C] for similar estimates. �

Next we show that by Proposition 29, the Mabuchi energy 𝑀𝜂𝜖 is proper on {𝑝, 𝑎 𝑗 }-bounded classes
of potentials, when 𝜖 is sufficiently small.

Proposition 33. Given 𝑝 > 1 and a sequence {𝑎 𝑗 } 𝑗≥0, let 𝑉 ⊂ 𝑃𝑆𝐻𝜂𝜖 (𝑌 ) denote the {𝑝, 𝑎 𝑗 } 𝑗≥0-
bounded potentials. Then for sufficiently small 𝜖 , depending on the 𝑝, 𝑎 𝑗 , the K-energy 𝑀𝜂𝜖 is proper
on V in the sense that

𝑀𝜂𝜖 (𝑢) > 𝛿J𝜂𝜖 (𝑢) − 𝐵2, for all 𝑢 ∈ 𝑉. (128)

Here 𝛿 is the same constant as in Proposition 29, while 𝐵2 is a constant depending on (𝑋, 𝜔) and Ω,
but not on the 𝑝, 𝑎 𝑗 .

Proof. We argue by contradiction. Suppose that we have a sequence 𝜖𝑖 → 0, and 𝑢𝑖 ∈ 𝑃𝑆𝐻𝜂𝜖𝑖 (𝑌 ) that
are {𝑝, 𝑎 𝑗 } 𝑗≥0-bounded, such that

𝑀𝜂𝜖𝑖
(𝑢𝑖) ≤ 𝛿J𝜂𝜖 (𝑢) − 𝐵2, (129)

for 𝐵2 to be determined below. Up to choosing a subsequence we can assume that 𝑢𝑖 → 𝑢∞ in 𝐿1 and
also in 𝐶3,𝛼 on compact sets away from the exceptional divisor E. We have 𝑢∞ ∈ 𝑃𝑆𝐻𝜋∗𝜔 (𝑌 ), and we
have an identification 𝑃𝑆𝐻𝜋∗𝜔 (𝑌 ) = 𝑃𝑆𝐻𝜔 (𝑋). We will next show that in terms of F in (97) we have
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𝑀𝜂𝜖𝑖
(𝑢𝑖) → 𝑀𝜔 (𝑢∞) +

∫
𝑌

log 𝐹 𝜂𝑛0 ,

J𝜂𝜖𝑖 (𝑢𝑖) → J𝜔 (𝑢∞).
(130)

Let us first consider the relevant entropy terms. Note that∫
𝑌

log
(
𝜂𝑛𝜖𝑖 ,𝑢𝑖
Ω

)
𝜂𝑛𝜖𝑖 ,𝑢𝑖 =

∫
𝑌

log
(
𝜂𝑛𝜖𝑖 ,𝑢𝑖
Ω

)
𝜂𝑛𝜖𝑖 ,𝑢𝑖
Ω

Ω. (131)

Our assumptions mean that the integrand has a uniform 𝐿𝑝 (Ω)-bound for some 𝑝 > 1. Using this, and
the 𝐶3,𝛼-convergence 𝑢𝑖 → 𝑢∞ on compact sets away from E, it follows that∫

𝑌
log

(
𝜂𝑛𝜖𝑖 ,𝑢𝑖
Ω

)
𝜂𝑛𝜖𝑖 ,𝑢𝑖 →

∫
𝑌

log

(
𝜂𝑛0,𝑢∞
Ω

)
𝜂𝑛0,𝑢∞ . (132)

Using (97) we have∫
𝑌

log

(
𝜂𝑛0,𝑢∞
Ω

)
𝜂𝑛0,𝑢∞ =

∫
𝑋𝑟𝑒𝑔

log
(
𝜔𝑛𝑢∞
𝜇

)
𝜔𝑛𝑢∞ +

∫
𝑌

log 𝐹 𝜂𝑛0,𝑢∞ . (133)

The last term can be computed by writing∫
𝑌

log 𝐹 𝜂𝑛0,𝑢∞ =
∫
𝑌

log 𝐹 𝜂𝑛0 +
∫ 1

0

𝑑

𝑑𝑡

∫
𝑌

log 𝐹 𝜂𝑛0,𝑡𝑢∞ 𝑑𝑡

=
∫
𝑌

log 𝐹 𝜂𝑛0 +
∫ 1

0
𝑛

∫
𝑌
𝑢∞

√
−1𝜕𝜕 log 𝐹 ∧ 𝜂𝑛−1

0,𝑡𝑢∞ 𝑑𝑡

=
∫
𝑌

log 𝐹 𝜂𝑛0 +
∫ 1

0
𝑛

∫
𝑌
𝑢∞(Ric(Ω) − Ric(𝜋∗𝜇)) ∧ 𝜂𝑛−1

0,𝑢∞ 𝑑𝑡

=
∫
𝑌

log 𝐹 𝜂𝑛0 + J𝜂0 ,Ric(Ω) (𝑢∞) − 𝜆J𝜔 (𝑢∞).

(134)

For the last step note that 𝜂0 vanishes along E, so although Ric(𝜋∗𝜇) has current contributions along E,
the only part that survives in the integral is Ric(𝜇) = 𝜆𝜔 on X. In conclusion we have that∫

𝑌
log

(
𝜂𝑛𝜖𝑖 ,𝑢𝑖
Ω

)
𝜂𝑛𝜖𝑖 ,𝑢𝑖 →

∫
𝑋𝑟𝑒𝑔

log
(
𝜔𝑛𝑢∞
𝜇

)
𝜔𝑛𝑢∞ +

∫
𝑌

log 𝐹 𝜂𝑛0

+ J𝜂0 ,Ric(Ω) (𝑢∞) − 𝜆J𝜔 (𝑢∞).
(135)

Next we consider the J -functional terms. Consider a general smooth, closed (1,1)-form 𝛼 on Y. We
claim that we have J𝜂𝜖𝑖 ,𝛼 (𝑢𝑖) → J𝜂0 ,𝛼 (𝑢∞). Using the variational definition of J , the local 𝐶3,𝛼-
convergence, and the uniform 𝐿∞-bound for the 𝑢𝑖 , it is enough to show that for every 𝜅 > 0 there is a
compact set 𝐾 ⊂ 𝑌 \ 𝐸 , such that∫

𝑌 \𝐾
𝜂1 ∧ 𝜂𝑛−1

𝜖𝑖 ,𝑢𝑖 +
∫
𝑌 \𝐾

𝜂𝑛𝜖𝑖 ,𝑢𝑖 < 𝜅, for all 𝑖. (136)

To see this, let ℎ = − log |𝑠𝐸 |2, where 𝑠𝐸 is a section of the line bundle O(𝐸) over Y vanishing along
the exceptional divisor E, and we use a smooth metric on O(𝐸). We have

√
−1𝜕𝜕ℎ = 𝜒 − [𝐸], (137)
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where 𝜒 is a smooth form on Y. We can assume that ℎ ≥ 0, and note that ℎ→ ∞ along E. We show by
induction that for each 𝑘 = 0, . . . , 𝑛 there is a constant 𝐶𝑘 > 0, independent of i, such that∫

𝑌
ℎ𝜂𝑛−𝑘1 ∧ 𝜂𝑘𝜖𝑖 ,𝑢𝑖 ≤ 𝐶𝑘 . (138)

For 𝑘 = 0 this is clear since h has logarithmic singularities. Suppose that the bound has been established
for a value of k. Then∫

𝑌
ℎ𝜂𝑛−𝑘−1

1 ∧ 𝜂𝑘+1
𝜖𝑖 ,𝑢𝑖 =

∫
𝑌
ℎ𝜂𝑛−𝑘−1

1 ∧ (𝜂𝜖𝑖 +
√
−1𝜕𝜕𝑢𝑖) ∧ 𝜂𝑘𝜖𝑖 ,𝑢𝑖

=
∫
𝑌
ℎ𝜂𝑛−𝑘−1

1 ∧ 𝜂𝜖𝑖 ∧ 𝜂𝑘𝜖𝑖 ,𝑢𝑖 +
∫
𝑢𝑖
√
−1𝜕𝜕ℎ ∧ 𝜂𝑛−𝑘−1

1 ∧ 𝜂𝑘𝜖𝑖 ,𝑢𝑖

≤
∫
𝑌
ℎ𝜂𝑛−𝑘1 ∧ 𝜂𝑘𝜖𝑖 ,𝑢𝑖 +

∫
𝑌
𝑢𝑖𝜒 ∧ 𝜂𝑛−𝑘−1

1 ∧ 𝜂𝑘𝜖𝑖 ,𝑢𝑖 −
∫
𝐸
𝑢𝑖𝜂

𝑛−𝑘−1
1 ∧ 𝜂𝑘𝜖𝑖 ,𝑢𝑖

≤ 𝐶𝑘 (1 + 𝐶) −
∫
𝐸
𝑢𝑖𝜂

𝑛−𝑘−1
1 ∧ 𝜂𝑘𝜖𝑖 ,𝑢𝑖

≤ 𝐶𝑘 (1 + 𝐶) + 𝐶 ′,

(139)

where 𝐶,𝐶 ′ depend on 𝜒 and the uniform 𝐿∞ bound for 𝑢𝑖 .
Since ℎ→ ∞ along E, it follows from (138) that for any 𝜅 > 0 we can find a compact set 𝐾 ⊂ 𝑌 \ 𝐸

such that (136) holds. It follows that

J𝜂𝜖𝑖 ,−Ric(Ω) (𝑢𝑖) → J𝜂0,−Ric(Ω) (𝑢∞), (140)

and also

J𝜂𝜖𝑖 (𝑢𝑖) → J𝜔 (𝑢∞). (141)

From this, together with (135), we have

𝑀𝜂𝜖𝑖
(𝑢𝑖) →

∫
𝑋𝑟𝑒𝑔

log
(
𝜔𝑛𝑢∞
𝜇

)
𝜔𝑛𝑢∞ − 𝜆J𝜔 (𝑢∞) +

∫
𝑌

log 𝐹 𝜂𝑛0

= 𝑀𝜔 (𝑢∞) +
∫
𝑌

log 𝐹 𝜂𝑛0 .
(142)

From (129) we therefore get

𝑀𝜔 (𝑢∞) +
∫
𝑌

log 𝐹 𝜂𝑛0 ≤ 𝛿J𝜔 (𝑢∞) − 𝐵2. (143)

Choosing 𝐵2 = 𝐵 −
∫
𝑌

log 𝐹 𝜂𝑛0 for the B in Proposition 29, we get a contradiction. �

We are now ready to combine the different ingredients to prove the main result of this section.

Proof of Theorem 3. We will choose suitable 𝑝 > 0, 𝑎 𝑗 > 0 shortly. By Proposition 33, for a given 𝑝, 𝑎 𝑗
we have some 𝜖1 > 0 such that once 𝜖 < 𝜖1 and for any 𝑠 ≥ 0, we have

𝑀𝜂𝜖 ,𝑠 (𝑢) ≥ 𝑀𝜂𝜖 (𝑢) > 𝛿J𝜂𝜖 (𝑢) − 𝐵2, (144)
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for {𝑝.𝑎 𝑗 }-bounded potentials u. Recall that 𝛿, 𝐵2 do not depend on {𝑝, 𝑎 𝑗 }. For small 𝜅 > 0 we have

𝑀𝜂𝜖 ,𝑠 (𝑢) ≥ 𝜅
∫
𝑌

(
𝜂𝑛𝜖 ,𝑢
Ω

)
𝜂𝑛𝜖 ,𝑢 + 𝜅J𝜂𝜖 ,𝑠𝜂𝜖 −Ric(Ω) (𝑢) + (1 − 𝜅)𝛿J𝜂𝜖 (𝑢) − (1 − 𝜅)𝐵2

= 𝜅
∫
𝑌

(
𝜂𝑛𝜖 ,𝑢
Ω

)
𝜂𝑛𝜖 ,𝑢 + (𝜅𝑠 + (1 − 𝜅)𝛿)J𝜂𝜖 (𝑢) + 𝜅J𝜂𝜖 ,−Ric(Ω) (𝑢) − (1 − 𝜅)𝐵2.

(145)

If 𝜅 is chosen sufficiently small (depending on 𝛿), then by Lemma 30 we find that

𝑀𝜂𝜖 ,𝑠 (𝑢) ≥ 𝜅
∫
𝑌

log
(
𝜂𝑛𝜖 ,𝑢
Ω

)
𝜂𝑛𝜖 ,𝑢 − 𝐵2. (146)

We also have

𝑀𝜂𝜖 ,𝑠 (0) =
∫
𝑌

log
(
𝜂𝑛𝜖
Ω

)
𝜂𝑛𝜖 < 𝐶3, (147)

for a constant 𝐶3 > 0 independent of 𝜖 . Since twisted cscK metrics minimize the twisted Mabuchi
K-energy, it follows that if 𝜂𝜖 ,𝑢 ∈ [𝜂𝜖 ] is a twisted cscK metric, then we have 𝑀𝜂𝜖 ,𝑠 (𝑢) < 𝐶3. From
(146) we get ∫

𝑌
log

(
𝜂𝑛𝜖 ,𝑢
Ω

)
𝜂𝑛𝜖 ,𝑢 ≤ 𝜅−1 (𝐶3 + 𝐵2), (148)

and in particular the entropy of 𝜂𝜖 ,𝑢 is bounded independently of 𝜖 . We apply Proposition 32. As long
as 𝑠 ≤ 𝑠0, for the 𝑠0 determined by Lemma 30, we find that if 𝜂𝜖 ,𝑢 = 𝜂𝜖 +

√
−1𝜕𝜕𝑢 is a solution of the

twisted cscK equation

𝑅(𝜂𝜖 ,𝑢) − 𝑠 tr𝜂𝜖 ,𝑢𝜂𝜖 = const., (149)

then u is {𝑝, 𝑎 𝑗 }-bounded, for suitable 𝑝, 𝑎 𝑗 , determined by 𝑠0 and the entropy bound (148). From now
we fix this choice of 𝑝, 𝑎 𝑗 .

We can now use a continuity method to show that if 𝜖 < 𝜖1, for the 𝜖1 determined by {𝑝, 𝑎 𝑗 }, for all
𝑠 ∈ [0, 𝑠0] we can solve the twisted cscK equation (149). To see this, let us fix 𝜖 < 𝜖1, and set

𝑆 = {𝑠 ∈ [0, 𝑠0] : the equation (149) has a solution}. (150)

We have 𝑠0 ∈ 𝑆, and it follows from the implicit function theorem that S is open. To see that it is
closed, note that the twisted cscK metrics for 𝑠 ∈ 𝑆 automatically satisfy the entropy bound (148). Using
the main estimates of Chen-Cheng [15], we find that the potentials of the corresponding twisted cscK
metrics satisfy a priori 𝐶𝑘-estimates, and the metrics are bounded below uniformly (these estimates
depend on 𝜖 , but now 𝜖 is fixed). It follows that S is closed.

It follows that for sufficiently small 𝜖 > 0 the classes [𝜂𝜖 ] on Y admit cscK metrics. The estimates
required by Definition 2 follow from Proposition 32. �

Remark 34. To conclude this section we give an example where the assumption that −𝐾𝑌 is relatively
nef is satisfied. Let M be a smooth Fano manifold, and suppose that P is a line bunde over M such that
𝑃𝑟 = −𝐾𝑀 for some 𝑟 > 0. We let V denote the total space of 𝑃−1, with the zero section blown down to
a point o. Suppose that X has one isolated singularity p, and a neighborhood of p is isomorphic to the
neighborhood of 𝑜 ∈ 𝑉 . In this case we can consider a resolution 𝜋 : 𝑌 → 𝑋 , obtained by blowing up
the singular point. Then

𝐾𝑌 = 𝜋∗𝐾𝑋 + 𝑟𝐸, (151)
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where the exceptional divisor E isomorphic to M, and is in particular irreducible. It follows that in this
case −𝐾𝑌 is relatively nef (in fact relatively ample). Note that this family of examples does not fit into
the framework of admissible singularities studied by Li-Tian-Wang [40].

6. Partial 𝑪0-estimate

An important result of Donaldson-Sun [27] is the partial 𝐶0-estimate for smooth Kähler-Einstein
manifolds, conjectured by Tian [55]. More precisely, suppose that (𝑋, 𝜔𝐾𝐸 ) is a smooth Kähler-Einstein
manifold, with 𝜔𝐾𝐸 ∈ 𝑐1 (𝐿) for an ample line bundle, and such that for some constant 𝐷 > 0 we have

1. noncollapsing: vol 𝐵𝜔𝐾𝐸 (𝑝, 1) > 𝐷−1 for a basepoint 𝑝 ∈ 𝑋 ,
2. bounded volume: vol(𝑋, 𝜔𝐾𝐸 ) < 𝐷,
3. bounded Ricci curvature: Ric(𝜔𝐾𝐸 ) = 𝜆𝜔𝐾𝐸 for |𝜆 | < 𝐷.

For any integer 𝑘 > 0 the density of states function 𝜌𝑘,𝜔𝐾𝐸 is defined by

𝜌𝑘,𝜔𝐾𝐸 (𝑥) =
∑
𝑗

|𝑠 𝑗 |2 (𝑥), (152)

where the 𝑠 𝑗 form an 𝐿2-orthonormal basis of 𝐻0 (𝑋, 𝐿𝑘 ) in terms of the metric induced by 𝑘𝜔𝐾𝐸 .
Then, by Donaldson-Sun [27], there is a power 𝑘0 = 𝑘0 (𝑛, 𝐷), and 𝑏 = 𝑏(𝑛, 𝐷) > 0, depending on the
dimension and the constant D, such that 𝜌𝑘0 ,𝜔𝐾𝐸 > 𝑏. In this section we show the following extension
of this result to singular Kähler-Einstein spaces that admit good cscK approximations.

Theorem 35. Given 𝑛, 𝐷 > 0 there are constants 𝑘0 (𝑛, 𝐷), 𝑏(𝑛, 𝐷) > 0 with the following property.
Suppose that (𝑋, 𝜔𝐾𝐸 ) is a singular Kähler-Einstein variety of dimension n, such that 𝜔𝐾𝐸 ∈ 𝑐1 (𝐿)
for a line bundle L. Assume that (𝑋, 𝜔𝐾𝐸 ) can be approximated by cscK metrics, and in addition
the conditions (1), (2), (3) above hold. Then the corresponding density of states function satisfies
𝜌𝑘,𝜔𝐾𝐸 > 𝑏.

The proof of the result follows the same strategy as Donaldson-Sun [27], arguing by contradiction.
We suppose that the sequence (𝑋𝑖 , 𝜔𝐾𝐸,𝑖) satisfies the bounds (1)–(3), but no fixed power 𝐿𝑘𝑖 of the
corresponding line bundles is very ample. The corresponding metric completions 𝑋̂𝑖 are noncollapsed
RCD spaces by Proposition 15, and we can pass to the Gromov-Hausdorff limit 𝑋̂∞ along a subsequence.
We would then like to use the structure of the tangent cones of 𝑋̂∞ to construct suitable holomorphic
sections of a suitable power 𝐿𝑘𝑖 for large i, leading to a contradiction.

The difficulty in executing this strategy is that we do not have good control of the convergence of
𝑋̂𝑖 to 𝑋̂∞ on the regular set of 𝑋̂∞, because in Corollary 25 the constant 𝜖 depends on the singular
Kähler-Einstein space X that we are considering. As such it is a priori possible that the singular set of
𝑋̂∞, consisting of points where the tangent cone is not given by R2𝑛, is dense. In order to rule this out,
we prove the following. Note that recently this result was shown in the more general algebraic setting
by Xu-Zhuang [59] (see also Liu-Xu [43] for the three-dimensional case).

Theorem 36. There is an 𝜖 > 0, depending only on the dimension n, with the following property. Suppose
that 𝑋̂ is the metric completion of a singular Kähler-Einstein space as in Theorem 17, that is, one that
can be approximated by cscK metrics. Let ( 𝑋̂𝑝 , 𝑜) be a tangent cone of 𝑋̂ , such that 𝑋̂𝑝 ≠ R2𝑛. Then

vol𝐵(𝑜, 1) < 𝜔2𝑛 − 𝜖, (153)

where 𝜔2𝑛 is the volume of the Euclidean unit ball in R2𝑛.

Proof. We will argue by contradiction. If the stated result is not true, then we can find a sequence 𝑋̂𝑖 ,
and a sequence of singular points 𝑝𝑖 ∈ 𝑋̂𝑖 with tangent cones 𝑉𝑝𝑖 such that 𝑉𝑝𝑖 → R2𝑛 in the pointed
Gromov-Hausdorff sense.
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We will prove a more general statement about almost smooth metric measure spaces in the sense of
Definition 5, of any dimension, which satisfy the following conditions.

Definition 37. We say that an almost smooth metric measure space V satisfies Condition (∗) if the
following conditions hold:

1. For some 𝜖 > 0 (possibly depending on V), the 𝜖-regular set R𝜖 ⊂ 𝑉 , defined by (90), can be chosen
to be the set Ω in Definition 5.

2. The Riemannian metric on Ω is Ricci flat.
3. If a tangent cone 𝑉 ′ of V is of the form 𝐶 (𝑆1

𝛾) × R2𝑛−2, then 𝑉 ′ = R2𝑛.

Note that by Propositions 24 and 27, the (iterated) tangent cones of the spaces 𝑋̂𝑖 satisfy Condition
(∗). Moreover, if a space 𝑉 = 𝑊 × R 𝑗 satisfies Condition (∗), then so does W, and so do the tangent
cones of V.

We argue by induction on the dimension to show that if a sequence of k-dimensional cones𝑉 𝑗 satisfies
Condition (∗), and 𝑉 𝑗 → R𝑘 in the pointed Gromov-Hausdorff sense, then 𝑉 𝑗 = R𝑘 for sufficiently
large i. For 𝑘 = 2 this follows directly from Condition (∗).

Assuming 𝑘 > 2, suppose first that for all sufficiently large j the cones 𝑉 𝑗 have smooth link (i.e.,
the singular set consists of only the vertex). In this case 𝑉 𝑗 = 𝐶 (𝑌 𝑗 ), where the (𝑌 𝑗 , ℎ 𝑗 ) are (𝑘 − 1)-
dimensional smooth Einstein manifolds satisfying Ric(ℎ 𝑗 ) = (𝑘 −2)ℎ 𝑗 . Moreover the (𝑌 𝑗 , ℎ 𝑗 ) converge
in the Gromov-Hausdorff sense to the unit (𝑘 − 1)-sphere. As long as 𝑘 − 1 > 1, it follows that for
sufficiently large j we have vol(𝑌 𝑗 , ℎ 𝑗 ) = vol(𝑆𝑘−1, 𝑔𝑆𝑘−1 ), using that Einstein metrics are critical points
of the Einstein-Hilbert action. The Bishop-Gromov comparison theorem then implies that in fact (𝑌 𝑗 , ℎ 𝑗 )
is isometric to the unit (𝑘 − 1)-sphere for sufficiently large j, so that 𝑉 𝑗 = R𝑘 . If 𝑘 − 1 = 1, then 𝑉 𝑗 is a
cone over a circle, so by Condition (∗) we have 𝑉 𝑗 = R2. Either way, we have a contradiction.

We can therefore assume, up to choosing a subsequence, that the 𝑉 𝑗 all have singularities 𝑞 𝑗 away
from the vertex. By taking tangent cones at the 𝑞 𝑗 , we obtain a new sequence of cones, 𝑉 ′

𝑗 , which
still satisfy the Condition (∗), they converge to R𝑘 , and they all split off an isometric factor of R,
that is, 𝑉 ′

𝑗 = 𝑊 𝑗 × R. The cones 𝑊 𝑗 are then 𝑘 − 1 dimensional, they also satisfy Condition (∗), and
𝑊 𝑗 → R𝑘−1. We can then apply the inductive hypothesis. It follows that 𝑊 𝑗 = R𝑘−1 for large j, so
𝑉 ′
𝑗 = R

𝑘 , contradicting that the 𝑞 𝑗 are singular points. �

Given this result, we can follow the argument of Donaldson-Sun [27] to prove Theorem 35.

Proof of Theorem 35. We argue by contradiction. Suppose that there are singular Kähler-Einstein spaces
(𝑋𝑖 , 𝜔𝐾𝐸,𝑖), that can be approximated by cscK metrics, with 𝜔𝐾𝐸,𝑖 ∈ 𝑐1 (𝐿𝑖), satisfying the conditions
(1)–(3) before the statement of Theorem 35, but such that there is no fixed power 𝐿𝑘𝑖 of the line bundles 𝐿𝑖
whose density of states functions are bounded away from zero uniformly. Up to choosing a subsequence,
we can assume that the corresponding RCD spaces 𝑋̂𝑖 converge to 𝑋̂∞ in the Gromov-Hausdorff sense.
Theorem 36 implies that for some 𝜖 > 0, the 𝜖-regular subset of 𝑋̂∞ coincides with the regular set
R ⊂ 𝑋̂∞ (given by the points with tangent cone R2𝑛). Therefore the set R is open, and by Theorem 36
together with Proposition 24, it follows that the convergence 𝑋̂𝑖 → 𝑋̂∞ is locally smooth on R. In
addition, using the argument in Proposition 27, we know that no iterated tangent cone of 𝑋̂∞ is given
by 𝐶 (𝑆1

𝛾) × R2𝑛−2 with 𝛾 < 2𝜋. This means that we are in essentially the same setting as Donaldson-
Sun [27], and can closely follow their arguments to show that there is a 𝑘0 > 0, such that the density of
states functions of the sections of 𝐿𝑘0

𝑖 are bounded away from zero for all sufficiently large i. �
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