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Abstract

The discontinuous Galerkin (DG) method provides a robust and flexible technique
for the time integration of fractional diffusion problems. However, a practical imple-
mentation uses coefficients defined by integrals that are not easily evaluated. We
describe specialized quadrature techniques that efficiently maintain the overall accuracy
of the DG method. In addition, we observe in numerical experiments that known
superconvergence properties of DG time stepping for classical diffusion problems carry
over in a modified form to the fractional-order setting.
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1. Introduction

The discontinuous Galerkin (DG) method provides an effective numerical procedure
for the time integration of diffusion problems. In the mid-1980s, Eriksson et al.
[2] provided the first detailed error analysis, which has been subsequently extended
and refined by numerous authors (see, for example, the articles [7, 16, 17] and the
references therein). The DG method has also proved effective for time stepping of
fractional diffusion problems [10, 13] of the form

Au+0""Au =f(t) for0 <t < T with u(0) = up. (1.1)

Here, A is a linear, second-order, elliptic partial differential operator over a spatial
domain €2, subject to a homogeneous Dirichlet boundary condition # = 0 on Q. (Our
notation suppresses the dependence of # and f on the spatial variables.) The fractional
diffusion exponent is assumed to satisfy 0 < @ < 1 (the subdiffusive case), and the
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122 W. McLean 2]

fractional time derivative is understood in the Riemann—Liouville sense [15]: for ¢ >
Oand u > 0,

av

t u—1
g j(; w,(t = s)v(s)ds where w,(t) = I“_(,u)

The partial integro-differential equation (1.1) arises in a variety of physical mod-
els [4, 12] of diffusing particles whose behaviour is described by a continuous-time
random walk for which the waiting-time distribution is a power law that decays
like 1/t as t — oo. The expected waiting time is therefore infinite, and the
mean-square displacement turns out to be proportional to *. Standard Brownian
motion is recovered in the limit as @ — 1, when (1.1) reduces to the classical diffusion
equation.

Our main concern in the present work is with the practical implementation of
DG time stepping for (1.1) and, in particular, with the accurate evaluation of certain
coefficients HZ,’"_K used during the nth step. Section 2 introduces the DG method
for the fractional ordinary differential equation (ODE) case of (1.1), in which the
operator A is replaced by a scalar 4 > 0. We will see in the simplest lowest-order
scheme, when the DG solution is piecewise constant in time, that

0 I d !
H; :Ll d_t(j; a)(,(t—s)ds)dt

n—1

In d 17
H?i’l_[ = f E(f wo(t - s)ds)dt forl<f{<n-1,
tn- 1

1 -1

and

where 0 =1y <t; <t <--- are the discrete time levels. Here, we can verify that
H;'io = Wq+1(ky) = k7 /T'(a + 1) for a step size k, = t,, — 1,1, and

-t
H"™ = Weit(ty = te-1) = War1 (ty = ) = Was1 (ot = te—1) + War1(tay — 1), (1.2)

but for higher-order schemes the coefficients become progressively more complicated.
Although the H;’”_f can always be evaluated via repeated integration by parts,
the resulting expressions are prone to suffer from roundoff when evaluated in
floating-point arithmetic if n — € is large. Consider just the lowest-order case (1.2) with
uniform time steps ¢, = nk, so that

H = K wari1(n = €+ 1) = 20441 (0 = £) + Wor1(n = € = D]

Since the factor in square brackets is a second difference of w,+, its magnitude decays
like (n — £)*~% as n — ¢ increases, but the individual terms grow like (n — £)°.

We are therefore led to evaluate the coefficients H;'f"_[ via quadratures with positive
weights. No special techniques are needed for £ <n—2, but when £ =n or n— 1
we must deal with weakly singular integrands. In Section 3, we show how certain
substitutions reduce the problem to dealing with integrands that are either smooth,
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or are products of smooth functions and standard Jacobi weight functions. Similar
substitutions, known as Duffy transformations [1], have long been used to compute
singular integrals arising in the boundary element method.

Section 4 introduces a spatial discretization for the fractional partial differential
equation (PDE) (1.1) and describes the structure of the linear system that must be
solved at each time step. In Section 5, we specialize the expressions for the coefficients
by choosing Legendre polynomials as the shape functions employed in the DG time
stepping.

Section 6 describes a post-processing technique that, when applied to the DG solu-
tion U, produces a more accurate approximate solution U, called the “reconstruction”
[7] of U.If U is a piecewise polynomial of degree at most r — 1, then U is a piecewise
polynomial of degree at most r. For a classical diffusion problem, both U and U are
quasi-optimal, that is, accurate of order k" and k"*!, respectively. Thus, it is natural
to ask what happens in the fractional-order case, and we investigate this question in
numerical experiments reported in Section 7. Section 8 concludes the paper.

2. A fractional ODE

Our central concern is present already in the zero-dimensional case when we replace
the elliptic operator A with a scalar A > 0, so that the solution u(¢) is a real-valued
function satisfying the fractional ODE

W +20)“u=f(t) for0<t<T withu(0) = up. 2.1)
For the time discretization, we introduce a grid
O=ty<hh<h<---<ty=T

and form the vector ¢ = (t,1;,...,ty). Let k, = t, — t,; denote the length of the nth
(open) subinterval I, = (-1, t,). We form the disjoint union

I=LULU---Uly

and, for any function v : I — R, write

Vi =limv(t, +€), VI =limv(, —e), [v]"=V]-V",
€l0 €l0
provided the one-sided limits exist.
Given a vector r = (r1,r,,...,ry) of integers r, > 0, the trial space X = X(¢,r)
consists of the functions X : I — R such that X|; € P, _; for 1 <n < N. Here, P,

denotes the space of polynomials of degree at most m > 0 with real coefficients. The
DG solution U € X of (2.1) is then defined by [10, 13]

LUr='x + f (U’ + 20" U)X di = f Mt (22)
L In
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124 W. McLean [4]

for X € P, ; and 1 < n < N, where, in the case n = 1, we set U° = uy, so that [U]° =
U% - U° = UY - uy. A general introduction to DG time stepping for classical diffusion
problems may be found in the monograph of Thomée [18, Ch. 12].

To compute U, we choose for each n a basis ¥,1, Y2, ..., Yur, for P, _; and write

"'n

U() = Z U(t) fort €1, 2.3)

j=1
When X = ¢,,;,

I'n—1

"'n
n—1yn—1 ’ _ nymj n—1yn—-1 _ nn—1ym—1,j
Urixn +fInUth_§ GyUY and UM'XI' =) KU

j=1 Jj=1
with coefficients given by
Gl = Wyt Wil 1) + fl W it 2.4)
and
K;’n_l = Yn-1,j(tn-1)Wni(tn-1). (2.5)

Owing to the convolutional structure of the fractional derivative, it is convenient to
introduce the notation £ = n — £ and define, if t € I,,,

p;(f(t) = pj'.’c’y"_f(t) = fwa(t —sW(s)ds forl<f<n-1
I

with
_ !
Pl (1) = p,'»’(? (0= f Wa (1 = $)yi(s) ds.
In-1
We find that
n e _
o U= Y Uy () fortel,
=1 j=1
and thus

n re B ) ~ B
f O U)X dt = Z Z Hi'UY,  where Hj'=H;"™" = f (P) ni dt. (2.6)
In I,,

=1 j=1

Hence, putting F" = f] f,; dt, the DG method (2.2) requires
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n—-1 re

Z(Gn + /lH”O Un/ Fni _ Z Z AH;JF(’U[j
=1 j=1
Y1:(0)uo, n=1,
I'n-1
* ZK;’”“U"‘LJ', 2<n<N. @2.7)
=1

At the nth time step, this r, X r, linear system must be solved to determine U™,
U™, ..., U" and hence U(¢) for t € I,.

REMARK 2.1. If we let @ — 1, so that the fractional ODE in (2.1) reduces to the
classical ODE v’ + Au = f(¢), then H”f 0for 1 <€ <n-1.Indeed, since w;(t) = 1,
we see that pj’.‘(f(t) = fh Yei(s)ds is constant and so ( pj’.’cf) (t) = 0 for ¢ € I,. Moreover,
(D) (1) = Uj(1), 50 H} = [t di.

REMARK 2.2. Later we will show certain symmetry properties of H;‘.O using the
identity

b t b b
fa (% f wa(t—s)u(s)ds)v(t)dt=— f u(s)((% f a)c,(t—s)v(t)dt)ds. 2.8)

In fact, a simple calculation using the substitution x = ¢ — s gives

t

% W (t — Su(s) ds = wu(t — a)u(a) + f wo(t — s)u'(s)ds

and (2.8) follows after reversing the order of integration and then integrating by parts.
Similarly,

b b b b
f; (% fa Wy (t = $)u(s) ds)v(t) dt = — L u(s)(% fa We(t — s)V(1) dt) ds

Before discussing the general case in the next section, consider the power basis

= In-1

1 t
Wi(t) = W( k,

j-1
) fortrel,and 1 <j<r,,

which is arguably the simplest choice, as far as evaluation of GZ H;’.f and K;’"_l is
concerned. We see from (2.4) that '

1
Gl =6 and G!= for j > 2
L e T TR R ) R
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and from (2.5) that K;‘"fl = 0;1/(j — 1)!, so in this case both coefficients are indepen-

dent of n. Turning to Hl’.]’.z, observe that since ¥, (f) = 1,

wa+l(t_t[’—l)_wa+l(t_tl’) ifl<f<n-1,
pi() = .
Waei1(t —t,21) if £ = n.
Forj > 2, we have z//}j(t) = k;ll//g’ j-1() and g j(te-1) = 0, so, integrating by parts,

iy < [ P O = V0wen =) 1< C<n -1,
Kl () if ¢ = n.

n ] lLa+l1

Repeating this process eventually yields

P = kTP (0 = Y K W)@ (= 1)

p=0
= I P w0 = 101) = it = 101 = D KUt p(t)Waiprr (= 1) (29)
p=0

for 1 < €<n—1with () = k""" () = kx" ™V wauj(t = t,1). We define

D?f = f wy(t = te)i(t) dt,

n

so that, recalling (2.6) and differentiating (2.9),

{ (j-1) n,0+1 71, - -p 4
Hln k [Dl atj-1 D”Hj 1] - ch l/’&j—P(tf)DZ(H—p
p=0

for1 <¢<n-1,with HZ.O k, D! and repeated integration by parts gives

ia+j—-1°

Dl = Z( Dk [ @perget (= 1 imgOTL, -

In the case of a uniform step size k, = k = T/N, we have t, — t;, = (n — {)k and find

that
an kaHf and an kﬂﬂfﬂ 7
where
+1 ’ = la/+p
+
=D, ouj1 = Digrjor — Z L G=p- D) forl<t<n-1
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with Hl.(]). = P! and

i,a+j—1

1)4

i-2
D, = (DM wui@ = i@ = DI+ Y # Wurgr1 (D).
q=0

- 1!

However, as noted in the Introduction, if £ =n — € is large then these formulae can
suffer from cancellation of significant digits. In practice, the problem is most acute
if we want to resolve the solution u accurately for ¢ near zero, in which case a strong
mesh grading is required so that the initial step sizes k,, are very small. For this reason,
and also to allow a convenient treatment of other choices for the basis functions i,
in the following sections we consider efficient use of quadratures to evaluate the
coefficients Hj'.

3. Evaluation of the coefficients

To compute G, H¢ and K" for general ¢, it is convenient to map each closed
i ij

subinterval 1, = [t,_1,1,] to the reference element [—1, 1]. We therefore define the
affine function t, : [-1,1] — I, by

tn(T) = %[(1 - T)tn—l + (1 + T)tn]

and let W,;(t) = y,j(t) for t = t,(r) and —~1 < 7 < 1. In this way, (2.4) and (2.5) imply
that
1

G = W (=1)¥ui(=1) + f ¥, (1) Pi(7) dr, (3.1)
' -1
Ki"™ = Wy j(+ D=1, (3.2)

Both of these coefficients are readily computed; the remainder of this section is
devoted to Hl’.]’.f. The formulae in the next lemma allow us to compute H;O to machine
precision via Gauss—Legendre and Gauss—Jacobi quadrature [5].

LEMMA 3.1. If we define the polynomial

] l
Q500 = 3 fl Pyl =1 +2)/2 - 1Y, [1 - (1 -y -2)/2]dz,

then

o _ a2

! 1
ij T@) (‘Pm‘(l) [1(1 - 0)"¥y(o)do - Il(l +y)* - NO;() dy).

PROOF. Since pj’.’(?(t,,,l) = 0, integration by parts gives
H} = f (P @it dt = Pl (6 W) = f Pl O, (1) dt
I, I

1
= P00 W(1) - f BN 0 de
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and, since t,(1) — t,(0)) = (t — 0)k,/2, the substitution s = t,(0) yields

pjnf (t.(1) = % f : W (1, (1) — 1, (U))‘Pnj (o) do

_ (kr(/j)) [ :(T o) (o) do. (3.3)
Thus,
= 2w [ 1(1 — o)) dor - BY),
where
B} = I i I :(T - ) Y,(0) do P (1) dr.
We make the substitution 1 + y = 7 — o, which results in a fixed singularity aty = —1,

and then reverse the order of integration:

1 T
By= [ [ aenm e -y- Dy mar

1

1 1
= f (1 +y)“_1f ¥,i(r —y— DY (1) dr dy.
- y

The substitution 7 = [(1 — z)y + (1 + z)]/2 then yields
1
| ey - 0¥ = 1 -
y

implying the desired formula for HZ.O. O
To evaluate H;’.’"_[ for £ < n — 1, we introduce the notation
o172 = t(0) = (tp-1 + 1,)/2  and Dy = Dyyr = ty-12 — te-172,
with A,7(1,0) = Apu—e(T,0) = (tk,, — 0k¢)/(2D,7), so that

t,(7) —te(o) = D,z (1 + A, 3(7, 0)).
LEMMA 3.2. If1 <€ <n—1, then

a—1
_ - k - - _
Hfl.f:”_f_f\ynil nlq —¥,(-1 nl_1y - ot
= Fis ST DAD) ~ DA =G

where

_ 1 , 1 5
A (1) = f [1+ Azt 0 " Wy(o)do and C}f = f ¥, (DA (7) dr.
-1 -1
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PROOF. Integrating by parts,

H;l[ —P,(,(fn)lﬁm(tn) pja(tn l)wm(tn 1) - fpja(f)lﬁm(f) dt

I,
I
= P2t (L)1) — P2ty (~ D) Ei(—1) — f P (), (1) dr

and the substitution s = t,(o) gives

() = f (1 + Az, o)W () dor,

F( ) 2
so the formula for H;‘.Z follows at once. m]

Notice that

2ty —tp) + (1 = 0)ke
1+A (o) = 0 forl<f<n-—1,
w0 = e ke 0 or "

so the integrand of ﬂl'.;z(l) is always a smooth function of o. However,

2ty-1 —t0) + (1 — 0)ke
kn + 2(ln_1 — l‘g) + k[ ’

1+A:(-10)=
so the integrands of ﬂ""( 1) and C”" are weakly singular if £ = 1 (thatis, if £ = n - 1).

The next lemma prov1des alternatlve expressions that are amenable to Gauss—Jacobi
and Gauss—Legendre quadrature.

LEMMA 3.3. Let 0, = k,,/k,—1. Then
A1) =1+ f 1(2pn +1 -0, (o) do,
A=) = (1 +0)" f 1(1 - o), (o) dor,
¢ =a +9n)1_”[ﬂ(1 +T)"‘P;,-(T)fol(@n+z)“‘“lln1,,~(1 — (1 + 1) dzdr

1 1
+f(1—0-)“%_1,]»(0)[(9”“1)“I\P;[(z(l—a)—l)dzd(r.
-1 0

PROOEF. The formulae for ﬂ/’.’z(il) follow from

2k, + (1 = 0)kyy (I = o)kp1
1+A,(1,0) = d 1+A4(-1l,0)= ——.
+Ani(1,0) P an +Ani(=1,0) otk

To deal with Cg.", we begin by mapping [-1,1]?> onto [0,2]*> with the substi-
tution (1,0) = (x — 1,1 —y). In this way, the singularity at (r,0) = (—1,1) moves
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to (x,y) = (0,0), and

C;Jl'] =f f[1+A,,1x—1 1=, (1= )P, (x — D dxdy

with 1 +A,;(x—-1,1—-y) = (xk, + yk,—1)/(k, + k,—1). By splitting the integration
domain [0, 2]? into the triangular halves where x > y and x < y,

ky + ykn_1\27!
c;1=f\1’;”(x 1)f TR 1 Wi1,j(1 = y)dydx

k + k1
xky, + yk,_ " L
f wer (1 - y)f L +i 11 ¥ (- Ddedy.  (34)

The substitution y = zx transforms the inner integral in the first term of (3.4) to

1 a-1
k, + zk,,_l)
@ — Y,_1.i(1-z0)d
* L ( kn + kn—l 1’]( Zx) ¢

and the substitution x = zy transforms that in the second to
1 -1
@ zky + kp— )a ’
—— | Y(zy-1)dz
Y fo ( [ y
k + k -1
cy! :f X (x — 1)f el 1 Wo1,;(1 — zx) dzdx

Zk +kn101
¥, (11— ¥ (zy — 1)dzd
fy 1,5( y)f Py +knl W, (zy — D dzdy

Thus,

and the substitutions x =1+ 7 and y =1— o0 now yield the desired formula for
crl. m
ij

We also have the following alternative representation.

LEMMA 3.4. If1 <€ <n-2, then

(zf _ _1 04 knk[
v IN'a) 4

1 1
DZZ’_Z fl \Pni(T) fl [1 + AnZ(Ts 0-)]“_2\11{’](0') do dr.

PROOF. If 1 <€ <n-2,then (p;’(f)’(l) = f][ Wa—1(t = SW(s) ds for t > t, and so

Hy = f Vi) f Wa1(t — W) d. (3.5)
1, I,

The result now follows via the substitutions ¢ = t,,(r) and s = t,(0), noting that ['(@) =
(@ —DI'(a—1). O
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REMARK 3.5. If the time levels are uniformly spaced, and if the reference basis
functions are the same for each subinterval, say

ke=k, re=r and W¥,;=%¥, forl<{<n and 1<j<r,

then D,z = Lk and A,;(t,0) = (t — 07)/(20), so the formulae of Lemma 3.2 show that
Hi".f depends on n and ¢ only through the difference £ = n — € (for further details, see
Example 5.5 in Section 5).

4. Spatial discretization

The initial-boundary value problem (1.1) is known to be well posed [6, 8, 11]. Let
(u,vy = fQ uv denote the usual inner product in L>(€2), and let a(u, v) denote the bilinear
form associated with A via the first Green identity. For example, if A = —V2, then
a(u,v) = fQ Vu - Vv. In this way, the weak solution u : (0,7] — Hé (Q) satisfies

(O, vy + a(@)“u,v) = (f(t),v) forve Hy(Q)and0 <r<T.

We choose a finite-dimensional subspace V,, C H&(Q) for 0 <n <N and form the
vector V = (Vy,..., Vy). For example, V,, might be a (conforming) finite-element space
constructed using a triangulation of Q. Our trial space X = X(¢,r, V) then consists of
the functions X : I — Hé(Q) such that X|; € P, _1(I,; V,), that is, the restriction X|;,
is a polynomial in ¢ of degree at most r, — 1 with coefficients from V,,. Generalizing
(2.2), the DG solution U € X of (1.1) satisfies

([[U]]”1,XZ')+[(6tU,X>dt+fa(6}"U,X)dt:f(f(t),X)dt 4.1
1, . 1,

I

for X € P, _1(I;V,) and 1 <n <N, with U° = U, for a suitable U, € V; such that
Uy = up.
We choose a basis {¢np}§;1 for V,,. In the expansion (2.3), the coefficient U" is now

a function in V,,, so there exist real numbers U;‘j such that

PY!
U"(x) = Z Ul og(x) forx e Q;
g=1
for example, U;'j = U"(xyy) if x4 is the gth free node of a finite-element mesh and if

¢nq 1s the corresponding nodal basis function. Similarly, for the discrete initial data,
there are real numbers Uy, such that

Py
Up(x) = Z Uogbog(x) for x € Q.
g=1
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Choosing X(x, 1) = ¥,i()¢ne(x) in (4.1), we find that the equations (2.7) for time
stepping the scalar problem generalize to

n-1 rp Py

Z Z(Ganm + HnOArm)Un] Fm Z Z Z Hnn t’Ané’ fj

J=1 g=1 =1 j=1 g=1
wl,(mZM”qu, n=1,
rann] (4'2)
ZZK’”’ 'Mrrlupt, 2 <n <,
j=1 g=1
where

Mo = begrbup)s  Any = aldrg bup).  Fy' = f[ (@), up)Wni(D) dit.

By introducing the P, x P, mass matrix M" = [M”f] and stiffness matrix A" = [A"f]
and forming the column vectors U" = [U"] U”’ .. U"’ 1, FY = [F"] F"] ... ,F;]"]T

and Uy = [Uo1, Upas - - ., Upp, 1", we can rewrite the equatlons (4.2) as

Tn n—1 re
npygnn n0 g nnNyj _ pni nn—{ 4 nl yrlj
D GIM™ + HPA™UY = F" = " N H AU
- =1 =1
Y1, (0M™U,, n=1,

n—1
Z K MUt 2 <n<N.
=

(4.3)

To write (4.3) even more compactly, define the r, xr, matrix G" = [G”]

and the r, X r, matrix H' = [H"[] together with the (block) column vectors

U =[U",U",...,U"]" and F" = [F"',F™,...,F""]7. We also form the r, X 7,
matrix K™"! [K’J1 =11 and the column vector lﬁo [ 11(0),¥12(0), ..., Y1, (0)]". By
utilizing the Kronecker product, the linear system (4.3) then takes the form

n—1
(Gn ®Mnn +Hn0 ®Ann)Un - F" _ Z(Hn,n—[’ ®An€)U€
=1

W’ e M")U,, n=1,

N ' “4.4)
(K”’”_l ®Mn,n—l)Un—17/’ 2<n<N.
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5. Legendre polynomials

Let Py, Py, P,,...denote the Legendre polynomials with the standard normalization
P;(1) = 1 forall j > 0. By choosing

Wy(7) = Pj-1 (1), (G.1)

we obtain a convenient and well-conditioned basis for P, _; with the properties

! 20; i1
f Y, (D)WY (r) dr = 2]— and W,i(-7) = (=1)/7"¥,(7).
—1 -

1
LEMMA 5.1. With the choice of basis functions in (5.1),

V,(1)=1 and Y,(-1)= (-1, 5.2)
and the coefficients (3.1) and (3.2) are given by
(-D™ ifiz}
1 ifi <j.
PROOF. The properties (5.2) follow from P;(1) = 1 and P;(-1) = (-=1Y. Hence, the
formula for K;’"_l follows from (3.2) and, by (3.1),

K"l = (="' and G;;.z{

1
G = (-D™ + E;  where Ejj = fl P (TDPii(7)dr.

If i > j, then E; = 0, because Pj’._1 is orthogonal to P;_;. Otherwise, if i < j, then P;_;
is orthogonal to P;_,, so integration by parts gives
1 . .
Ej = (PPl - f PA(OP) (0 dx = 1= (=)
-1
and hence GZ. = 1. m]

EXAMPLE 5.2. If r, = 4 and r,_1 = 3, then

11 11 111
P I T T et -1 =1 21
G'=\ | y 1 | ™ K= ]

1 1 -1 1 -1 -1 -1

We have no analogous, simple formula for the remaining coefficients Hl’,}f. However,
when £ = 0 (€ = n), the following parity property holds.

LEMMA 5.3. With the choice of basis functions in (5.1),

HY? = (-)MHY  fori,je{l,2,...,r}.
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PROOF. We see from (3.3) that (p?(f)(tn(‘r)) = (k,/2)*(BP;_1)(1), where (Bv)(1) =
[, wa(r = )v(0) dor, s0, by (2.8),

kl’l . ! ’ kn ¢ ! * ’
He = () f (BP) @P @ dr = () f PN P (@) do

with (B*v)(0) = f(rl W (T — o)v(t)dt. Let (RV)(1) = V(-7). A short calculation shows
that RB* = BR, so
B*P;_) = d B*P = d RB*P
(B"Pj_1) (-0o) = —%_[( -D(=0)] = —%( i-1)(0)
= —(BRP;_1) (¢") = (-1Y(BP;_1)' (o)

and, therefore, using the substitution o = —x,
1

(k) ,
g = (%) f Piy(—2)(BP 1Y (x) d

1
i+ kn d ! ’ i+j pgn0
= (_1)1 ](E) fl(BPj_l) (x)Pi_l(x)dx = (—1) ]Hij s

as claimed. O
REMARK 5.4. In the limit as @« — 1, we see from Remark 2.1 that

kndj;

2j—1°

EXAMPLE 5.5. Consider the uniform case k, =k, r, =rand ¥,; =¥;for 1 <n <N
(as in Remark 3.5) with W;(7) = P;_;(7) as above. We then have

ko (!
H — f1 U (Oi(1) dt = = f Hi@¥imdr =

HY = k"Hf, for1<f<n<Nandi,je{l.2,....r},

where, by Lemma 3.1,

1 ! N ! .
H) = 2ma)( f (=) Pra(@)do f A+ 1(1—y)<1>,-j(y)dy) (5.3)

with
1! 1 , 1
0y = 5 Pj_1(§(1 — )1 +2) - 1)Pi_1(1 - 5=y —z))dz (5.4)
1
and, by Lemma 3.2,
_ pa—1

4 7 il 3
Hy = s (A D+ CDAD = C)) for£>1
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with, letting Az(7) = 7/(20),

_ 1 _ 1 _
ﬂf(r) = f (1 +Ag(t = 0)* 'Pi_i(0)do  and Cg- = f P;_I(T).‘}I;M(T) dr.
-1 -1

Moreover, Lemma 3.3 provides alternative expressions when £ = 1:
1
A1) = 21-“f G- 0) " 'Pi(0) do,
—i (5.5)
Aj(=1) =2 fl(l - o) Pi(0)do

and
1 1
C}j = ZI_Q(I 1+ T)QPZ/-_I(T)f (1 +z)‘HPj_1(1 —z(1 +7))dzdr
-1 0
1 1
+ f (1- O')QPJ'](O')f (z+ l)a_lPL](z(l —-0)— l)dde'). (5.6)
-1 0

Likewise, Lemma 3.4 provides an alternative expression for £ > 2:

] l—a .- 1 1
L= _AF;Z) 2 [ 1 Pi_i(1) I 1(1 + Ag(t — )P,y (0) do dr. (5.7

Finally, by arguing as in the proof of Lemma 5.3, we can show that

Hf = (-1)"H. forall > 0. (5.8)

6. Reconstruction

Throughout this section, we continue to use the Legendre basis (5.1). We may have
some insight into the DG method by considering the trivial case of (1.1) when A = 0,
that is, d,u = f(¢) for 0 < t < T with u(0) = uy. The DG scheme (4.1) then reduces to

U1, X"y + f(&tU,X)dt = f(&,u,X)dt (6.1)
1” I"
for X € P, _1(I,;V,) and 1 <n <N with U° = Uy. To state our next result, let P,

denote the orthoprojector from L,(€2) onto V,,, and define

Qn[:PnPn—l'“P[+1 forOSfSn—l
LEMMA 6.1. IfA =0, then for 1 < n < N the DG solution U € X satisfies

n—1

U" = Paa(t) = Quo(Uo = Pottg) + Y QuPr = Dutr). 6.2)

=0
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PROOF. Integrating by parts in (6.1),

(U™ = u(ty), X"y = (U™ - u(ln_l),Xﬁ_1> + f{U —u,0,X)dt. (6.3)

Iﬂ
Given v € V,, by choosing the constant function X(#) = v for ¢ € I, we deduce that
(U™ = u(ty),v) = (U™ — u(t,_,), vy and so
Pn(l]f - u(tn)) = Pn(Uf_l - u(tn—l))-

Since P, U" = U”",

U = Pou(ty) = Pp(Prt +1 = Pr U = ulty-1))

= Pn{l]ﬁ_l - Pn—lu(l‘n—l)} + Pn(Pn—l - I)u(tn—l)
and, in particular, (6.2) holds for n = 1:
U! = Pru(ty) = P1(Up — Pouo) + P1(Po — Dug = Quo(Uy — Potg) + Qio(Po — Dug.

The general case follows by finite induction on n. O

For the remainder of this section, we will assume that

Up=%Poup and Vo2V 2V,2:--2 Vy. (6.4)
Hence, Pr1(Pr—1)=0for0 < £ <N -1, s50Q, =P, and, by Lemma 6.1,
U' =P,ut,) forO<n<N. (6.5)
Therefore, by (6.3),
f(U —u,0,X)dt =0 forall X € P,(I,;V,), (6.6)
I,

leading to the following explicit representation for U.

LEMMA 6.2. IfA = 0 and (6.4) holds, then
rp—1

U = )" anthn(t) + G, (1) fort €1, 6.7)

j=1

where

Qnj

_ -l f Pty (1) di
kn 1, '

are the local Fourier—Legendre coefficients of Pnu, but

ra—1

&y = Puttlty) = ) ay.

j=1
PROOF. By definition, U|;, € P,,_1(I,; V,,), so there exist coefficients a,; and &, in V,
such that U has the desired expansion. The formula for a,; follows at once from the
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orthogonality property of the i},; (see Remark 5.4). The formula for &, follows from
(6.5), because y,j(t,) = Pi_1(1) = 1 for all j. O

We have a Peano kernel G, [3, Ch. 5, Section 2.4] for the Fourier-Legendre
expansion of degree r,

r+1

1
f@) = Z b¥i(T) + f G (r,o)f " D(e)do for-1<7<1,
1 -

assuming that f: [-1,1] > R is C™! and also a Peano kernel M;(7) for the jth
coefficient:

3i-1 ] (=D
Tflf(‘r)‘{‘j(‘r) dr = f] M;(0)f "V (r) d.

Thus, if t = t,(7) and s = t,(0), and if we define the local Peano kernels

Onr(t,8) = (ka/2)'G(r,0) and  my(1) = (ka/2)/>My(2),

bj=

then
r+l
Pnu(t)=zan,¢nj(z)+ f Onr, (t, )Pl D(s)ds  fort eI, (6.8)
j=1 I
and

anjzf]m,,j(s)Pnu(j_l)(s)ds.

It follows that a,; = Ok, ™), provided u is ¢! on I,

THEOREM 6.3. Assume that A = 0 and the conditions in (6.4). If u : I, — L*(Q) is
C"*l, then a,, 1 = O(k;") and

Pou(t) = U(1) = a1 [Wni,+1(0) = U, (D] + OkH)  fort € 1, (6.9)
PROOF. Subtracting (6.7) from (6.8),
Pnu(t) - U(t) = (an,r,, - Eln)‘r//nr,, (t) + an,rn+l§[/n,r,,+l(t) + O(k;"+1)

for t € I,. Since U" = P u(t,) and ¥, (t,) = ¥pr,+1(t,) = 1, taking the limit as t — ¢,
yields a,,, — &y = =@y, +1 + OKp™). o

COROLLARY 6.4. P,[UI"" = 2(=1)"*'a,, .1 + Ok
PROOF. Ast — ¢!, the left-hand side of (6.9) tends to
Pat(ty-1) = U™ = Pyl = Py + Po-pulty) = UL = P07 = U
= P, - Ut = —p U
and, on the right-hand side, ¥, ,, +1(f) — Y., () tends to
Pr(=1) = Pr1(=1) = (=) = (=)' = 2(=1)". =

https://doi.org/10.1017/51446181120000152 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181120000152

138 W. McLean [18]
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FIGURE 1. The polynomials P,(t) — P,_;(7).

In light of Theorem 6.3, we consider the polynomials
Y, +1(0) = Y, () =¥y 1 (1) = W5, (1) = P, (T) = P 1 (7).
As illustrated in Figure 1, there are r + 1 points
“l=10<1t <" <T1,=1

such that (P, — P,_1)(t);) = 0 for 1 <j < r. In fact, the r zeros 7,1, T2, ..., 7, are the
points of a right-Radau quadrature rule [5, Ch. 9] on the interval [-1, 1]. We put

t;:j =tu(1,;) for0<j<r, (6.10)
sothatt, | =1, <t <---<f, =1and ¢n,rn+1(f;j) - ‘ﬂn,rn(l:j) =0forl <j<r,.
From Theorem 6.3, P,u(t) — U(t) = O(k;") for general 1 € I, but Pnu(tflj) -U (t;j) =

Ok for 1 < Jj <, Let X denote the space obtained from X by increasing the
maximum allowed polynomial degree over the subinterval 7, from r, to 7, = r, + 1 for
1 <n < N. The “reconstruction” U € X of U € X is then defined by requiring that

U) = U, forl<j<r -1

nj
and that the one-sided limits at the end points are
U =p, U and U= U
Since ﬁlln is a polynomial of degree at most 7, — 1 = r,,, it is uniquely determined by

these r,, + 1 interpolation conditions. Notice also that U is continuous at ta itV =
V,, because P, U = U1,
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Makridakis and Nochetto [7] introduced the reconstruction in their analysis of a
posteriori error bounds for parabolic PDEs. Since the polynomial (U — U)|;, has degree
at most r, and vanishes at tljj for 1 <n < r,, it must be a multiple of ¥, . +1 — ¥y, In
fact, by taking limits as t — t:l'_l,

U@ - U@) = %(_l)r"?)n[[U]]n_l[wn,r,,+1(t) — Y, (0] fortel,. (6.11)
At the same time, by Theorem 6.3 and Corollary 6.4,
U@—Pwm=%enwmww”wmﬂm—wwﬂn+owﬁw forz € 1,, (6.12)

implying that U- P,uis O+ on I,. One of our principal aims in the next section
is to investigate numerically the error in the DG solution U and its reconstruction U in
nontrivial cases of the fractional diffusion problem (1.1), that is, with A # 0. We hope
that something similar to (6.12) still holds, because the time derivative in the term
8}“’Au is of lower order than in d,u. Notice that (2.3) and (6.11) imply that

Uy =) Ulpyt) fortel,,

=

where
U, 1<j<r -1,
U =+ L= P Ul =
S(=DrHe oyt J=ra+1l="h

7. Numerical experiments

A Julia package [9] provides functions to evaluate the coefficients Gi K;’"_l and

H;f based on the results of Sections 3 and 5. This package also includes (in the
examples directory) the scripts used for the examples below.

7.1. The matrix H Leta =3 /4 and consider for simplicity the case when &, = k
and r, = r are constant for all n, so that the formulae of Example 5.5 apply. To get a
sense of how the matrix entries Hg. behave, we computed

1.08807  0.15544  0.07065 0.04239
—0.15544  0.49458  0.09326 0.04834

0 _
H = 0.07065 -0.09326  0.33839 0.06893
—0.04239  0.04834 -0.06893 0.26319
and
—-0.34623 -0.13428 -0.06884 —0.04219
H - 0.13428 0.08414 0.05405 0.03690

—-0.06884 —0.05405 -0.04050 -0.03048|’
0.04219  0.03690  0.03048  0.02472
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1071 4
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1075 4
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10713 4

1015 4

10° 10! 102 103

FIGURE 2. Decay of maxi,j—, |H§| for increasing m and £, when @ = 3/4.

which illust_rate the property (5.8). The factor (1 + Az(t — 0))*2 in (5.7) becomes very
smooth as ¢ increases, with the result that Hg. decays rapidly to zero as i + j increases.

Even for £ = 2,

-0.91483 -0.10220 -0.01261 —0.00164
0.10220  0.02027  0.00355  0.00059
—-0.01261 -0.00355 —0.00080 —0.00016
0.00164  0.00059  0.00016  0.00004

H?> =10"" x

and Figure 2 illustrates this behaviour for larger values of £, with entries in the lower
right corner of the matrix reaching the order of the machine epsilon (2752 ~ 2.22 x
107'%) once £ is of order 100.

The value of Hi(]). can be computed to machine precision using Gauss quadrature
with M, = [j/2] and M, = [(i +j)/2] -1 points for the integrals with respect to o
and y in (5.3), and using M, = [(i +j)/2] — 1 points for the integral with respect to z
in (5.4). Similarly, to compute ﬂ}(—l) in (5.5), it suffices to use M, = [j/2] points,
although the other terms in H ; may require more points. Let H ; (M) denote the value
of H}; computed by applying M-point Gauss rules to compute A/ (1) in (5.5) and Cj in
(5.6) (that is, M? Gauss points for the double integral). Likewise, for £ > 2, let H;(M)
denote the value of H 5 computed by applying M-point Gauss rules to (5.7). For a given

absolute tolerance atol, let Mf (atol) denote the smallest M for which

H{(M) — H(12)] < atol foralli,je{1,2,....r}.
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TABLE 1. Numbers of Gauss points Mf(atol) in each variable required for atol = 10", when o = 3/4.

r =1 =2 =10 ¢=100 ¢=1000
1 9 9 5 3 2
2 9 9 5 3 2
3 9 9 5 4 3
4 10 10 6 4 3
5 10 10 6 5 4
6 11 11 7 5 4

Table 1 lists some values of M!(atol) for atol = 10~*. Unsurprisingly, fewer
quadrature points are needed as £ increases. In any case, the computational
cost of computing the coefficients is negligible in comparison with the overall
cost of assembling and solving the linear system (4.4) for any realistic spatial
discretization.

7.2. A fractional ODE We consider the initial-value problem (2.1) in the case
a=1/2, A=1/2, f(@)=cosnat, uy=1 T =2, (7.1)

for which the solution is
!
u(t) = ugE1p(=AV1) + f E1p(=ANt = 5)f (s) ds,
0

where E,(z) = 3,7, " /T(1 + na) denotes the Mittag-Leffler function [15]. The substi-
tution s = (1 — y*)¢ yields a smooth integrand, allowing u(f) to be computed accurately
via Gauss quadrature on the unit interval [0, 1]. Note that Ej/,(—x) = erfcx(x) =
e erfc(x) is just the scaled complementary error function.

Figure 3 shows u together with the DG solution U using piecewise quadratics
(r = 3) and only N = 3 subintervals. In Figure 4, we plot the absolute errors,

U —u@)l,  j=0,
E(t) =|U@) —u@| and E} ={|U@) —u@), 1<j<r-1,
|U" —u,)l, j=r,

again using piecewise quadratics but now with N =5 subintervals of uniform size
k, =k =T/N. Two features are immediately apparent. First, the accuracy is poor
near t =0, reflecting the singular behaviour of the solution: for m > 1, the mth
derivative u™(t) blows up like ~"~1/2 as t — 0. Second, on intervals I, away from 0,
the error is notably smaller at the right-Radau points (7, for 1 < j < 3) than at the left
end point (7, = 1,-1).
In Table 2, we show how the quantities
E]‘.“a" = max (£ )’_"E;' (7.2)

1<n<N Y
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FIGURE 3. The exact solution u of (2.1) in the case (7.1), together with the piecewise-quadratic (r = 3)
DG solution with N = 3 subintervals.
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t

FIGURE 4. Absolute errors in the reconstruction ﬁ(z) for 0 <t < T =2, and in the DG solution U(r)
fort = t;j, using piecewise quadratics (r =3) and N = 5 uniform subintervals (see (6.10)).

behave as N grows. These results, together with similar computations using other
choices of @ and r > 2, lead us to conjecture that, in general, using a constant time
step k,

Ej < C(ty )" k" for2<n<N,
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TABLE 2. Maximum weighted errors (7.2) at the points 7. using piecewise quadratics (r =3) on a
uniform grid. ‘

max max max ax
N E E E ED

8 8.0e-03 8.8e-05 1.3e-04 1.0e-04

16 1.2e-03  2.69 14e-05 2.62 14e-05 315 93e-06 3.46
32 1.7e-04  2.87 15e-06 325 13e-06 3.40 8.2e-07 3.50
64 22e-05 294  14e-07 342 12e-07 347 72e08 3.51
128 2.8e-06 297 13e-08 347 11e-08 349 63e-09 3.51
256  3.6e-07 298 1le-09 349 95e-10 350 55e-10 3.51

TABLE 3. Maximum error in the reconstruction ﬁ(z) for0 <t < T = 1, using piecewise quadratics (r =3)
for four choices of the mesh grading exponent g (see (7.3)).

N qg=1 q=3 q=>5 q=06

8 1.1e-02 1.4e-03 4.1e-04 7.1e-04

16 6.0e-03 0.84 3.8e-04 189 52e05 295 9.1le-05 297
32 43e-03 050 1.3e-04 150 79e-06 272  1.0e-05 3.19
64 3.0e-03 050 4.7e-05 150 1.4e-06 251 9.8e-07 3.35
128 21e-03 050 1.7e-05 150 2.5e-07 250 9.2e-08 3.41
256  1.5e-03 050 59e-06 150 4.3e-08 250 8.4e-09 345

whereas
E' < C(t;';j)“"k’” forl<n<Nandl<j<r
and that, consequently,
U@ - u(t)| < C7",K** forn <t <T.

However, using piecewise constants (» = 1) we do not observe any superconvergence,
with both Ef"** and E™* behaving like Ct, =k, albeit with a noticeably smaller constant
in the case of ET™*.

To suppress the growth in the error as ¢ approaches 0, we can use a graded mesh of
the form

ty =m/NYT forO<n<N (7.3)

with a suitable grading exponent g > 1. Table 3 shows the maximum error in the
reconstruction, that is, maxo<<7r |U(#) — u(t)|, together with the associated convergence
rates, for four choices of ¢ and using 7' = 1 as the final time. These errors appear to be
of order k™334 where k = max<,<y k, < CN~'. We conjecture that, in general,

[U(t) - u(t)] < CK™0+*40)  for 0 < ¢ < T provided r > 2. (7.4)

https://doi.org/10.1017/51446181120000152 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181120000152

144 W. McLean [24]

7.3. A fractional PDE Consider the elliptic operator A = —3?/dx*> for the
one-dimensional spatial domain Q = (0,L). To construct a reference solution, we
exploit the fact that the Laplace transform of u,

i(x,z) = f eu(x, 1) dt,
0
satisfies the two-point boundary-value problem
Wi — G = g(x,z) for0 <x <L withi(0,z) =0 = i(L,2),

where w = z%/? and g(x, 2) = 2% '[uo(x) + f(x, z)]. The variation-of-parameters formula
leads to the integral representation
sinhw(L —x) (% .
u(x,z) = # g(¢, ) sinh wé dé
wsinhwL )y
sinh wx L .
f 8(&,z) sinhw(L — §) d§

+—
w sinh wL

and the Laplace inversion formula then gives

u(x,t) = Zim fl:e”it(x, 2)dz (7.5)

for a contour I' homotopic to the imaginary axis and passing to the right of all
singularities of the integrand.
We choose as data the functions

uy(x) = Cox(L —x) and f(x,1) = Cfte’l (7.6)

for constants Cy and Cy, and find that

(. 2) = @ p1(x)sinh w(L — x) + p; (L — x) sinh wx
o= z sinh wL
Cr pa(x)sinh w(L — x) + po(L — x) sinh wx

2(z+ 1)2 sinh wL

b}

where we have p;(x) = (wx(L —x) — 2w™") cosh wx + (2x — L) sinh wx + 2w~ and
p2(x) = coshwx — 1. To evaluate the contour integral (7.5), we apply an optimized
equal-weight quadrature rule that arises after deforming I' into the left branch of an
hyperbola [19]. Figure 5 shows the reference solution over the time interval [0, 2] in
the case

=06, L=2, Cy=1, Cr=2. (1.7)

In Figure 6, we plot the Lp-norms of the jumps, [|[U 17!l together with the errors
in U(#) and its reconstruction U(t). The DG method used piecewise quadratics (r = 3),
first with a uniform mesh of N = 12 subintervals (top) and then with a nonuniform
mesh of N =40 subintervals (bottom). In both cases, the spatial discretization used
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FIGURE 5. The reference solution for the one-dimensional problem with data given by (7.6) and (7.7).
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FIGURE 6. Comparison of the jumps ITUT™ Y| with the DG error ||U(7) — u(?)|| and the reconstruction
error [|U(f) — u(?)||. Left: a uniform mesh with N = 12 time steps. Right: a graded mesh with N = 40 time
steps.

(continuous) piecewise cubics on a uniform grid with 20 subintervals. Since ug is a
quadratic polynomial in this instance, we simply put Uy = uy. Consistent with our
conjecture (6.12), we observe that

sup (lU(0) — u®dll ~ ILUTI.

by <t<t,

Motivated by our conjecture (7.4), the second mesh was graded for 0 < #,, < 1 by taking
q={+a)/a,N=34and T = 1 in the formula (7.3), followed by a uniform mesh on
the other half [1, 2] of the time interval. We see that the mesh grading is effective at
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resolving the solution for 7 near zero, albeit with a substantial increase in the overall
computational cost.

We conclude by noting that the conjectures above are stronger than what has been
proved in the literature. Mustapha [13, Theorem 5] was able to show an error bound in
Lo (Ly)of atbest Ok #)withuy =1 —a/2forr > 3,and u = (1 — @)/2 for r = 2, using
a sufficiently strong mesh grading, but pointed out that in practice the rate is observed
to be optimal (that is, u = 0). For the piecewise-linear case r = 2, convergence of at
best O(k'*>* log k~!) has been proved [14, Theorem 4.3] for the nodal value U". The
rate is better than the optimal O(k%), when 1/2 < a < 1, but in practice one observes
O(k"™*) superconvergence for the full range 0 < @ < 1. There appear to be no a priori
superconvergence results for the error at the interior Radau points t, (1 <j<r—1).
For the classical diffusion equation (@ = 1), U” is known to be superconvergent of
order at best k>~ (assuming that r, = r is fixed) but with a constant factor that may
blow up as t — 0, depending on the regularity of the data [2, Theorem 3].

8. Conclusion

We have described in detail a practical implementation of DG time stepping for
fractional diffusion problems, and demonstrated that the high accuracy of the DG
solution U can be further improved by post processing to form the reconstruction
U. Moreover, the jumps [U]""! provide an easily computed error estimator for U];,
that could form the basis for automatic step-size control. A complete theoretical
justification for the observed convergence behaviour is, however, not yet available.
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