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Abstract

The discontinuous Galerkin (DG) method provides a robust and flexible technique
for the time integration of fractional diffusion problems. However, a practical imple-
mentation uses coefficients defined by integrals that are not easily evaluated. We
describe specialized quadrature techniques that efficiently maintain the overall accuracy
of the DG method. In addition, we observe in numerical experiments that known
superconvergence properties of DG time stepping for classical diffusion problems carry
over in a modified form to the fractional-order setting.
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1. Introduction

The discontinuous Galerkin (DG) method provides an effective numerical procedure
for the time integration of diffusion problems. In the mid-1980s, Eriksson et al.
[2] provided the first detailed error analysis, which has been subsequently extended
and refined by numerous authors (see, for example, the articles [7, 16, 17] and the
references therein). The DG method has also proved effective for time stepping of
fractional diffusion problems [10, 13] of the form

∂tu + ∂1−α
t Au = f (t) for 0 < t ≤ T with u(0) = u0. (1.1)

Here, A is a linear, second-order, elliptic partial differential operator over a spatial
domain Ω, subject to a homogeneous Dirichlet boundary condition u = 0 on ∂Ω. (Our
notation suppresses the dependence of u and f on the spatial variables.) The fractional
diffusion exponent is assumed to satisfy 0 < α < 1 (the subdiffusive case), and the
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122 W. McLean [2]

fractional time derivative is understood in the Riemann–Liouville sense [15]: for t >
0 and μ > 0,

∂
μ
t v =

∂

∂t

∫ t

0
ωμ(t − s)v(s) ds where ωμ(t) =

tμ−1

Γ(μ)
.

The partial integro-differential equation (1.1) arises in a variety of physical mod-
els [4, 12] of diffusing particles whose behaviour is described by a continuous-time
random walk for which the waiting-time distribution is a power law that decays
like 1/t1+α as t → ∞. The expected waiting time is therefore infinite, and the
mean-square displacement turns out to be proportional to tα. Standard Brownian
motion is recovered in the limit as α→ 1, when (1.1) reduces to the classical diffusion
equation.

Our main concern in the present work is with the practical implementation of
DG time stepping for (1.1) and, in particular, with the accurate evaluation of certain
coefficients Hn,n−�

ij used during the nth step. Section 2 introduces the DG method
for the fractional ordinary differential equation (ODE) case of (1.1), in which the
operator A is replaced by a scalar λ > 0. We will see in the simplest lowest-order
scheme, when the DG solution is piecewise constant in time, that

Hn,0
11 =

∫ tn

tn−1

d
dt

( ∫ t

tn−1

ωα(t − s) ds
)

dt

and

Hn,n−�
11 =

∫ tn

tn−1

d
dt

( ∫ t�

t�−1

ωα(t − s) ds
)

dt for 1 ≤ � ≤ n − 1,

where 0 = t0 < t1 < t2 < · · · are the discrete time levels. Here, we can verify that
Hn,0

11 = ωα+1(kn) = kαn/Γ(α + 1) for a step size kn = tn − tn−1, and

Hn,n−�
11 = ωα+1(tn − t�−1) − ωα+1(tn − t�) − ωα+1(tn−1 − t�−1) + ωα+1(tn−1 − t�), (1.2)

but for higher-order schemes the coefficients become progressively more complicated.
Although the Hn,n−�

ij can always be evaluated via repeated integration by parts,
the resulting expressions are prone to suffer from roundoff when evaluated in
floating-point arithmetic if n − � is large. Consider just the lowest-order case (1.2) with
uniform time steps tn = nk, so that

Hn,n−�
11 = kα[ωα+1(n − � + 1) − 2ωα+1(n − �) + ωα+1(n − � − 1)].

Since the factor in square brackets is a second difference of ωα+1, its magnitude decays
like (n − �)α−2 as n − � increases, but the individual terms grow like (n − �)α.

We are therefore led to evaluate the coefficients Hn,n−�
ij via quadratures with positive

weights. No special techniques are needed for � ≤ n − 2, but when � = n or n − 1
we must deal with weakly singular integrands. In Section 3, we show how certain
substitutions reduce the problem to dealing with integrands that are either smooth,
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or are products of smooth functions and standard Jacobi weight functions. Similar
substitutions, known as Duffy transformations [1], have long been used to compute
singular integrals arising in the boundary element method.

Section 4 introduces a spatial discretization for the fractional partial differential
equation (PDE) (1.1) and describes the structure of the linear system that must be
solved at each time step. In Section 5, we specialize the expressions for the coefficients
by choosing Legendre polynomials as the shape functions employed in the DG time
stepping.

Section 6 describes a post-processing technique that, when applied to the DG solu-
tion U, produces a more accurate approximate solution Û, called the “reconstruction”
[7] of U. If U is a piecewise polynomial of degree at most r − 1, then Û is a piecewise
polynomial of degree at most r. For a classical diffusion problem, both U and Û are
quasi-optimal, that is, accurate of order kr and kr+1, respectively. Thus, it is natural
to ask what happens in the fractional-order case, and we investigate this question in
numerical experiments reported in Section 7. Section 8 concludes the paper.

2. A fractional ODE

Our central concern is present already in the zero-dimensional case when we replace
the elliptic operator A with a scalar λ ≥ 0, so that the solution u(t) is a real-valued
function satisfying the fractional ODE

u′ + λ∂1−α
t u = f (t) for 0 < t ≤ T with u(0) = u0. (2.1)

For the time discretization, we introduce a grid

0 = t0 < t1 < t2 < · · · < tN = T

and form the vector t = (t0, t1, . . . , tN). Let kn = tn − tn−1 denote the length of the nth
(open) subinterval In = (tn−1, tn). We form the disjoint union

I = I1 ∪ I2 ∪ · · · ∪ IN

and, for any function v : I → R, write

vn
+ = lim

ε↓0
v(tn + ε), vn

− = lim
ε↓0

v(tn − ε), [[v]]n = vn
+ − vn

−,

provided the one-sided limits exist.
Given a vector r = (r1, r2, . . . , rN) of integers rn ≥ 0, the trial space X = X(t, r)

consists of the functions X : I → R such that X|In ∈ Prn−1 for 1 ≤ n ≤ N. Here, Pm

denotes the space of polynomials of degree at most m ≥ 0 with real coefficients. The
DG solution U ∈ X of (2.1) is then defined by [10, 13]

[[U]]n−1Xn−1
+ +

∫
In

(U′ + λ∂1−α
t U)X dt =

∫
In

fX dt (2.2)
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for X ∈ Prn−1 and 1 ≤ n ≤ N, where, in the case n = 1, we set U0
− = u0, so that [[U]]0 =

U0
+ − U0

− = U0
+ − u0. A general introduction to DG time stepping for classical diffusion

problems may be found in the monograph of Thomée [18, Ch. 12].
To compute U, we choose for each n a basis ψn1, ψn2, . . . , ψnrn for Prn−1 and write

U(t) =
rn∑

j=1

Unjψnj(t) for t ∈ In. (2.3)

When X = ψni,

Un−1
+ Xn−1

+ +

∫
In

U′X dt =
rn∑

j=1

Gn
ijU

nj and Un−1
− Xn−1

+ =

rn−1∑
j=1

Kn,n−1
ij Un−1, j

with coefficients given by

Gn
ij = ψnj(tn−1)ψni(tn−1) +

∫
In

ψ′njψni dt (2.4)

and

Kn,n−1
ij = ψn−1, j(tn−1)ψni(tn−1). (2.5)

Owing to the convolutional structure of the fractional derivative, it is convenient to
introduce the notation �̄ = n − � and define, if t ∈ In,

ρn�̄
jα(t) = ρn,n−�

jα (t) =
∫

I�
ωα(t − s)ψ�j(s) ds for 1 ≤ � ≤ n − 1

with

ρnn̄
jα (t) = ρn0

jα (t) =
∫ t

tn−1

ωα(t − s)ψnj(s) ds.

We find that

∂1−α
t U =

n∑
�=1

r�∑
j=1

U�j(ρn�̄
jα)′(t) for t ∈ In

and thus∫
In

(∂1−α
t U)X dt =

n∑
�=1

r�∑
j=1

Hn�̄
ij U�j, where Hn�̄

ij = Hn,n−�
ij =

∫
In

(ρn�̄
jα)′ψni dt. (2.6)

Hence, putting Fni =
∫

In
fψni dt, the DG method (2.2) requires
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rn∑
j=1

(Gn
ij + λHn0

ij )Unj = Fni −
n−1∑
�=1

r�∑
j=1

λHn,n−�
ij U�j

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ψ1i(0)u0, n = 1,
rn−1∑
j=1

Kn,n−1
ij Un−1, j, 2 ≤ n ≤ N. (2.7)

At the nth time step, this rn × rn linear system must be solved to determine Un1,
Un2, . . . , Unrn and hence U(t) for t ∈ In.

REMARK 2.1. If we let α→ 1, so that the fractional ODE in (2.1) reduces to the
classical ODE u′ + λu = f (t), then Hn�̄

ij = 0 for 1 ≤ �̄ ≤ n − 1. Indeed, since ω1(t) = 1,

we see that ρn�̄
jα(t) =

∫
I�
ψ�j(s) ds is constant and so ( ρn�̄

jα)′(t) = 0 for t ∈ In. Moreover,
(ρn0

jα )′(t) = ψnj(t), so Hn0
ij =
∫

In
ψnjψni dt.

REMARK 2.2. Later we will show certain symmetry properties of Hn0
ij using the

identity

∫ b

a

(
∂

∂t

∫ t

a
ωα(t − s)u(s) ds

)
v(t) dt = −

∫ b

a
u(s)
(
∂

∂s

∫ b

s
ωα(t − s)v(t) dt

)
ds. (2.8)

In fact, a simple calculation using the substitution x = t − s gives

∂

∂t

∫ t

a
ωα(t − s)u(s) ds = ωα(t − a)u(a) +

∫ t

a
ωα(t − s)u′(s) ds

and (2.8) follows after reversing the order of integration and then integrating by parts.
Similarly,

∫ b

a

(
∂

∂t

∫ b

a
ωα(t − s)u(s) ds

)
v(t) dt = −

∫ b

a
u(s)
(
∂

∂s

∫ b

a
ωα(t − s)v(t) dt

)
ds.

Before discussing the general case in the next section, consider the power basis

ψnj(t) =
1

( j − 1)!

( t − tn−1

kn

) j−1
for t ∈ In and 1 ≤ j ≤ rn,

which is arguably the simplest choice, as far as evaluation of Gn
ij, Hn�

ij and Kn,n−1
ij is

concerned. We see from (2.4) that

Gn
i1 = δi1 and Gn

ij =
1

(i − 1)! ( j − 2)! (i + j − 2)
for j ≥ 2

https://doi.org/10.1017/S1446181120000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000152


126 W. McLean [6]

and from (2.5) that Kn,n−1
ij = δi1/( j − 1)!, so in this case both coefficients are indepen-

dent of n. Turning to Hn�̄
ij , observe that since ψ�,1(t) ≡ 1,

ρn�̄
1α(t) =

⎧⎪⎪⎨⎪⎪⎩ωα+1(t − t�−1) − ωα+1(t − t�) if 1 ≤ � ≤ n − 1,
ωα+1(t − tn−1) if � = n.

For j ≥ 2, we have ψ′�j(t) = k−1
� ψ�, j−1(t) and ψ�, j(t�−1) = 0, so, integrating by parts,

ρn�̄
jα(t) =

⎧⎪⎪⎨⎪⎪⎩k
−1
� ρ

n�̄
j−1,α+1(t) − ψ�j(t�)ωα+1(t − t�) if 1 ≤ � ≤ n − 1,

k−1
n ρn0

j−1,α+1(t) if � = n.

Repeating this process eventually yields

ρn�̄
jα(t) = k−( j−1)

�
ρn�̄

1,α+j−1(t) −
j−2∑
p=0

k−p
�
ψ�, j−p(t�)ωα+p+1(t − t�)

= k−( j−1)
�

[ωα+j(t − t�−1) − ωα+j(t − t�)] −
j−3∑
p=0

k−p
�
ψ�, j−p(t�)ωα+p+1(t − t�) (2.9)

for 1 ≤ � ≤ n − 1 with ρn0
jα (t) = k−( j−1)

n ρn0
1,α+j−1(t) = k−( j−1)

n ωα+j(t − tn−1). We define

Dn�̄
iμ =

∫
In

ωμ(t − t�)ψni(t) dt,

so that, recalling (2.6) and differentiating (2.9),

Hn�̄
ij = k−( j−1)

�
[Dn,�̄+1

i,α+j−1 −D
n,�̄
i,α+j−1] −

j−3∑
p=0

k−p
�
ψ�, j−p(t�)Dn�̄

i,α+p

for 1 ≤ � ≤ n − 1, with Hn0
ij = k−( j−1)

n Dn1
i,α+j−1, and repeated integration by parts gives

Dn�̄
iμ =

i−1∑
q=0

(−1)qk−q
n [ωμ+q+1(t − t�)ψn,i−q(t)]tn

t=tn−1
.

In the case of a uniform step size kn = k = T/N, we have tn − t� = (n − �)k and find
that

Hn�̄
ij = kαH �̄

ij and Dn�̄
iμ = kμD�̄

iμ,

where

H �̄
ij = D

�̄+1
i,α+j−1 −D

�̄
i,α+j−1 −

j−2∑
p=0

D�̄
i,α+p

( j − p − 1)!
for 1 ≤ � ≤ n − 1
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with H0
ij = D

1
i,α+j−1 and

D�̄
iμ = (−1)i−1[ωμ+i(�̄) − ωμ+i(�̄ − 1)] +

i−2∑
q=0

(−1)q

(i − q − 1)!
ωμ+q+1(�̄).

However, as noted in the Introduction, if �̄ = n − � is large then these formulae can
suffer from cancellation of significant digits. In practice, the problem is most acute
if we want to resolve the solution u accurately for t near zero, in which case a strong
mesh grading is required so that the initial step sizes kn are very small. For this reason,
and also to allow a convenient treatment of other choices for the basis functions ψnj,
in the following sections we consider efficient use of quadratures to evaluate the
coefficients Hn�̄

ij .

3. Evaluation of the coefficients

To compute Gn
ij, Hn�

ij and Kn,n−1
ij for general ψnj, it is convenient to map each closed

subinterval Īn = [tn−1, tn] to the reference element [−1, 1]. We therefore define the
affine function tn : [−1, 1]→ Īn by

tn(τ) = 1
2 [(1 − τ)tn−1 + (1 + τ)tn]

and let Ψnj(τ) = ψnj(t) for t = tn(τ) and −1 ≤ τ ≤ 1. In this way, (2.4) and (2.5) imply
that

Gn
ij = Ψnj(−1)Ψni(−1) +

∫ 1

−1
Ψ′nj(τ)Ψni(τ) dτ, (3.1)

Kn,n−1
ij = Ψn−1, j(+1)Ψni(−1). (3.2)

Both of these coefficients are readily computed; the remainder of this section is
devoted to Hn�̄

ij . The formulae in the next lemma allow us to compute Hn0
ij to machine

precision via Gauss–Legendre and Gauss–Jacobi quadrature [5].

LEMMA 3.1. If we define the polynomial

Φn
ij(y) =

1
2

∫ 1

−1
Ψnj[(1 − y)(1 + z)/2 − 1]Ψ′ni[1 − (1 − y)(1 − z)/2] dz,

then

Hn0
ij =

(kn/2)α

Γ(α)

(
Ψni(1)

∫ 1

−1
(1 − σ)αΨnj(σ) dσ −

∫ 1

−1
(1 + y)α−1(1 − y)Φn

ij(y) dy
)
.

PROOF. Since ρn0
jα (tn−1) = 0, integration by parts gives

Hn0
ij =

∫
In

(ρn0
jα )′(t)ψni(t) dt = ρn0

jα (tn)ψni(tn) −
∫

In

ρn0
jα (t)ψ′ni(t) dt

= ρn0
jα (tn)Ψni(1) −

∫ 1

−1
ρn0

jα (tn(τ))Ψ′ni(τ) dτ
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and, since tn(τ) − tn(σ) = (τ − σ)kn/2, the substitution s = tn(σ) yields

ρn0
jα (tn(τ)) =

kn

2

∫ τ

−1
ωα(tn(τ) − tn(σ))Ψnj(σ) dσ

=
(kn/2)α

Γ(α)

∫ τ

−1
(τ − σ)α−1Ψnj(σ) dσ. (3.3)

Thus,

Hn0
ij =

(kn/2)α

Γ(α)

(
Ψni(1)

∫ 1

−1
(1 − σ)α−1Ψnj(σ) dσ − Bn

ij

)
,

where

Bn
ij =

∫ 1

−1

∫ τ

−1
(τ − σ)α−1Ψnj(σ) dσΨ′ni(τ) dτ.

We make the substitution 1 + y = τ − σ, which results in a fixed singularity at y = −1,
and then reverse the order of integration:

Bn
ij =

∫ 1

−1

∫ τ

−1
(1 + y)α−1Ψnj(τ − y − 1) dyΨ′ni(τ) dτ

=

∫ 1

−1
(1 + y)α−1

∫ 1

y
Ψnj(τ − y − 1)Ψ′ni(τ) dτ dy.

The substitution τ = [(1 − z)y + (1 + z)]/2 then yields∫ 1

y
Ψnj(τ − y − 1)Ψ′ni(τ) dτ = (1 − y)Φn

ij(y),

implying the desired formula for Hn0
ij . �

To evaluate Hn,n−�
ij for � ≤ n − 1, we introduce the notation

tn−1/2 = tn(0) = (tn−1 + tn)/2 and Dn�̄ = Dn,n−� = tn−1/2 − t�−1/2,

with Δn�̄(τ,σ) = Δn,n−�(τ,σ) = (τkn − σk�)/(2Dn�̄), so that

tn(τ) − t�(σ) = Dn�̄(1 + Δn�̄(τ,σ)).

LEMMA 3.2. If 1 ≤ � ≤ n − 1, then

Hn�̄
ij =

Dα−1
n�̄

Γ(α)
k�
2

[Ψni(1)An�̄
j (1) − Ψni(−1)An�̄

j (−1) − Cn�̄
ij ],

where

An�̄
j (τ) =

∫ 1

−1
[1 + Δn�̄(τ,σ)]α−1Ψ�j(σ) dσ and Cn�̄

ij =

∫ 1

−1
Ψ′ni(τ)An�̄

j (τ) dτ.
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PROOF. Integrating by parts,

Hn�̄
ij = ρ

n�̄
jα(tn)ψni(tn) − ρn�̄

jα(tn−1)ψni(tn−1) −
∫

In

ρn�̄
jα(t)ψ′ni(t) dt

= ρn�̄
jα(tn(1))Ψni(1) − ρn�̄

jα(tn(−1))Ψni(−1) −
∫ 1

−1
ρn�̄

jα(tn(τ))Ψ′ni(τ) dτ

and the substitution s = t�(σ) gives

ρn�̄
jα(tn(τ)) =

Dα−1
n�̄

Γ(α)
k�
2

∫ 1

−1
(1 + Δn�̄(τ,σ))α−1Ψ�j(σ) dσ,

so the formula for Hn�̄
ij follows at once. �

Notice that

1 + Δn�̄(1,σ) =
2(tn − t�) + (1 − σ)k�
kn + 2(tn−1 − t�) + k�

> 0 for 1 ≤ � ≤ n − 1,

so the integrand ofAn�̄
ij (1) is always a smooth function of σ. However,

1 + Δn�̄(−1,σ) =
2(tn−1 − t�) + (1 − σ)k�

kn + 2(tn−1 − t�) + k�
,

so the integrands ofAn�̄
j (−1) and Cn�̄

j are weakly singular if �̄ = 1 (that is, if � = n − 1).
The next lemma provides alternative expressions that are amenable to Gauss–Jacobi
and Gauss–Legendre quadrature.

LEMMA 3.3. Let 
n = kn/kn−1. Then

An1
j (1) = (1 + 
n)1−α

∫ 1

−1
(2ρn + 1 − σ)α−1Ψn−1, j(σ) dσ,

An1
j (−1) = (1 + 
n)1−α

∫ 1

−1
(1 − σ)α−1Ψn−1, j(σ) dσ,

Cn1
ij = (1 + 
n)1−α

[ ∫ 1

−1
(1 + τ)αΨ′ni(τ)

∫ 1

0
(
n + z)α−1Ψn−1, j(1 − z(1 + τ)) dz dτ

+

∫ 1

−1
(1 − σ)αΨn−1, j(σ)

∫ 1

0
(
nz + 1)α−1Ψ′ni(z(1 − σ) − 1) dz dσ

]
.

PROOF. The formulae forAn�̄
j (±1) follow from

1 + Δn1(1,σ) =
2kn + (1 − σ)kn−1

kn + kn−1
and 1 + Δn1(−1,σ) =

(1 − σ)kn−1

kn + kn−1
.

To deal with Cn,1
ij , we begin by mapping [−1, 1]2 onto [0, 2]2 with the substi-

tution (τ,σ) = (x − 1, 1 − y). In this way, the singularity at (τ,σ) = (−1, 1) moves
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to (x, y) = (0, 0), and

Cn1
ij =

∫ 2

0

∫ 2

0
[1 + Δn1(x − 1, 1 − y)]α−1Ψn−1, j(1 − y)Ψ′ni(x − 1) dx dy

with 1 + Δn1(x − 1, 1 − y) = (xkn + ykn−1)/(kn + kn−1). By splitting the integration
domain [0, 2]2 into the triangular halves where x > y and x < y,

Cn1
ij =

∫ 2

0
Ψ′ni(x − 1)

∫ x

0

(xkn + ykn−1

kn + kn−1

)α−1
Ψn−1, j(1 − y) dy dx

+

∫ 2

0
Ψn−1, j(1 − y)

∫ y

0

(xkn + ykn−1

kn + kn−1

)α−1
Ψ′ni(x − 1) dx dy. (3.4)

The substitution y = zx transforms the inner integral in the first term of (3.4) to

xα
∫ 1

0

(kn + zkn−1

kn + kn−1

)α−1
Ψn−1, j(1 − zx) dz

and the substitution x = zy transforms that in the second to

yα
∫ 1

0

(zkn + kn−1

kn + kn−1

)α−1
Ψ′ni(zy − 1) dz.

Thus,

Cn1
ij =

∫ 2

0
xαΨ′ni(x − 1)

∫ 1

0

(kn + zkn−1

kn + kn−1

)α−1
Ψn−1, j(1 − zx) dz dx

+

∫ 2

0
yαΨn−1, j(1 − y)

∫ 1

0

(zkn + kn−1

kn + kn−1

)α−1
Ψ′ni(zy − 1) dz dy

and the substitutions x = 1 + τ and y = 1 − σ now yield the desired formula for
Cn1

ij . �

We also have the following alternative representation.

LEMMA 3.4. If 1 ≤ � ≤ n − 2, then

Hn�̄
ij = −

1 − α
Γ(α)

knk�
4

Dα−2
n�̄

∫ 1

−1
Ψni(τ)

∫ 1

−1
[1 + Δn�̄(τ,σ)]α−2Ψ�j(σ) dσ dτ.

PROOF. If 1 ≤ � ≤ n − 2, then (ρn�̄
jα)′(t) =

∫
I�
ωα−1(t − s)ψ�j(s) ds for t > t� and so

Hn�̄
ij =

∫
In

ψni(t)
∫

I�
ωα−1(t − s)ψ�j(s) ds. (3.5)

The result now follows via the substitutions t = tn(τ) and s = t�(σ), noting that Γ(α) =
(α − 1)Γ(α − 1). �
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REMARK 3.5. If the time levels are uniformly spaced, and if the reference basis
functions are the same for each subinterval, say

k� = k, r� = r and Ψ�j = Ψj for 1 ≤ � ≤ n and 1 ≤ j ≤ r,

then Dn�̄ = �̄ k and Δn�̄(τ,σ) = (τ − σ)/(2�̄), so the formulae of Lemma 3.2 show that
Hn�̄

ij depends on n and � only through the difference �̄ = n − � (for further details, see
Example 5.5 in Section 5).

4. Spatial discretization

The initial-boundary value problem (1.1) is known to be well posed [6, 8, 11]. Let
〈u, v〉 =

∫
Ω

uv denote the usual inner product in L2(Ω), and let a(u, v) denote the bilinear
form associated with A via the first Green identity. For example, if A = −∇2, then
a(u, v) =

∫
Ω
∇u · ∇v. In this way, the weak solution u : (0, T]→ H1

0(Ω) satisfies

〈∂tu, v〉 + a(∂1−α
t u, v) = 〈 f (t), v〉 for v ∈ H1

0(Ω) and 0 < t ≤ T .

We choose a finite-dimensional subspace Vn ⊆ H1
0(Ω) for 0 ≤ n ≤ N and form the

vector V = (V1, . . . , VN). For example, Vn might be a (conforming) finite-element space
constructed using a triangulation of Ω. Our trial space X = X(t, r, V) then consists of
the functions X : I → H1

0(Ω) such that X|In ∈ Prn−1(In; Vn), that is, the restriction X|In

is a polynomial in t of degree at most rn − 1 with coefficients from Vn. Generalizing
(2.2), the DG solution U ∈ X of (1.1) satisfies

〈[[U]]n−1, Xn−1
+ 〉 +

∫
In

〈∂tU, X〉 dt +
∫

In

a(∂1−α
t U, X) dt =

∫
In

〈 f (t), X〉 dt (4.1)

for X ∈ Prn−1(In; Vn) and 1 ≤ n ≤ N, with U0
− = U0 for a suitable U0 ∈ V0 such that

U0 ≈ u0.
We choose a basis {φnp}Pn

p=1 for Vn. In the expansion (2.3), the coefficient Unj is now

a function in Vn, so there exist real numbers Unj
q such that

Unj(x) =
Pn∑

q=1

Unj
q φnq(x) for x ∈ Ω;

for example, Unj
q = Unj(xnq) if xnq is the qth free node of a finite-element mesh and if

φnq is the corresponding nodal basis function. Similarly, for the discrete initial data,
there are real numbers U0q such that

U0(x) =
P0∑

q=1

U0qφ0q(x) for x ∈ Ω.
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Choosing X(x, t) = ψni(t)φnq(x) in (4.1), we find that the equations (2.7) for time
stepping the scalar problem generalize to

rn∑
j=1

Pn∑
q=1

(Gn
ijM

nn
pq + Hn0

ij Ann
pq)Unj

q = Fni
p −

n−1∑
�=1

r�∑
j=1

P�∑
q=1

Hn,n−�
ij An�

pqU�j
q

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1i(0)
P0∑

q=1

M10
pqU0q, n = 1,

rn−1∑
j=1

Pn−1∑
q=1

Kn,n−1
ij Mn,n−1

pq Un−1, j
q , 2 ≤ n ≤ N,

(4.2)

where

Mn�
pq = 〈φ�q, φnp〉, An�

pq = a(φ�q, φnp), Fni
p =

∫
In

〈 f (t), φnp〉ψni(t) dt.

By introducing the Pn × P� mass matrix Mn� = [Mn�
pq] and stiffness matrix An� = [An�

pq],
and forming the column vectors Unj = [Unj

1 , Unj
2 , . . . , Unj

Pn
]�, Fnj = [Fnj

1 , Fnj
2 , . . . , Fnj

Pn
]�

and U0 = [U01, U02, . . . , U0P0 ]�, we can rewrite the equations (4.2) as

rn∑
j=1

(Gn
ijM

nn + Hn0
ij Ann)Unj = Fni −

n−1∑
�=1

r�∑
j=1

Hn,n−�
ij An�U�j

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ψ1i(0)M10U0, n = 1,
rn−1∑
j=1

Kn,n−1
ij Mn,n−1Un−1, j, 2 ≤ n ≤ N. (4.3)

To write (4.3) even more compactly, define the rn × rn matrix Gn = [Gn
ij]

and the rn × r� matrix Hn�̄ = [Hn�̄
ij ], together with the (block) column vectors

Un = [Un1, Un2, . . . , Unrn ]� and Fn = [Fn1, Fn2, . . . , Fnrn ]�. We also form the rn × rn−1
matrix Kn,n−1 = [Kn,n−1

ij ] and the column vector ψ0
+ = [ψ11(0),ψ12(0), . . . ,ψ1rn (0)]�. By

utilizing the Kronecker product, the linear system (4.3) then takes the form

(Gn ⊗Mnn +Hn0 ⊗ Ann)Un = Fn −
n−1∑
�=1

(Hn,n−� ⊗ An�)U�

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ψ0
+ ⊗M10)U0, n = 1,

(Kn,n−1 ⊗Mn,n−1)Un−1, j, 2 ≤ n ≤ N.
(4.4)
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5. Legendre polynomials

Let P0, P1, P2, . . . denote the Legendre polynomials with the standard normalization
Pj(1) = 1 for all j ≥ 0. By choosing

Ψnj(τ) = Pj−1(τ), (5.1)

we obtain a convenient and well-conditioned basis for Prn−1 with the properties∫ 1

−1
Ψnj(τ)Ψni(τ) dτ =

2δij

2j − 1
and Ψnj(−τ) = (−1) j−1Ψnj(τ).

LEMMA 5.1. With the choice of basis functions in (5.1),

Ψnj(1) = 1 and Ψnj(−1) = (−1) j−1, (5.2)

and the coefficients (3.1) and (3.2) are given by

Kn,n−1
ij = (−1)i−1 and Gn

ij =

⎧⎪⎪⎨⎪⎪⎩(−1)i+j if i ≥ j,
1 if i < j.

PROOF. The properties (5.2) follow from Pj(1) = 1 and Pj(−1) = (−1)j. Hence, the
formula for Kn,n−1

ij follows from (3.2) and, by (3.1),

Gn
ij = (−1)i+j + Eij where Eij =

∫ 1

−1
P′j−1(τ)Pi−1(τ) dτ.

If i ≥ j, then Eij = 0, because P′j−1 is orthogonal to Pi−1. Otherwise, if i < j, then Pj−1
is orthogonal to P′i−1, so integration by parts gives

Eij = [Pj−1(x)Pi−1(x)]1
−1 −
∫ 1

−1
Pj−1(x)P′i−1(x) dx = 1 − (−1)i+j

and hence Gn
ij = 1. �

EXAMPLE 5.2. If rn = 4 and rn−1 = 3, then

Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 1
−1 1 1 1

1 −1 1 1
−1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and Kn,n−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
−1 −1 −1

1 1 1
−1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
We have no analogous, simple formula for the remaining coefficients Hn�

ij . However,
when �̄ = 0 (� = n), the following parity property holds.

LEMMA 5.3. With the choice of basis functions in (5.1),

Hn0
ji = (−1)i+jHn0

ij for i, j ∈ {1, 2, . . . , rn}.
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PROOF. We see from (3.3) that (ρn�̄
iα)(tn(τ)) = (kn/2)α(BPi−1)(τ), where (Bv)(τ) =∫ τ

−1 ωα(τ − σ)v(σ) dσ, so, by (2.8),

Hn0
ji =

(kn

2

)α ∫ 1

−1
(BPi−1)′(τ)Pj−1(τ) dτ = −

(kn

2

)α ∫ 1

−1
Pi−1(σ)(B∗Pj−1)′(σ) dσ

with (B∗v)(σ) =
∫ 1
σ
ωα(τ − σ)v(τ) dτ. Let (RV)(τ) = V(−τ). A short calculation shows

that RB∗ = BR, so

(B∗Pj−1)′(−σ) = − d
dσ

[(B∗Pj−1)(−σ)] = − d
dσ

(RB∗Pj−1)(σ)

= −(BRPj−1)′(σ) = (−1)j(BPj−1)′(σ)

and, therefore, using the substitution σ = −x,

Hn0
ji = (−1) j+1

(kn

2

)α ∫ 1

−1
Pi−1(−x)(BPj−1)′(x) dx

= (−1)i+j
(kn

2

)α ∫ 1

−1
(BPj−1)′(x)Pi−1(x) dx = (−1)i+jHn0

ij ,

as claimed. �

REMARK 5.4. In the limit as α→ 1, we see from Remark 2.1 that

Hn0
ij →

∫
In

ψnj(t)ψni(t) dt =
kn

2

∫ 1

−1
Ψj(τ)Ψi(τ) dτ =

knδij

2j − 1
.

EXAMPLE 5.5. Consider the uniform case kn = k, rn = r and Ψnj = Ψj for 1 ≤ n ≤ N
(as in Remark 3.5) with Ψj(τ) = Pj−1(τ) as above. We then have

Hn�̄
ij = kαH �̄

ij for 1 ≤ � ≤ n ≤ N and i, j ∈ {1, 2, . . . , r},

where, by Lemma 3.1,

H0
ij =

1
2αΓ(α)

( ∫ 1

−1
(1 − σ)αPj−1(σ) dσ −

∫ 1

−1
(1 + y)α−1(1 − y)Φij(y) dy

)
(5.3)

with

Φij(y) =
1
2

∫ 1

−1
Pj−1

(1
2

(1 − y)(1 + z) − 1
)
P′i−1

(
1 − 1

2
(1 − y)(1 − z)

)
dz (5.4)

and, by Lemma 3.2,

H �̄
ij =

�̄α−1

2Γ(α)

(
A�̄

j (1) + (−1)iA�̄
j (−1) − C�̄ij

)
for � ≥ 1
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with, letting Δ�̄(τ) = τ/(2�̄),

A�̄
j (τ) =

∫ 1

−1
(1 + Δ�̄(τ − σ))α−1Pj−1(σ) dσ and C�̄ij =

∫ 1

−1
P′i−1(τ)An�̄

j (τ) dτ.

Moreover, Lemma 3.3 provides alternative expressions when �̄ = 1:

A1
j (1) = 21−α

∫ 1

−1
(3 − σ)α−1Pj−1(σ) dσ,

A1
j (−1) = 21−α

∫ 1

−1
(1 − σ)α−1Pj−1(σ) dσ

(5.5)

and

C1
ij = 21−α

( ∫ 1

−1
(1 + τ)αP′i−1(τ)

∫ 1

0
(1 + z)α−1Pj−1(1 − z(1 + τ)) dz dτ

+

∫ 1

−1
(1 − σ)αPj−1(σ)

∫ 1

0
(z + 1)α−1P′i−1(z(1 − σ) − 1) dz dσ

)
. (5.6)

Likewise, Lemma 3.4 provides an alternative expression for �̄ ≥ 2:

H �̄
ij = −

1 − α
4Γ(α)

�̄α−2
∫ 1

−1
Pi−1(τ)

∫ 1

−1
(1 + Δ�̄(τ − σ))α−2Pj−1(σ) dσ dτ. (5.7)

Finally, by arguing as in the proof of Lemma 5.3, we can show that

H �̄
ji = (−1)i+jH �̄

ij for all �̄ ≥ 0. (5.8)

6. Reconstruction

Throughout this section, we continue to use the Legendre basis (5.1). We may have
some insight into the DG method by considering the trivial case of (1.1) when A = 0,
that is, ∂tu = f (t) for 0 < t ≤ T with u(0) = u0. The DG scheme (4.1) then reduces to

〈[[U]]n−1, Xn
+〉 +
∫

In

〈∂tU, X〉 dt =
∫

In

〈∂tu, X〉 dt (6.1)

for X ∈ Prn−1(In; Vn) and 1 ≤ n ≤ N with U0
− = U0. To state our next result, let Pn

denote the orthoprojector from L2(Ω) onto Vn, and define

Qn� = PnPn−1 · · · P�+1 for 0 ≤ � ≤ n − 1.

LEMMA 6.1. If A = 0, then for 1 ≤ n ≤ N the DG solution U ∈ X satisfies

Un
− − Pnu(tn) = Qn0(U0 − P0u0) +

n−1∑
�=0

Qn�(P� − I)u(t�). (6.2)
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PROOF. Integrating by parts in (6.1),

〈Un
− − u(tn), Xn

−〉 = 〈Un−1
− − u(tn−1), Xn−1

+ 〉 +
∫

In

〈U − u, ∂tX〉 dt. (6.3)

Given v ∈ Vn, by choosing the constant function X(t) = v for t ∈ In we deduce that
〈Un
− − u(tn), v〉 = 〈Un−1

− − u(tn−1), v〉 and so

Pn(Un
− − u(tn)) = Pn(Un−1

− − u(tn−1)).

Since PnUn
− = Un

−,

Un
− − Pnu(tn) = Pn(Pn−1 + I − Pn−1){Un−1

− − u(tn−1)}
= Pn{Un−1

− − Pn−1u(tn−1)} + Pn(Pn−1 − I)u(tn−1)

and, in particular, (6.2) holds for n = 1:

U1
− − P1u(t1) = P1(U0 − P0u0) + P1(P0 − I)u0 = Q10(U0 − P0u0) + Q10(P0 − I)u0.

The general case follows by finite induction on n. �

For the remainder of this section, we will assume that

U0 = P0u0 and V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ VN . (6.4)

Hence, P�+1(P� − I) = 0 for 0 ≤ � ≤ N − 1, so Qn� = Pn and, by Lemma 6.1,

Un
− = Pnu(tn) for 0 ≤ n ≤ N. (6.5)

Therefore, by (6.3), ∫
In

〈U − u, ∂tX〉 dt = 0 for all X ∈ Pn(In; Vn), (6.6)

leading to the following explicit representation for U.

LEMMA 6.2. If A = 0 and (6.4) holds, then

U(t) =
rn−1∑
j=1

anjψnj(t) + ãnψnrn (t) for t ∈ In, (6.7)

where

anj =
2j − 1

kn

∫
In

Pnu(t)ψnj(t) dt

are the local Fourier–Legendre coefficients of Pnu, but

ãn = Pnu(tn) −
rn−1∑
j=1

anj.

PROOF. By definition, U|In ∈ Prn−1(In; Vn), so there exist coefficients anj and ãn in Vn

such that U has the desired expansion. The formula for anj follows at once from the

https://doi.org/10.1017/S1446181120000152 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000152


[17] Discontinuous Galerkin methods 137

orthogonality property of the ψnj (see Remark 5.4). The formula for ãn follows from
(6.5), because ψnj(tn) = Pj−1(1) = 1 for all j. �

We have a Peano kernel Gr [3, Ch. 5, Section 2.4] for the Fourier–Legendre
expansion of degree r,

f (τ) =
r+1∑
j=1

bjΨj(τ) +
∫ 1

−1
Gr(τ,σ)f (r+1)(σ) dσ for −1 ≤ τ ≤ 1,

assuming that f : [−1, 1]→ R is Cr+1, and also a Peano kernel Mj(τ) for the jth
coefficient:

bj =
2j − 1

2

∫ 1

−1
f (τ)Ψj(τ) dτ =

∫ 1

−1
Mj(τ)f ( j−1)(τ) dτ.

Thus, if t = tn(τ) and s = tn(σ), and if we define the local Peano kernels

gnr(t, s) = (kn/2)rGr(τ,σ) and mnj(t) = (kn/2) j−2Mj(τ),

then

Pnu(t) =
rn+1∑
j=1

anjψnj(t) +
∫

In

gnrn (t, s)Pnu(rn+1)(s) ds for t ∈ In (6.8)

and

anj =

∫
In

mnj(s)Pnu( j−1)(s) ds.

It follows that anj = O(kj−1
n ), provided u is Cj−1 on Īn.

THEOREM 6.3. Assume that A = 0 and the conditions in (6.4). If u : Īn → L2(Ω) is
Crn+1, then an,rn+1 = O(krn

n ) and

Pnu(t) − U(t) = an,rn+1[ψn,rn+1(t) − ψn,rn (t)] + O(krn+1
n ) for t ∈ In. (6.9)

PROOF. Subtracting (6.7) from (6.8),

Pnu(t) − U(t) = (an,rn − ãn)ψnrn (t) + an,rn+1ψn,rn+1(t) + O(krn+1
n )

for t ∈ In. Since Un
− = Pnu(tn) and ψn,rn (tn) = ψn,rn+1(tn) = 1, taking the limit as t → tn

yields an,rn − ãn = −an,rn+1 + O(krn+1
n ). �

COROLLARY 6.4. Pn[[U]]n−1 = 2(−1)rn+1an,rn+1 + O(krn+1
n ).

PROOF. As t → t+n−1, the left-hand side of (6.9) tends to

Pnu(tn−1) − Un−1
+ = Pn(I − Pn−1 + Pn−1)u(tn−1) − Un−1

+ = PnUn−1
− − Un−1

+

= −Pn(Un−1
+ − Un−1

− ) = −Pn[[U]]n−1

and, on the right-hand side, ψn,rn+1(t) − ψn,rn (t) tends to

Prn (−1) − Prn−1(−1) = (−1)rn − (−1)rn−1 = 2(−1)rn . �
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FIGURE 1. The polynomials Pr(τ) − Pr−1(τ).

In light of Theorem 6.3, we consider the polynomials

ψn,rn+1(t) − ψn,rn (t) = Ψrn+1(τ) − Ψrn (τ) = Prn (τ) − Prn−1(τ).

As illustrated in Figure 1, there are r + 1 points

−1 = τr0 < τr1 < · · · < τrr = 1

such that (Pr − Pr−1)(τrj) = 0 for 1 ≤ j ≤ r. In fact, the r zeros τr1, τr2, . . . , τrr are the
points of a right-Radau quadrature rule [5, Ch. 9] on the interval [−1, 1]. We put

t∗nj = tn(τrnj) for 0 ≤ j ≤ rn, (6.10)

so that tn−1 = t∗n0 < t∗n1 < · · · < t∗nrn
= tn and ψn,rn+1(t∗nj) − ψn,rn (t∗nj) = 0 for 1 ≤ j ≤ rn.

From Theorem 6.3,Pnu(t) − U(t) = O(krn
n ) for general t ∈ In, butPnu(t∗nj) − U(t∗nj) =

O(krn+1
n ) for 1 ≤ j ≤ rn. Let X̂ denote the space obtained from X by increasing the

maximum allowed polynomial degree over the subinterval In from rn to r̂n = rn + 1 for
1 ≤ n ≤ N. The “reconstruction” Û ∈ X̂ of U ∈ X is then defined by requiring that

Û(t∗nj) = U(t∗nj) for 1 ≤ j ≤ rn − 1

and that the one-sided limits at the end points are

Ûn−1
+ = PnUn−1

− and Ûn
− = Un

−.

Since Û|In is a polynomial of degree at most r̂n − 1 = rn, it is uniquely determined by
these rn + 1 interpolation conditions. Notice also that Û is continuous at tn−1 if Vn−1 =

Vn, because PnUn−1
− = Un−1

− .
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Makridakis and Nochetto [7] introduced the reconstruction in their analysis of a
posteriori error bounds for parabolic PDEs. Since the polynomial (U − Û)|In has degree
at most rn and vanishes at t∗nj for 1 ≤ n ≤ rn, it must be a multiple of ψn,rn+1 − ψnrn . In
fact, by taking limits as t → t+n−1,

U(t) − Û(t) = 1
2 (−1)rnPn[[U]]n−1[ψn,rn+1(t) − ψn,rn (t)] for t ∈ In. (6.11)

At the same time, by Theorem 6.3 and Corollary 6.4,

U(t) − Pnu(t) = 1
2 (−1)rnPn[[U]]n−1[ψn,rn+1(t) − ψn,rn (t)] + O(krn+1

n ) for t ∈ In, (6.12)

implying that Û − Pnu is O(krn+1
n ) on In. One of our principal aims in the next section

is to investigate numerically the error in the DG solution U and its reconstruction Û in
nontrivial cases of the fractional diffusion problem (1.1), that is, with A � 0. We hope
that something similar to (6.12) still holds, because the time derivative in the term
∂1−α

t Au is of lower order than in ∂tu. Notice that (2.3) and (6.11) imply that

Û(t) =
r̂n∑

j=1

Ûnjψnj(t) for t ∈ In,

where

Ûnj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Unj, 1 ≤ j ≤ rn − 1,

Unrn + 1
2 (−1)rnPn[[U]]n−1, j = rn,

1
2 (−1)rn+1Pn[[U]]n−1, j = rn + 1 = r̂n.

7. Numerical experiments

A Julia package [9] provides functions to evaluate the coefficients Gn
ij, Kn,n−1

ij and

Hn�̄
ij based on the results of Sections 3 and 5. This package also includes (in the
examples directory) the scripts used for the examples below.

7.1. The matrix H�̄ Let α = 3/4 and consider for simplicity the case when kn = k
and rn = r are constant for all n, so that the formulae of Example 5.5 apply. To get a
sense of how the matrix entries H�̄

ij behave, we computed

H0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1.08807 0.15544 0.07065 0.04239
−0.15544 0.49458 0.09326 0.04834

0.07065 −0.09326 0.33839 0.06893
−0.04239 0.04834 −0.06893 0.26319

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.34623 −0.13428 −0.06884 −0.04219

0.13428 0.08414 0.05405 0.03690
−0.06884 −0.05405 −0.04050 −0.03048

0.04219 0.03690 0.03048 0.02472

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
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FIGURE 2. Decay of maxi+j=m |H �̄
ij| for increasing m and �̄, when α = 3/4.

which illustrate the property (5.8). The factor (1 + Δ�̄(τ − σ))α−2 in (5.7) becomes very
smooth as �̄ increases, with the result that H�̄

ij decays rapidly to zero as i + j increases.
Even for �̄ = 2,

H2 = 10−1 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.91483 −0.10220 −0.01261 −0.00164

0.10220 0.02027 0.00355 0.00059
−0.01261 −0.00355 −0.00080 −0.00016

0.00164 0.00059 0.00016 0.00004

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Figure 2 illustrates this behaviour for larger values of �̄, with entries in the lower
right corner of the matrix reaching the order of the machine epsilon (2−52 ≈ 2.22 ×
10−16) once �̄ is of order 100.

The value of H0
ij can be computed to machine precision using Gauss quadrature

with Mσ = �j/2� and My = �(i + j)/2� − 1 points for the integrals with respect to σ
and y in (5.3), and using Mz = �(i + j)/2� − 1 points for the integral with respect to z
in (5.4). Similarly, to compute A1

j (−1) in (5.5), it suffices to use Mσ = �j/2� points,
although the other terms in H1

ij may require more points. Let H1
ij(M) denote the value

of H1
ij computed by applying M-point Gauss rules to computeA1

j (1) in (5.5) and C1
ij in

(5.6) (that is, M2 Gauss points for the double integral). Likewise, for � ≥ 2, let H�̄
ij(M)

denote the value of H �̄
ij computed by applying M-point Gauss rules to (5.7). For a given

absolute tolerance atol, let M�̄
r (atol) denote the smallest M for which

|H �̄
ij(M) − H �̄

ij(12)| < atol for all i, j ∈ {1, 2, . . . , r}.
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TABLE 1. Numbers of Gauss points M�̄
r (atol) in each variable required for atol = 10−14, when α = 3/4.

r �̄ = 1 �̄ = 2 �̄ = 10 �̄ = 100 �̄ = 1000

1 9 9 5 3 2
2 9 9 5 3 2
3 9 9 5 4 3
4 10 10 6 4 3
5 10 10 6 5 4
6 11 11 7 5 4

Table 1 lists some values of M�̄
r (atol) for atol = 10−14. Unsurprisingly, fewer

quadrature points are needed as �̄ increases. In any case, the computational
cost of computing the coefficients is negligible in comparison with the overall
cost of assembling and solving the linear system (4.4) for any realistic spatial
discretization.

7.2. A fractional ODE We consider the initial-value problem (2.1) in the case

α = 1/2, λ = 1/2, f (t) = cos πt, u0 = 1, T = 2, (7.1)

for which the solution is

u(t) = u0E1/2(−λ
√

t) +
∫ t

0
E1/2(−λ

√
t − s)f (s) ds,

where Eα(z) =
∑∞

n=0 zn/Γ(1 + nα) denotes the Mittag-Leffler function [15]. The substi-
tution s = (1 − y2)t yields a smooth integrand, allowing u(t) to be computed accurately
via Gauss quadrature on the unit interval [0, 1]. Note that E1/2(−x) = erfcx(x) =
ex2

erfc(x) is just the scaled complementary error function.
Figure 3 shows u together with the DG solution U using piecewise quadratics

(r = 3) and only N = 3 subintervals. In Figure 4, we plot the absolute errors,

Ê(t) = |Û(t) − u(t)| and En
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|Un−1
+ − u(t∗n0)|, j = 0,
|U(t∗nj) − u(t∗nj)|, 1 ≤ j ≤ r − 1,
|Un
− − u(t∗nr)|, j = r,

again using piecewise quadratics but now with N = 5 subintervals of uniform size
kn = k = T/N. Two features are immediately apparent. First, the accuracy is poor
near t = 0, reflecting the singular behaviour of the solution: for m ≥ 1, the mth
derivative u(m)(t) blows up like t−(m−1/2) as t → 0. Second, on intervals In away from 0,
the error is notably smaller at the right-Radau points (t∗nj for 1 ≤ j ≤ 3) than at the left
end point (t∗n0 = tn−1).

In Table 2, we show how the quantities

Emax
j = max

1≤n≤N
(t∗nj)

r−αEn
j (7.2)
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FIGURE 3. The exact solution u of (2.1) in the case (7.1), together with the piecewise-quadratic (r = 3)
DG solution with N = 3 subintervals.

FIGURE 4. Absolute errors in the reconstruction Û(t) for 0 ≤ t ≤ T = 2, and in the DG solution U(t)
for t = t∗nj, using piecewise quadratics (r= 3) and N = 5 uniform subintervals (see (6.10)).

behave as N grows. These results, together with similar computations using other
choices of α and r ≥ 2, lead us to conjecture that, in general, using a constant time
step k,

En
0 ≤ C(t∗n0)α−rkr for 2 ≤ n ≤ N,
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TABLE 2. Maximum weighted errors (7.2) at the points t∗nj using piecewise quadratics (r = 3) on a
uniform grid.

N Emax
0 Emax

1 Emax
2 Emax

3

8 8.0e-03 8.8e-05 1.3e-04 1.0e-04
16 1.2e-03 2.69 1.4e-05 2.62 1.4e-05 3.15 9.3e-06 3.46
32 1.7e-04 2.87 1.5e-06 3.25 1.3e-06 3.40 8.2e-07 3.50
64 2.2e-05 2.94 1.4e-07 3.42 1.2e-07 3.47 7.2e-08 3.51
128 2.8e-06 2.97 1.3e-08 3.47 1.1e-08 3.49 6.3e-09 3.51
256 3.6e-07 2.98 1.1e-09 3.49 9.5e-10 3.50 5.5e-10 3.51

TABLE 3. Maximum error in the reconstruction Û(t) for 0 ≤ t ≤ T = 1, using piecewise quadratics (r= 3)
for four choices of the mesh grading exponent q (see (7.3)).

N q = 1 q = 3 q = 5 q = 6

8 1.1e-02 1.4e-03 4.1e-04 7.1e-04
16 6.0e-03 0.84 3.8e-04 1.89 5.2e-05 2.95 9.1e-05 2.97
32 4.3e-03 0.50 1.3e-04 1.50 7.9e-06 2.72 1.0e-05 3.19
64 3.0e-03 0.50 4.7e-05 1.50 1.4e-06 2.51 9.8e-07 3.35
128 2.1e-03 0.50 1.7e-05 1.50 2.5e-07 2.50 9.2e-08 3.41
256 1.5e-03 0.50 5.9e-06 1.50 4.3e-08 2.50 8.4e-09 3.45

whereas

En
j ≤ C(t∗nj)

α−rkr+α for 1 ≤ n ≤ N and 1 ≤ j ≤ r

and that, consequently,

|Û(t) − u(t)| ≤ Ctα−rkr+α for t1 ≤ t ≤ T .

However, using piecewise constants (r = 1) we do not observe any superconvergence,
with both Emax

0 and Emax
1 behaving like Ct1−α

n k, albeit with a noticeably smaller constant
in the case of Emax

1 .
To suppress the growth in the error as t approaches 0, we can use a graded mesh of

the form

tn = (n/N)qT for 0 ≤ n ≤ N (7.3)

with a suitable grading exponent q ≥ 1. Table 3 shows the maximum error in the
reconstruction, that is, max0≤t≤T |Û(t) − u(t)|, together with the associated convergence
rates, for four choices of q and using T = 1 as the final time. These errors appear to be
of order kmin(3.5,qα), where k = max1≤n≤N kn ≤ CN−1. We conjecture that, in general,

|Û(t) − u(t)| ≤ Ckmin(r+α,qα) for 0 ≤ t ≤ T provided r ≥ 2. (7.4)
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7.3. A fractional PDE Consider the elliptic operator A = −∂2/∂x2 for the
one-dimensional spatial domain Ω = (0, L). To construct a reference solution, we
exploit the fact that the Laplace transform of u,

ũ(x, z) =
∫ ∞

0
e−ztu(x, t) dt,

satisfies the two-point boundary-value problem

ω2ũ − ũxx = g(x, z) for 0 < x < L with ũ(0, z) = 0 = ũ(L, z),

whereω = zα/2 and g(x, z) = zα−1[u0(x) + f̃ (x, z)]. The variation-of-parameters formula
leads to the integral representation

ũ(x, z) =
sinhω(L − x)
ω sinhωL

∫ x

0
g(ξ, z) sinhωξ dξ

+
sinhωx
ω sinhωL

∫ L

x
g(ξ, z) sinhω(L − ξ) dξ

and the Laplace inversion formula then gives

u(x, t) =
1

2πi

∫
Γ

eztũ(x, z) dz (7.5)

for a contour Γ homotopic to the imaginary axis and passing to the right of all
singularities of the integrand.

We choose as data the functions

u0(x) = C0x(L − x) and f (x, t) = Cf te−t (7.6)

for constants C0 and Cf , and find that

ũ(x, z) =
C0

z
ρ1(x) sinhω(L − x) + ρ1(L − x) sinhωx

sinhωL

+
Cf

z(z + 1)2

ρ2(x) sinhω(L − x) + ρ2(L − x) sinhωx
sinhωL

,

where we have ρ1(x) = (ωx(L − x) − 2ω−1) coshωx + (2x − L) sinhωx + 2ω−1 and
ρ2(x) = coshωx − 1. To evaluate the contour integral (7.5), we apply an optimized
equal-weight quadrature rule that arises after deforming Γ into the left branch of an
hyperbola [19]. Figure 5 shows the reference solution over the time interval [0, 2] in
the case

α = 0.6, L = 2, C0 = 1, Cf = 2. (7.7)

In Figure 6, we plot the L2-norms of the jumps, ‖[[U]]n−1‖, together with the errors
in U(t) and its reconstruction Û(t). The DG method used piecewise quadratics (r = 3),
first with a uniform mesh of N = 12 subintervals (top) and then with a nonuniform
mesh of N = 40 subintervals (bottom). In both cases, the spatial discretization used
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FIGURE 5. The reference solution for the one-dimensional problem with data given by (7.6) and (7.7).

FIGURE 6. Comparison of the jumps ‖[[U]]n−1‖ with the DG error ‖U(t) − u(t)‖ and the reconstruction
error ‖Û(t) − u(t)‖. Left: a uniform mesh with N = 12 time steps. Right: a graded mesh with N = 40 time
steps.

(continuous) piecewise cubics on a uniform grid with 20 subintervals. Since u0 is a
quadratic polynomial in this instance, we simply put U0 = u0. Consistent with our
conjecture (6.12), we observe that

sup
tn−1<t<tn

‖U(t) − u(t)‖ ≈ ‖[[U]]n−1‖.

Motivated by our conjecture (7.4), the second mesh was graded for 0 ≤ tn ≤ 1 by taking
q = (r + α)/α, N = 34 and T = 1 in the formula (7.3), followed by a uniform mesh on
the other half [1, 2] of the time interval. We see that the mesh grading is effective at
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resolving the solution for t near zero, albeit with a substantial increase in the overall
computational cost.

We conclude by noting that the conjectures above are stronger than what has been
proved in the literature. Mustapha [13, Theorem 5] was able to show an error bound in
L∞(L2) of at best O(kr−μ) with μ = 1 − α/2 for r ≥ 3, and μ = (1 − α)/2 for r = 2, using
a sufficiently strong mesh grading, but pointed out that in practice the rate is observed
to be optimal (that is, μ = 0). For the piecewise-linear case r = 2, convergence of at
best O(k1+2α log k−1) has been proved [14, Theorem 4.3] for the nodal value Un

−. The
rate is better than the optimal O(k2), when 1/2 < α < 1, but in practice one observes
O(kr+α) superconvergence for the full range 0 < α < 1. There appear to be no a priori
superconvergence results for the error at the interior Radau points t∗nj (1 ≤ j ≤ rn − 1).
For the classical diffusion equation (α = 1), Un

− is known to be superconvergent of
order at best k2r−1 (assuming that rn = r is fixed) but with a constant factor that may
blow up as t → 0, depending on the regularity of the data [2, Theorem 3].

8. Conclusion

We have described in detail a practical implementation of DG time stepping for
fractional diffusion problems, and demonstrated that the high accuracy of the DG
solution U can be further improved by post processing to form the reconstruction
Û. Moreover, the jumps [[U]]n−1 provide an easily computed error estimator for U|In

that could form the basis for automatic step-size control. A complete theoretical
justification for the observed convergence behaviour is, however, not yet available.
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