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LOGICS OF LOGICS

MICHAEL BEVAN

University of Colorado Boulder

Abstract. We investigate a system of modal semantics in which �φ is true if and only if
φ is entailed by a designated set of formulas by a designated logics. We prove some strong
completeness results as well as a natural connection to normal modal logics via an application
of some lattice-theoretic fixpoint theorems. We raise a difficult problem that arises naturally in
this setting about logics which are identical with their own ‘meta-logic’, and draw a surprising
connection to recent work by Andrew Bacon and Kit Fine on McKinsey’s substitutional modal
semantics.

We give a semantics for modal logic in which �φ is true when φ is entailed by
a designated set of formulas according to a designated logic. This is a logical
interpretation of the box in the vein of Carnap [3] and McKinsey [5]. On Carnap’s
semantics, �φ is true when φ is true on all admissible interpretations. In McKinsey’s,
�φ is true when every admissible substitution instance of φ is true. Such systems of
semantics are interesting for two reasons. First, they shed light on logically important
properties of formulas like semantic validity and substitutional validity. Second, they
shed light on theories of necessity which would reduce modality to such properties.
The second reason seems to have motivated Carnap and McKinsey. Carnap aimed
to substantiate a view on which necessity is semantic validity. McKinsey aimed to
substantiate a view on which necessity is substitutional validity. The first reason
is motivation enough, however. Even if we do not share the ambitions of a modal
reductionist, the modal behavior of logical truth is an interesting topic which it falls to
logicians to investigate. Thus, even if we reject equating necessity and semantic validity,
we can accept Carnap’s argument that the logic of semantic validity is S5. Even if
we reject equating necessity and substitutional validity, we can accept McKinsey’s
argument that the logic of substitutional validity is a normal extension of S4M.
Likewise the present semantics is interesting for two reasons. It sheds general light
on the characteristics of logics of logics, and it sheds light on theories of necessity
which would reduce modality to derivability from given assumptions within a given
logic—Sider’s Humeanism [6] being an example. Even if we dismiss such a reduction,
logics of logics are of interest in their own right. In §1, I discuss the semantics in a
pure way, establishing results relating to completeness, and pointing out a connection
to recent work on McKinsey’s semantics by Bacon and Fine [2]. In §2, I illustrate an
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2 MICHAEL BEVAN

application of the semantics by discussing Sider’s views, raising some objections and
suggesting fixes, using some ideas developed in the first part.1

§1. The framework and connections.

1.1. Basic notions. Formulas are constructed from a denumerable set of sentence
letters At = {p, q, r, ...} and the constant⊥ by the connectives→ and �;¬φ abbreviates
(φ → ⊥) and � abbreviates ¬⊥. A logic is a set � of formulas that contains all classical
tautologies, and which is closed under modus ponens and uniform substitution. The
theorems of a logic are its elements. The smallest logic is called PC , and just consists
of all uniform substitution instances of all classical tautologies. Every logic defines
a consequence relation: Γ �� φ if and only if φ ∈ � or ∃�1, ... , �n ∈ Γ such that
(�1 → (�2 → ... (�n → φ) ...) ∈ �. We abbreviate ∅ �� φ to �� φ. A set of formulas
Γ is �-consistent when Γ ��� ⊥, and maximal �-consistent when it additionally has no
�-consistent extension. Where Γ is a set of formulas, we write �Γ = {�φ : φ ∈ Γ} and
�–Γ = {φ : �φ ∈ Γ}. Note that for all Γ we have ��–Γ ⊆ Γ. Where X1, ... , Xn are
formulas, sets of formulas, or rules of inference, we write X1 + ··· + Xn to denote the
smallest logic that contains or includes or admits every Xi . I often use serif font for
named formulas and rules and sans serif font for named logics. An interpretation is a
triple I = (M,Γ, �), where M is a set of sentence letters, Γ is a set of formulas, and �
is a logic. Satisfaction is defined inductively:

M,Γ, � �� ⊥
M,Γ, � � p if and only if p ∈M
M,Γ, � � φ → � if and only ifM,Γ, � �� φ orM,Γ, � � �
M,Γ, � � �φ if and only if Γ �� φ.

In an interpretation (M,Γ, �), Γ is called the set of assumptions and � is called the
logic of evaluation. We write I � Δ iff I � � for all � in Δ. Then IΔ := {I : I � Δ}.
For I a set of interpretations, write Γ �I φ when for all I in I, if I � Γ then I � φ. We
abbreviate ∅ �I φ to �I φ. When I is the set of all interpretations, we abbreviate to
Γ � φ and � φ. The canonical model of Γ with respect to � is:

I [Γ, �] := (At ∩ Γ,�–Γ, �).

1.2. General completeness and definability. We now establish a general complete-
ness theorem, relying on two lemmas about canonical models. In these results, we make
use of a generalised notion of normality. Namely, we say that a logic � is normal for a
logic � if and only if Γ �� φ always implies �Γ �� �φ. A logic is normal in the usual
sense when it is normal for itself. The two lemmas and resulting completeness theorem
now follow the following proposition.

Proposition 1. If � is normal for � and Γ is maximal �-consistent, I [Γ, �] � Γ.

Proof. By induction on formula complexity show that I [Γ, �] � φ iff φ ∈ Γ. We give
the induction step for �. If I [Γ, �] � �� then �–Γ �� �, which means ��–Γ �� ��.

1 This paper has benefited from conversation with A. C. Paseau, Timothy Williamson, Kit
Fine, and Volker Halbach, from comments from faculty at the University of Reading in
2020, from students at Oxford who attended my lectures on ‘Topics in Modal Logic’ in 2022,
and from many anonymous referees.
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LOGICS OF LOGICS 3

Hence Γ �� ��, so that �� ∈ Γ. Conversely, if �� ∈ Γ then � ∈ �–Γ so that
I [Γ, �] � ��.

Proposition 2. Suppose that � is normal for � and I [Δ, �] ∈ I for every maximal
�-consistent set Δ. Then Γ �I φ implies Γ �� φ for all Γ and φ.

Proof. If Γ ��� φ then by Lindenbaum’s lemma we have Γ ∪ {¬φ} ⊆ Δ for some
maximal �-consistent set Δ, and by Proposition 1, I [Δ, �] � Δ. Then since I [Δ, �] ∈ I

we have Γ ��I φ. So conversely, under our supposition that � is normal for � and
I [Δ, �] ∈ I for every maximal �-consistent set Δ, we have that Γ �I φ implies Γ �� φ
for all Γ and φ.

Theorem 1. Γ �� φ ⇐⇒ Γ �I� φ if � is normal for some �.

Proof. (⇒) By the definition of I� . (⇐) For Δ maximally �-consistent, the canonical
model I [Δ, �] ∈ I� because I [Δ, �] � Δ by Proposition 1, and� ⊆ Δ by the properties of
maximal consistent sets. So by Proposition 2, Γ �I� φ implies Γ �� φ for all Γ, φ.

Given many logics �, this theorem allows us to find a class of interpretations I� for
which said logic is sound and complete. But we often have a class of interpretations I
not characterised by reference to a particular logic, and we want to find a logic � that
will be sound and complete with respect to �I. Our general completeness theorem is
applicable to such cases. Call I definable iff I = I� for some logic �. If we can show
that a class of interpretations is definable, and identify a logic by which it is defined,
completeness follows by the above theorem. This is possible in many natural cases. For
example,

INT = The class of all interpretations.
CON = {(M,Γ, �) : ∀φ if Γ �� φ then Γ ��� ¬φ}
FAC = {(M,Γ, �) : ∀φ if Γ �� φ thenM,�,Γ � φ}
�CL = {(M,Γ, �) : ∀φ if Γ �� φ then Γ �� �φ}
�CL = {(M,Γ, �) : ∀φ if Γ ��� φ then Γ �� ¬�φ}

�CF = �CL ∩ FAC DCF = �CL ∩ �CL ∩ FAC.

To find logics that define these classes of interpretations, we recall the familiar axioms

K �(p → q) → (�p → �q) D �p → ¬�¬p
T �p → p 4 �p → ��p
5 ¬�p → �¬�p.

The smallest logic normal for some logic is the smallest logic normal for PC , which
I call K0. We note that being normal for some logic or other is equivalent to being
normal for the smallest logic (PC) and that any extension of a logic normal for PC is
itself normal for PC. Therefore for logics, the property of ‘being normal for some logic’
amounts to being an extension of K0. K0 is also the smallest set of formulas closed
under modus ponens, containing all substitution instances of K, and containing �φ for
all φ in PC. By concatenating the names of other axioms and adding a ‘0’, we name the
smallest logic that extends K0 containing the named axioms. So KD0 = K0 + D, and
KD450 = K0 + D + 4 + 5. Most of these logics are not normal, except for KT450 = S5
(see [7, p. 110]).2 We write D0 := KD0 T0 := KT0, and S40 := KT40. One obtains the

2 For example, KT40 = S40 is non-normal; see footnote attached to Theorem 4 for a proof of
this.
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4 MICHAEL BEVAN

expected normal counterpart for these logics by adding necessitation—for example,
S40 + Necessitation = S4. We make use of the fact that each of the above logics is the
smallest set of formulas closed under modus ponens and containing all substitution
instances of their axioms.

Proposition 3.

i. INT = IK0 ii. CON = ID0 iii. FAC = IT0 iv. �CL = IK40

v. �CL = IK50 vi. �CF = IS40 vii. DCF = JS5.

Proof. [i.] It is straightforward that � �(φ → �) → (�φ → ��) for all φ,� and
that � �φ for all φ in PC . From this, it follows that I � K0 for all I, so that INT ⊆ IK0 .
Therefore since IK0 ⊆ INT we have INT = IK0 . [ii-v.] By the semantic clauses, we
can see that (ii) an interpretation I is in CON iff I � �φ → ¬�¬φ for all φ (iii) an
interpretation I is in FAC if and only if I � �φ → φ for all φ (iv) and interpretation
I is in �CL if and only if I � �φ → ��φ for all φ, and (v) and interpretation I is
in �CL if and only if I � ¬�φ → �¬�φ for all φ. Since I � K0 for all I this means that
CON = ID0 , FAC = {I : I � T0} = IT0 , etc. [vi-vii.] By combinations of the previous
arguments.

Corollary 1. (By Theorem 1, Proposition 3) For all Γ and φ,

i. Γ � φ ⇐⇒ Γ �K0 φ ii. Γ �CON φ ⇐⇒ Γ �D0 φ
iii. Γ �FAC φ ⇐⇒ Γ �T0 φ iv. Γ ��CL φ ⇐⇒ Γ �K40 φ
v. Γ ��CL φ ⇐⇒ Γ �K50 φ vi. Γ ��CF φ ⇐⇒ Γ �S40 φ

vii. Γ �DCF φ ⇐⇒ Γ �S5 φ.

1.3. Normal logics. ExceptingKD450 = S5, these examples suggest that the present
framework relates largely to non-normal logics. But normal logics crop up naturally
in this setting, which we see next. For I a set of interpretations, let V I be the set of
formulas φ that are satisfied by all interpretations in I—that are valid over the set. Now
one can show that where I is definable, V I is a logic,3 and in particular it is the logic
sound and complete for the semantic consequence relation �I (e.g., VFAC = T0).
Second, where I is a set of interpretations and � a logic, let I(�) be the set of all
interpretations I ∈ I that have � for their logic of evaluation. Combining these, V I(�)
is the set of formulas valid over I(�). Besides the use of ‘VI’ to denote the set of
formulas valid over I, for definable I, we can also think of ‘V I(·)’ as denoting a map
from logics to logics. Maps of the formV I(·) have an important feature. To state it, we
recall some terminology from lattice theory. The set of logics in our language forms a
complete lattice under inclusion, in the sense that every set of logics {�i}has an infimum⋂
i �i and a supremum, denoted

∑
i �i . A sequence of logics is a map �(·) which takes

natural numbers to logics; we write �(n) as �n. A sequence (�n) is called directed if

3 This point requires explanation. Every VI is closed under modus ponens and contains all
tautologies. But if I is definable, thenVI is also closed under uniform substitution. The proof
idea is as follows. If s is a map from sentence letters to formulas and φs is the substitution
instance of φ which results by applying s to it in the usual way, then for any interpretation
I = (M,Γ, �) we define I s = ({p : I � ps}, {φ : I � (�φ)s}, �). By induction on formula
complexity, one can show that always have I s � φ ⇐⇒ I � φs . Now if I is definable, then
one can verify that it is closed under this construction, meaning that I ∈ I implies I s ∈ I for
all I and s. Therefore if φs �∈ VI then φ �∈ VI, since if there is some I in I with I �� φs then
I s �� φ. Since s was arbitrary, it follows after contraposition that φ ∈ VI implies φ′ ∈ VI

for all substitution instances φ′ of φ.
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LOGICS OF LOGICS 5

and only if for all natural numbers n,m there is some larger k such that �n, �m ⊆ �k .
It is straightforward to show that

∑
i �i =

⋃
n �n whenever (�n) is directed. We call a

function f from logics to logics continuous (meaning Scott-continuous) iff for every
directed sequence of logics (�n), we have f(

⋃
n �n) =

⋃
n f(�n).

With this in place, we next show that for any definableI, the mapV I(·) is continuous.
This is significant because it means that certain familiar fixed point theorems can be
applied to these maps, which in our case will help display the promised connection to
normal modal logics. Our result relies on two lemmas, the first about directed sequences
of logics and the second about the general behavior of maps V I(·) for definable I.

Proposition 4. Where � is a logic and (�n) is directed,
⋃
n(�+ ��n) = �+ �

⋃
n �n

Proof. Each (�+ ��k) is clearly included in �+ �
⋃
n �n, so

⋃
n(�+ ��n) ⊆

�+ �
⋃
n �n. Conversely, one can see that since (�n) is directed, so is the sequence

(�+ ��n). Hence
⋃
n(�+ ��n) is a logic and includes � and �

⋃
n �n, so �+ �

⋃
n �n ⊆

�+ �
⋃
n �n.

Proposition 5. For any � and definable I, V I(�) = V I + ��.

Proof Sketch. (⊇) It is clear that V I ∪ �� ⊆ V I(�), and straightforward to
show that V I(�) is closed under uniform substitution, and hence a logic.4 (⊆) If
φ �∈ (V I + ��) then by Lindenbaum’s lemma there is a maximal (V I + ��)-consistent
set Γ containing ¬φ. Since V I + �� contains K and includes ��, it is normal for �,
and so by Proposition 2, we have I [Γ, �] � Γ. So I [Γ, �] � V I, so I [Γ, �] ∈ I(�), and
I [Γ, �] �� φ, so φ �∈ V I(�).

Theorem 2. If I is definable, then V I(·) is a continuous map on the lattice of logics.

Proof. For (�n) directed, V I(
⋃
n �n) = V I + �

⋃
n �n =

⋃
n(V I + ��n) =

⋃
n

V I(�n).

The main consequence of this comes by way of Kleene’s Fixed Point Theorem, which
says that a continuous map f on a complete lattice with least element 0 has a least fixed
point, lfp(f), which is the supremum of the sequence (fn(0)). Hence for definable I,
V I(·) has a least fixed point lfp(V I(·)), that we shall abbreviate to lfp(I), which is the
supremum of the sequence (V In(PC )). In general, this fixed point turns out to be a
normal logic.

Proposition 6. If I is definable then lfp(I) is the smallest normal extension of V I.

Proof. From Proposition 5, one can show that for all n, V In+1(PC ) = V In(PC ) +
�V In(PC ). This makes it clear that

⋃
n V In(PC ) is the least extension of V I closed

under necessitation. Because V I contains K, it is also the least normal extension.

We can see some illustrative examples of the application of this result by applying it
to the examples given in Corollary 1 in particular. So, we have the following corollary.

Corollary 2. (By Proposition 6, Corollary 1)

lfp(INT) = K lfp(CON) = D lfp(FAC) = T
lfp(�CF) = S4 lfp(DCF) = S5.

Further application of such results is shown in the proof of Theorem 4 below.

4 For example, use the construction of the previous footnote and show that I(�) is closed
under the map I �→ I s for any s.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020325100890
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 14 Sep 2025 at 18:53:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020325100890
https://www.cambridge.org/core


6 MICHAEL BEVAN

1.4. Meta-logics and McKinsey. We conclude our tour of this semantics on a
difficult problem that arises in this setting, a partial solution, and a connection to
McKinsey’s semantics. Consider the class NA of interpretations in which there are
no assumptions. For I = (M,∅, �) ∈ NA(�), we have I � �φ iff �� φ, hence in such
interpretations, we read the box as expressing membership in �.VNA(�) is not typically
a logic, but we can consider the largest logic included in VNA(�), which is the set of
formulasφ such that every substitution instance ofφ is inVNA(�). Let us call this logic
L(�), or the meta-logic of �. Another way to define L which makes less reference to our
machinery: a valuation is a map v from formulas to truth-values such that v(⊥) = 0
and v(φ → �) = 1 iff v(φ) = 0 or v(�) = 1. For � a logic, a �-valuation is a valuation
v such that for all φ, v(�φ) = 1 iff �� φ. For any �, L(�) is the set of formulas φ such
that every substitution instance of φ is assigned the value 1 by every �-valuation. L(�)
is the logic of the phrase ‘it is a theorem of � that...’. A fixed point of L is a logic
which is its own meta-logic. Remarkably, there are such logics—which we show in a
moment—and so naturally we want to provide a characterisation of them. So call a
valuation v McKinsey iff for all φ, v(�φ) = 1 just in case v(φ′) = 1 for all substitution
instances φ′ of φ. These valuations populate the modal semantics of McKinsey [5].
Our main result is as follows.

Theorem 3. � = L(�) if and only if all �-valuations are McKinsey.

This provides a characterisation of the fixed points of L by way of a connection
to McKinsey’s semantics, providing some nice corollaries. For instance, McKinsey [5]
establishes that the set of formulas true for all McKinsey valuations is a normal
extension of S4M, so, we have the following corollary.

Corollary 3. If � = L(�) then � is a normal extension of S4M.

This can be established independently of Theorem 3 by reasoning directly about L.
For example, it is straightforward that every fixed point of L is normal, since every
�-valuation for every logic � validates every substitution instance of the K axiom, and
every � = L(�) is closed under necessitation since φ ∈ � always implies �φ ∈ L(�).
This independence is important to note as the proof of Theorem 3 makes use of the
following lemma.

Proposition 7. Suppose that v and v′ are �-valuations, where � is normal. Wherever
v′(φ) = 0 there exists a substitution instance φ′ of φ such that v(φ′) = 0.

Proof. We begin by defining s as the desired substitution, mapping φ to φ′. Let
s(p) = p if v(p) = v′(p) and s(p) = ¬p otherwise. Define s(φ → �) = (sφ → s�)
and s(�φ) = �(sφ) and s⊥ = ⊥. For all φ, sφ is a substitution instance of φ. By
induction on formula complexity, we show that v(sφ) = 1 ⇐⇒ v′(φ) = 1 for all φ,
from which the proposition follows. We give the step for �; the other steps are routine.
For any φ, since sφ is a substitution instance of φ, �� φ implies �� sφ. Since s(sφ)
differs from φ only in that some sentence letters are replaced by their double negations,
if � is normal then �� sφ implies �� s(sφ) and so �� φ. So v(s(�φ)) = 1 iff �� sφ iff
�� φ iff v′(�φ) = 1.

Proof of Theorem 3. (⇐) Suppose that every �-valuation is McKinsey. If φ ∈ �,
then for all �-valuations v and for all substitution instances φ′ of φ, v(φ′) = 1, meaning
φ ∈ L(�). So � ⊆ L(�). Conversely, if φ ∈ L(�) then for all substitution instances φ′

of φ and all �-valuations v we have v(φ′) = 1; since each such v is McKinsey, we have
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LOGICS OF LOGICS 7

v(�φ) = 1 and henceφ ∈ �. Hence � ⊇ L(�). So � = L(�). (⇒) Suppose that � = L(�),
and let v be a �-valuation. For any φ, if v(�φ) = 1 then ��=L(�) φ, meaning �L(�) φ

′

and hence v(φ′) = 1 for all substitution instances φ′ of φ. Conversely, if v(�φ) = 0
then ��L(�) φ, meaning that there is some �-valuation v′ and substitution instance φ′

of φ such that v′(φ′) = 0. Since every fixed point of L is normal as mentioned, by
Proposition 7, there is a substitution instance φ′′ of φ′ (hence also of φ) such that
v(φ′′) = 0. So v is McKinsey.

Bacon and Fine [2, proposition 11] have shown all Med-valuations are McKinsey,
where Med is the modal logic of Medvedev frames in Kripke semantics.5 Hence it
follows that at least one fixed point exists. Yet whether there are others seems currently
out of reach. If there are others then by our findings this would establish a 50-year-old
conjecture due to Friedman [4, problems 41 and 42]. To see this, we note that Bacon
and Fine have proposed a Uniqueness Conjecture, which says that for any set of sentence
letters M, there is a unique McKinsey valuation v such that v(p) = 1 iff p ∈M for
all letters p. This amounts to the claim that McKinsey’s semantic clause succeeds in
providing determinate truth-conditions for propositional languages; it also amounts
to the negation of Friedman’s conjecture. If there is a fixed point of L besides Med, call
it �, then the Uniqueness Conjecture is false, since for any set of sentence letters M,
there will be at least two McKinsey valuations v, one a Med-valuation and the other
a �-valuation, such that v(p) = 1 ⇐⇒ p ∈M for all p. This connection suggests the
question of further fixed points of L will be hard to resolve.

§2. An application.

2.1. Humeanism. We consider a directly philosophical application of the semantics,
which is the investigation of forms of modal reduction that equate necessity with
derivability from some assumptions in some system of logic. The best known theory
of this form is Sider’s modal Humeanism [6, chap. 12]. For the Humean, a statement
φ is necessary if and only if it is deducible from a conventionally decided upon set of
truths called ‘modal axioms’ by a conventionally decided upon set of truth-preserving
inference rules called ‘modal rules’. In our terminology, where for ‘modal axioms’ we
say ‘assumptions’ and for the set of ‘modal rules’ we say ‘the logic of evaluation’, Sider’s
view is that �φ is true if and only if Γ �� φ, where Γ is a set of truths and and � a logic
whose consequence relation is truth-preserving, both decided upon by convention. This
appears to allow the Humean extreme liberty with respect to modal logic—something
Sider emphasizes as an improvement on earlier forms of conventionalism. One asks:
which modal principles are true, and which modal inference rules truth-preserving?
The Humean says to take your pick. For any consistent modal logic � that extends T0,
and where M is the set of all atomic sentences that are true on some canonical reading,
it is easy to pick some Γ, � ⊆ � such that (M,Γ, �) � � so that, assuming Humeanism,
all of the theorems of � will be made true.6

5 A Kripke frame (W,R) is Medvedev iff isomorphic to a frame ({Y ⊆ X : Y �= ∅},⊇) for
finite X [1, p. 11].

6 I emphasize that Γ, � ⊆ � since then (M,Γ, �) � Γ and (M,Γ, �) � �, meaning that Γ is all
true and � is truth-preserving, which the Humean requires. This comes by Proposition 1. Take
some maximal �-consistent set Θ with M = At ∩ Θ and then pick Γ = �–Θ and � = PC .
Then since � ⊇ T0, we have I � � ∪ Γ ∪ �.
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But things are not as they seem. This line of reasoning stands or falls upon the
assumption that any Γ and � can be selected to serve as our set of assumptions and
logic of evaluation—provided that they are then satisfied by the resulting interpretation
(M,Γ, �). But as I read the account, Sider seems committed to something stronger:
that modal axioms must be true prior to their being recruited into service as modal
axioms, and that modal inference rules must likewise be truth-preserving prior to their
being incorporated into our set of modal rules. To require less than this would be to
allow for a kind of bootstrapping, or more specifically, a kind of truth by convention
in which the statements in Γ become true, and the rules encoded in � become truth-
preserving, because we assume them. Sider rejects the idea that a statement can be
made true by fiat in this way as the key error of older forms of conventionalism, to
which Humeanism is an intended successor [6, p. 268]. If this is all correct, the Humean
should require that Γ and � only contain principles that are true prior to our particular
selection of modal axioms and rules. But this is quite a severe restriction. For example,
it seems to imply that Γ cannot contain any modal statements (in which a � occurs)
since modal claims are, according to the Humean, not true prior to a conventional
choice of axioms and rules. It also seems to imply that � cannot contain anything
other than principles valid from non-modal logic, for the same reason.7 Therefore
in the context of propositional logic, only interpretations of the form I = (M,Γ, �),
where Γ contains no modal formulas and � = PC , seem to be admissible, in the sense
that modal discourse allows us to select Γ for our set of modal axioms and � for
the logic consisting of our accepted modal rules. This severe restriction means that
many modal principles cannot be made true by any acceptable conventional choice of
assumptions and logic of evaluation. We use �p → ��p as an example. Suppose Γ
contains no modal formulas and that (M,Γ, PC ) � �φ → ��φ for all φ. Then, since
Γ �PC � it follows that Γ �PC ��. But this is so only if Γ contains some non-modal
contradiction, meaning that (M,Γ, PC ) �� Γ, so that Γ does not meet the requirement
that assumptions be true. So no interpretation which meets the Humean’s restrictions
validates all substitution instances of �p → ��p—or even ��� for that matter, which
is already a theorem of K. This is indicative; things are no better for ¬�p → �¬�p,
for example. The upshot is that Humeanism properly understood is no less restrictive
with respect to modal logic than older conventionalisms.

2.2. Procedural conventionalism. I want to suggest a fix for the Humean. I will call
the view which results from adopting the fix ‘proceduralism’. Proceduralism departs
from Humeanism concerning the way in which the set of assumptions and the logic of
evaluation arise. For the Humean, convention works by fixing the set of assumptions
and logic of evaluation directly. For the proceduralist, convention works by selecting
what we will call an admissible procedure, which then goes on to construct the logic of
evaluation and set of assumptions in stages. Each stage of the construction conforms

7 Perhaps some principles not in PC , like �p → p and �(p → q) → (�p → �q), can be in
the logic of evaluation since they are true no matter which modal axioms and rules one picks,
and so are true ‘independently’ of what we choose, even if not prior to our making some
choice. At best, such an argument will provide a logic of evaluation contained in T0, since
such an argument does not even work for to �(�p → p). This does not help much, since the
argument below about the unavailability of �p → ��p goes through for all � ⊆ T0. And
while, if the logic of evaluation is T0, then ��� is made true, longer iterations like ����
are still not.
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to the stricture against bootstrapping raised earlier, adding to the assumption set and
the logic of evaluation only statements that were already true in earlier stages of the
construction. But because the process takes place in multiple stages, the end result of
such a process can be a logic of evaluation and assumption set which each contain
properly modal principles. In this way, the proceduralist hopes to regain some freedom
with respect to modal logic while submitting to the same philosophical strictures which
precluded such freedom for the Humean.

Some formal definitions will clarify the idea. A procedure shall be any map from
interpretations to interpretations (M,Γ, �) �→ (M,Γ′, �′) which modifies the set of
assumptions Γ and the logic of evaluation � while leaving the set of sentence letters
M alone. We can apply any procedure a to any interpretation I as many times as we
like, generating a sequence of interpretations I, aI, aaI, and so on. We are interested in
such sequences where the original interpretation I is of the form (M,∅,PC), having
no assumptions and nothing in the logic of evaluation save what is given in non-modal
logic; interpretations of this form will be called ground interpretations. So we confine
attention to procedures a such that for any ground interpretation I, the sequence
I, aI, aaI, ... evolves in an acceptable way, converging towards and terminating at a
natural limit. More precisely, an admissible extension of an interpretation (M,Γ, �) shall
be an interpretation (M,Γ′, �′) with the same set of sentence letters such that Γ ⊆ Γ′ and
� ⊆ �′ and (M,Γ, �) � Γ′ ∪ �′, so that the new assumptions and logical principles in the
extended interpretation are already true in the original interpretation. An admissible
procedure must first meet the requirement that (i) for all ground interpretations I and
all natural numbers n, an+1I is an admissible extension of anI . This is what is meant by
the sequence evolving in an acceptable way. This first requirement ensures that each anI
is factive, since only factive interpretations have admissible extensions. It also ensures
that the sequence converges to a natural limit: where I is a ground interpretation and
each anI = (M,Γn, �n), let I a := (M,

⋃
n Γn,

⋃
n �n). We want for this limit to also be

factive, and we want it to be an end-point for the procedure, meaning that applying
the same procedure further has no result. So we require that (ii) the limit I a is factive
and a fixed point of a. Summing up, a procedure is called admissible if and only if
it satisfies (i) and (ii). A set of formulas Γ is admissible iff there exists an admissible
procedure a such that I a � Γ for all ground interpretations I.

Here is how these definitions fit into the picture. As said before, the proceduralist
thinks that the way in which we arrive at our set of assumptions and our logic
of evaluation (what Sider calls modal axioms and modal rules) is by adopting a
conventional procedure. When we adopt a procedure, the assumption set and the
logic of evaluation is generated in stages by repeated application of the procedure
to the underlying ground interpretation. So if M is the set of all sentence letters
that are really true under some canonical reading, then our ground interpretation is
I = (M,∅,PC), and upon conventionally adopting the admissible procedure a, the
interpretation I a = (M,Γ, �) now models our conversational context, in the sense that
Γ is our set of assumptions and � is our logic of evaluation. In selecting a procedure,
we are restricted precisely to admissible procedures. This is because it is precisely such
procedures which will build upon our ground interpretation in an acceptable way, via a
sequence of admissible extensions and taking of unions: at each stage of the process of
extension, adding only assumptions and logical principles that are true in prior stages. It
is in this way that the proceduralist submits to the same stricture against bootstrapping
imposed on the Humean. At the same time, as said above, they wish to recover some

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020325100890
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 14 Sep 2025 at 18:53:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020325100890
https://www.cambridge.org/core


10 MICHAEL BEVAN

of the logical freedom which we earlier denied to the Humean on the basis of such
strictures. The concept of admissibility sharpens this wish, because an admissible set of
formulas is a set of formulas whose truth can be ensured by adopting some procedure.
The proceduralist’s task now becomes that of establishing admissibility for larger and
larger sets of formulas. Here is a particularly simple example.

Theorem 4. K and S40 are admissible.8

Proof. We show that a(M,Γ, �) := (M,Γ, V INT(�)) is admissible. Note that
for any M we have an(M,∅,PC) = (M,∅, V INTn(PC)). Each an(M,∅,PC) �
V INT(V INTn(PC)) = V INTn+1(PC) by definition of V INT(·), so that each an+1I
is an admissible extension of anI . So a fulfils requirement (i) of being admissible.
Moreover (M,∅,PC)a is defined for all M, and by Theorem 2, Kleene’s Fixed Point
Theorem, and Corollary 2, we have

(M,∅,PC)a = (M,∅,
⋃

n

V INTn(PC)) = (M,∅, lfp(INT)) = (M,∅,K).

Because K = lfp(INT) is a fixed point of V INT(·), it follows that I a is factive and
a fixed point of a for any ground interpretation I. So a fulfils requirement (ii) for
admissibility. Now for any ground interpretation I, since I a = (M,∅,K) is factive, we
have I a � T0 = VFAC. But additionally, for any formula φ, we have I a � �φ → ��φ
because, by normality, �K φ implies �K �φ. So I a � S40. Because I a is factive and has
K for its logic of evaluation, we have I a � K. Since I was arbitrary, this holds for all
ground interpretations. So both S40 and K are admissible.

This suffices to show that the proceduralist makes a definite improvement over the
Humean, for whom �p → ��p and general principles for normal logics like � ...��
were out of reach. It additionally demonstrates the relevance of results established in
§1 to the philosophical task of working out proceduralism. This makes for a natural
place to stop then, as a full treatment of admissibility is beyond our present scope.
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