
Bull. Aust. Math. Soc. 102 (2020), 7–14
doi:10.1017/S0004972719001151

SINGULARITY OF ORIENTED GRAPHS FROM
SEVERAL CLASSES

XIAOXUAN CHEN , JING YANG �, XIANYA GENG and LONG WANG

(Received 10 August 2019; accepted 8 September 2019; first published online 21 November 2019)

Abstract

A digraph is called oriented if there is at most one arc between two distinct vertices. An oriented graph
D is nonsingular if its adjacency matrix A(D) is nonsingular. We characterise all nonsingular oriented
graphs from three classes: graphs in which cycles are vertex disjoint, graphs in which all cycles share
exactly one common vertex and graphs formed by cycles sharing a common path. As a straightforward
corollary, the singularity of oriented bicyclic graphs is determined.
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1. Introduction

A digraph D = (V(D), E(D)) consists of a nonempty finite set V(D) of elements called
vertices and a finite set E(D) of ordered pairs of distinct vertices called arcs. Its
adjacency matrix A(D) is the (0, 1)-matrix with ai j = 1 if and only if viv j is an arc
in D. The rank r(D) of D is the rank of its adjacency matrix A(D) and D is called
singular (respectively, nonsingular) if A(D) is singular (respectively, nonsingular). A
digraph D can be obtained from an undirected simple graph G by replacing each edge
uv of G by an arc uv (or vu) or a pair of arcs uv and vu; we call G the underlying graph
of D. Note that if viv j ∈ E(D) whenever v jvi ∈ E(D), then D becomes an undirected
graph and A(D) is symmetric. The rank of A(D) is equal to the number of nonzero
eigenvalues and A(D) is nonsingular if and only if A(D) has no zero eigenvalue. We
deal with digraphs where loops are not permitted and there is at most one arc between
two distinct vertices; these are usually called oriented graphs.

Singularity of undirected graphs is important in chemistry. For a conjugated
hydrocarbon molecule, its chemical stability depends on the singularity of the
corresponding molecule graph [11]. In 1957, Collatz and Sinogowitz [2] posed the
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problem of characterising all singular (or nonsingular) graphs. The problem seems
to be very hard and only a few particular results are known. For undirected graphs,
it is easy to see that each complete graph is nonsingular [3]. Cvetković and Gutman
[4, 5] showed that if B is bipartite and has no cycles with length 0 (mod 4), then
r(B) = 2m(B), where m(B) is the matching number of B. This means that B is
nonsingular if and only if B has a perfect matching. Guo et al. [7] determined all
nonsingular unicyclic graphs. Li et al. [12] characterised the singularity of line graphs
of unicyclic graphs with depth one. Gutman and Sciriha [9] presented a beautiful
result showing that the line graph L(T ) of a tree T is either nonsingular or it has
exactly one zero eigenvalue. For bipartite graphs [6], bicyclic graphs [10] and tricyclic
graphs [1], the rank sets of each type have been determined, but characterisation of
nonsingular graphs remains open. For further results on the singularity of undirected
graphs, see [8].

There have been few investigations of the singularity of oriented graphs. Zhang
et al. [14] recently characterised the oriented graphs with rank no larger than two. We
aim to characterise the singularity of several types of oriented graphs and treat three
classes: the graphs in which cycles are vertex disjoint, the graphs in which all cycles
share exactly one common vertex and the graphs formed by cycles sharing a common
path. As a corollary, we determine all nonsingular oriented bicyclic graphs.

2. Preliminaries

Some notations and definitions are needed throughout this paper. An oriented
graph D is connected if its underlying graph is connected. Two vertices are adjacent
if they are connected by an arc. We indicate an arc from u to v by writing uv.
For a vertex v of D, we denote by N+(v) (respectively, N−(v)) the set of vertices
u such that vu (respectively, uv) is an arc of D. The out-degree (respectively, in-
degree) of v is d+(v) = |N+(v)| (respectively, d−(v) = |N−(v)|). The degree of v in D
is d(v) = d+(v) + d−(v). If d(v) = 1, we call v a pendant vertex. We call v a sink
(respectively, source) vertex if d+(v) = 0 (respectively, d−(v) = 0) and a sink-source
vertex if d+(v)d−(v) = 0.

Let D = (V(D),E(D)) be an oriented graph. An oriented graph H = (V(H),E(H)) is
called a subgraph of D if V(H) ⊆ V(D) and E(H) ⊆ E(D). We denote by H = D − uv
the subgraph of D formed by deleting the arc uv from D. When uv ∈ E(H) if and
only if uv ∈ E(D) for each ordered pair of vertices u and v in H, then H is called an
induced subgraph of D. If H is an induced subgraph of D, then D − H is the induced
subgraph of D with V(D − H) = V(D) \ V(H). If V(H) = {x}, we write D − H as D − x
for brevity.

Since we focus on oriented graphs, we call an oriented cycle (respectively, oriented
path) a cycle (respectively, path) for brevity. A cycle is called directed if it contains
no sink-source vertex. A path is called directed if it contains exactly two sink-source
vertices. We write Pn (respectively, Cn) to denote a directed path (respectively, directed
cycle) of order n. For an oriented connected graph D, set c(D) = |E(D)| − |V(D)| + 1.
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Now D is an oriented tree if and only if c(D) = 0. If c(D) = 1, D is said to be unicyclic.
If c(D) = 2, D is said to be bicyclic.

Lemma 2.1 [14]. Let D be an oriented graph. If D = D1 ∪ D2 ∪ · · · ∪ Dk is the union
of its connected components, then r(D) =

∑k
i=1 r(Di).

Lemma 2.2. Let D be an oriented graph. If D has a sink-source vertex, then D is
singular. In particular, if D has a pendant vertex, then D is singular.

Proof. Let v be a sink-source vertex of D and let A(D) be the adjacency matrix of
D. Then v corresponds to a zero row or zero column in A(D). Thus A(D) and D are
singular. �

Let D be an oriented graph with a vertex v. Let D(v) be the oriented graph obtained
from D by replacing v by two new vertices v′ and v′′ and by replacing any arc e
containing v by v′w if e = vw ∈ E(D) or by wv′′ if e = wv ∈ E(D). We say that D(v) is
a stretching of D at the vertex v.

Lemma 2.3 [13]. Let D be an oriented graph with a vertex v. Then r(D(v)) = r(D).

Lemma 2.4 [14]. Let D be an oriented graph and let x, y be two distinct vertices of D.

(i) If N+(x) ⊆ N+(y), then r(D1) = r(D), where D1 is the subgraph of D obtained by
deleting all yz for z ∈ N+(x).

(ii) If N−(x) ⊆ N−(y), then r(D2) = r(D), where D2 is the subgraph of D obtained by
deleting all wy for w ∈ N−(x).

(iii) If N+(x) ⊆ N+(y) and N−(x) ⊆ N−(y), then r(D3) = r(D), where D3 is the
subgraph of D obtained by deleting all yz for z ∈ N+(x) and all wy for w ∈ N−(x).

Now we characterise the singularity of oriented paths, cycles, trees or unicyclic
graphs. These results are also used in the proofs of our main theorems.

Lemma 2.5. Let P be a directed path. Then r(P) = |V(P)| − 1.

Proof. We proceed by induction on |V(P)|. If P = P2, then r(P) = 1 = |V(P)| − 1.
Assume that |V(P)| ≥ 3, and denote H = P − x, where x is a pendant vertex of P.
Let y be a neighbour of x in P. By stretching P at y we have the oriented graph P(y).
Now r(P) = r(P(y)) by Lemma 2.3. Note that P(y) = H ∪ P2. By Lemma 2.1 and the
induction hypothesis,

r(P) = r(P(y)) = r(H ∪ P2) = r(H) + r(P2) = |V(H)| − 1 + |V(P2)| − 1 = |V(P)| − 1.

The result, therefore, follows by induction. �

Lemma 2.6. Let C be an oriented cycle. Then C is nonsingular if and only if C is
directed.
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Proof. For the sufficiency, suppose that C = Cn and v is a vertex of Cn. We get a
directed path Pn+1 by stretching Cn at v. By Lemmas 2.3 and 2.5,

r(C) = r(Pn+1) = |V(Pn+1)| − 1 = n + 1 − 1 = n = |V(C)|,

and thus C is nonsingular.
For the necessity, suppose, by contradiction, that C is not directed and x is a sink-

source vertex. Now C is singular by Lemma 2.2, contrary to the hypothesis. �

The next two lemmas are straightforward corollaries of Lemma 2.2 and Lemmas 2.2
and 2.6, respectively.

Lemma 2.7. Each oriented tree is singular.

Lemma 2.8. Let D be an oriented unicyclic graph. Then D is nonsingular if and only
if D is a directed cycle.

3. Oriented graphs in which cycles are vertex disjoint

In this section, we characterise nonsingular oriented graphs when cycles are vertex
disjoint. For an oriented graph D belonging to this class, we call two cycles adjacent if
there is a path connecting them using only vertices outside cycles. A cycle C is called
pendant in D if C contains exactly one vertex of degree three, while all other vertices
in C are of degree two.

Theorem 3.1. Let D be an oriented connected graph in which cycles are disjoint. Then
D is nonsingular if and only if D satisfies all the following conditions:

(i) D has no pendant vertices;
(ii) each cycle in D is directed;
(iii) two cycles are adjacent in D if and only if they are connected by an arc.

Proof. If D is acyclic or unicyclic, the conclusion follows from Lemmas 2.7 and 2.8.
Now we assume that D has at least two cycles.

For the sufficiency, we proceed by induction on the number of cycles in D. Let C
be a pendant cycle in D which satisfies all three conditions and let v ∈ V(C) be a vertex
with degree three. Let x and y be two neighbours of v in C and let u be the neighbour
of v not in C. Note that C is a directed cycle. Assume that uv, xv, vy ∈ E(D). Since
N+(x) = {v} ⊆ N+(u), it follows that r(D) = r(D − uv) = r(D −C) + r(C) by Lemma 2.4.
Since C and D − C both satisfy all three conditions, D − C and C are nonsingular by
the induction hypothesis. Now

r(D) = r(D −C) + r(C) = |V(D −C)| + |V(C)| = |V(D)|

and so D is nonsingular.
For the necessity, item (i) follows immediately from Lemma 2.2. For (iii), we first

prove the following claim.

Claim. For an arbitrary vertex v ∈ V(D), if d(v) ≥ 3, then v is in some cycle of D.
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To prove our claim, suppose, by contradiction, that v is not in any cycle and d(v) ≥ 3.
Note that v is not a sink-source vertex by Lemma 2.2. The stretching D(v) of D is a
disjoint union of two graphs, say, D1 and D2, where D1 contains v′ and D2 contains
v′′. Since v′ is a sink-source vertex of D1 and v′′ is a sink-source vertex of D2, both
D1 and D2 are singular. Now

r(D) = r(D(v)) = r(D1) + r(D2) ≤ |V(D1)| − 1 + |V(D2)| − 1 = |V(D)| − 1.

Thus D is singular which gives a contradiction. This proves our claim.

From the claim, any pair of adjacent cycles in D are connected by a path. Assume
that P is a path connecting two adjacent cycles such that |V(P)| ≥ 3 and let u be a vertex
in P with degree two. Note that u cannot be a sink-source vertex. The stretching D(u)
of D is a disjoint union of two graphs, say, D3 and D4, where D3 contains a pendant
vertex u′ and D4 contains a pendant vertex u′′. Since u′ is a sink-source vertex of D3
and u′′ is a sink-source vertex of D4, both D3 and D4 are singular by Lemma 2.2. Again

r(D) = r(D(v)) = r(D3) + r(D4) ≤ |V(D3)| − 1 + |V(D4)| − 1 = |V(D)| − 1.

Thus D is singular, which gives a contradiction and (iii) follows.
With (i) and (iii), we prove (ii) by using a minimum counterexample method.

Assume, by contradiction, that (ii) fails, so that counterexamples (while still admitting
(i) and (iii)) exist. Let D be such a nonsingular oriented graph containing some
cycle which is not directed and such that the order |V(D)| is minimal among all
counterexamples that admit (i) and (iii). By (i), D has no pendant vertex. Let C
be a pendant cycle of D. If C is not directed, then at least two vertices are sink-
source vertices in C. Thus at least one of them is a sink-source vertex of D. But
then D is singular, which is a contradiction. Thus C is directed and nonsingular.
By (iii), C is connected with D − C by an arc. As in the proof for sufficiency,
r(D) = r(D −C) + r(C). Now

r(D −C) = r(D) − r(C) = |V(D)| − |V(C)| = |V(D −C)|.

Thus D − C is nonsingular, admits (i) and (iii) and contains some cycle that is not
directed. This contradicts the assumption that D is a minimum counterexample and
proves (ii). �

4. Oriented graphs in which all cycles share exactly one common vertex

In this section, we show that when all cycles share exactly one common vertex in
an oriented graph, it must be singular.

Theorem 4.1. Let D be an oriented connected graph in which all (≥2) cycles share
exactly one common vertex. Then D is singular.

Proof. Assume, by contradiction, that D is nonsingular. Let k ≥ 2 and C1,C2, . . . ,Ck

be all the cycles of D sharing a vertex x in D, where |V(Ci)| ≥ 3 for i = 1, 2, . . . , k.
Then D has no pendant vertex and each cycle is directed by Lemma 2.2. Now there
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exist 2k neighbours of x, say, ui, vi ∈ V(Ci) for i = 1, 2, . . . , k, such that N+(ui) = {x}
and N−(vi) = {x}. Since N+(uk) = {x} = N+(ui) and N−(vk) = {x} = N−(ui) for i =

1, 2, . . . , k − 1, it follows that r(D) = r(D −
∑k−1

i=1 uix −
∑k−1

i=1 xvi) by Lemma 2.4. Note
that D −

∑k−1
i=1 uix −

∑k−1
i=1 xvi = P1 ∪ · · · ∪ Pk−1 ∪ Ck, where Pi = Ci − x is a directed

path for i = 1, 2, . . . , k − 1 satisfying |V(Pi)| = |V(Ci)| − 1. Then

r(D) = r
(
D −

k−1∑
i=1

uix −
k−1∑
i=1

xvi

)
= r(P1 ∪ · · · ∪ Pk−1 ∪Ck) =

k−1∑
i=1

r(Pi) + r(Ck)

=

k−1∑
i=1

(|V(Ci)| − 2) + |V(Ck)| = |V(D)| − k + 1 ≤ |V(D)| − 1,

where the fourth equality follows from Lemmas 2.5 and 2.6. But then D is singular,
which gives a contradiction. �

5. Oriented graphs formed by cycles sharing a path
In this section, we characterise nonsingular oriented graphs formed by cycles

sharing a path. When the path is an edge, such graphs are usually called book graphs.
For a cycle C in an oriented graph D, if u, v ∈ V(C) and uv ∈ E(D)\E(C), then we say
that uv is a chord of C.

Theorem 5.1. Let D be an oriented connected graph formed by (≥ 2) cycles sharing
a path. Then D is nonsingular if and only if D is obtained from a directed cycle by
adding a chord.

Proof. For sufficiency, let D be obtained from a directed cycle C (with length at least
four) by adding a chord uv. Let x and y be two neighbours of v in C. Note that C is a
directed cycle. Assume that xv, vy ∈ E(D). Since N+(x) = {v} ⊆ N+(u), it follows that
r(D) = r(D − uv) by Lemma 2.4. Since D − uv is a directed cycle, it is nonsingular by
Lemma 2.6. Now

r(D) = r(D − uv) = |V(D − uv)| = |V(D)|

and D is nonsingular.
For the necessity, assume that D is obtained from k (≥ 2) paths P1, P2, . . . , Pk by

identifying all initial vertices as v, all terminal vertices as u and then connecting u and
v with a path Pk+1. By Lemma 2.2, D has no pendant vertex, each path is directed and
u, v are not sink-source vertices. We first prove a claim.
Claim. k = 2.

To prove our claim, assume, by contradiction, that k ≥ 3. Then there exist two
neighbours of v, say, x1 ∈ V(P1), x2 ∈ V(P2), such that N+(x1) = N+(x2) = {v} or
N−(x1) = N−(x2) = {v}. Without loss of generality, assume that N+(x1) = N+(x2) = {v}.
Now r(D) = r(D − x1v) by Lemma 2.4. Note that x1 is a sink vertex of the graph
D − x1v. By Lemma 2.2, D − x1v is singular. Now

r(D) = r(D − x1v) ≤ |V(D − x1v)| − 1 = |V(D)| − 1

and D is singular, which leads to a contradiction. This proves our claim.
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Figure 1. Two nonsingular oriented bicyclic graphs: B1 ∈ B1 and B2 ∈ B2.

With the above claim, we assume that D is obtained from a cycle C (with length at
least four) by connecting two of its vertices u and v with a path P. By Lemma 2.2, P
is directed. The proof of the claim also shows that C must be directed. Now we aim
to prove that the directed path P must be an arc uv or vu. Assume that P is directed
from u to v via w, where wv ∈ E(D). Note that C is directed. Suppose x ∈ V(C)
and x ∈ N−(v). Now N+(x) = N+(w) = {v} and r(D) = r(D − wv). By Lemma 2.2,
r(D − wv) ≤ |V(D − wv)| − 1 = |V(D)| − 1 since w is a sink of D − wv. But now
r(D) ≤ |V(D)| − 1 and D is singular. This leads to a contradiction and proves the
necessity. �

6. Remarks

As we have mentioned, singularity for undirected trees and unicyclic graphs has
been determined, but for undirected bicyclic graphs the problem has not been solved.
In Section 2, we characterise the singularity of oriented trees and oriented unicyclic
graphs. Now we determine the singularity of oriented bicyclic graphs. Note that if an
oriented connected graph is bicyclic, it has two cycles sharing no common vertex, or
sharing exactly one common vertex, or sharing a common path. The proof of the final
theorem follows immediately from Theorems 3.1, 4.1 and 5.1.

Theorem 6.1. Let D be an oriented bicyclic graph. Then D is nonsingular if and only
if D ∈ B1 or D ∈ B2, where B1 is the set of oriented graphs obtained from two directed
cycles by connecting an arc and B2 is the set of oriented graphs obtained from a
directed cycle by adding a chord (see Figure 1).
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