
J. Fluid Mech. (2025), vol. 1018, A20, doi:10.1017/jfm.2025.10534

Triad near-resonant instability of vertically
bounded internal waves in non-uniform
stratification

Akash Kav
1
, Bruce R. Sutherland

1,2
, Dheeraj Varma

3,4
, Corentin Pacary

3
and

Sylvain Joubaud
3

1Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
2Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
3ENS de Lyon, CNRS, Laboratoire de Physique, Lyon F-69342, France
4Department of Marine Science, University of Southern Mississippi, Kiln, MS 39556, USA
Corresponding author: Bruce R. Sutherland, bruce.sutherland@ualberta.ca

(Received 19 September 2024; revised 25 July 2025; accepted 26 July 2025)

Vertically bounded, horizontally propagating internal waves may become unstable through
triad resonant instability, in which two sibling waves in background noise draw energy
from a parent internal tide. If the background stratification is uniform, then the condition
for pure resonance between the parent and sibling wave frequencies and horizontal and
vertical wavenumbers can be found semi-analytically from the roots of a polynomial
expression. In non-uniform stratification, determining the frequencies and horizontal
wavenumbers for which resonance occurs is less straightforward. We develop a theory for
near-resonant excitation of a pair of sibling waves from a low-mode internal wave in which
the proximity to pure resonance is characterised by the discrepancy between the forced sib-
ling wave frequencies and the natural frequency of these modes. Knowing this discrepancy
can be used methodically to determine pure resonance conditions. This inviscid theory is
compared with numerical simulations of effectively inviscid waves. For comparison with
laboratory experiments, the theory is adapted to include viscous effects both in the bulk
of the fluid and at the side walls of the tank. We find that our theoretical predictions for
frequencies and wavenumbers of the fastest growing sibling waves are generally consistent
between theory, simulations and experiments, though theory overpredicts the growth rate
observed in experiments. In all cases, the growth rate of sibling waves decreases with
decreasing parent wave frequency, becoming negligibly small in experiments if the parent
wave has frequency less than ≈ 0.7 of the buoyancy frequency at the surface.
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1. Introduction
Internal baroclinic tides are generated within the ocean by the movement of the surface
barotropic tide over submarine topography. Globally, the power going into the internal
tide is approximately 1 TW (Munk & Wunsch 1998; Wunsch & Ferrari 2004). The waves
are first generated as horizontally and vertically propagating beams, but transform in the
far field to horizontally propagating low vertical mode internal tides (MacKinnon et al.
2017). How energy is transferred from these tides to small dissipative scales is an ongoing
area of research. Numerous mechanisms have been proposed, including interaction with
continental slopes and shelves, interaction with eddies and mean flows, and resonant wave–
wave interactions such as parametric subharmonic instability (Alford et al. 2016).

The case of parametric subharmonic instability is a particular example of triad resonant
instability (TRI), which allows for the growth from the background ambient noise of
an infinitesimal pair of sibling waves that extract energy from the parent internal wave.
These sibling waves are in temporal and spatial resonance with the parent, where their
frequencies and wavenumbers either sum or subtract to those of the parent wave. In
uniform stratification, TRI has been well studied in the cases of horizontally and vertically
propagating plane waves (e.g. Lombard & Riley 1996), wave beams (e.g. Clark &
Sutherland 2010; Bourget et al. 2013; Dauxois et al. 2018; Fan & Akylas 2021; Grayson,
Dalziel & Lawrie 2022) and vertically confined, horizontally propagating low mode
internal waves (e.g. Joubaud et al. 2012; Sutherland & Jefferson 2020). In the case of
vertically bounded, internal waves in non-uniform stratification, TRI requires resonance
between the frequencies and horizontal wavenumbers of the parent and sibling waves (e.g.
Thorpe 1966; Davis & Acrivos 1967; Akylas & Kakoutas 2023). If there is background
rotation, then resonance with inertial sibling waves is enhanced if the parent wave
frequency is twice the Coriolis frequency (Young, Tsang & Balmforth 2008). With and
without background rotation, it is well established that a parent internal mode in non-
uniform stratification self-interacts to excite superharmonics (Sutherland 2016; Wunsch
2017; Baker & Sutherland 2020; Sutherland & Dhaliwal 2022). However, the resonant
growth of a pair of sibling waves from a parent mode in non-uniform stratification
without background rotation has not been as well studied. A general treatment of weakly
nonlinear interactions between a parent mode and a superposition of modes having
various horizontal wavenumbers and vertical structure was considered by Varma & Mathur
(2017), who focused on identifying wavenumber and frequency combinations at which
resonance occurs. This work was extended to look at energy transfer between three
resonant modes as they propagate horizontally (Varma, Chalamalla & Mathur 2020).
Neither of those studies presented explicit analytical solutions for the exponential growth
rate of resonant infinitesimal amplitude sibling waves. Such growth was considered for
vertically propagating waves in unbounded non-uniformly stratified fluid (Gururaj & Guha
2020), but the assumption of weakly varying stratification limited its extension to vertically
bounded low mode internal tides. In a follow-up paper, Gururaj & Guha (2022) examined
TRI of vertically bounded internal modes passing over slowly varying topography, with
flat bottom topography being a special case. Explicit expressions for the growth rate
were found in the case of uniform stratification, with their examination of non-uniform
stratification focusing on the effect of topography detuning resonant waves. A rigorous
treatment predicting the growth rate of sibling waves from a parent wave in a vertically
bounded domain was developed by Akylas & Kakoutas (2023), who adapted the Floquet
analysis of Fan & Akylas (2021) to examine resonance between vertical modes in non-
uniform stratification. Numerical examination of the results, including accounting for
spatial modulation of the waves, was restricted to waves in uniform stratification.
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In most of the theoretical studies mentioned above, the influence of viscosity was
ignored. However, viscous effects are not necessarily negligible in laboratory experiments
(Davis & Acrivos 1967; Bourget et al. 2013; Gururaj & Guha 2020). With this in mind, we
develop an approach different to that of Akylas & Kakoutas (2023) to derive an equation
for the evolution and growth of a pair of sibling modes in near-resonance with a parent
mode from which it is numerically straightforward to locate horizontal wavenumbers and
vertical mode numbers of sibling waves in pure resonance and which grow exponentially.
This approach is readily adapted to include the effects of viscosity in the bulk of the fluid
as well as dissipation due to waves moving against the no-slip side walls of the tank. The
theory is tested against numerical simulations that neglect viscosity and against laboratory
experiments. The theory for near-resonant sibling excitation is derived in § 2. Experiments
and their analyses are described in § 3. The numerical model is described in § 4, with
a comparison between theory, experiments and simulations being provided therein.
In § 5, we summarise our results, discussing the successes and limitations of theory while
suggesting avenues for future research.

2. Theory
Here, we derive a theory for TRI of horizontally periodic, vertically bounded internal
waves in non-uniform stratification. Our approach differs from that of Akylas & Kakoutas
(2023), but we arrive at the the same result in special circumstances. Using the parent
wave amplitude as a perturbation parameter, Akylas & Kakoutas (2023) ultimately derived
an equation for the forcing of the vertical structure of one sibling due to the interaction
between the parent and the other sibling. The equations reduced to an eigenvalue
problem for the vertical structure of sibling waves having horizontal wavenumbers in
pure resonance with the parent wave. Using a solvability condition, the growth rate of
the sibling waves was found as it depended upon the parent wave amplitude and the
degree of detuning of the sibling waves from pure resonance. Here, we derive a time
evolution equation for the amplitude of sibling waves in near resonance where their forcing
frequencies are shifted from their natural frequencies. We then use the result to predict the
growth rate of sibling waves in pure resonance. For the sibling pair considered by Akylas &
Kakoutas (2023), in which the difference of their horizontal wavenumbers equals the
parent wavenumber, we find the same prediction for the growth rate in pure resonance.
However, for sibling waves that are not horizontally long compared with the parent, we find
that the largest growth rate occurs when the sum of the sibling horizontal wavenumbers
(one being positive, the other being negative) equals the parent wavenumber. We go on to
include the influence of viscosity upon the sibling wave growth rates.

The fluid is assumed to be Boussinesq, incompressible and two-dimensional, with
motion in the x–z plane. We neglect background rotation, and to begin with, the influence
of viscosity is ignored. In a stationary frame of reference, the governing equation of motion
can be written as a linear differential operator L acting on the streamfunction ψ , being
driven by nonlinear forcing N :(

∂t t (∂xx + ∂zz)+ N 2(z) ∂xx
)︸ ︷︷ ︸

≡ L

ψ = ∇ · [∂t (uζ )− ∂x (ub)]︸ ︷︷ ︸
≡ N

, (2.1)

in which ∇ = (∂x , ∂z), u = (u, w)= (−∂zψ, ∂xψ) is the velocity, ζ = ∂zu − ∂xw is the
spanwise vorticity, and b is the buoyancy. Here, N 2(z) is the background buoyancy
frequency, given by N 2(z)= −(g/ρ0)(dρ̄/dz), in which ρ̄(z) is the background density
profile, ρ0 is the characteristic density, and g is gravity. These equations are solved in an
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u0 = −1
2

A0ψ̂
′
0 eiφ0 + c.c. u± = −1

2
A±ψ̂ ′± eiφ± + c.c.

w0 = 1
2

ik0 A0ψ̂0 eiφ0 + c.c. w± = 1
2

ik± A±ψ̂± eiφ± + c.c.

ζ0 = 1
2

(
N 2(z)/c2

0
)

A0ψ̂0 eiφ0 + c.c. ζ± = 1
2

(
N 2(z)/c2±

)
A±ψ̂± eiφ± + c.c.

b0 = 1
2
(N 2(z)/c0)A0ψ̂0 eiφ0 + c.c. b± = 1

2
(N 2(z)/C±)A±ψ̂± eiφ± + c.c.

Table 1. Polarisation relations for the parent wave (left-hand column) and sibling waves (right-hand column).
In these expressions, c0 ≡ω0/k0, c± ≡ω±/k±, C± ≡Ω±/k±, φ0 = k0 x −ω0 t and φ± = k± x −Ω± t .

infinite horizontal domain with free-slip and no normal flow upper and lower boundary
conditions at z = 0 and z = −H , respectively.

2.1. Mode structure and dispersion relation
We seek the vertical structure and dispersion relation of horizontally periodic, vertically
bounded, small-amplitude internal modes.

For simplicity, we begin by examining the properties of the vertical mode-1 ( j0 = 1)
parent wave. This wave has prescribed horizontal wavenumber k0 and streamfunction
amplitude A0. The streamfunction of the parent wave is thus given by

ψ0 = 1
2

A0 ψ̂0(z) eiφ0 + c.c., φ0 = k0x −ω0t, (2.2)

in which c.c. denotes the complex conjugate. Putting this expression in the linear
differential equation Lψ = 0 gives the eigenvalue problem

ψ̂ ′′
0 = −k2

0

(
N 2(z)

ω2
0

− 1

)
ψ̂0, (2.3)

in which primes on the left-hand side denote z-derivatives. The no normal flow boundary
conditions at the top and bottom of the domain require ψ̂0(−H)= ψ̂0(0)= 0. The
boundary value problem is solved through a Galerkin method. For given horizontal
wavenumber k0, we extract the frequency ω0 of the vertical mode-1 wave and its vertical
structure ψ̂0(z), which is positive everywhere within the domain, having maximum
value 1. From this solution, we can compute the velocity field, the spanwise vorticity and
the buoyancy, as listed in table 1. In particular, the expression for ζ0 makes use of (2.3), and
the expression for b0 follows from the linearised buoyancy equation ∂t b0 = −N 2(z) w0.

We seek how a pair of sibling waves interact with the parent mode resulting in
their possible near-resonant growth. The waves have horizontal wavenumbers k+ and
k− satisfying the resonance condition k+ ± k− = k0. The vertical mode numbers of
the sibling waves are denoted by j+ and j−, such that j± − 1 represents the number
of nodes of the vertical structure of the streamfunction of the waves within the interior of
the domain. Explicitly, the vertical structure is given by ψ̂ ′′± = −k2±((N 2(z)/ω2±)− 1)ψ̂±,
with ψ̂±(−H)= ψ̂±(0)= 0, in which it is understood that ψ̂± depends upon j± as well
as k±, with corresponding dispersion relation ω± =ω±(k±, j±). In uniform stratification,
the vertical modes must satisfy the additional resonance condition j+ ± j− = j0. But this
is not necessarily the case in non-uniform stratification (Akylas & Kakoutas 2023).
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u0ζ
	+ + u	+ζ0 −1

4
N 2 A0 A	+

[
1

c2+
ψ̂ ′

0ψ̂+ + 1
c2

0
ψ̂ ′+ψ̂0

]

w0ζ
	+ +w	+ζ0

1
4

iN 2 A0 A	+

[
k0

1
c2+

− k+
1
c2

0

]
ψ̂0ψ̂+

u0b	+ + u	+b0 −1
4

N 2 A0 A	+
[

1
C+

ψ̂ ′
0ψ̂+ + 1

c0
ψ̂ ′+ψ̂0

]

w0b	+ +w	+b0
1
4

iN 2 A0 A	+
[

k0
1

C+
− k+

1
c0

]
ψ̂0ψ̂+

Table 2. Products (left-hand column) appearing in the nonlinear forcing between the parent and + sibling,
and resulting expressions (right-hand column) that multiply the phase eiφ− . The star superscript denotes the
complex conjugate.

The modes have natural frequencies ω+ and ω−. However, the interaction of the parent
with one of the siblings does not necessarily excite the other sibling at its natural frequency.
For this reason, we denote the near-resonant forcing frequencies of the sibling waves by
Ω+ and Ω−, which satisfy Ω+ +Ω− =ω0. Explicit expressions for Ω± in terms of ω±
are determined in § 2.3. The streamfunction of the sibling waves is thus given by

ψ± = 1
2

A± ψ̂±(z) eiφ± + c.c., φ± = k±x −Ω±t. (2.4)

Here, the streamfunction amplitudes A± = A±(T ) are functions of a slow time variable T
(defined in § 2.3). The amplitudes are anticipated to grow exponentially should the sibling
waves be in near resonance with the parent wave, meaning that the forcing frequency
of each sibling wave is close to the natural frequency of each mode: Ω± ≈ω±. In pure
resonance, Ω± =ω±. The corresponding polarisation relations for these waves are listed
in table 1.

2.2. Weakly nonlinear forcing
For a sufficiently small-amplitude parent wave, the dominant interaction is between the
parent and a pair of sibling waves (Akylas & Kakoutas 2023), which presumably grow
out of background noise. Using the ‘pump-wave’ approximation (Craik & Adam 1978;
Young et al. 2008; Gururaj & Guha 2020), we assume that the influence of the sibling
waves upon the parent itself is negligible, so A0 remains constant. We begin by evaluating
the nonlinear forcing N defined in (2.1), resulting from the parent interacting with the
‘+’ sibling to drive the ‘−’ sibling. Resonance between their horizontal wavenumbers is
required so that k+ ± k− = k0. We focus first on the k+ + k− = k0 resonance, for which the
quadratic interaction between the part of the parent with phase φ0 and the part of the +
sibling with complex conjugate phase −φ+ results in forcing the − sibling with phase φ0 −
φ+ = [(k0 − k+)x − (ω0 −Ω+)t] = k− x −Ω− t = φ−. The corresponding four products
of fields appearing in N are listed in table 2. Hereafter, if not written explicitly, it is
understood that N 2 is generally a function of z.

Combining these results in the nonlinear forcing gives the following expression for the
driving of the part of the − sibling with phase φ−:
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N+− = 1
4

A0 A	+

[(
Ω−k+

(
1

c2+
− 1

c2
0

)
+ k−k+

(
1

C+
− 1

c0

))
N 2ψ̂ ′

0ψ̂+

+
(
Ω−k0

(
1

c2+
− 1

c2
0

)
+ k−k0

(
1

C+
− 1

c0

))
N 2ψ̂ ′+ψ̂0

+
(
Ω−

(
k0

c2+
− k+

c2
0

)
+ k−

(
k0

C+
− k+

c0

))
dN 2

dz
ψ̂0ψ̂+

]
eiφ− . (2.5)

In these expressions, we have defined the horizontal phase speeds c0 =ω0/k0, c± =
ω±/k± and C± =Ω±/k±. The nonlinear forcing of the + sibling, N++ , is given by
the above expression after exchanging + and − signs in the subscripts. In both cases,
the superscript + notation on N indicates that this forcing results from the interaction
involving the sum of sibling horizontal wavenumbers: k+ + k− = k0.

For the resonant interaction with k+ − k− = k0, the forcing of the − sibling results from
nonlinear products that are the complex conjugates of the values appearing in table 2. For
the forcing of the + sibling, the nonlinear products do not involve complex conjugates.
It is thus straightforward to derive the nonlinear forcing N−± by analogy with (2.5).

2.3. Linear response
We now examine the response to the nonlinear forcing, focusing upon deriving a time
evolution equation for the streamfunction amplitude of the − sibling, A−. The time
evolution is assumed to be slow compared to the inverse frequency Ω−1− . Thus we define
a slow variable T = εt . Applying the linear operator L to ψ−, and neglecting terms of
O(ε2), gives

Lψ− ≈ i
Ω−
c2−

[
ε

dA−
dT

− 1
2

iω−
ω−
Ω−

(
Ω2−
ω2−

− 1

)
A−

]
N 2ψ̂− eiφ− + c.c.. (2.6)

The corresponding expression for the + sibling has the − subscripts replaced with +
subscripts. At near resonance, we expect Ω− ≈ω− and Ω+ ≈ω+. This inspires us to
define the small parameter ε such that

2ε = Ω2−
ω2−

− 1 = Ω2+
ω2+

− 1. (2.7)

GivenΩ+ +Ω− =ω0, we arrive at the following explicit expressions for the near-resonant
frequencies and ε:

Ω+ = ω0

1 +ω−/ω+
, Ω− = ω0

1 +ω+/ω−
, ε = 1

2

(
ω2

0
(ω+ +ω−)2

− 1

)
. (2.8)

Should the dispersion relation allow pure resonance to occur (Ω+ =ω+, Ω− =ω−,
ω+ +ω− =ω0) for some k± and j±, then ε = 0.

2.4. Evolution equations

For given horizontal wavenumber, the vertical modes ψ̂±(z) are orthogonal with respect
to weight N 2. Thus the ordinary differential equation for the time evolution of the sibling
waves can be found explicitly. For example, the evolution of the − sibling in the k+ + k− =
k0 interaction can be found by multiplying both sides of Lψ− =N+− by ψ̂− and integrating
in z over the vertical domain.
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Following this procedure for the + and − sibling evolution equations leads to the
equations governing the time evolution of the sibling wave amplitudes. For the triad
interaction k+ + k− = k0, the evolution equations are

dA±
dT

− iω±
ω±
Ω±

A± = −i
1
ε

M+± A0 A	∓. (2.9)

For the triad interaction k+ − k− = k0, the evolution equations are

dA+
dT

− iω+
ω+
Ω+

A+ = −i
1
ε

M−+ A0 A−,
dA−
dT

− iω−
ω−
Ω−

A− = −i
1
ε

M−− A	0 A+. (2.10)

In these equations, the star denotes the complex conjugate, and

Ms± ≡ 1
4

c2±
Ω±

[(
Ω±k∓

(
1

c2∓
− 1

c2
0

)
+ k−k+

(
1

C∓
− 1

c0

))
I1

+ S±(s) k0

(
Ω±

(
1

c2∓
− 1

c2
0

)
+ k±

(
1

C∓
− 1

c0

))
I2±

+
(
Ω±

(
S±(s) k0

c2∓
− k∓

c2
0

)
+ k±

(
S±(s)k0

C∓
− k∓

c0

))
I3

]
/I0±, (2.11)

in which s = ±, corresponding to the triad interaction k+ + sk− = k0. The sign S±(s) is
defined so that S±(+)= 1 and S±(−)= ±1: the sign in front of k0 is positive in M+± and
M−+ , but is negative in M−− . The integrals over the domain depth are

I0± =
∫ 0

−H
N 2 ψ̂2± dz, (2.12)

I1 =
∫ 0

−H
N 2 ψ̂ ′

0ψ̂+ψ̂− dz, I2± =
∫ 0

−H
N 2 ψ̂0ψ̂

′∓ψ̂± dz, I3 =
∫ 0

−H

d N 2

dz
ψ̂0ψ̂+ψ̂− dz.

(2.13)

2.5. Instability
For the k+ + k− = k0 triad interaction, we combine the equations in (2.9) to derive a
single equation in one of the amplitudes A+ or A−. In particular, eliminating A	+ from
the equations for A− and A	+ gives

d2 A−
dT 2 + i

(
ω+

ω+
Ω+

−ω−
ω−
Ω−

)
dA−
dT

+
(
ω+ω−

ω+ω−
Ω+Ω−

− 1
ε2 M++ M+− |A0|2

)
A− = 0.

(2.14)
From this, and its counterpart for A+, we can derive an expression for the growth rate (and
frequency) of the sibling waves by assuming A± ∝ eΣ±T = eσ±t , with σ = εΣ , requiring
|ε| � 1. Making use of (2.8), we find

σ+± = 1
2
ω0

⎡
⎣∓i

ε√
1 + 2ε

ω+ −ω−
ω0

+
(

4
M++ M+−
ω2

0
|A0|2 − ε2

(1 + 2ε)2

)1/2
⎤
⎦, (2.15)

in which we have ignored the negative square root solution. The + superscript on σ
indicates that this prediction arises from the k+ + k− = k0 interactions. The real part of
this expression (which is the same for both sibling waves) gives their exponential growth
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rate, provided that the expression in the discriminant is positive. In particular, in pure
resonance (ε = 0), σ+ = σ+± is real and the growth rate is largest:

σ+ ≈
√

M++ M+− |A0|. (2.16)

For the k+ − k− = k0 triad interaction, the sibling wave amplitude evolution
equations are

d2 A±
dT 2 − i

(
ω+

ω+
Ω+

+ω−
ω−
Ω−

)
dA±
dT

−
(

1
ε2 M−+ M−− |A0|2 −ω+ω−

ω+ω−
Ω+Ω−

)
A± = 0.

(2.17)
As before, seeking solutions with A± ∝ eεσ±t gives

σ−± = 1
2
ω0

⎡
⎣∓i

ε

1 + 2ε
+
(

−4
M−+ M−−
ω2

0
|A0|2 − ε2

1 + 2ε

(
ω+ −ω−
ω0

)2
)1/2

⎤
⎦. (2.18)

Positive growth near pure resonance occurs in this case if M−+ M−− < 0, with largest growth
at resonance, for which

σ− ≈
√

−M−+ M−− |A0|. (2.19)

This final result was also found by Akylas & Kakoutas (2023).
Our focus is upon evaluating sibling horizontal wavenumbers and vertical mode

numbers at which pure resonance occurs, and then finding the corresponding growth
rates, σ±, given by (2.16) and (2.19). However, we mention here that (2.15) and (2.18)
also place bounds on the degree of frequency detuning from pure resonance that leads
to sibling wave growth. For the k+ + k− = k0 interaction, we require |ε|� 2σ+/ω0; for
the k+ − k− = k0 interaction, we require |ε|� 2σ−/|ω+ −ω−|. These ranges are smaller
if the parent wave amplitude, and hence maximum growth rate, is smaller. Akylas &
Kakoutas (2023) likewise found amplitude-dependent bounds on the instability of sibling
waves, but cast in terms of detuning by δk of the horizontal wavenumbers from resonance:
k+ − k− = k0 + δk .

2.6. Inclusion of viscosity
As in Davis & Acrivos (1967), the results above are readily adapted to include the influence
of viscosity upon the growth of sibling waves that are in resonance with the parent wave
in the absence of viscosity. We assume that diffusivity is so small compared to kinematic
viscosity that its influence can be ignored. We further assume that the Reynolds number
based on the parent wave properties is sufficiently large that attenuation of the parent wave
is negligible on the time scale for growth of the sibling waves.

Under the above assumptions, we may assume that the vertical structure of sibling
waves is negligibly affected by viscosity. Hence the linear expression for the growth of the
sibling wave with horizontal wavenumber k−, given by (2.6), is modified by the addition
of the viscous term (1/2)iνΩ−(N 2/c2−)2 A− + c.c. The − subscripts are replaced with +
subscripts for the k+ sibling. Consequently, the expressions on the left-hand sides of (2.9)
and (2.10) are modified by the addition of the term (ω0δ±/ε)A±, in which

δ± ≡ ν

2ω0

1
c2±

I4±
I0±

, with I4± ≡
∫ 0

−H
N 4ψ̂2± dz. (2.20)
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At resonance (ε = 0), the sibling wave growth rates are thus given by

σ± ≈ −ω0(δ+ ± δ−)+
√

±M±+ M±− |A0|2 +ω2
0(δ+ ∓ δ−)2, for k+ ± k− = k0, (2.21)

provided that the discriminant in these expressions is positive. For the k+ + k− = k0
interaction, the predicted growth rate σ+ reduces to the prediction of Joubaud et al. (2012)
in the case of uniform stratification.

For application to laboratory experiments, we also consider the influence of dissipation
occurring at the side walls of the tank as a consequence of the no-slip surfaces dampening
oscillatory motion. Damping from flow over the bottom boundary is considered negligible
upon waves in the bulk of the domain due to the stratification. Comparing the rate of
energy loss by the side walls with the energy of a wave with frequency ω, spanning a
tank of width W , gives the damping time scale W/(ωd), in which d ≡ (2ν/ω)1/2 is the
well-known boundary layer thickness associated with motion over an oscillating flat plate.
Hence the rate for amplitude decay due to dissipation at both side walls is given by ω0Δ±,
in which

Δ± ≡
√
νω±/2
Wω0

. (2.22)

A similar expression for this damping rate was derived in the context of deep-water waves
(Sauret et al. 2015). The growth rate of resonant waves influenced by bulk and side-wall
viscous effects is given by (2.21) with δ± replaced by δ± +Δ±.

Although we have computed the influence of viscous damping rates upon the growth
of sibling waves, the same procedure can be applied to assess the damping of the
parent mode itself. The damping rate due to bulk viscosity is ω0δ0, in which δ0 ≡
[ν/(2ω0c2

0)](
∫ 0
−H N 4ψ̂2

0 dz)/(
∫ 0
−H N 2ψ̂2

0 dz), and the damping rate due to side-wall
dissipation is ω0Δ0, in which Δ0 ≡ √

ν/(2ω0)/W . For the parameters of our laboratory
experiments (see § 3), we typically find that Δ0 is an order of magnitude larger than δ0,
indicating that side-wall dissipation is the most significant viscous effect. The value ofΔ0
is less than 1 %, helping to justify our assumption in theory that the parent wave amplitude
can be treated as constant, though we will show that viscous attenuation of the parent wave
in experiments non-negligibly influences the sibling wave growth rates.

2.7. Theory results
For a given parent wave, we perform a scan over horizontal wavenumbers of the sibling
waves, k±, satisfying k+ + k− = k0 and k+ − k− = k0. For each k±, we scan over a range
of vertical mode numbers j± of both sibling waves, computing the growth rate σ in near-
resonant cases satisfying |ε|� 0.001. If the growth rate is positive, then a convergence
routine is used to find nearby values of k± for which |ε|< 10−6. This combination of k±
and corresponding j± is taken to correspond to pure resonant instabilities.

As an example, here we present the results of these scans for a parent wave produced
in one of the laboratory experiments (discussed in § 3). The background stratification has
N decreasing linearly with depth below the surface according to

N = N0 +ΔN z/H, −H � z � 0, (2.23)

in which N0 = 1.04 s−1, ΔN = 0.59 s−1 and H = 32.5 cm.
We begin by considering a parent wave with horizontal wavenumber k0 = 0.20 cm−1,

which has corresponding frequency ω0 = 0.72 s−1. The maximum vertical velocity
of the wave is taken to be w0 = 2.0 cm s−1, consistent with the wave amplitudes
produced in many of the experiments. The corresponding streamfunction amplitude is
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Figure 1. For w0 = 2.0 cm s−1, ω0 = 0.72 s−1 (k0 = 0.20 cm−1), N0 = 1.04 s−1,ΔN = 0.59 s−1: (a) predicted
growth rates σ for all resonant mode-number pairs computed in inviscid fluid for 0.5 � k+/k0 � 4.5 (k− =
k0 − k+ as closed red circles; k− = k+ − k0 as crosses), and (b) the corresponding resonant vertical mode
numbers for k− = k0 − k+, where red (blue) squares give the mode number of j+ ( j−). Growth rates predicted
in theory (c) including bulk viscosity (k− = k0 − k+ as open blue circles; k− = k+ − k0 as crosses), and
(d) also including side-wall damping (k− = k0 − k+ as closed blue circles; k− = k+ − k0 as crosses).

A0 = 10.0 cm2 s−1. Neglecting viscous effects, the resonant growth rates associated with
different pairs of sibling waves interacting with the parent are plotted in figure 1(a).
The largest growth rate across all k+ occurs for k+ = 1.1k0 and k− = 0.1k0. However,
there is insignificant growth of resonant instabilities associated with the k+ − k− =
k0 interaction if k+ � 1.3k0 (k− � 0.3k0). It is generally the case for all parent wave
frequencies and stratifications examined that the growth rates associated with the k+ −
k− = k0 interactions is negligibly small compared with the k+ + k− = k0 interactions
for k+ � 1.5k0. In laboratory experiments, we do not see growth of sibling waves with
horizontal wavelengths larger than two wavelengths of the parent wave (|k±|< 0.5k0),
possibly because the parent wave amplitude attenuates with distance from the wavemaker
(see § 3.2). For this reason, in most of what follows, we focus our scan for resonant
sibling waves interacting through k+ + k− = k0 over the range 1.5 � k+/k0 � 4.5 (−0.5 �
k−/k0 �−3.5). The upper bound of this range is chosen because the associated vertical
mode numbers of resonant sibling waves exceeds 16, which is much larger than what
is observed in experiments. For example, these mode numbers for each unstable resonant
sibling pair are plotted in figure 1(b). Typically, as |k±| increases, so do j±, with the largest
growth rates occurring if | j+ − j−| = 1. By neglecting viscous effects, the maximum
resonant growth rate is nearly constant as |k±| becomes large, though the largest value
of σ = 0.049 occurs at k+ = 2.56k0. This result is consistent with the predictions for
doubly periodic inviscid waves in uniform stratification, for which the growth rate is
nearly constant as the sibling wave horizontal wavenumber becomes larger (Bourget
et al. 2013; Sutherland & Jefferson 2020). As with periodic waves (Bourget et al. 2013),
including the effect of Laplacian viscosity within the bulk of the fluid decreases the
maximum growth rate of resonant waves according to (2.21). The largest growth rate for
the k+ + k− = k0 interaction occurs at smaller |k±|. For example, as shown in figure 1(c),
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Figure 2. Maximum growth rate of sibling waves across all horizontal and vertical wavenumbers as it depends
on the frequency of the parent wave, with N0 = 1.04 s−1 and ΔN = 0.59 s−1. The predictions are shown
neglecting viscosity (red circles), including viscosity in the bulk (black squares), and also including side-wall
dissipation (blue triangles). Solid (open) symbols are plotted for cases where the parent wave has fixed vertical
velocity amplitude 2 cm s−1 (0.5 cm s−1).

the fastest growth rate for resonant sibling waves affected by viscosity in the bulk of the
fluid is σ = 0.048 s−1, occurring for k+ = 1.53k0. The growth rate is further reduced to
σ = 0.043 s−1 if the effects of side-wall dissipation are included (figure 1d).

We go on to examine the maximum growth rate σ of sibling waves across all pure
resonant sibling (horizontal) wavenumbers k± and vertical mode numbers j± for a parent
wave with frequency in a range between ω0 = 0.4 s−1 and ω0 = 0.9 s−1. The result is
plotted in figure 2. This shows that sibling waves grow faster if the frequency of the
parent wave is larger. For the choice of parent wave amplitude having w0 = 1 cm s−1, bulk
viscosity moderately decreases the maximum growth rate if the parent wave frequency
is large. Also including side-wall dissipation reduces the growth rate over a wide range
of parent wave frequencies such that there is no instability predicted for parent waves
with frequency below 0.5 s−1. The influence of viscosity is more pronounced if the parent
wave amplitude is smaller, with the largest growth rate dropping for ω0 � 0.85 s−1 if
w0 = 0.25 cm s−1.

3. Laboratory experiments

3.1. Experiment set-up and analyses
Experiments were performed in a 4 m long, 0.17 m wide, 0.4 m deep acrylic tank,
composed by joining five components. A schematic front view of the tank can be seen
in figure 3(a). The tank was filled with a non-uniform salt stratified fluid following
the procedure described in Varma et al. (2024). This procedure is an adaptation of the
standard double bucket method (Oster 1965; Hill 2002; Economidou & Hunt 2009). The
desired density profile was obtained by imposing time-dependent flow rates using two
computer-controlled pumps. A typical profile, measured using a conductivity-temperature
probe mounted on a vertical linear traverse, is plotted in figure 3(b). Except for a shallow
surface mixed region, this profile is well described by a linearly decreasing buoyancy
frequency profile with depth, given by (2.23), with quadratic change in N 2 (figure 3c).
Experiments were performed just after filling the tank so that the mixed layers at the top
and the bottom of the fluid did not have enough time to be well developed. A horizontally
propagating vertical mode parent wave was generated at the left-hand end of the tank
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Figure 3. (a) Sketch of the experimental set-up. The depth of non-uniformly stratified fluid is 32.5 cm. The
pattern of dots shown in the background is used to visualise and measure of internal waves using synthetic
schlieren. The black rectangle represents a joint between two sections of the tank, and is a region where
visualisation is not possible. The internal wave modes are forced by imposing the horizontal displacement at the
left boundary. (b) Background density profile measure for Exp. II (in g cm−3) measured using a conductivity
probe. The red line is a fit of the data points using (2.23). (c) Corresponding profiles of the buoyancy frequency
N (z) (red line, s−1) and the squared buoyancy frequency N 2(z) (blue dashed line, s−2).

using a wavemaker, previously used by Dossmann et al. (2017), Husseini et al. (2020)
and Varma et al. (2024). This wavemaker is made of 50 independently controlled plates,
driven by 50 different motors. This wavemaker enabled us to control the frequency and
amplitude of a vertical mode-1 internal wave. For each experiment, the vertical profile
of the wavemaker was chosen to correspond to the predicted vertical structure ψ̂0(z)
corresponding to the measured profile N (z) (see (2.3)). The forcing amplitude was set
so that in most experiments, the maximum horizontal displacement of the top plate was 1
cm, though in some experiments this was reduced to 0.75 cm and 0.5 cm. The tank was
chosen to be long enough so that experiments could be completed before the return of
the parent wave that reflected at the right-hand end of the tank entered the observation
window: in typical experiments, the horizontal group velocity of the parent mode was of
the order of cg ≈ 1 cm s−1, so that the return time of the parent mode was of the order of 10
minutes, which is much longer than the observed time for onset of TRI when it occurred.

The internal wave field was visualised by measuring instantaneous density gradient
perturbations using the synthetic schlieren technique (Dalziel et al. 2000, 2007). This
technique has been shown to be very effective to measure internal waves generated by TRI
in experiments (Joubaud et al. 2012; Bourget et al. 2013; Grayson et al. 2022). A random
pattern of dots behind the back wall of the tank was recorded using a CCD AVT Pike
F-505 Camera of resolution 2452 × 2054 pixels at frame rate 6 or 8 Hz located at a large
distance between the tank and the camera. The apparent displacement of the dots caused
by the index of refraction perturbations in the flow was estimated using pattern-matching
image velocimetry implemented in the PIVLAB software (Stamhuis & Thielicke 2014).
From these image displacements, the gradient of the perturbation density field associated
with spanwise-uniform internal waves could be measured, and from this, we determined
the gradient of the perturbation buoyancy field (∂x b, ∂zb).

3.2. Experiment results
The experiments examined wave evolution in three different non-uniform stratifications,
these sets being denoted by Exp. I, II and III. For each stratification, sets of experiments
with different frequencies and/or amplitudes of the parent mode-1 wave were performed.
The different parameters of all the experiments are given in table 3. In Exp. I, the forcing
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N0 ΔN ω0 w0 k0 Ω+ k+ m+ Ω− k− m− σ

(s−1) (s−1) (s−1) (cm s−1) (cm−1) (s−1) (cm−1) (cm−1) (s−1) (cm−1) (cm−1) N0

0.243 0.05 0.04
0.38 0.23 0.06
0.42 0.29 0.07
0.42 0.36 0.07 No TRI

Exp. I 1.05 0.46 0.63 0.71 0.14
0.63 0.86 0.14
0.77 0.61 0.29
0.76 1.1 0.29 0.49 0.82 1.28 0.26 0.63 1.09 0.005
0.76 1.44 0.29 0.48 0.84 1.41 0.28 0.53 1.20 0.007

0.40 0.18 0.07
0.46 0.7 0.08
0.51 0.7 0.09
0.56 1.0 0.11 No TRI
0.60 1.3 0.13
0.65 1.4 0.15

Exp. II 1.04 0.59 0.70 1.8 0.20
0.72 2.0 0.22 0.45 0.71 1.25 0.30 0.50 1.13 0.004
0.75 1.9 0.26 0.45 0.71 1.25 0.30 0.50 1.13 0.004
0.78 1.8 0.33 0.49 0.62 0.84 0.30 0.28 1.01 0.003
0.81 1.1 0.42 0.52 0.83 1.12 0.28 0.45 1.37 0.007
0.82 0.3 0.54 0.57 0.84 0.92 0.25 0.39 1.15 0.002

0.65 1.5 0.10
0.70 1.3 0.12 No TRI
0.75 1.9 0.15
0.80 2.2 0.18 0.46 0.69 1.24 0.35 0.49 1.11 0.003

Exp. III 1.13 0.58 0.85 2.3 0.22 0.49 0.72 1.20 0.35 0.46 1.16 0.003
0.90 2.3 0.28 0.54 0.67 1.10 0.35 0.33 0.95 0.006
0.95 1.8 0.39 0.61 0.79 0.81 0.35 0.37 0.90 0.006
0.98 0.6 0.52 0.66 0.95 1.25 0.35 0.51 1.48 0.004
1.04 0.06 0.79 0.73 1.05 1.25 0.32 0.45 1.47 0.002

Table 3. Fitting parameters N0 andΔN for the background buoyancy profile, for frequency ω0, vertical velocity
amplitude w0, and measured horizontal wavenumber k0 of the parent wave. Note that the measured value
of k0 is consistent with the dispersion relation. We give frequencies Ω± and estimations of the horizontal
k± and vertical m± wavenumbers and growth rate σ± of the two secondary waves. The errors for k+ and
k− are approximately 10 %. The units cm−1 and s−1 indicate radians per centimetre and radians per second,
respectively. The vertical wavenumbers can be compared to m0 = π/H ≈ 0.097 cm−1 to give an estimate
j± ≈ m±/m0.

amplitudes were generally small, and TRI was observed in only two experiments. Exp. II
had the largest change in stratification from top to bottom, with N 2(0)/N 2(−H)≈ 5.3.
In Exp. III, the stratification change was N 2(0)/N 2(−H)	 4.2.

Figure 4 illustrates the measured x-component of the buoyancy gradient in an
experiment with N0 = 1.04 s−1 andΔN = 0.59 s−1 (Exp. II), and a parent wave with ω0 =
0.72 s−1 and measured horizontal wavenumber k0 = 0.22 cm−1. The predicted horizontal
group velocity of this wave is 0.93 cm s−1, so that it takes of the order of a minute for the
wave to propagate two wavelengths from the wavemaker. Viscosity does act moderately
to attenuate the parent wave as it propagates away from the wavemaker. Estimates for the
e-folding attenuation distance due to bulk viscosity and side-wall dissipation, respectively,
are cg/(ω0δ0)	 32 m and cg/(ω0Δ0)	 2.6 m. Due to the dominant side-wall dissipation,
the parent wave amplitude is predicted to decay by approximately 20 % after propagating
two wavelengths.
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Figure 4. Left-hand column: snapshots of the horizontal buoyancy gradient field ∂x b from an experiment
with the stratification of Exp. II (as shown in figure 3) and ω= 0.72 s−1 shown at times N0t = 100 (top row),
N0t = 300 (middle row) and N0t = 500 (bottom row). The band-pass time-filtered vertical buoyancy gradient
field ∂zb associated with subharmonic disturbances is shown for Ω+ = 0.43 (±0.02) s−1 (middle column) and
Ω− = 0.30 (±0.02) s−1 (right-hand column).

For a particular experiment, the snapshots shown in figure 4 reveal the spontaneous
growth of two sibling waves after dimensionless time N0t � 300. Through a temporal
spectral analysis (described below), we determined the dominant frequencies of the sibling
waves to be Ω+ 	 0.43 s−1 and Ω− 	 0.30 s−1, satisfying the temporal near-resonant
condition Ω+ +Ω− 	ω0. To visualise the two sibling waves more clearly, the vertical
buoyancy gradient field was band-pass time-filtered about frequenciesΩ+ ± 0.02 s−1 and
Ω− ± 0.02 s−1, as shown respectively for different times in figure 4 (middle and right-
hand columns). Using these filtered wave fields, the horizontal wavenumbers for the parent
wave and the two sibling waves, respectively k0 and k±, were estimated (see table 3). The
relative sibling wavenumbers in this case were k+ ≈ 3.2k0 and k− ≈ 2.3k0. Within error
bars of 10 %, the horizontal resonance condition is satisfied.

Unlike the assumptions of theory, the sibling waves that develop in experiments are
not pure vertical modes; they manifest as vertically propagating quasi-monochromatic
waves that reflect from the upper and lower boundaries of the domain. For this reason,
it is challenging to characterise their vertical mode number j± as used in theory. Instead,
we estimate the local vertical wavenumber m± (measured in radians per metre), about a
position located 10 cm below the surface. Explicitly, we measured the vertical distance
between two nodes of the buoyancy gradient field about this depth. From this vertical
half-wavelength, λz±/2, we define the wavenumber as m± = 2π/λz±. For the experiment
shown in figure 4, we find m+ = 1.25 cm−1 and m− = 1.13 cm−1. Defining m0 = π/H 	
0.097 cm−1, which is the lowest vertical mode wavenumber in uniform stratification, we
find m+ − m− ≈ m0.
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Figure 5. For the experiment shown in figure 4, (a) time series of the normalised horizontal buoyancy gradient
band-pass filtered for the parent wave (black) and the sibling waves (blue and red), and (b) the normalised
spectrum of the full wave field. The growth of the sibling waves is estimated by the increase in sibling wave
amplitude between the times indicated by the two dashed lines.

To estimate the wave amplitude in experiments, a time series of the horizontal buoyancy
gradient field was constructed at a horizontal position 5 cm to the right of the wavemaker,
at depth z1 = −10 cm. This temporal signal was then band-pass filtered about the parent
wave frequency ω0 and the observed frequency of sibling waves Ω±. In particular, table 3
lists values of the parent wave amplitude in terms of its maximum vertical velocity w0.
This is given in terms of the horizontal buoyancy gradient by

w0 = ω0

N 2(z1)

‖∂x b‖
k0

. (3.1)

The parent wave Reynolds number Re = U0κ
−1
0 /ν is based upon the velocity magnitude,

estimated by U0 ≡w0(N0/ω0), and the wavenumber magnitude κ0 = max(k0,π/H). For
the experiments presented here, this ranges from 200 to 1400, with the largest values
occurring for moderate frequency parent waves (ω∼ 0.7 (±0.2) N0).

For the experiment shown in figure 4, the corresponding time series of the band-pass
filtered horizontal buoyancy gradient field are shown in figure 5(a). Here, each of the
time series corresponding to the parent and sibling waves is normalised by its respective
maximum value. The spectrum S of the unfiltered time series signal, shown in figure 5(b),
exhibits several peaks, of which we identify the peaks satisfying Ω+ +Ω− 	ω0, to get
the sibling wave frequencies. These are used to construct the band-pass filtered signals
shown in figure 5(a). Having separated the signal of the sibling waves from the parent, we
see that the the parent wave amplitude saturates before significant growth of the sibling
waves. By measuring the increase of the sibling wave amplitudes in time, we determine
their growth rate σ .

These analyses were performed for all the experiments, with results given in table 3.
Generally, we see that the growth of sibling waves through TRI occurs only if the parent
wave frequency is sufficiently close to N0, and its amplitude is sufficiently large. When
TRI occurred, the temporal and spatial resonances were reasonably well satisfied within
errors.

Overall, our experimental results are qualitatively similar to those of Joubaud et al.
(2012), who performed experiments examining horizontally propagating internal modes
in uniform stratification. As in our experiments, they found that sibling waves appear as
vertically propagating disturbances rather than modes. They also observed a low-frequency
cut-off for the occurrence of TRI. This cut-off frequency was larger in their experiments
presumably because their forcing amplitude is half of that in our experiments.
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4. Numerical simulations
We performed fully nonlinear numerical simulations of horizontally periodic, vertically
confined internal modes in non-uniform stratification. These simulations solved the
Boussinesq equations in two dimensions on the x–z plane, neglecting rotation. The
numerical model used to perform these simulations is described in detail in Sutherland
(2016).

4.1. Numerical model
The fully nonlinear equations of motion for a two-dimensional non-rotating Boussinesq
fluid are given in terms of the spanwise vorticity ζ and buoyancy b. These are represented
in non-dimensional form based on the domain depth H and characteristic buoyancy
frequency N0, which is taken to be the maximum value of N (z) at the top of the domain:
N0 = N (0). The equations are

ζt = −uζx −wζz − bx + Re−1 Dζ, (4.1)

bt = −ubx −wbz − N 2w+ (Re Pr)−1 Db, (4.2)

in which subscripts denote partial derivatives.
The velocity fields u and w are given in terms of the streamfunction as u = (u, w)=

(−ψz, ψx ). From the spanwise vorticity ζ , we find the streamfunction ψ by inverting the
Laplacian operator in ζ = uz −wx = −∇2ψ . The diffusion operator D is identical to the
Laplacian operator, but only acts on Fourier components with a horizontal wavenumber
greater than eight times that of the parent wave. For all simulations, the Prandtl number
was Pr = 1 and the Reynolds number was Re ≡ N0 H2/ν = 105. These values were chosen
to damp numerical noise, ensuring the stability of the simulation while treating the parent
and sibling waves as effectively inviscid. The background buoyancy frequency profile
is defined by (2.23), with parameters chosen to be the same as those in the laboratory
experiments.

We solved the equations in a domain with free-slip top and bottom boundaries with
horizontally periodic boundary conditions. Fields were represented horizontally by Fourier
components, and vertically by a uniformly spaced grid in real space. The vertical resolution
of the domain and the number of Fourier components were both set to 2048. To initialise
the simulation, eight wavelengths of a parent wave with horizontal wavenumber k0
(having corresponding frequency and vertical structure given by (2.3)) were superimposed
upon the background. For each of the buoyancy frequency profiles of the experiments,
simulations were performed over a same range of parent wave frequencies as in the
corresponding experiments. In all simulations, we chose an initial vertical displacement
amplitude equivalent to 0.37 cm in a 32.5 cm domain, giving maximum vertical velocities
ranging between 0.15 and 0.33 cm s−1 depending upon the parent mode frequency. This
range is of the order of the amplitudes measured in laboratory experiments. We further
superimposed random noise somewhat arbitrarily inspired by the Garrett–Munk spectrum,
with amplitude varying with frequency (using the dispersion relation for internal waves in
uniform stratification) and vertical wavenumber 1/(ωk2/5

z ).

4.2. Analysis methods
In simulations for which the growth of subharmonic sibling waves occurred, we performed
diagnostics to measure the growth rates σ , frequencies Ω±, and horizontal wavenumbers
k±, and to estimate the vertical mode numbers j±.
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Figure 6. Snapshots at non-dimensional time N0t values (a) 0, (b) 1400, (c) 1600 and (d) 1800 of the
non-dimensional horizontal velocity field u0/N0 H from a simulation with k0 = 0.168 cm−1, ω0 = 0.7 s−1,
N0 = 1.04 s−1, and buoyancy frequency decreasing with depth as ΔN = 0.59 s−1, which contains eight
horizontal wavelengths of a mode-1 parent wave that interacts resonantly with the background noise, and
excites sibling waves.

We illustrate the application of diagnostics for a particular simulation with snapshots
of the horizontal velocity field in figure 6. This shows the rapid growth of sibling waves
between non-dimensional times N0t ≈ 1400 and 1800.

The horizontal wavenumbers and frequencies of the sibling waves were determined from
horizontal time series of the horizontal velocity at a vertical level z/H = −0.25, near the
inflection depth of the parent wave horizontal velocity field indicated, for example, by
the dashed lines in figure 6. The time series constructed from this simulation, shown in
figure 7(a), reveals that after a delay, sibling waves grow rapidly to substantial amplitude
between N0t 	 1700 and N0t 	 2200.

Focusing upon the sibling waves as they begin to grow to large amplitude, we analysed
the horizontal time series between non-dimensional times N0t = 1700 and 2200, as shown
in figure 7(b). Time- and space-transforming the signal over this time range produced a
power spectrum of horizontal wavenumber and frequency. (Aliasing noise was reduced
by first mirroring the signal in time and then Fourier transforming.) The result, shown
in figure 8, clearly shows sharp peaks in the spectra at a small number of frequency–
wavenumber combinations. The sum of the frequencies of the two strongest peaks is
close to the parent wave frequency, as expected for sibling waves produced by TRI.
Here, we denote the peak frequencies byΩ±, analogous to theoretical forcing frequencies.
Likewise, the horizontal wavenumbers of these sibling waves exhibit pure resonance with
k+ − k− = k0.

As with the laboratory experiments, the sibling wave vertical mode numbers j± are
not clearly defined in snapshots of the simulations. However, they can be estimated
given the observed horizontal wavenumbers k± and frequencies Ω± of the sibling waves.
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Figure 7. Horizontal time series constructed at z/H = −0.25 of the development of the sibling waves, with
parameters as given in figure 6, showing (a) the time series from the start of the simulation, and (b) the time
series starting when the growth of sibling waves becomes apparent.
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Figure 8. Magnitude of the power spectra of the windowed horizontal time series presented in figure 7(b),
showing power associated with horizontal wavenumber and frequency normalised by those of the parent,
respectively. For the N0, k0, ΔN and ω0 provided in figure 6, the energy is strongly peaked at wavenumbers
k+ = 2k0 and |k−| = k0, with corresponding frequencies such that Ω+ = 0.439 s−1 (Ω+/ω0 = 0.63) and
Ω− = 0.256 s−1 (Ω−/ω0 = 0.37).

From the theoretical dispersion relation found by solving (2.3) for a range of k± and j±,
we determine the mode number most closely satisfying Ω± =ω(k±, j±), for given Ω±
and k±.

To find the growth rate of the sibling waves, we examine power spectra of the kinetic
energy constructed at each time step of the simulations. The power spectra are formed from
Fourier transforms in the horizontal and vertical to give P(k±,m±). Here, the vertical
wavenumbers m± are given in terms of the estimated vertical mode numbers using m± =
m0 j±, in which m0 = π/H . For given k± and m±, we extract the corresponding powers at
successive times, which are normalised by the initial power P0 associated with the parent
wave. Taking the logarithm of the normalised power gives the plots shown in figure 9.
We then find best-fit lines through ln (P±/P0) versus N0t over a time range when the
sibling waves grow exponentially. The slope of the lines gives exponential growth rate of
power, with half this value giving the growth rate of the sibling wave amplitudes. Typically,
the growth rates found for the (k+,m+) and (k−,m−) siblings are comparable. For each
simulation, we characterised the growth rate σ by their average value.
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Figure 9. For the simulation shown in figure 6, log plots versus non-dimensional time of the normalised
perturbation kinetic energy of sibling waves with (a) k+ = 2k0 and m+ = 5m0, and (b) k− = k0 and m− = 5m0.
The slope of the best-fit (dashed) line during the exponential growth phase (1200 � N0t � 1500) is shown for
each plot. The corresponding mean growth rate of the sibling waves is σ = 0.0049N0.

Although theory predicts exponential growth at the outset, simulations show a delay
before sibling waves grow exponentially out of the background noise. We characterised
the onset time tc at which the sibling waves begin to grow exponentially by taking the
linear fit used to find the growth rate, and extrapolating back in time to when the line
crosses the level of the mean power at early times. For the example shown in figure 9,
this mean power level is given by ln(P(k±,m±)/P0)	 −16, and the mean onset time is
N0tc 	 697.

4.3. Simulation results, and comparison with theory and experiments
Here, we present the quantitative results for a range of numerical simulations, and we
compare them with predictions from theory and the results of laboratory experiments.
In all simulations, the initial parent wave amplitude was fixed to have initial maximum
vertical displacement 0.37 cm. Because the simulations are effectively inviscid, we found
that varying this choice of amplitude did not significantly influence the observed frequency
and wavenumbers of the sibling waves, though it did affect their growth rate. Theoretical
predictions were computed for inviscid fluid and including the combined effect of viscosity
acting in the bulk and at the side walls. For these calculations, the parent wave amplitude
was taken to be the same as the maximum vertical velocity w0 measured in corresponding
laboratory experiments.

We expect from theory that the growth rate of sibling waves should exhibit an increasing
trend with increasing parent wave frequency at fixed amplitude. This is indeed what is
found in simulations and experiments, as shown in figure 10. Because growth rate is
dependent upon the initial parent wave amplitude (as given by (2.15) and (2.18)), the
theoretical and measured growth rates are normalised by H/Aξ to provide a proper
comparison between simulations, experiments and theory. Comparing inviscid theory to
simulations, we generally find excellent agreement if the parent wave frequency is not too
large; theory underpredicts the growth rate found in simulations if ω0/N0 � 0.7. Including
viscosity, theory overpredicts the growth rate of sibling waves observed in laboratory
experiments except in Exp. III with ω0/N0 = 0.92 (and w0 = 0.06 cm s−1), in which
case no growth of sibling waves is predicted even though large growth of high vertical
wavenumber sibling waves is observed in experiments.

Figure 11 compares the near-resonant frequencies of the sibling waves found in
simulations and experiments to those in theory. In the last case, we find the resonant
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Figure 10. Normalised average growth rate of the sibling waves as it depends on the normalised frequency of
the parent wave in three different stratification profiles corresponding to (a) Exp. I, (b) Exp. II and (c) Exp.
III. We compare simulations (red squares) and experiments where TRI was seen (blue triangles) with theory
including viscosity (blue circles) and neglecting viscosity (red crosses).
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Figure 11. Normalised frequencies of sibling waves, Ω±, as they depend on the normalised frequency of
the parent wave with background stratification corresponding to (a) Exp. I, (b) Exp. II and (c) Exp. III, as
given in table 3. We plot values corresponding to the maximum growth rate measured in simulations (squares)
and experiments (triangles), and predicted by theory including viscous effects (solid circles) and neglecting
viscosity (crosses). Values of the + sibling are plotted in blue; values of the − sibling are plotted in red. The
dashed lines indicate where the sibling wave frequency is half that of the parent.

sibling waves with the largest growth rate across all horizontal wavenumbers and vertical
mode numbers, plotting their corresponding frequencies. This calculation is performed
with and without viscous effects included. We find that the frequencies of the sibling
waves grow proportionally to the parent wave and around a lineΩ± ≈ 0.5ω0, which would
mark the special case of parametric subharmonic instability. At lower relative parent wave
frequencies, the sibling waves have frequencies close to half that of the parent. If the
parent wave has frequency closer to N0, then simulations and experiments show a greater
spread between the values of Ω+ and Ω−, though their sum is close to ω0. This spread is
also evident in theory, with the spread being narrower if viscous effects are neglected.
With viscous effects included, theory is in closer alignment with experiments, as
expected.

Figure 12 shows the measured and predicted horizontal and vertical wavenumbers of
the + sibling waves from simulations, experiments and theory. For experiments, the
estimated vertical wavenumber m+ is normalised by m0 = π/H , in order to make a more
direct comparison with the vertical mode number j+. Because m+ is determined from
measurements around z = −10 cm where the background is relatively strongly stratified,
the value of m+/m0 likely overestimates the actual vertical mode number should the
observed waves be manifest as modes. Though the results for the − sibling waves are
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Figure 12. The normalised horizontal and vertical wavenumbers of the + sibling as they depend on the
normalised frequency of the parent wave with background stratification corresponding to (a) Exp. I, (b) Exp.
II and (c) Exp. III, as given in table 3. Plotted values show measurements from simulations (red squares)
and experiments (blue triangles), and predictions from theory including viscosity (blue circles) and without
viscosity (red crosses).
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Figure 13. Normalised onset times from simulations of the development of the two sibling waves as it depends
on the normalised frequency of the parent wave. The legend and the colour of the point indicate the type of
stratification profile (given in table 3) corresponding to each point.

not plotted, we generally find that the near resonance condition is satisfied such that
k+ + k− 	 k0, with k− < 0. Our simulation, experiment and theory results show a large
variation in the wavenumbers, with no clear dependence upon the relative frequency
of the parent wave, though there is an apparent decrease (increase) in the sibling wave
horizontal (vertical) wavenumber with increasing parent wave frequency. In comparison
with simulations and inviscid theory, experiments and viscous theory generally have
smaller horizontal and vertical wavenumbers.

Finally, we examine the onset times of TRI measured in simulations, as shown in
figure 13. Generally, the onset time is smaller if the parent wave frequency is larger.
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While theory predicts immediate exponential growth, in simulations and experiments,
the sibling waves evolve from background noise. A tentative explanation for the longer
onset times arising from lower frequency parent waves in simulations (and experiments)
is that the predicted vertical structure of the sibling waves generally has lower vertical
wavenumber, hence larger vertical scale. It takes more time to plant the seed of a sibling
wave if spatially large coherent scales are to develop from noise.

5. Discussion and conclusions
We have developed a theory for the near-resonance growth of sibling waves in non-uniform
stratification from a low vertical mode parent wave with and without viscosity. Rather
than the Floquet analysis approach of Akylas & Kakoutas (2023), which derived the
growth rate and frequency of sibling waves from the solvability condition of a differential
eigenvalue problem, we used orthogonality of modes to derive time evolution equations
for the amplitude of sibling waves. Our approach was readily adapted to include viscous
effects not just in the bulk of the fluid but also due to side-wall dissipation. In the study
of Akylas & Kakoutas (2023), the parent wave amplitude was used as a perturbation
parameter that determined the growth rate at resonance as well as its decay for near-
resonant triads. Instead, we use the triadic frequency mismatch ε as our perturbation
parameter. While rigorously the growth rate is a function of parent wave amplitude and ε,
in our analyses we focus on the case of pure resonance (ε = 0). The advantage of using ε
as a parameter is that it provides an efficient means numerically to locate sibling wave
horizontal wavenumbers and vertical mode numbers for which pure resonance occurs.

Our prediction for pure resonant sibling wave excitation from the k+ − k− = k0
interaction agrees with the prediction of Akylas & Kakoutas (2023), though we show that
the dominant growth rate occurs for the k+ + k− = k0 interaction if |k±|> 0.5k0. These
results, particularly the predicted growth rate of sibling waves, are validated quantitatively
by numerical simulations of effectively inviscid waves. In the theory including viscous
effects, both in the bulk of the fluid and due to side-wall dissipation, the predicted sibling
wave growth rate is smaller than corresponding inviscid theory. However, these predictions
are much larger than measurements from most laboratory experiments. This is likely due
to the viscous attenuation of the parent wave itself, whose amplitude moderately decreases
with distance from the wavemaker. Thus contrary to the assumptions of theory, the parent
wave is not horizontally periodic, inhibiting the development of sibling waves with long
horizontal wavelength, and the decreasing amplitude of the parent would further lower
the growth rate of the sibling waves. The viscous theory does improve the prediction
of the sibling wave frequencies, these differing more from the subharmonic frequency
ω0/2 in comparison with the predictions of inviscid theory, particularly if the parent mode
frequency is closer to the maximum background buoyancy frequency N0. The predicted
and measured wavenumbers of the sibling waves show more scatter, though there is a
general trend for the sibling wave horizontal wavenumbers to decrease, and the vertical
mode numbers to increase, with increasing parent wave frequency. The scatter, particularly
for inviscid theory, is attributed to the fact that the growth rates of sibling waves are
similar across a wide range of sibling wave horizontal (and hence vertical) wavenumbers.
Although the parent mode propagated in non-uniform stratification, in neither simulations
nor experiments was there evidence for self-interaction leading to significant growth of
superharmonics. This is anticipated because in most cases, the parent mode frequency
was more than half the maximum background buoyancy frequency, thus precluding the
generation of frequency-doubled disturbances.
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Perhaps the most significant finding of this study is that the (theoretical, simulated and
experimental) growth rate of sibling waves becomes negligibly small if the parent wave
frequency is small. Furthermore, in simulations, the onset time for the development of
sibling waves becomes longer if the parent wave frequency is smaller. For the background
stratifications and amplitudes considered in experiments, negligible growth of sibling
waves is predicted if ω/N0 � 0.7. By extrapolation of theory and simulations, this work
suggests that sibling waves manifest as pure resonant modes may not develop through
TRI of the oceanic internal tide for which ω0 � N0. Not only would their growth rate
be small, but the time for them to develop from background noise would be delayed by
a significant onset time. Nonetheless, with forcing by the low-frequency internal tide,
and with consideration of background rotation, it may be possible for large vertical
wavenumber sibling wave packets to grow near resonantly over ranges at mid-depth where
the stratification is quasi-uniform (Gururaj & Guha 2020). Such development is evident
in the numerical study of Hazewinkel & Winters (2011), who potentially seeded such
disturbances as an initial condition. It is also evident in our laboratory experiments for
which sibling waves emerge as vertically propagating disturbances rather than vertical
modes. Such manifestation of sibling waves helps to explain why strong growth of sibling
waves with high vertical wavenumber are observed in Exp. III for a parent wave having
frequency 0.92N0 even though no growth is predicted by viscous theory: the assumption in
theory that sibling waves have a vertical mode structure is over-restrictive. What is similar
between our experiments and the simulations of Hazewinkel & Winters (2011) is that the
parent waves are forced at one side of the domain, whereas our simulations are initialised
with horizontally periodic waves. Separately, we have performed simulations that locally
force rightward propagating parent waves, with these giving evidence for sibling waves
growing with non-modal structure. This suggests the need to adapt theory to account for
the structure of horizontally modulated parent waves. A detailed examination of these
simulations is the subject of future work.

Despite what agreement there is between theory and corresponding laboratory
experiments and numerical simulations, the discrepancy between the predictions
extrapolated to oceanic internal tides motivates future work to explore TRI theory
including more realistic stratification, the effects of background rotation, and the
horizontal non-uniformity of the low-mode internal tide.
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