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We analyse the pressure-driven radial flow of a shear-thinning fluid between two parallel
plates. Complex fluid rheology may significantly affect the hydrodynamic features of
such non-Newtonian flows, which remain not fully understood, compared with Newtonian
flows. We describe the shear-thinning rheology using the Ellis model and present a
theoretical framework for calculating the pressure distribution and the flow rate–pressure
drop relation. We first derive a closed-form expression for the pressure gradient, which
allows us to obtain semi-analytical expressions for the pressure, velocity and flow rate–
pressure drop relation. Specifically, we provide the corresponding asymptotic solutions for
small and large values of the dimensionless flow rates. We further elucidate the entrance
length required for the radial velocity of a shear-thinning fluid to reach its fully developed
form, showing that this length approximates the Newtonian low-Reynolds-number value at
low shear rates, but may strongly depend on the fluid’s shear-thinning rheology and exceed
the Newtonian value at high shear rates. We validate our theoretical results with finite-
element numerical simulations and find excellent agreement. Furthermore, we compare
our semi-analytical, asymptotic and finite-element simulation results for the pressure
distribution with the experimental measurements of Laurencena & Williams (Trans. Soc.
Rheol. vol. 18, 1974, pp. 331–355), showing good agreement. Our theoretical results using
the Ellis model capture the interplay between the shear-thinning and the zero-shear-rate
effects on the pressure drop, which cannot be explained using a simple power-law model,
highlighting the importance of using an adequate constitutive model to accurately describe
non-Newtonian flows of shear-thinning fluids.
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1. Introduction
Pressure-driven radial flows of non-Newtonian fluids are commonly encountered in
industrial polymer processes, such as injection moulding and extrusion (Middleman
1977; Pearson 1985; Tadmor & Gogos 2013). It is well known that complex rheological
characteristics of non-Newtonian fluids, such as shear thinning and viscoelasticity (Bird,
Armstrong & Hassager 1987; Datta et al. 2022; Ewoldt & Saengow 2022), may
significantly change their hydrodynamic features compared with Newtonian flows even
at low Reynolds numbers. Therefore, understanding the impact of fluid rheology on the
hydrodynamic features of complex fluid flows plays a fundamental role in non-Newtonian
fluid mechanics.

A typical set-up commonly used to study the pressure-driven radial flow of non-
Newtonian fluids is shown schematically in figure 1. This configuration consists of two
parallel plates of radius ro separated by a small gap h. The fluid is driven by a constant
volumetric flow rate q through a narrow tube of radius ri at the centre of the top plate. For
such radial flows, it is of particular interest to understand how the complex fluid rheology
affects the resulting flow field, pressure distribution p(r), and pressure drop �p between
the inlet (r = ri ) and outlet (r = ro) for a given flow rate q.

Over the years, different non-Newtonian fluids, characterised by various rheological
behaviours, have been studied extensively in radial-flow configurations. Table 1 presents
a chronological selection of previous work, clearly showing that earlier theoretical,
numerical and experimental studies have considered the influence of shear-thinning,
viscoelastic and viscoplastic rheology on radial flow behaviour.

The early theoretical studies on the radial flow of non-Newtonian fluids considered
shear-thinning rheology using the simple power-law and Sisko models (Na & Hansen
1967; Khader & Vachon 1973). However, both power-law and Sisko models are too
simplistic and cannot accurately describe the shear rate variation of viscosity of common
non-Newtonian fluids over the entire range of shear rates. Specifically, these models do
not replicate the low-shear-rate viscosity plateau and have a well-known singularity at
zero shear rate (Bird et al. 1987). The Sisko model (Sisko 1958) reproduces the high-
shear-rate viscosity plateau, but behaves similarly to the power-law model at low shear
rates (Partal et al. 1994). To address the limitations of the power-law and Sisko models,
Co (1981) solved numerically the radial flow of a shear-thinning fluid using a Carreau
model (Carreau 1972), neglecting the high-shear-rate viscosity plateau. Unfortunately,
Co (1981) considered the radial flow problem only within the power-law regime, and thus,
as expected, their numerical results for velocity profile and pressure distribution showed
good agreement with theoretical predictions based on the power-law model (Na & Hansen
1967). In this work, we consider the Ellis model (Reiner 1960; Matsuhisa & Bird 1965;
Bird et al. 1987) to describe the shear-thinning rheology and show that, at low shear rates,
the pressure distribution and pressure drop significantly differ from the power-law regime.

In the context of radial flows of shear-thinning fluids, it is worth mentioning recent
studies on the instability of radially spreading extensional flows of shear-thinning fluids
(Sayag & Worster 2019a,b; Hutchinson & Worster 2025). Instead of applying no-slip
boundary conditions that lead to shear-dominated flows, Sayag & Worster (2019b)
and Hutchinson & Worster (2025) used free-slip conditions, resulting in extensional-
dominated flows. Specifically, using a combination of experiments and lubrication theory
in conjunction with the power-law model, these studies considered the situation when the
shear-thinning fluid displaces less viscous fluid in extensionally dominated flows.

Beyond shear-thinning fluids, radial flows of viscoelastic and viscoplastic fluids
have also received much attention in the fluid mechanics and rheology communities
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Figure 1. Schematic illustration of the flow configuration, showing the coordinate system and relevant physical
parameters. (a) Radial flow of a shear-thinning fluid between two disk-shaped, parallel plates of radius ro
separated by a small gap h (h � ro). The fluid is steadily driven by the imposed flow rate q through a narrow
tube of radius ri at the centre of the top plate. (b) Cross-section view of the geometry. Our interest is to
determine the resulting pressure distribution and pressure drop �p between the inlet (r = ri ) and outlet (r = ro).

Focus Fluid/model Comments

Na & Hansen (1967) Theor. Sisko, power law
Schwarz & Bruce (1969) Theor. Third-order fluid Weak viscoelastic effects

Exptl. Polyacrylamide solutions
Khader & Vachon (1973) Theor. Power law Included fluid inertia
Laurencena & Williams (1974) Exptl. Carbopol and Natrosol

solutions
Lee & Williams (1976a) Theor. Five-constant Oldroyd Weak viscoelastic effects

Included fluid inertia
Lee & Williams (1976b) Exptl. Polyacrylamide solutions
Co & Bird (1977) Theor. Third-order fluid Included fluid inertia

Weak viscoelastic effects
Amadou et al. (1978) Exptl. Polyethylene oxide Converging radial flow

solutions
Dai & Bird (1981) Theor. Bingham
Co (1981) Numer. Carreau Neglected high-shear-rate

viscosity plateau
Co & Stewart (1982) Numer. Modified

Zaremba–Fromm–DeWitt
Zou et al. (2020) Theor./Numer. Herschel–Bulkley
Shamu et al. (2020) Exptl. Carbopol gels
Albattat & Hoteit (2021) Theor./Numer. Herschel–Bulkley
Present work Theor./Numer. Ellis Comparison to experiments

Table 1. Chronological selection of previous theoretical, numerical and experimental studies on the
pressure-driven radial flow of various complex, non-Newtonian fluids.

(see, e.g. Lee & Williams 1976a,b; Dai & Bird 1981; Co & Stewart 1982; Shamu
et al. 2020; Zou, Håkansson & Cvetkovic 2020; Albattat & Hoteit 2021). Recently,
Zou et al. (2020) studied the radial flow of viscoplastic fluids between homogeneous
fractures and presented an analytical solution for the flow of the Herschel–Bulkley fluid
model. In contrast to the modelling of the viscoplastic fluids, which allows considerable
theoretical progress for a wide range of flow rates (Zou et al. 2020; Albattat & Hoteit
2021), all theoretical studies on viscoelastic fluids have considered to date only small
Deborah or Weissenberg numbers, which correspond to weak viscoelasticity (Schwarz &
Bruce 1969; Lee & Williams 1976a; Co & Bird 1977). Therefore, further investigation
would be required to understand the radial flow of viscoelastic fluids at non-small
Deborah/Weissenberg numbers; see the last paragraph of our conclusions in § 6.
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In conjunction with theoretical and numerical investigations, experimental studies have
been conducted on radial flows of various non-Newtonian fluids, including shear-thinning,
viscoelastic and viscoplastic fluids (see, e.g. Schwarz & Bruce 1969; Laurencena &
Williams 1974; Lee & Williams 1976b; Amadou, Adler & Piau 1978; Shamu et al. 2020).
Of particular interest is an experimental study of Laurencena & Williams (1974) on the
pressure-driven flow of non-Newtonian fluids. Laurencena & Williams (1974) measured
the radial pressure distribution for three polymer solutions (two Carbopol solutions and
one Natrosol solution). Using a power-law model for rheological characterisation and
theoretical prediction for the pressure distribution (Na & Hansen 1967), Laurencena &
Williams (1974) showed a quantitative comparison between theory and experiments. For
the Natrosol solution, they found a good agreement between theory and experiments
only for high flow rates, corresponding to the high shear rates, well captured by the
power-law model. However, at low flow rates, which correspond to low shear rates,
significant discrepancies existed between theoretical predictions and experimental results.
Such discrepancy is due to the inability of the simple power-law model to accurately
capture the rheological and hydrodynamic behaviours at low flow rates, as noted by
Laurencena & Williams (1974) in their concluding remarks.

Indeed, while the power-law model is widely used because of its simplicity, it has certain
limitations mentioned previously. Recent theoretical and numerical studies on the flow
of shear-thinning fluids have demonstrated that the power-law model can reproduce the
results of the more accurate Ellis and Carreau models only at intermediate shear rates
(see, e.g. Moukhtari & Lecampion 2018; Boyko & Stone 2021a; Ciriello et al. 2021; Picchi
et al. 2021; Longo et al. 2022; Barmak et al. 2024; Steinik et al. 2024). As a result, its range
of applicability is quite limited, and caution should be taken when interpreting the results
based on the power-law rheology at low and high shear rates.

In this work, we provide a theoretical framework for calculating the pressure distribution
and the flow rate–pressure drop relation of a shear-thinning Ellis fluid in radial-flow
configurations. The Ellis model exhibits a low-shear-rate viscosity plateau, consistent
with the experimentally observed behaviour of shear-thinning fluids, and regularises
the divergent behaviour of the power-law model at zero shear rate (Bird et al. 1987).
Nevertheless, the Ellis model cannot reproduce the experimentally observed high-shear-
rate viscosity plateau and predicts vanishing viscosity, similar to the power-law model. The
experimentally observed viscosity plateau at high shear rates can be reproduced by more
complex shear-thinning constitutive models, such as Cross (1965) and Carreau (1972),
containing more fitting parameters than the Ellis model. However, the important feature
and advantage of the Ellis model is that, unlike Carreau and Cross models, the Ellis model
allows to obtain an explicit expression for the velocity profile in unidirectional, lubrication
and thin-film flows (see, e.g. Gutfinger & Tallmadge 1965; Matsuhisa & Bird 1965; Steller
2001; Myers 2005; Ciriello et al. 2021; Picchi et al. 2021), thus making it useful for
analytical analysis. As we show here, this fact allows us to obtain an explicit nonlinear
equation that governs the pressure gradient in the radial flow of an Ellis fluid, suitable for
both asymptotic and numerical investigations.

While our principal concern is the pressure distribution and the pressure drop driving
the fluid, we also discuss the velocity profile of the Ellis fluid in a radial flow. To
date, all theoretical studies on the radial flow of shear-thinning and viscoplastic fluids
employing generalised Newtonian models, such as the power-law (Na & Hansen 1967;
Laurencena & Williams 1974), Sisko (Na & Hansen 1967) and Herschel–Bulkley (Zou
et al. 2020; Albattat & Hoteit 2021), have assumed the fully developed form of the radial
velocity (see, e.g. Park 2020). However, the assumption of fully developed radial flow
does not apply near the inlet, where fluid enters the gap between the plates from the tube.
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Indeed, even for a Newtonian fluid at low Reynolds numbers, a radial entrance length is
necessary to achieve a fully developed velocity profile (Chatterjee 1993, 2000). Thus, to
provide insight into the validity of this assumption, we study over which length scale the
radial velocity of the Ellis fluid reaches its fully developed form.

The paper is organised as follows. In § 2, we present the problem formulation,
including governing equations, boundary conditions and the constitutive equation for
the Ellis viscosity model. In § 3, we provide a closed-form expression for the non-
dimensional pressure gradient, which allows us to obtain semi-analytical expressions
for the pressure, velocity and pressure drop. Furthermore, we derive the corresponding
asymptotic solutions for small and large values of the dimensionless flow rates. We present
the results in § 4, including a comparison between our semi-analytical and asymptotic
predictions and the finite-element numerical simulations, finding excellent agreement. We
further use numerical simulations to study the entrance length required for the radial
velocity of the Ellis fluid to achieve its fully developed form. In § 5, we compare the
predictions of our theoretical and finite-element analyses with the experimental results
of Laurencena & Williams (1974) for the pressure distribution of the Natrosol solution,
showing good agreement. We conclude with a discussion of the results in § 6.

2. Problem formulation, governing equations and shear-thinning rheology
We study the steady, pressure-driven radial flow of a non-Newtonian shear-thinning fluid
between two disk-shaped plates of radius ro separated by a small gap h, where h � ro. We
assume that the incompressible and axisymmetric flow is driven by a constant volumetric
flow rate q through a narrow tube of radius ri � ro, which feeds into the centre of the
top plate, as shown in figure 1. The imposed flow rate q induces the radial fluid motion
with velocity u = (ur , uz) and pressure distribution p. Motivated by the experiments of
Laurencena & Williams (1974), we are interested in determining the resulting pressure
distribution and pressure drop �p between the inlet (r = ri ) and outlet (r = ro) for a
given q.

We consider low-Reynolds-number flows and neglect the fluid inertia. In this limit, the
continuity and momentum equations governing the fluid motion take the form

∇ · u = 0, ∇ · σ = 0, (2.1a,b)

where σ is the stress tensor. The governing equations (2.1) are supplemented by the no-slip
and no-penetration boundary conditions along the plates walls, u = 0 at z = ±h/2, and the
integral constraint for the flow rate, q = 2π

∫ h/2
−h/2 urr dz. In addition, for convenience, we

set a zero gauge pressure at r = ro, so that p(r = ro) = 0.
We describe the shear-thinning rheology of the non-Newtonian fluid using a generalised

Newtonian model, with stress tensor σ given by (Bird et al. 1987)

σ = −pI + τ = −pI + 2η(γ̇ )E, (2.2)

where τ is the deviatoric stress tensor and E = (∇u + (∇u)T)/2 is the rate-of-strain
tensor. Similar to Newtonian fluids, the stress tensor σ of the generalised Newtonian
fluids depends only on the instantaneous flow and not the flow history. Therefore,
the generalised Newtonian constitutive model is inelastic and does not account for
viscoelasticity. Nevertheless, in contrast to the Newtonian fluid, the viscosity η of the
generalised Newtonian fluid depends on either the shear rate γ̇ = √

2E : E, η(γ̇ ), or the
magnitude of the shear stress τ = √

(τ : τ )/2, η(τ).
In this work, we are interested in understanding the interplay between the shear-thinning

and the zero-shear-rate effects on the pressure drop in the radial flow. To this end,
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we consider the Ellis model for the apparent viscosity, which provides the viscosity in
terms of the shear stress and captures the experimentally observed viscosity behaviour at
low shear rates and power-law dependence at intermediate shear rates. The constitutive
equation for an Ellis viscosity model is given by (Reiner 1960; Matsuhisa & Bird 1965;
Bird et al. 1987)

Ellis model: η(τ) = η0

1 + (τ/τ1/2)ne−1 , (2.3)

where η0 is the zero-shear-rate viscosity. The index ne represents the degree of shear
thinning, ne � 1, and the constant τ1/2 controls the onset of the shear-thinning effect,
representing the effective shear stress at which the viscosity is 50 % of the zero-shear-rate
viscosity η0. The case τ1/2 → ∞ represents the Newtonian fluid with a constant viscosity
η0, whereas the case ne = 1 represents the Newtonian fluid with a constant viscosity η0/2.

For low shear stresses (or shear rates), τ/τ1/2 � 1, the Ellis model exhibits a plateau
with zero-shear-rate viscosity η0, similar to the Carreau and Cross models, consistent with
the experimentally observed behaviour of shear-thinning fluids. Thus, the Ellis model
regularises the divergent behaviour of the power-law model as γ̇ → 0. For intermediate
and high stresses (or shear rates), τ/τ1/2 � 1, the Ellis model reduces to the power-law
model (Picchi et al. 2021; Christov 2022)

power-law model: η(γ̇ ) = mγ̇ n−1, with m = ηn
0τ 1−n

1/2 and n = 1/ne. (2.4)

However, similar to the power-law model, the Ellis model cannot reproduce the
experimentally observed high-shear-rate viscosity plateau and predicts vanishing viscosity
as γ̇ → ∞. We note that the Ellis model can be extended to account for the high-shear-rate
viscosity plateau, resulting in the Meter model, given by η(τ) = η∞ + (η0 − η∞)/(1 +
(τ/τm)ne−1) (Meter & Bird 1964; Shende, Niasar & Babaei 2021), where η∞ is the
infinite-shear-rate viscosity and τm is the effective shear stress at which the viscosity
reaches 50 % of η0 + η∞.

3. Theoretical analysis for the radial flow of a shear-thinning fluid

3.1. Velocity and flow rate–pressure gradient relation in dimensional form
We consider low-Reynolds-number flow of an incompressible shear-thinning fluid in
a narrow configuration where h � ro, which allows for the use of the lubrication
approximation. Specifically, the lubrication approximation applies provided that the aspect
ratio ε = h/ro and the reduced Reynolds number εRe are small, i.e. ε � 1 and εRe � 1
(Leal 2007).

The reduced Reynolds number εRe is the ratio of fluid inertia, ρu2
c/ro, to viscous

stress, η(γ̇ )uc/h2, where uc = q/2πhro is the characteristic velocity scale and ρ is the
density of the fluid. In contrast to a Newtonian fluid, where the reduced Reynolds number
εRe depends linearly on velocity (or shear rate γ̇ ∼ uc/h), the reduced Reynolds number
for a shear-thinning fluid may exhibit either linear or nonlinear dependence on velocity,
depending on the magnitude of the shear rate or shear stress. For low shear stresses (or
shear rates), τ/τ1/2 � 1, the viscosity of the Ellis fluid is η(γ̇ ) ≈ η0, so that the small
reduced Reynolds number assumption requires εResmall El = ρuch2/η0ro � 1, similar to
a Newtonian fluid. However, for high shear stresses (or shear rates), τ/τ1/2 � 1, the
viscosity of the Ellis fluid follows the power-law dependence (2.4) and is approximately
η(γ̇ ) ≈ η0(η0γ̇ /τ1/2)

(1/ne)−1. Therefore, the small reduced Reynolds number assumption
now requires that εRepower-law = (ρuch2/η0ro)(η0uc/hτ1/2)

1−(1/ne) � 1, which can also
be expressed as εRepower-law = (εResmall El)El1−(1/ne) � 1, where El = η0uc/hτ1/2 is
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the Ellis number defined in (3.10). As expected, in the power-law regime, the reduced
Reynolds number increases nonlinearly with velocity (or the Ellis number) due to
the shear-thinning behaviour of the fluid. Clearly, in the power-law regime where
El � 1, the condition εRepower-law = (εResmall El)El1−(1/ne) � 1 is more restrictive
than εResmall El � 1, since the latter does not necessarily imply that εRepower-law � 1.
Nevertheless, for typical values of the physical parameters associated with the radial flow
of an Ellis fluid, listed in table 4, both conditions, εResmall El � 1 and εRepower-law � 1,
are well satisfied, as shown in Appendix C.

In this lubrication limit, fluid inertia and longitudinal gradients are negligible, and we
can assume a unidirectional radial flow, u = ur (r, z)er (see, e.g. Park 2020). Under this
assumption, the momentum equations (2.1b) in conjunction with (2.2) and (2.3) reduce to

∂p

∂r
= ∂

∂z

(
η(τ)

∂ur

∂z

)
,

∂p

∂z
= 0, (3.1a,b)

where the magnitude of the shear stress τ = √
(τ : τ )/2 is given by

τ = |τr z| = η(τ)γ̇ with γ̇ =
∣∣∣∣∂ur

∂z

∣∣∣∣ . (3.2)

The governing equations (3.1) represent the lubrication equations that can be derived by
introducing a small parameter ε = h/ro � 1, and then formally expanding the velocity
and pressure fields in powers of ε and considering the leading order terms (see, e.g. Oron,
Davis & Bankoff 1997; Leal 2007). From (3.1b), it follows that p = p(r), i.e. the pressure
is constant across the gap h, but varies along the r -direction.

Integrating (3.1a) with respect to z and applying the symmetry condition at z = 0 yields

dp

dr
z = η(τ)

∂ur

∂z
. (3.3)

Substituting (2.3) into (3.3) and rearranging, we obtain

∂ur

∂z
= dp

dr

z

η(τ)
= 1

η0

dp

dr
z(1 + (τ/τ1/2)

ne−1). (3.4)

Noting that γ̇ = −∂ur/∂z for 0 � z � h/2, and using (3.2) and (3.3), the magnitude of the
shear stress τ can be expressed as

τ = −η(τ)
∂ur

∂z
= −dp

dr
z for 0 � z � h/2, (3.5)

where we expect the pressure gradient to be negative, dp/dr < 0.
Combining (3.4) and (3.5) provides the expression for ∂ur/∂z. Integrating this result

with respect to z and applying the no-slip boundary conditions at the plate walls, we obtain
an explicit expression for the radial velocity profile of an Ellis fluid,

ur (r, z) = 1
η0

dp

dr

[
1
2

(
z2 − h2

4

)
+ 1

ne + 1

(
−dp

dr

1
τ1/2

)ne−1
(

zne+1 − h
ne+1

2ne+1

)]
. (3.6)

Finally, substituting (3.6) into the integral constraint for the volumetric flux,
q = 2π

∫ h/2
−h/2 urr dz provides a nonlinear equation for the pressure gradient dp(r)/dr for

a given flow rate q,

q

4πr
= − 1

η0

dp

dr

[
h3

24
+ hne+2

2ne+2(ne + 2)

(
−dp

dr

1
τ1/2

)ne−1
]
. (3.7)
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In addition, the integral constraint for the volumetric flux, q = 2π
∫ h/2
−h/2 urr dz, implies

that the radial velocity has the fully developed form of ur (r, z) = f (z)/r (see, e.g. Park
2020). We will return to this point in § 4.

3.2. Non-dimensionalisation
To non-dimensionalise our hydrodynamic problem, we introduce dimensionless variables
based on the lubrication theory,

R = r

ro
, Z = z

h
, Ur = ur

uc
, P = p

η0ucro/h2 , �P = �p

η0ucro/h2 , H= η

η0
,

(3.8)

where uc = q/2πhro is the characteristic velocity scale. In addition, we introduce the inlet-
to-outlet aspect ratio α = ri/ro, which is assumed to be small, α � 1, consistent with the
experiments of Laurencena & Williams (1974).

Using the non-dimensionalisation (3.8), the governing equation for the pressure gradient
(3.7) takes the form

1
R

= −dP

dR

[
1
12

+ 1
2ne+1(ne + 2)

(
−El

dP

dR

)ne−1
]

, (3.9)

where El is the non-dimensional Ellis number defined as

El = γ̇c

τ1/2/η0
= η0uc

hτ1/2
= η0q

2πh2roτ1/2
. (3.10)

The Ellis number is the ratio of the characteristic shear rate in the flow, γ̇c = uc/h,
to the cross-over shear rate of the fluid, τ1/2/η0, representing the relative importance of the
shear thinning. For El � 1, the onset of shear-thinning effect occurs only at sufficiently
high shear rates, and the fluid is expected to behave as Newtonian. In contrast, when
El � 1, we expect the shear-thinning effect to become apparent at low shear rates, and the
shear-thinning fluid follows the power-law model. We note that the definition of the Ellis
number, (3.10), is similar to the definition of the Carreau number, provided τ1/2 = η0/λ,
where λ is the inverse of a characteristic shear rate of the Carreau fluid (see, e.g. Boyko &
Stone 2021b; Chun et al. 2024). However, our definition of the Ellis number is inverse to
the definition used in recent studies of Picchi et al. (2021) and Chun et al. (2022).

Using the non-dimensionalisation (3.8), the Ellis and power-law models, (2.3) and (2.4),
can be expressed in the dimensionless form in terms of the Ellis number,

HEllis = 1
1 + (HEllis El)ne−1 and Hpower-law = El

1
ne

−1
, with El = γ̇

τ1/2/η0
. (3.11)

We present in figure 2 the dimensionless viscosity H= η/η0 as a function of the Ellis
number El = η0γ̇ /τ1/2 for ne = 1.5, 2.5 and 5. As expected, for small values of El,
we recover the Newtonian plateau with H= 1, whereas for large values of El, we obtain
the power-law behaviour with H= El(1/ne)−1, represented by red dashed lines. It is
evident that as the index ne characterising the degree of shear thinning increases, the
viscosity transitions from the small-El (Newtonian) to the power-law behaviour at smaller
values of the Ellis number.

For arbitrary values of the Ellis number, the pressure gradient dP/dR ≡ P ′(R) can be
calculated numerically from (3.9), as detailed in Appendix A. Once the pressure gradient
P ′(R) is known, the pressure distribution P(R) and pressure drop �P ≡ P(R = α) −
P(R = 1), expressed in terms of the integrals,
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Figure 2. Non-dimensional viscosity H= η/η0 as a function of the Ellis number El = η0γ̇ /τ1/2 for different
values of the shear-thinning index ne. Red dashed lines represent the power-law asymptotic limit valid for large
values of El.

P(R) = −
∫ 1

R
P ′(R) dR and �P = P(α) = −

∫ 1

α

P ′(R)dR, (3.12a,b)

can be obtained using numerical integration (see Appendix A). Note that, in (3.12),
we have used the fact that P(1) = 0.

Furthermore, having obtained the pressure gradient dP/dR, we can determine the non-
dimensional radial velocity of an Ellis fluid using (3.6) as

Ur (R, Z) = dP

dR

[
1
2

(
Z2 − 1

4

)
+ 1

ne + 1

(
−El

dP

dR

)ne−1 (
Zne+1 − 1

2ne+1

)]
. (3.13)

3.3. Asymptotic results for small and large values of Ellis number
Although no closed-form analytical solution is available for (3.9), in this subsection,
we provide asymptotic solutions in the limit of small and large values of El, thus allowing
us to describe analytically almost the entire range of Ellis numbers.

For weak actuation, corresponding to the limit El � 1, we seek the solution for the
pressure gradient dP/dR ≡ P ′(R) in the form

P ′(R) = P ′
0(R) + Elne−1 P ′

1(R) + El2(ne−1) P ′
2(R) + O(El3(ne−1)). (3.14)

Note that since ne � 1, we have Elne−1 � 1 and El2(ne−1) � 1 in the small-El limit.
Substituting this expansion into (3.9) and solving order by order, we obtain

P ′
0(R) = −12

R
, P ′

1(R) = 6ne+1

ne + 2

(
1
R

)ne

, P ′
2(R) = −32ne+14ne ne

(ne + 2)2

(
1
R

)2ne−1

.

(3.15)
Integrating (3.15) with respect to R and using the boundary condition P(R = 1) = 0
provides the expression for the pressure,

P(R) = −12 ln R︸ ︷︷ ︸
P0(R)

+ Elne−1 6ne+1

(ne + 2)(ne − 1)
(1 − R1−ne)︸ ︷︷ ︸

P1(R)

+ El2(ne−1) 22ne−132ne+1ne

(ne + 2)2(ne − 1)
(R2−2ne − 1)︸ ︷︷ ︸

P2(R)

for El � 1. (3.16)
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Thus, the pressure drop �P in the small-El limit is

�P = −12 ln α︸ ︷︷ ︸
�P0

+ Elne−1 6ne+1

(ne + 2)(ne − 1)
(1 − α1−ne)︸ ︷︷ ︸

�P1

+ El2(ne−1) 22ne−132ne+1ne

(ne + 2)2(ne − 1)
(α2−2ne − 1)︸ ︷︷ ︸

�P2

for El � 1. (3.17)

For strong actuation, corresponding to the limit of El � 1, the Ellis model reduces to
the power-law model and we expect to achieve a power-law regime. Specifically, the first
term in the brackets on the right-hand side of (3.9) is negligible compared with the second
term, so that the pressure gradient P ′(R) can be expressed as

P ′(R) = −2(ne+1)/ne(ne + 2)1/ne
El(1−ne)/ne

R1/ne
for El � 1. (3.18)

Integrating (3.18) with respect to R and using the boundary condition P(R = 1) = 0 yields
the expression for the pressure in the large-Ellis-number limit

P(R) = −2(ne+1)/ne ne(ne + 2)1/ne

ne − 1
El(1−ne)/ne(R(ne−1)/ne − 1) for El � 1, (3.19)

so that the pressure drop in the large-El limit is

�P = −2(ne+1)/ne ne(ne + 2)1/ne

ne − 1
El(1−ne)/ne(α(ne−1)/ne − 1) for El � 1. (3.20)

We note that, as expected, (3.20), when written in a dimensional form, agrees with the
expression for the pressure drop of the power-law fluid (see, e.g. Na & Hansen 1967;
Laurencena & Williams 1974). Furthermore, for ne = 1, (3.20) reduces to �P = −12 ln α,
consistent with the Newtonian limit.

4. Theoretical predictions and comparison with finite-element simulations
In this section, we present the theoretical and asymptotic results obtained in § 3.
In addition, we validate the predictions of our theoretical model against the
two-dimensional numerical simulations with the finite-element software COMSOL
Multiphysics. The details of the numerical procedure are provided in Appendix B. The
values of the physical parameters used in the finite-element simulations are summarised
in table 4. We note that the fluid inertia is negligible in our simulations since the reduced
Reynolds number is vanishingly small, as shown and discussed in Appendix C.

4.1. Pressure drop and pressure distribution
First, in figure 3(a,b), we present the non-dimensional pressure drop �P = �p/

(η0q/2πh3) as a function of El for the radial flow of an Ellis fluid for ne = 1.5 in panel
(a) and ne = 2.5 in panel (b), with α = 0.05. Black triangles represent the finite-element
simulation results obtained from calculating the pressure drop along the midplane Z = 0.
Grey circles represent the theoretical results obtained by solving numerically (3.9) and
(3.12b). Cyan dotted and red dashed curves represent the asymptotic solutions (3.17) and
(3.20) for small and large values of El, respectively. Clearly, there is excellent agreement
between the theoretical predictions based on our reduced-order model and finite-element
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Figure 3. Non-dimensional pressure drop of the shear-thinning Ellis fluid in a radial flow between two
disk-shaped plates. (a,b) Dimensionless pressure drop �P = �p/(η0q/2πh3) as a function of El = η0q/

(2πh2roτ1/2) for (a) ne = 1.5 and (b) ne = 2.5. Black triangles represent the results of the finite-element
simulation. Grey circles represent the theoretical results obtained by solving numerically (3.9) and (3.12b).
Cyan dotted curves represent the small-El asymptotic solution (3.17). Purple dash-dotted curves represent the
Padé approximation (4.1). Red dashed lines represent the power-law asymptotic solution (3.20). All calculations
were performed using α = 0.05.

simulation results. We observe that, as expected, the power-law asymptotic solution (3.20)
captures fairly well the variation of the pressure drop with El for large values of the Ellis
number. However, the small-El asymptotic solution (3.17) cannot accurately capture the
pressure drop except for very small values of El. Nevertheless, using small-El asymptotic
expressions for �P0, �P1 and �P2 given in (3.17), we can improve the convergence of
the asymptotic series by applying the diagonal Padé [1/1] approximation (Hinch 1991;
Housiadas 2017),

�PPade = �P0 + Elne−1 (�P1)
2

�P1 − Elne−1�P2
for El � 1, (4.1)

represented in figure 3(a,b) by purple dash-dotted curves.
It is evident from figure 3(a,b) that the Padé approximation (4.1) significantly improves

the agreement with the semi-analytical and finite-element simulation results for both
ne = 1.5 and 2.5. For example, in the case of ne = 1.5, we have a modest relative error
of approximately 8 % for up to El = 0.04. As expected, when El increases, the agreement
between the Padé approximation (4.1) and simulations deteriorates, and the small-El Padé
approximation overpredicts the pressure drop, yielding a relative error of approximately
18 % for El = 0.115. Nevertheless, our theoretical predictions based on (3.9) and (3.12b)
are in excellent agreement with simulations even for order-one Ellis numbers, resulting in
a relative error below 0.5 % for El = 0.87 and ne = 1.5. Therefore, our theory accurately
describes the pressure drop behaviour and captures well the transition to the power-law
dependence �P ∼ El(1/ne)−1, given in (3.20), for larger values of El. The dimensionless
pressure drop, which physically represents the dimensionless flow resistance (�p/q) of the
Ellis fluid, monotonically decreases with El. Interestingly, for El � 1, the scaling for the
pressure �P ∼ El(1/ne)−1 is identical to the power-law dependence of the dimensionless
viscosity H= El(1/ne)−1, thus highlighting that the pressure drop reduction for shear-
thinning fluids is due to the decrease in viscosity η with the applied shear rate γ̇ or the
shear stress τ .

Next, we present in figure 4(a,b) the non-dimensional pressure distribution
P = 2πph3/(η0q) as a function of the radial coordinate R = r/ro for the radial flow of
an Ellis fluid for ne = 1.5 in panel (a) and ne = 2.5 in panel (b), with El = 0.05 and

1017 A25-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
47

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10472


A. Ashkenazi and E. Boyko

0.05 0.10 0.30 0.50 0.80 1.00

10−2

100

102

10−2

100

102

  El = 0.05

(b)(a)

0.05 0.10 0.30 0.50 0.80 1.00

R = r/ro R = r/ro

P(
R)

P(
R)

      El = 25
                  El = 25

              El = 0.05

Finite-element simulation

Theory

Padé approximation

Power-law asymptote

ne = 2.5

α = 0.05

Finite-element simulation

Theory

Padé approximation

Power-law asymptote

ne = 1.5

α = 0.05

Figure 4. Non-dimensional pressure distribution of the shear-thinning Ellis fluid in a radial flow between
two disk-shaped plates. (a,b) Dimensionless pressure P = 2πph3/(η0q) as a function of the radial coordinate
R = r/ro for small (El = 0.05) and large (El = 25) Ellis numbers with (a) ne = 1.5 and (b) ne = 2.5. Black
dots represent the results of the finite-element simulation. Grey curves represent the theoretical results obtained
by solving numerically (3.9) and (3.12a). Purple dash-dotted curves represent the small-El Padé approximation
based on (3.16). Red dashed curves represent the power-law asymptotic solution (3.19). All calculations were
performed using α = 0.05.

El = 25. Similar to the pressure drop, our theoretical predictions for the pressure (grey
solid curves) accurately capture the finite-element simulation results (black dots) for all
considered values of El. Furthermore, we observe an excellent agreement between the
small- and large-El asymptotic solutions (purple dash-dotted and red dashed curves) and
the finite-element simulation results. Note that the small-El asymptotic solution is based
on the application of the Padé approximation to the expressions in (3.16), similar to (4.1).

As expected, the results in figure 4(a,b) reveal that, for El � 1, the pressure distribution
shows a weak dependence on the shear-thinning index ne. However, for El � 1, the
pressure magnitude decreases as ne increases, consistent with the results shown in figure 2,
indicating that the viscosity reduction for a given El in the power-law regime becomes
more pronounced with ne.

4.2. Comparison between the theoretical predictions and the finite-element simulations
for the radial velocity

Our theoretical analysis presented in § 3 relies on the assumption of a unidirectional radial
flow, U = Ur (R, Z)er , which together with the integral constraint for the volumetric
flux,

∫ 1/2
−1/2 Ur R dZ = 1, implies that the radial velocity takes the fully developed form

of Ur (R, Z) =F(Z)/R for α � R � 1 (see, e.g. Na & Hansen 1967; Park 2020). Clearly,
the assumption of unidirectional radial flow is not valid near the inlet, where the shear-
thinning fluid enters from the tube into the gap between the plates. Indeed, even for a
Newtonian fluid at low Reynolds numbers, there is a radial entrance length required to
reach a fully developed velocity profile Ur (R, Z) = −(3/2R)(4Z2 − 1) (Chatterjee 1993,
2000). Therefore, it is of particular interest to compare our theoretical predictions for the
radial velocity of the shear-thinning Ellis fluid with the results of the numerical simulations
and elucidate over which length scale the radial velocity reaches its fully developed form,
Ur (R, Z) =F(Z)/R.

In figure 5, we present the results of the dimensionless radial velocity of the shear-
thinning Ellis fluid in a radial flow for ne = 2.5 and the Ellis number El = 0.1,
corresponding to the transition from the small-El limit to the power-law regime, as
shown in figure 3(b). Figure 5(a–d) shows a comparison of theoretical predictions
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Figure 5. Non-dimensional radial velocity distribution of the shear-thinning Ellis fluid in a radial flow between
two disk-shaped plates. (a–d) Contour plot of the radial velocity distribution, Ur , as a function of the (R, Z)

coordinates for (a,b) α = 0.1 and (c,d) α = 0.05, obtained from (a,c) our theory and (b,d) finite-element
simulations. White dashed lines represent the midplane Z = 0. (e, f ) Radial velocity Ur multiplied by the radial
coordinate R, Ur R, as a function of Z for R = α, 2α and 3α, with (e) α = 0.1 and (f ) α = 0.05. Red solid lines
represent the theoretical results obtained by solving (3.9) and (3.13). Dots, crosses and circles represent the
results of the finite-element simulation. (g) Relative error between the theory and numerical simulations for
the radial velocity along the midplane, Ur (R, Z = 0), as a function of the radial coordinate R for α = 0.1 (grey
circles) and α = 0.05 (black dots). All calculations were performed using El = 0.1 and ne = 2.5.

(figures 5a and 5c) and finite-element simulation results (figures 5b and 5d) for contours
of the radial velocity, Ur , as a function of the (R, Z) coordinates for the Ellis fluid with
α = 0.1 in panel (a,b) and α = 0.05 in panel (c,d). We observe a very good agreement
between the theoretical and numerical results for the radial velocity Uz for both α = 0.1
and α = 0.05 in the entire domain. However, as expected, near the inlet, the agreement
deteriorates and for α = 0.1, we see that the theoretically predicted radial velocity slightly
overpredicts the magnitude of Ur (R = α, Z = 0) obtained from the simulation results.

To understand how fast the radial velocity attains its fully developed form, Ur (R, Z) =
F(Z)/R, we present in figure 5(e, f ) the scaled radial velocity Ur R as a function of Z
for R = α, 2α and 3α, with α = 0.1 in panel (e) and α = 0.05 in panel ( f ). Red solid
lines represent our theoretical predictions, and dots, crosses and circles represent the
finite-element simulation results. It is evident that the radial velocity at R = α (grey
circles) is not symmetric with respect to the midplane Z = 0 and deviates from the
theoretically predicted fully developed profile due to the entering fluid flow from the
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Figure 6. Radial entrance length Rentry, defined as the radial position R where the relative error between the
theory and numerical simulations for the radial velocity along the midplane, |(U theory

r − U sim
r )/U sim

r |Z=0, falls
below 1 %, as a function of El for three values of the shear-thinning indices ne = 1.5, 2.5 and 5. All calculations
were performed using α = 0.05.

tube into the gap between the plates. However, already at R = 2α, we observe that the
radial velocity becomes symmetric and our theory captures well the velocity profile for
both α = 0.1 and α = 0.05. For further clarification, figure 5(g) presents the relative
error between the theory and numerical simulations for the radial velocity along the
midplane, Ur (R, Z = 0), as a function of the radial coordinate R for α = 0.1 (grey circles)
and α = 0.05 (black dots). It follows from figure 5(g) that the relative error, defined as
|(U theory

r − U sim
r )/U sim

r |Z=0, decays very fast and, for both α = 0.1 and α = 0.05, it is
below 0.5 % when R � 0.105.

So far, in figure 5, we have presented results for the radial velocity of a shear-thinning
Ellis fluid with El = 0.1 and ne = 2.5. To elucidate the influence of the Ellis number and
the shear-thinning index on the development of the radial velocity, we present in figure 6
the radial entrance length Rentry (scaled by α = 0.05), defined as the radial position R

where the relative error |(U theory
r − U sim

r )/U sim
r |Z=0 falls below 1 %, as a function of El

for three different values of the shear-thinning indices ne = 1.5, 2.5 and 5. We observe
that for El � 1, the entrance length is independent of the shear-thinning index ne and has
a constant value of Rentry/α = 1.05. However, as the Ellis number increases, the entrance
length Rentry exhibits a strong dependence on ne. While for ne = 1.5, the entrance length
remains nearly constant throughout the investigated range of Ellis numbers, for higher
shear-thinning indices, the entrance length Rentry starts to increase with El above a certain
value of the Ellis number, as observed for ne = 2.5 and ne = 5.

We note that our small-El results for the shear-thinning Ellis fluid are consistent with
the previous estimate for the radial entrance length Rentry of a Newtonian fluid at low
Reynolds numbers. Specifically, Chatterjee (2000) studied the radial entrance flow of
a Newtonian fluid, considering a semi-infinite configuration in the radial direction, and
defined the entrance length Rentry as the value of R at which the midplane radial velocity
Ur (R, Z = 0) is at 1 % from its fully developed value. In particular, Chatterjee (2000)
found that Rentry = 1.05α for h/ri = 0.25 in the absence of inertia. In our finite-element
simulations, we have ε = 0.01 and for α = 0.05, we find that Rentry ≈ 1.05α = 0.0525
for ε/α = h/ri = 0.2 and El � 10−2, in close agreement with the Newtonian value of
Chatterjee (2000).

To better understand the variation of the entrance length Rentry with the Ellis number and
the shear-thinning index, we present in figure 7(a) the scaled radial velocity Ur R, evaluated
at (R, Z) = (0.1, 0), as a function of El for three different values of the shear-thinning
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Figure 7. (a) Radial velocity Ur multiplied by the radial coordinate R, evaluated at (R, Z) = (0.1, 0), as a
function of El for three values of the shear-thinning indices ne = 1.5, 2.5, and 5. Solid lines represent the
theoretical results obtained by solving (3.9) and (3.13). Dots, crosses and circles represent the results of the
finite-element simulation. The cyan dotted line represents the small-El asymptotic solution (4.2). Red dashed
lines represent the power-law asymptotic solution (4.3). (b) Relative error between the theory and numerical
simulations for the radial velocity at (R, Z) = (0.1, 0) as a function of El for three values of the shear-thinning
indices ne = 1.5, 2.5 and 5. All calculations were performed using α = 0.05.

indices ne = 1.5, 2.5 and 5. Solid lines represent the theoretical results obtained by solving
(3.9) and (3.13). Dots, crosses and circles represent the results of the finite-element simu-
lation. The cyan dotted line represents the small-El (Newtonian) asymptotic solution,

Ur (R, Z) = − 6
R

(
Z2 − 1

4

)
for El � 1, (4.2)

and red dashed lines represent the power-law asymptotic solution,

Ur (R, Z) = −2ne+1(ne + 2)

(ne + 1)R

(
Zne+1 − 1

2ne+1

)
for El � 1, (4.3)

obtained from substituting (3.18) into (3.13) while neglecting the first term in the brackets
of (3.13).

It is evident from figure 7(a) that the radial velocity shows a weak dependence on El
and ne for small Ellis numbers, consistent with the small-El asymptotic solution (4.2).
Furthermore, the radial velocity exhibits a weak dependence on El for large Ellis numbers,
yet retains a dependence on ne, in agreement with the power-law asymptotic solution (4.3).
However, in the transitional range of Ellis numbers, from the small-El (Newtonian) regime
to the power-law behaviour, the radial velocity depends on both the Ellis number and the
shear-thinning index.

The weak dependence of Ur on El and ne for small Ellis numbers rationalises the
weak dependence of the entrance length Rentry on the fluid rheology for El � 1, as
shown in figure 6. This is also highlighted in figure 7(b), which shows the relative error
between the theoretical prediction and numerical simulations for the radial velocity at
(R, Z) = (0.1, 0) as a function of El for three different values of the shear-thinning indices
ne = 1.5, 2.5 and 5. Clearly, for ne = 1.5 and ne = 2.5, the relative error at (R, Z) =
(0.1, 0) remains below 1 % when El � 0.1, supporting the conclusion that the entrance
length Rentry is smaller than 0.1 in this regime. However, for ne = 5, the relative error
exceeds 1 % when El � 0.1, indicating that the entrance length is greater than 0.1 in this
case.
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Figure 8. Experimental data from Laurencena & Williams (1974) and the fitting curves for viscosity as a
function of shear rate for the Natrosol solution. The black curve represents the fit of the complete set of the
rheological data ( ) to the Ellis model (2.3). The red dashed curve represents the fit of the rheological data to
the power-law model (2.4). The rheological parameters obtained from the fitting are summarised in table 2.

Rheological parameters η0 (Pa s) τ1/2 (Pa) ne n m (Pa sn)

Ellis model 52 ± 4 8.9 ± 1.5 2.5 ± 0.2 — —
Power-law model — — — 0.40 ± 0.01 17.1 ± 0.3
Power-law model 38.0 — — 0.40 16.9
(Laurencena & Williams 1974)

Table 2. Rheological parameters obtained from fitting the viscosity dependence on the shear rate of the
Natrosol solution to the Ellis and power-law models based on the complete data set (upper row) and based
solely on the data from the power-law regime (middle row). The lower row includes the fitting parameters
reported by Laurencena & Williams (1974), who also determined η0 using a falling ball viscometer at 21.5 ◦C.
Certainty bounds are calculated based on the method presented by Ashkenazi & Solav (2025).

5. Comparison with experiments
In this section, we compare the predictions of our theoretical and finite-element analyses
with the experimental results of Laurencena & Williams (1974), who measured the
pressure distribution of the Natrosol solution in a radial flow between two disk-shaped
plates for two different flow rates (see their figure 9). To this end, we first obtain the
rheological parameters of the Ellis model.

5.1. Fit of viscosity data and rheological parameters of the Ellis model
Laurencena & Williams (1974) provided shear-rate-dependent viscosity data for the
Natrosol solution measured with a Weissenberg rheogoniometer (see their figure 3).
In addition, they used a falling ball viscometer to measure the zero-shear-rate viscosity η0.
We reproduce in figure 8 the viscosity data from Laurencena & Williams (1974) for the
aqueous Natrosol solution, obtained using a Weissenberg rheogoniometer. The black curve
represents the fit of the complete set of the rheological data to the Ellis model (2.3)
obtained using MATLAB’s nonlinear least-squares routine lsqcurvefit. The corresponding
rheological parameters are provided in the upper row of table 2.

We observe that the leftmost data point in figure 8 corresponds to the transition from
the low-shear-rate viscosity limit to the power-law regime. The red dashed curve represents
the fit of the rheological data without this data point to the power-law model (2.4). The
resulting rheological parameters, provided in the middle row of table 2, are in close
agreement with the parameters from Laurencena & Williams (1974) for the power-law
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ri (mm) ro (mm) h (mm) q (cm3 s−1) α ε El

Experiment 1 25.4 254 0.436 0.0121 0.1 1.72 × 10−3 0.233
Experiment 2 25.4 254 0.914 6.01 0.1 3.60 × 10−3 26.34

Table 3. Values of the physical parameters for the experimental system of Laurencena & Williams (1974),
which measured the pressure distribution of the shear-thinning Natrosol solution as a function of the radial
position for two different flow rates and heights. The values of El are calculated using η0 and τ1/2 from the
upper row of table 2, corresponding to fitting the viscosity dependence on the shear rate to the Ellis model.

regime, as given in the lower row. It follows from table 2 that n ≈ 1/ne, consistent with
(2.4). While Laurencena & Williams (1974) used a falling ball viscometer to obtain the
zero-shear-rate viscosity η0 = 38.0 Pa s (see the lower row in table 2), unfortunately, they
did not provide the error bars nor shear rate conditions for this measurement. Therefore, in
our calculations, we use the value of η0 obtained from the fitting to the Ellis model, which
is a bit larger.

5.2. A quantitative comparison between theory and experiments
First, we summarise in table 3 the values of the physical parameters of the experimental
system of Laurencena & Williams (1974) used for the measurements of the pressure
distribution of the shear-thinning Natrosol solution as a function of the radial position
for two different flow rates and heights. We observe that experimental values satisfy the
lubrication assumptions of our theoretical analysis, ε = h/ro � 1.

Next, we present in figure 9(a,b) a comparison of our theoretical, asymptotic and
finite-element simulation results with the experimental measurements of Laurencena &
Williams (1974) for the pressure distribution of the shear-thinning Natrosol solution.
Figure 9(a) represents the experiment 1 (the upper row in table 3), corresponding to
El = 0.233, and figure 9(b) represents the experiment 2 (the lower row in table 3),
corresponding to El = 26.34. Looking first at figure 9(b), we note the corresponding Ellis
number El = 26.34 is within the power-law regime. In this case, we observe excellent
agreement between our theoretical (grey curve) and finite-element simulation (black
dots) predictions and the experimental results (grey circles). Furthermore, the power-law
asymptotic solution (3.19) (red dashed curve) is indistinguishable from the full theoretical
solution.

Figure 9(a) presents the pressure distribution as a function of the radial position for
El = 0.233, corresponding to a transitional Ellis number from the small-El (Newtonian)
to the power-law behaviour, consistent with the results shown in figures 2 and 3(b) for
ne = 2.5. First, there is good agreement between our theoretical predictions based on
solving (3.9) and (3.12a) and the finite-element simulation results. However, neither the
small-El Padé approximation nor the power-law asymptotic solution (3.19) can accurately
capture the numerically predicted pressure variation at this transitional Ellis number,
consistent with the results shown in figure 3(b).

Second, and more importantly, the experimental pressure distribution of the Natrosol
solution, shown in figure 9(a), systematically overpredicts our theoretical and numerical
results for El = 0.233, which are based on the inelastic shear-thinning Ellis model. We
attribute this discrepancy to several factors. The first reason is the complex rheology
of the non-Newtonian Natrosol solution, which is not a purely shear-thinning fluid but
exhibits some elasticity, as reported by Laurencena & Williams (1974). While shear
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Figure 9. Comparison between our theory and the experimental data from Laurencena & Williams (1974) for
the pressure distribution of the shear-thinning Natrosol solution in a radial flow between two disk-shaped plates.
(a,b) Pressure p as a function of the radial coordinate R = r/ro for (a) experiment 1 and (b) experiment 2,
whose details are summarised in table 3. Grey circles represent the experimental data, black dots represent the
finite-element simulation results and grey curves represent the theoretical predictions. The purple dash-dotted
curve represents the small-El Padé approximation based on (3.16) and red dashed curves represent the
power-law asymptotic solution (3.19). The shaded regions indicate a 20 % uncertainty in the value of the gap
h in the theoretical calculations due to the difficulties in measuring h in the experiments of Laurencena &
Williams (1974).

thinning tends to decrease the pressure, fluid viscoelasticity has the opposite effect,
increasing it. Therefore, the observed overprediction in figure 9(a) may be attributed
to fluid viscoelasticity, which tends to increase the pressure. As noted by Co & Bird
(1977), the net effect on pressure generally depends on the relative magnitudes of shear-
thinning and viscoelasticity effects, provided that fluid inertia is negligible. Therefore,
given the excellent agreement between theory and experiments in the power-law regime,
as shown in figure 9(b), we expect the shear-thinning effect to dominate, while the effect
of fluid elasticity is expected to be weak in this case. The second and major reason for
the discrepancy is the uncertainty in the gap height h. Indeed, Laurencena & Williams
(1974) reported the difficulties in accurately measuring h in the experiments due to a lack
of rigidity in the support bearings. In experiment 1, shown in figure 9(a), the values of the
flow rate q and height h are much smaller than in experiment 2, which we believe may
increase uncertainty in the measured value of h. Therefore, we added a shaded region,
based on taking a 20 % range from the reported experimental value of h. Clearly, we
obtain a much better agreement between our theoretical and numerical predictions and the
experimental results. We note that Laurencena & Williams (1974) did not provide the error
bars for the pressure measurements, thus making it difficult to elucidate the error between
the theory and experiments.

Finally, we note that, in addition to the pressure distribution measurements,
Laurencena & Williams (1974) performed the flow rate–pressure drop measurements for
the Natrosol solution. However, unfortunately, they did not provide the values of h, which
varied for each flow rate in the experiments. Thus, it is difficult to directly compare their
experimental pressure drop data with our theoretical predictions.

6. Concluding remarks
In this work, we have studied the radial flow of a shear-thinning fluid between two disk-
shaped plates. Specifically, we applied the lubrication approximation and presented a
theoretical framework for calculating the pressure distribution and the flow rate–pressure

1017 A25-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
47

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10472


Journal of Fluid Mechanics

drop relation for the Ellis model. We first derived a closed-form expression for the
pressure gradient, which allowed us to obtain semi-analytical expressions for the pressure,
velocity and q − �p relation for arbitrary values of the Ellis number. We further provided
asymptotic expressions for small and large values of El.

To validate the results of our theoretical model, we performed finite-element numerical
simulations using the Ellis model for the flow-rate-controlled regime. We found excellent
agreement between the velocity, pressure distribution and pressure drop predicted by our
theory and those obtained from the numerical simulations. In addition, we studied the
entrance length Rentry required for the radial velocity of the Ellis fluid to reach its fully
developed form. We showed that at small Ellis numbers, the entrance length Rentry exhibits
only a weak dependence on the shear-thinning characteristics of the fluid and approximates
the Newtonian value at low Reynolds numbers. However, at large Ellis numbers, the
entrance length may exceed the Newtonian value, depending on the shear-thinning
index ne. Furthermore, we presented a comparison of our theoretical, asymptotic and
finite-element simulation results with the experimental measurements of Laurencena &
Williams (1974) for the pressure distribution of the Natrosol solution, showing good
agreement. However, due to the technological limitations of the experimental system of
Laurencena & Williams (1974), new experiments with shear-thinning fluids covering a
wider range of shear rates (flow rates) are essential for a more exhaustive comparison with
our theoretical results. We believe that such a quantitative comparison is of fundamental
importance in non-Newtonian fluid mechanics to evaluate the adequacy of the constitutive
model and the accuracy of rheological parameters.

Our theoretical model, based on the Ellis model, captures the interplay between the
shear-thinning and zero-shear-rate effects on the pressure distribution and pressure drop,
which cannot be modelled using a simple power-law model. This fact emphasises the need
for an appropriate constitutive model to accurately describe non-Newtonian flows of shear-
thinning fluids.

The presented theoretical approach, employing lubrication theory, extends beyond the
Ellis model and can be applied to more complex shear-thinning constitutive models, such
as Carreau and Cross, reproducing the high-shear-rate viscosity plateau. However, in
contrast to Ellis fluid, for which we derived an explicit governing equation for the pressure
gradient (3.9), we expect that no single governing equation can adequately describe the
radial flow of Carreau fluid, similar to the case of a straight channel (Boyko & Stone
2021a) and capillary (Zhong et al. 2022).

Finally, while we analysed here the effect of shear-thinning rheology on hydrodynamic
features, it would be interesting to understand how other rheological properties, such as
viscoelasticity, influence the pressure distribution and flow rate–pressure drop relation
in radial flow. To the best of our knowledge, all previous theoretical studies of the
radial flow of viscoelastic fluids considered only small Deborah or Weissenberg numbers,
corresponding to weak viscoelasticity (see table 1). Therefore, an interesting future
research direction is to study the regime where the viscoelastic behaviour is not a small
correction and to consider large Deborah numbers, following the theoretical framework
presented recently by Boyko, Hinch & Stone (2024) and Hinch et al. (2024) for the flow
of an Oldroyd-B fluid in a contraction channel.
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ri ro h α ε η0 τ1/2 q El

(mm) (mm) (mm) (–) (–) (Pa s) (Pa) (m3 s−1) (–)
5, 10 100 1 0.05, 0.1 0.01 40 8 1.26 × 10−11−1.26 × 10−4 10−4−103

Table 4. Values of the physical parameters used in the finite-element simulations of the Ellis fluid in a radial
flow. We consider two values of the shear-thinning index: ne = 1.5 and ne = 2.5. The geometrical parameters ε

and α are defined as ε = h/ro and α = ri/ro. The flow rate q is adjusted to obtain the desired value of the Ellis
number El according to (3.10).

Appendix A. Numerical solution of the governing equation
In this appendix, we describe the numerical method used to calculate the pressure distribu-
tion P(R) and pressure drop �P from (3.12), for given values of El, ne and α. The method
includes two steps. In the first step, we use MATLAB’s routine lsqnonlin to find numeri-
cally the value of P ′(R) for any R value, based on the residual of (3.9). This algorithm is
set to converge with residuals below 10−6. In the second step, to calculate P(R) and �P
from (3.12), we use MATLAB’s routine integral, which employs adaptive quadrature to
determine the number of points for the discretisation of P ′(R), starting from 150 values
of R, aiming for a default relative error below 4.9 × 10−6 (see, e.g. Shampine 2008).

Appendix B. Details of finite-element simulations
In this appendix, we describe the numerical techniques used to solve the system of
equations (2.1), (2.2) and (2.3). We perform finite-element numerical simulations using
COMSOL Multiphysics, which includes the Ellis constitutive model within the laminar
flow module (version 6.2, COMSOL AB, Stockholm, Sweden). In our simulations, we
use a structured mesh of bilinear elements. The typical mesh consists of approximately
6.5 × 104 elements for α = 0.05 and 8.4 × 104 elements for α = 0.1. The selected meshes
ensure mesh-independent results. For example, in the case of ne = 2.5 and α = 0.05, we
have a relative error of approximately 0.5 % for up to El = 25 between the selected mesh
and finer structured mesh of approximately 3.9 × 105 bilinear elements.

We use the axial symmetry of the problem to simplify the three-dimensional
configuration into two dimensions and solve the cross-section of the geometry. We impose
the no-slip and no-penetration boundary conditions along the walls and fully developed
flow with the flow rate q at the entrance of the narrow tube of radius ri . At the outlet,
r = ro, the reference value for the pressure is set to zero. Finally, we calculate the pressure
drop between the inlet (r = ri ) and outlet (r = ro), and the pressure distribution at the
midplane z = 0, i.e. �p = p(r = ri , z = 0) − p(r = ro, z = 0) and p(r, z = 0).

We summarise in table 4 the values of physical and geometrical parameters used in
the numerical simulations. We mainly consider two values of the shear-thinning index,
ne = 1.5 and 2.5, and two values of the inlet-to-outlet aspect ratio, α = ri/ro = 0.05 and
0.1, with the rest of the rheological parameters remaining identical.

As the Ellis model is implicit and requires an initial guess for the viscosity, we choose
an initial guess of η0/100, ensuring the simulation convergence. Finally, we use the
PARDISO solver implemented in COMSOL Multiphysics for simulation and set the
relative tolerance of the nonlinear method to 10−5.

Appendix C. Assessing the effect of fluid inertia
Our theory is based on the lubrication approximation, which requires that the aspect ratio
ε = h/ro and the reduced Reynolds number εRe are small; that is, ε � 1 and εRe � 1.
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As noted in § 3, the reduced Reynolds number εRe is the ratio of fluid inertia, ρu2
c/ro,

to viscous stress, ηcuc/h2, where uc = q/2πhro is the characteristic velocity scale and
ηc is the characteristic value of viscosity. For a shear-thinning fluid in the small-El
(Newtonian) regime, we have ηc ≈ η0, so that εResmall El = ρuch2/η0ro. For a shear-
thinning fluid in the power-law regime, we have ηc = η0Hpower-law, and using (3.11),
we obtain εRepower-law = (ρuch2/η0ro)El1−(1/ne) (see also Chun et al. 2024).

The effect of fluid inertia is negligible in our simulations, as the reduced Reynolds
number εRe is vanishingly small. Specifically, using the values from table 4 and
estimating the fluid density as ρ = 103 kg m−3, we find that for q = 1.26 × 10−9

m3 s−1, corresponding to the small-El regime, εResmall El = 5 × 10−10, while for
q = 1.26 × 10−4 m3 s−1 and ne = 2.5, corresponding to the power-law regime with
El = 103, εRepower-law = 3.2 × 10−3. Thus, the fluid inertia is indeed negligible in the
simulations.
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