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Abstract

This paper continues an established line of research about the relations between argumentation
theory, particularly assumption-based argumentation, and different kinds of logic programs. In
particular, we extend known result of Bondarenko, Dung, Kowalski and Toni, and of Caminada
and Schulz, by showing that assumption-based argumentation can represent not only normal
logic programs, but also disjunctive logic programs under the stable model semantics. For this, we
consider some inference rules for disjunction that the core logic of the argumentation frameworks
should respect, and show the correspondence to the handling of disjunctions in the heads of the
logic programs’ rules.

Keywords: knowledge representation and nonmonotonic reasoning, theory

1. Introduction

Logic programming (LP) and formal argumentation are two primary disciplines involving

knowledge representation and non-monotonic reasoning. Assumption-based argumenta-

tion (ABA, for short) (Bondarenko et al . 1997; Cyras et al . 2018) is a well-established

branch in argumentation theory, aimed at providing coherent sets of formulas that admit

other sets of formulas as their contraries, based on assumptions, contrariness operators,

and rules in corresponding deductive systems. ABA was inspired by Dung’s semantics

for abstract argumentation frameworks (Dung 1995) and LP with its dialectical inter-

pretation of the acceptability of negation-as-failure assumptions based on the ”failure to

prove the converse” (Przymusinski 1990). Thus, ABA can be viewed as an argumentative

interpretation of LP semantics.
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The similar ground of LP and ABA calls upon translation methods for revealing the

exact relations between them, and for importing reasoning methods from one formal-

ism to the other. For example, argumentative characterizations of LP have been proven

useful for explanation (Schulz et al . 2015; Schulz and Toni 2016), visualization of infer-

ences in LP (Schulz 2015), and debugging of logic programs (Thevapalan et al . 2021).

Among the works that relate LP and ABA we recall the one of Bondarenko et al . (1997),

who were the first to show a correspondence between stable models (respectively, the

well-founded model) of a normal logic program and stable extensions (respectively, the

grounded extension) of the associated ABA framework (see Theorem 3.13, respectively

Theorem 6.3 by Bondarenko et al . (1997), and the work of Caminada and Schulz 2017,

2018) that provides a one-to-one correspondence between the 3-valued stable models

(Przymusinski 1990) (respectively, the regular models (You and Yuan 1994)) for nor-

mal logic programs, and complete labellings (respectively, preferred labellings) for ABA

frameworks. A recent work (Wakaki, 2020) shows that answer sets of a (non-disjunctive)

extended logic programs can be captured by stable extensions of the translated ABA

frameworks. These works were restricted to logic programs, where only atoms or their

(classical) negations are allowed in the head of the rules. Yet, a faithful modeling of real-

world problems often requires to cope with incomplete information, which is not possible

in the scope of such logic programs. This is a primary motivation in the introduction of

disjunctive logic programs , where (classical) disjunctions are allowed in the heads of the

rules and negations (sometimes called “negation-as failure” (Przymusinski 1990; Gelfond

and Lifschitz 1991)) may occur in the rules’ bodies. Reasoning with uncertainty is also a

principle motivation behind extended disjunctive logic programs, where a classical nega-

tion is also permitted, both in the rules bodies and their heads. Indeed, disjunctive logic

programs have been efficiently implemented and widely applied, and so become a key

technology in knowledge representation (see, e.g., Su 2015), although under the usual

complexity assumptions, they were shown to be strictly more expressive than normal

logic programs (Gottlob 1994; Eiter et al . 1997).

Despite the equivalence between ABA semantics and the semantics of normal logic

programs that has already been obtained in a number of works (Caminada and Schulz

2017, 2018), it is not obvious that such a correspondence carries on to disjunctive logic

programs. In fact, there are some a-priori indications to the contrary, at least in some fun-

damental cases. For instance, the correspondence shown in Caminada and Schulz (2017)

between 3-valued stable models of normal logic programs and complete extensions of

ABA, breaks down when disjunctions may appear in the rules’ heads. This is simply

due to the fact that there are disjunctive logic programs without 3-valued stable mod-

els (Przymusinski 1991), while (flat) ABA frameworks always have complete extensions

(Cyras et al . 2018). Therefore, in this paper we set out to generalize the argumenta-

tive characterization of LP for disjunctive logic programs and their extended variations.

Naturally, this raises the primary research question of this paper, namely: “Can exist-

ing translations from normal logic programming into assumption-based argumentation be

extended, in some ‘natural way’, to disjunctive logic programs?”

This question is answered affirmatively by showing that, at least as far as two-valued

stable models are involved, disjunctive logic programs (and even extended disjunctive

logic programs, allowing also strong negation in the rules) can be faithfully represented in
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terms of assumption-based argumentation frameworks. For this, we incorporate the ideas

in Arieli and Heyninck 2021, 2025) and Heyninck et al . (2024), generalizing standard ABA

frameworks to propositional formulas (as the defeasible or strict assumption at hand),

expressed and evaluated in propositional (Tarskian) logics. This allows to augment the

underlying core logic of the ABA framework (based only on Modus Ponens, MP) with the

inference rules Resolution (Res) and Reasoning by Cases (RBC), for handling disjunctive

assertions, and so associate the stable extensions of such frameworks with the (2-valued)

stable models of the corresponding disjunctive logic programs. On the other hand, we

show that even when 3-valued stable models do exist, they might not correspond to

complete models in the translated argumentation theory.

The structure of the paper. In the next section we review some basic notions

behind assumption-based argumentation and disjunctive LP. In Section 3, which is

the main part of the paper, we show how (the stable models of) the latter can be

represented by (the stable extensions of) the former. The converse is discussed in

Section 4. In Section 5, we provide some negative results, showing that this correspon-

dence does not carry on to models and extensions that are not necessarily two-valued

and stable. On the other hand, as shown in Section 6, our results are easily generalized to

extended disjunctive logic programs, where a classical negation is also allowed, in addition

to the negation-as-failure connective. In Section 7 (referring also to the supplementary

material), we discuss some related work and conclude.

Relations with previous work. This paper is an updated and extended version of

the paper in Heyninck and Arieli (2019), where we first revealed the relations between

ABA and disjunctive LP. In particular, we give here full proofs for the main results of

the paper (in Section 3.2), including proofs that were omitted in the conference paper,

and revisions of other proofs in Heyninck and Arieli (2019), add further illustrations to

the main concepts, consider also 3-valued semantics (and corresponding models) for LP,

discuss extended logic programs, and refer to related work in more detail. Our work in

Heyninck and Arieli (2019), which is extended here, closes a gap in the investigations

of the connections between LP and formal argumentation, mainly in the presence of

uncertain information. For this purpose, we extend the logical setting of the work in

Bondarenko et al . (1997) and Caminada and Schulz (2017, 2018), consisting of Modus

Ponens (MP) as the sole inference rule, by two additional inference rules, (Res) and

(RBC) mentioned previously, which also allow to handle disjunctive information. This

extended logical setting (with some adjustments) serves as a basis for a number of other

recent follow-up papers, for example the ones by Wakaki (2022, 2024), discussing disjunc-

tive information in ABA frameworks in relation to the way it is evaluated by semantics

for extended disjunctive logic programs. The work in Wakaki (2024) shows, furthermore,

that (a variation1 of) our logical setting is also useful for linking ABA frameworks and

a number of other formalisms for non-monotonic reasoning, including disjunctive default

logic (Gelfond et al . 1991; Etherington and Crawford 1996), prioritized circumscription

(Lifschitz 1987), and possible model semantics for extended disjunctive logic programs

(Sakama and Inoue 2000). The motivation behind our work is therefore twofold: in the

theoretical level it extends, by means of a simple translation, the known links between

1 See Section 7 for some further details on this variation.
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ABA and LP, and on the more practical side it vindicates the usefulness of argumenta-

tive and LP-based frameworks in handling not only inconsistent information, but also

incomplete one.2

2. Preliminaries

We start with a brief review of the main concepts that are related to assumption-based

argumentation (Section 2.1) and disjunctive logic programs (Section 2.2).

2.1. Assumption-based argumentation

We denote by L a propositional language. We shall assume that L contains a conjunction

(denoted as usual in LP by a comma), disjunction ∨, implication →, a negation operator

∼, and propositional constants F, T for falsity and truth. Atomic formulas in L are

denoted by p, q, r (possibly indexed), literals (i.e., atomic formulas or their negation) are

denoted by l (possibly indexed), compound formulas are denoted by ψ, φ, σ, and sets of

formulas in L are denoted by Γ,Δ,Θ,Λ. When considering extended disjunctive logic

programs, we shall assume that the language also contains another kind of negation,

denoted ¬ (the exact meaning of each connective will be defined in the sequel). In what

follows, we denote by ∼Γ the set {∼γ | γ ∈ Γ}. The powerset of Γ is denoted ℘(Γ).

Definition 1.

A (propositional) logic for a language L is a pair L= 〈L, �〉, where � is a (Tarskian) con-

sequence relation for L, that is, a binary relation between sets of formulas and formulas

in L, satisfying the following properties:

• Reflexivity: if ψ ∈ Γ then Γ �ψ.
• Monotonicity: if Γ �ψ and Γ⊆ Γ′, then Γ′ �ψ.
• Transitivity: if Γ �ψ and Γ′, ψ � φ, then Γ, Γ′ � φ.
The next definition, adapted from Heyninck and Arieli (2020), generalizes the definition

in Bondarenko et al . (1997) of assumption-based argumentation frameworks.

Definition 2.

An assumption-based framework (ABF, for short) is a tuple ABF= 〈L, Γ,Λ,−〉, where:
• L= 〈L, �〉 is a propositional logic.

• Γ (the strict assumptions) and Λ (the candidate or defeasible assumptions) are dis-

tinct countable sets of L-formulas, where the former is assumed to be �-consistent
(i,.e, Γ 
� F) and the latter is assumed to be nonempty.

• − : Λ→ ℘(L) is a contrariness operator, assigning a finite set of L-formulas to every

defeasible assumption in Λ.

Note 1.

Unlike the setting of Bondarenko et al. (1997), an ABF may be based on any propositional

logic L. Also, the strict as well as the candidate assumptions are formulas that may not

2 A similar motivation stands behind the proposal of Gelfond et al . (1991) to extend Reiter’s default
logic (Reiter 1980) to disjunctive default logic in order to overcome some problems of the former in
handling disjunctive information.
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be just atomic. Concerning the contrariness operator, note that it is not a connective of

L, as it is restricted only to the defeasible assumptions.

Defeasible assertions in an ABF may be attacked by counterarguments.

Definition 3.

Let ABF= 〈L, Γ,Λ,−〉 be an assumption-based framework, Δ,Θ⊆Λ, and ψ ∈Λ. We say

that Δ attacks ψ if Γ,Δ � φ for some φ∈−ψ. Accordingly, Δ attacks Θ if Δ attacks

some ψ ∈Θ.

Example 1.

Let ABF= 〈LMP, {∼q→ p}, {∼p, ∼q},−〉, where −∼p= {p} and −∼q= {q}, and where

LMP consists of the sole inference rule Modus Ponens:

[MP]3
φ1, . . . , φn →ψ φ1 φ2 · · · φn

ψ

This gives rise to the following visual representation of ABF in terms of an attack diagram:

{∼p} {∼q}

{∼p, ∼q}

This diagram may be viewed as a directed graph whose nodes are sets of defeasible

assumptions and where a directed arrow represents an attack of the set at the origin of

the arrow on the set at the arrow’s end. Note that, by MP, it hold that ∼q, ∼q→ p � p,
and so in our case every set that contains ∼q attacks any set that contains ∼p.

The last definition gives rise to the following adaptation to ABFs of the usual semantics

for abstract argumentation frameworks (Dung 1995).

Definition 4.

(Bondarenko et al. 1997) Let ABF= 〈L, Γ,Λ,−〉 be an assumption-based framework, and

let Δ⊆Λ. Then Δ is conflict-free if there is no Δ′ ⊆Δ that attacks some ψ ∈Δ. We say

that Δ is a stable extension of ABF if it is conflict-free, and attacks every ψ ∈Λ \Δ.

The set of stable extensions of ABF is denoted by Stb(ABF).4

Example 2.

Consider again the assumption-based argumentation framework in Example 1. The sole

stable extension of this framework is {∼q}.

3 As usual, the formulas above the fragment line are the rule’s conditions and the formula below the line
is the rule’s conclusion.

4 In many presentations of assumption-based argumentation, stable extensions are required to be closed ,
i.e., they should contain any assumption they imply. Since the translation below will always give rise
to the so-called flat ABFs (that is, ABFs for which a set of assumptions can never imply assumptions
outside the set; See Note 4 below), closure of extensions is trivially satisfied in our case.
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2.2. Disjunctive logic programs

Definition 5.

(Przymusinski 1991) A disjunctive logic program (DLP) π is a finite set of rules of the

form

(�)q1, . . . , qm,∼r1, . . . ,∼rk → p1 ∨ . . .∨ pn
where m, k≥ 0 and n≥ 1.5 We say that p1 ∨ . . .∨ pn the head (conclusion) of the rule,

and that q1, . . . , qm,∼r1, . . . ,∼rk is the body (assumptions) of the rule.

• A logic program π is positive, if k= 0 for every rule in π (i.e., the negation-as-failure

operator ∼ does not appear in π).

• When each head of a rule in π is either empty or consists of an atomic formula

(i.e., n≤ 1), we say that π is a normal logic program.

We denote by A(π) the set of atomic formulas that appear in π.

Intuitively, the rule in (�) indicates that if qi holds for every 1≤ i≤m and ri is not

provable for every 1≤ i≤ k , then either of the pi’s, for 1≤ i≤ n, should hold. In what

follows, unless otherwise stated, when referring to a logic program we shall mean that it

is disjunctive. The semantics of a logic program π is defined as follows:

Definition 6.

Let M be set of atomic formulas, p, pi, qj atomic formulas, and lj literals. We denote:

• M |= p if p∈M ,

• M |=∼p if p 
∈M ,

• M |= p1 ∨ . . .∨ pn if M |= pi for some 1≤ i≤ n,

• M |= l1, . . . , lm if M |= lj for every 1≤ j ≤m,

• M |= l1, . . . , lm → p1 ∨ . . .∨ pn if either M |= p1 ∨ . . .∨ pn or M 
|= l1, . . . , lm (the

latter means that it is not the case that M |= l1, . . . , lm).

Note that M may be viewed as an interpretation into {t, f}, where M(p) = t if p∈M
(if M |= p). When M |=ψ, we say that M satisfies ψ. Given a logic program π, we denote

by M |= π that M satisfies every ψ ∈ π. In that case, we say that M is a model of π.

Thus, a model of a rule either falsifies at least one of the conjuncts in the rule’s body,

or validates at least one of the disjuncts in the rule’s head. A particular family of models

for disjunctive logic programs called stable (see Przymusinski 1991) is defined next.

Definition 7.

Let π be a disjunctive logic program and let M ⊆A(π).

5 The assumption that n≥ 1 means that in this work we do not consider constraints, i.e., rules with
empty heads (This is also the assumption of Caminada and Schulz in their transformation of nor-
mal logic programs to assumption-based argumentation (Caminada and Schulz 2017, 2018), which
this work extends). The incorporation of constraints can be dealt with by interpreting constraints
q1, . . . , qm,∼r1, . . . ,∼rk → as rules of the form q1, . . . , qm,∼r1, . . . ,∼rk → F. In turn, this requires to
introduce explosiveness assumptions, expressing that from falsity any conclusion may be derived (see,
e.g., Wakaki 2024). We leave this extension for future work.
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• The Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1988) of π with respect to M is

the (positive) disjunctive logic program πM , where q1, . . . , qm → p1 ∨ . . .∨ pn ∈ πM

if there is a rule q1, . . . , qm,∼r1, . . . ,∼rk → p1 ∨ . . .∨ pn ∈ π and ri 
∈M for every

1� i� k.

• M is a stable model of π if it is a ⊆-minimal model of πM .

Example 3.

Consider the disjunctive logic program: π1 = {∼p→ q ∨ r}. Below are the different com-

binations of atoms in this case and their reducts. The two stable models of π1 are marked

by a gray background.

i Mi πMi
1 i Mi πMi

1

1 ∅ {→ q ∨ r} 5 {p, q} ∅
2 {p} ∅ 6 {p, r} ∅
3 {q} {→ q ∨ r} 7 {q, r} {→ q ∨ r}
4 {r} {→ q ∨ r} 8 {p, q, r} ∅

Thus, {q} and {r} are the (only) stable models of π1.

3. Representation of DLP by ABA

Given a disjunctive logic program π, we show a one-to-one correspondence between the

stable models of π onto the stable extensions of an ABA framework that is induced

from π. First, we describe the translation and then prove its correctness.

3.1. The translation

All the ABA frameworks that are induced from disjunctive logic programs will be based

on the same core logic, which is constructed by the three inference rules Modus Ponens

(MP), Resolution (Res) and Reasoning by Cases (RBC):

[MP]
φ1, . . . , φn →ψ φ1 φ2 · · · φn

ψ

[Res]
ψ′
1 ∨ . . .∨ψ′

m ∨ φ1 ∨ . . .∨ φn ∨ψ′′
1 ∨ . . .∨ψ′′

k ∼φ1 · · · ∼φn
ψ′
1 ∨ . . .∨ψ′

m ∨ . . .∨ ψ′′
1 ∨ . . .∨ψ′′

k

[RBC]

φ1
...

ψ

φ2
...

ψ · · ·

φn
...

ψ φ1 ∨ . . .∨ φn
ψ

In what follows we denote by L= 〈L, �〉 the logic based on the language L which consists

of disjunctions of atoms (p1 ∨ . . .∨ pn for n≥ 1), negated atoms (∼p), or formulas of the

forms of the program rules in Definition 5. Accordingly, we shall use only fragments of

the inference rules above, in which in [Res] and [RBC] the formulas ψ, ψi are disjunctions
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of atomic formulas and φi are atomic formulas. In [MP], ψ is a disjunction of atomic

formulas and φi ∈ {pi,∼pi} are literals. Now, we denote Δ � φ if φ is either in Δ or is

derivable from Δ using the inference rules above. In other words, Δ � φ if φ∈ CnL(Δ),

where CnL(Δ) is the L-based transitive closure of Δ (namely, the ⊆-smallest set that

contains Δ and is closed under [MP], [Res] and [RBC]).

Note 2.

For any φ∈ CnL(Δ), if φ is not of the form p1 ∨ . . .∨ pn then φ∈Δ.

Note 3.

Since the rule →ψ is identified with T→ψ, [MP] implicitly implies Reflexivity [Ref]:
→ψ

ψ
.

Definition 8.

The assumption-based argumentation framework that is induced by a disjunctive logic

program π is defined by: ABF(π) = 〈L, π,∼A(π),−〉, where −∼p= {p} for every p∈A(π).

Example 4.

Let π2 = {→p∨ q, p→ q, q→ p}. The attack diagram of the induced assumption-based

argumentation framework ABF(π2) is shown in Figure 1a.

{∼p} {∼q}

∅
(a)

{∼p} {∼q}

∅
(b)

Fig. 1. Attack diagrams for Examples 4, 8c (left) and Example 8b (right).

In the notations of Definition 2, we have: Γ= π2 and Λ= {∼p,∼q}. To see, for exam-

ple, that the set {∼p} attacks itself, note that by [MP] on → p∨ q we conclude Γ � p∨ q,
and by [Res] it holds that Γ,∼p � q. Thus, since q→ p∈ Γ, by [MP] we get Γ,∼p � p,
namely: Γ,∼p �−∼p. From similar reasons {∼q} attacks itself. For the attacks of ∅ on

{∼p} and {∼q} we also need [RBC].

Note that in this case {p, q} is the stable model of π2 (Definition 7) and ∅ is the stable

extension of ABF(π2) (Definition 4).

Example 5.

Logic programs and their induced ABFs from earlier examples are the following:

a) The assumption-based argumentation framework considered in Example 1 is

induced from the logic program {∼q→ p}.6
b) Figure 2 depicts (a fragment of) the graph of the assumption-based argumentation

framework that is induced by the logic program π1 = {∼p→ q ∨ r} from Example 3.

This framework has two stable extensions: E1 = {∼p,∼q, } and E2 = {∼p,∼r, }.

6 In this case LMP is used instead of the extended logic L, but as shown in Caminada and Schulz (2017,
2018), for normal logic programs this representation is sufficient for the correspondence between LPs
and the induced ABA frameworks.
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{∼p, ∼q, ∼r}

{∼p, ∼q} {∼p, ∼r}{∼r} {∼q}
Fig. 2. Attack diagrams for Examples 3 and 5.

Note 4.

The translation in Definition 8 always gives rise to a so-called flat ABF, that is, an

ABF for which there is no Δ⊆Λ and ψ ∈Λ \Δ such that Γ,Δ �ψ. This is shown in the

following proposition:

Proposition 1.

For every disjunctive logic program π and the induced assumption-based argumentation

framework ABF(π) = 〈L, Γ,Λ,−〉= 〈L, π,∼A(π),−〉, if Δ⊆Λ and Γ,Δ �ψ, then ψ 
∈
Λ \Δ.

Proof.

Since Λ consists only of formulas of the form ∼p, we can restrict our attention to such

formulas. Suppose that Γ,Δ �ψ for some Δ⊆Λ. Since Λ contains only formulas of the

form ∼p, and since Γ= π, then by Note 2, if Γ,Δ �∼p, necessarily ∼p∈Δ.

To relate the semantics of logic programs and their induced ABFs, we need the

following notations:

Definition 9.

Let π be a disjunctive logic program and let Θ⊆A(π). We denote:

• �∼Θ�=Θ (Thus �·� eliminates the leading ∼ from the formulas in the set)

• If Δ⊆∼A(π) then Δ=A(π) \ �Δ�
• If Δ⊆A(π) then Δ=∼(A(π) \Δ)

In other words, Δ (respectively, Δ) takes the complementary set of Δ and removes

(respectively, adds) the negation-as-failure operator from (respectively, to) the prefix of

its formulas.

Example 6.

Consider again the program π2 of Example 4, and let Δ=∼A(π2) = {∼p,∼q}. Then
Δ= ∅ and ∅=Δ.

The semantic correspondence between a logic program and the induced ABF is

obtained by the following results:

1. If Δ is a stable extension of ABF(π), then Δ is a stable model of π, and

2. If Δ is a stable model of π, then Δ is a stable extension of ABF(π).

Before showing these results, we first provide some examples and notes concerning

related results.
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Example 7.

Let’s revisit our previous examples and see that the correspondence between the stable

models of the logic programs and the stable extensions of the induced ABFs, indicated

above, indeed holds in these examples:

a) The stable models M3 and M4 of the logic program π1 in Example 3 correspond to

the stable extensions E1 and E2 of the assumption-based framework ABF(π1) that

is induced from π1 according to Definition 8, which is considered in Example 5(b)

and Figure 2. Indeed,M3 = E2 and M4 = E1 (Alternatively, E1 =M4 and E2 =M3).

b) As shown in Example 4, the correspondence between the stable model of π2 and

the stable extension of the framework ABF(π2) that is induced from π2 (see

Figure 1a), is preserved.

As indicated before this example, and as we show in Section 3.2 (Propositions 2 and 3),

the two items above are not a coincidence.

Example 8.

As noted in the introduction, Caminada and Schulz (2017, 2018) consider the correspon-

dence between ABA frameworks and normal logic programs. In our notations, the ABF

that they associate with a normal logic program π is ABFNorm(π) = 〈LMP, π,∼A(π),−〉
constructed as in Definition 8, except that LMP is defined by Modus Ponens only.

a) To see that ABFNorm is not adequate for disjunctive logic programs, consider the pro-

gram π3 = {→ p∨ q}. This program has two stable models: {p} and {q}. However,
the only stable extension of ABFNorm(π3) is {∼p,∼q}. We can enforce {∼p} and

{∼q} being stable models by requiring that π3 ∪ {∼p} � q and π3 ∪ {∼q} � p. For
this, we need the resolution rule [Res].

b) Adding only [Res] to LMP (i.e, without [RBC]) as the inference rules for the logic

is yet not sufficient. To see this, consider again the program π2 from Example 4.

Recall that {p, q} is the sole stable model of π2. The attack diagram of the ABF

based on [MP] and [Res] is shown in Figure 1b, thus there is no stable extension

in this case (However, if [RBC] is also available, we get the ABF depicted in

Figure 1a, which, as indicated in Example 7b, is a faithful translation of π2).

3.2. Proof of correctness

The correctness of the translation follows from Propositions 2 and 3 below. First, we

need some definitions and lemmas. In what follows L denotes the logic defined in

Section 3.1, and π is an arbitrary disjunctive logic program.

We start with the following soundness and completeness result.

Lemma 1.

Let Δ be a set of L-formulas of the form ∼p or q1, . . . , qm,∼r1, . . . ,∼rk → p1 ∨ . . .∨ pn.
Then:

a) If ψ ∈ CnL(Δ) then M |=ψ for every M such that M |=Δ.

b) If ψ= r1 ∨ . . .∨ rm and M |=ψ for every M such that M |=Δ, then ψ ∈ CnL(Δ).
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Note 5.

Part (b) of Lemma 1 does not hold for any formula ψ, but only for a disjunction of atoms.

To see this, let Δ= {∼s, p→ s}. The only M ⊆ {p, s} such that M |=Δ is M = ∅. Thus,
for every M such that M |=Δ it holds that M |=∼p. However, ∼p cannot be derived

from Δ using [MP], [Res] and [RBC].

Proof.

We prove Part (a) of the lemma by induction on the number of applications of the

inference rules in the derivation of ψ ∈ CnL(Δ).

For the base step, no inference rule is applied in the derivation of ψ, thus ψ ∈Δ. Since

M |=Δ, we have that M |= ψ.

For the induction step, we consider three cases, each one corresponds to an application

of a different inference rule in the last step of the derivation of ψ:

1. Suppose that the last step in the derivation of ψ is an application of Resolution.

Then ψ= p′1 ∨ . . .∨ p′m ∨ . . .∨ p′′1 ∨ . . .∨ p′′k is obtained by [Res] from p′1 ∨ . . .∨
p′m ∨ q1 ∨ . . .∨ qn ∨ p′′1 ∨ . . .∨ p′′k and ∼qi (i= 1, . . . , n). Suppose that M |=Δ.

Since ∼qi ∈ CnL(Δ) iff ∼qi ∈Δ and since M |=Δ, we have M |=∼qi (i= 1, . . . , n),

thus M 
|= qi (i= 1, . . . , n). By the induction hypothesis, M |= p′1 ∨ . . .∨ p′m ∨ q1 ∨
. . .∨ qn ∨ p′′1 ∨ . . .∨ p′′k . By Definition 6, then, M |= p′i for some 1≤ i≤m, or

M |= p′′j for some 1≤ j ≤ k. By Definition 6 again, M |=ψ.

2. Suppose that the last step in the derivation of ψ is an application of Reasoning by

Cases, and let M |=Δ. By induction hypothesis, M |= p1 ∨ . . .∨ pn, and M |=ψ in

case that M |= pj for some 1≤ j ≤ n. But by Definition 6 the former assumption

means that there is some 1≤ j ≤ n for which M |= pj , therefore M |=ψ.

3. Suppose that the last step in the derivation of ψ is an application of Modus

Ponens, and let M |=Δ. By induction hypothesis M |= li, where li ∈ {pi,∼pi} for

i= 1, . . . , n. Thus, by Definition 6,M |= l1, . . . , ln. On the other hand, by induction

hypothesis again, M |= l1, . . . , ln →ψ. By Definition 6, M |=ψ.

We now turn to Part (b) of the lemma. Suppose that M |=ψ for every M such that

M |=Δ, yet ψ 
∈ CnL(Δ) (where ψ= r1 ∨ . . .∨ rm for some m� 1). We show that this

leads to a contradiction by constructing an M ′ for which M ′ |=Δ but M ′ 
|=ψ. For this,

we consider the following set of the minimal disjunctions of a set of formulas S:
MD(S) = {q1 ∨ . . .∨ qn ∈ S |
 ∃{i1, . . . , im}� {1, . . . , n} s.t. qi1 ∨ . . .∨ qim ∈ S}.

We first show that if q1 ∨ . . .∨ qn ∈MD(CnL(Δ)) then there is an 1� i� n such that qi 
∈
{r1, . . . , rm} and ∼qi 
∈Δ. Indeed, suppose first for a contradiction that q1 ∨ . . .∨ qn ∈
MD(CnL(Δ)), yet for every 1< i� n either qi ∈ {r1, . . . , rm} or ∼qi ∈Δ. In that case, by

[Res], r1 ∨ . . .∨ rm ∈ CnL(Δ), contradicting the original supposition that r1 ∨ . . .∨ rm 
∈
CnL(Δ). Suppose now, again towards a contradiction, that q1 ∨ . . .∨ qn ∈MD(CnL(Δ)),

yet for every 1� i� n, ∼qi ∈Δ. In that case, by [Res] again, qi ∈ CnL(Δ) (for every i), but

this, together with the assumption the ∼qi ∈Δ (for every i), contradicts the assumption

that there is an M such that M |=Δ.

We thus showed that in any case, if q1 ∨ . . .∨ qn ∈MD(CnL(Δ)), then there is an

1� i� n such that qi 
∈ {r1, . . . , rm} and ∼qi 
∈Δ.
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We now construct the model M ′ such that M ′ |=Δ and M ′ 
|= r1 ∨ . . .∨ rm: Let M ′

contain exactly one qi with 1� i� n and qi 
∈ {r1, . . . , rm} and ∼qi 
∈Δ for every q1 ∨
. . .∨ qn ∈MD(CnL(Δ)). (If there is more than one such i, take i which is minimal among

1� i� n.) As shown above, there is at least one such i for every formula q1 ∨ . . .∨ qn ∈
MD(CnL(Δ)).

We now show that (1) M ′ |=Δ and (2) M ′ 
|= r1 ∨ . . .∨ rm.

Item (1): Suppose that φ∈ CnL(Δ). We have to consider two possibilities: φ=∼s or

φ= q1 ∨ . . .∨ qn. In the first case, by construction, s 
∈M ′ and thus M ′ |=∼s. In the

second case, there is a qi1 ∨ . . .∨ qim ∈MD(CnL(Δ)) such that {i1, . . . , im} ⊆ {1, . . . , n}.
By construction, there is a 1� j �m such that qij ∈M ′. Thus, M ′ |= q1 ∨ . . .∨ qn.
Item (2): By construction ri 
∈M ′ (i= 1, . . . , m), thus M ′ 
|= r1 ∨ . . .∨ rm.

Lemma 2.

Let π be a logic program. For every M,N ⊆A(π), if N \M 
= ∅ then N 
|= CnL(M ∪ π).
Proof.

Suppose that N \M 
= ∅ and let p∈N \M , Then ∼p∈M and thus ∼p∈ CnL(M ∪ π).
Since N |= p, N 
|=∼p, and so N 
|= CnL(M ∪ π).
Lemma 3.

Given a logic program π, if M is a minimal model of a logic program π′ ⊆ πM , then for

every N �M , N 
|= CnL(M ∪ π).
Proof.

Suppose that M is a minimal model of a logic program π′ ⊆ πM , and suppose towards a

contradiction that there is some N �M such that N |= CnL(M ∪ π). We show that N is a

model of π′ by showing that N is a model of πM . Indeed, let p1, . . . , pn,∼q1, . . . ,∼qm →
r1 ∨ . . .∨ rk ∈ π such that q1, . . . , qm 
∈M . Then ∼qi ∈M for every i= 1, . . . , m. Suppose

furthermore that p1, . . . , pn ∈N . Then (since N ⊂M), also p1, . . . , pn ∈M and thus

M � r1 ∨ . . .∨ rk, which implies that r1 ∨ . . .∨ rk ∈ CnL(M ∪ π). It follows that ri ∈N
for some i= 1 . . . , k (as we assumed that N |= CnL(M ∪ π)), and so N is a model of

the rule p1, . . . , pn → r1 ∨ . . .∨ rk ∈ πM . This means that N is a model of π′, which

contradicts the minimality of M .

Lemma 4.

Let M be a stable model of π. Then M =min⊆{N ⊆A(π) |N |= CnL(π ∪M)}.
Proof.

LetM be a stable model of π. We first show thatM |= CnL(M ∪ π). Let ψ ∈ CnL(M ∪ π).
Then it has an L-derivation DL(ψ).

7 We show by induction on the size of DL(ψ) that

M |=ψ.

For the base step, no inference rule is applied in DL(ψ), thus ψ=∼φ∈M . Since this

means that φ 
∈M , we have that M |=ψ.

7 Namely, DL(ψ) is a finite sequence 〈T1, . . . , Tn〉 of proof tuples, where Tn =ψ, and for each 1≤ i≤ n

Ti is either an element of M ∪ π, or is obtained by an application of one of the inference rules of L on
proof tuples in {T1, . . . , Ti−1}. The size of DL(ψ) is n.
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For the induction step, we consider three cases, each one corresponds to an application

of a different inference rule in the last step of DL(ψ):

1. Suppose that the last step in DL(ψ) is an application of Resolution. Then

ψ= p′1 ∨ . . .∨ p′m ∨ . . .∨ p′′1 ∨ . . .∨ p′′k is obtained by [Res] from p′1 ∨ . . .∨ p′m ∨ q1 ∨
. . .∨ qn ∨ p′′1 ∨ . . .∨ p′′k and ∼qi (i= 1, . . . , n). Since ∼qi ∈ CnL(M ∪ π) means that

∼qi ∈M , we have qi 
∈M for every i= 1, . . . , n. By the induction hypothesis,

M |= p′1 ∨ . . .∨ p′m ∨ q1 ∨ . . .∨ qn ∨ p′′1 ∨ . . .∨ p′′k . Thus, by Definition 6, M |= p′i for
some 1≤ i≤m, or M |= p′′j for some 1≤ j ≤ k. By Definition 6 again, M |=ψ.

2. Suppose that the last step in DL(ψ) is an application of Reasoning by Cases. By

induction hypothesis we know thatM |= p1 ∨ . . .∨ pn, and thatM |= ψ in case that

M |= pj for some 1≤ j ≤ n. But by Definition 6 the former assumption means that

there is some 1≤ j ≤ n for which M |= pj , therefore M |=ψ.

3. Suppose that the last step in DL(ψ) is an application of Modus Ponens on

p1, . . . , pn,∼q1, . . . ,∼qm → r1 ∨ . . .∨ rk ∈ π. By induction hypothesis M |= pi, for

every 1� i� n. Also, for every 1� i�m, ∼qi ∈ CnL(M ∪ π) implies qi 
∈M . Thus,

p1, . . . , pn → r1 ∨ . . .∨ rk ∈ πM . Since M is a model of πM , M |= ri for some

1� i� k. Thus, M |= r1 ∨ . . .∨ rk.
We have shown that M |= CnL(M ∪ π). By Lemma 2, for no N ⊆A(π) such that N \
M 
= ∅ it holds that N |= CnL(M ∪ π). Thus, if there is some N ⊆A(π) such that N |=
CnL(M ∪ π), then N ⊆M . But if N ⊂M , by Lemma 3 we have that N 
|= CnL(M ∪ π).
Thus, M is the unique subset of A(π) which is a model of CnL(M ∪ π).
Corollary 1.

Let M be a stable model of π. Then p∈M iff p∈ CnL(M ∪ π).
Proof.

Suppose first that p∈M . Thus M |= p. Since by Lemma 4 M is the unique model of

CnL(M ∪ π), by Lemma 1 it holds that M |= p implies that p∈ CnL(M ∪ π). For the

converse, suppose that p∈ CnL(M ∪ π). By Lemma 4, M |= CnL(M ∪ π), and so M |= p.

Example 9.

Corollary 1 actually says that any atom p that is verified by a 2-valued sable model

M of π, can be derived by assuming that all the assumptions not in M are false (and

using the derivation rules together with the rules of the program). To illustrate this, take

for example the program {∼q→ p1 ∨ p2}. This program has two stable models: {p1} and

{p2}. The result above then says that p1 belongs to CnL({p1} ∪ π) = CnL({∼p2,∼q} ∪ π).
Indeed, it holds that p1 is derivable from {∼p2,∼q} ∪ π using the rules {∼q} ∪ {∼q→
p1 ∨ p2} � p1 ∨ p2 and {p1 ∨ p2,∼p2} � p1.
Lemma 5.

Let π be a disjunctive logic program, Δ⊆∼A(π), and r1 ∨ . . .∨ rk ∈ CnL(π ∪Δ). If M

is a model of π�Δ� and M ⊆ �Δ�, then ri ∈M for some 1� i� k.

Proof.

We show by induction on the number of steps used in deriving r1 ∨ . . .∨ rk from π ∪Δ,

that r1 ∨ . . .∨ rk ∈ CnL(π ∪Δ) implies that M |= r1 ∨ . . .∨ rk. This means that M |= ri
for some 1� i� k, and so ri ∈M for that i.
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For the base step, since every element of Δ is of the form ∼p, we have that r1 ∨ . . .∨
rk 
∈Δ. Thus, r1 ∨ . . .∨ rk is obtained from some rule ∼q1, . . . ,∼qm → r1 ∨ . . .∨ rk ∈ π,
where ∼q1, . . . ,∼qm ∈Δ. In that case, since (1) M ⊆Δ; (2) M is a model of π�Δ�; and
(3) → r1 ∨ . . .∨ rk ∈ π�Δ�, by Definition 7 there is a 1� i� k such that ri ∈M .

For the induction step, suppose that the claim holds for every r1 ∨ . . .∨ rk that is

derived from Δ using n or less derivation steps. We consider three cases:

• r1 ∨ . . .∨ rk is obtained by applying [MP] to the rule p1, . . . , pn,∼q1, . . . ,∼qm →
r1 ∨ . . .∨ rk. In this case, ∼q1, . . . ,∼qm ∈Δ and so qi 
∈Δ for any 1� i�m. It

follows that p1, . . . , pn → r1 ∨ . . .∨ rk ∈ π�Δ�. Let now M be a model of π�Δ� such

that M ⊆ �Δ�. By the induction hypothesis, pi ∈ CnL(π ∪Δ) implies that pi ∈M
(for every 1� i� n). Thus, since M is a model of π�Δ�, ri ∈M for some 1� i� k.

• r1 ∨ . . .∨ rk is obtained by applying [Res] from r1 ∨ . . .∨ rk ∨ rk+1 ∨ . . . rn and

∼rk+1, . . . ,∼rn. Suppose furthermore that M ⊆ �Δ� is a model of π�Δ�. By the

induction hypothesis and since r1 ∨ . . .∨ rk ∨ rk+1 ∨ . . . rn ∈ CnL(π ∪Δ), we have

that ri ∈M for some 1� i� n. Since ∼ri ∈Δ for k+ 1� i� n andM ⊆ �Δ�, ri 
∈M
for every k+ 1� i� n. This means that ri ∈M for some 1� i� k.

• r1 ∨ . . .∨ rk is obtained by applying [RBC], since s1 ∨ . . .∨ sn ∈ CnL(π ∪Δ) and

since r1 ∨ . . .∨ rk ∈ CnL(π ∪ {→ si} ∪Δ) for every 1� i� n. By the induction

hypothesis, (†): for every 1� i� n and every model M ′ of (π ∪ {→ si})�Δ� such

that M ′ ⊆Δ, we have that r1 ∨ . . .∨ rk ∈ CnL(π ∪ {→ si} ∪Δ) implies ri ∈M ′ for
some 1� i� k. Now, since s1 ∨ . . .∨ sn ∈ CnL(π ∪Δ), by the induction hypothesis

this means that sj ∈M for some 1� j � n for every model M of π�Δ�. In other

words, M is a model of π�Δ� iff it is a model of (π ∪ {→ sj})�Δ� = π�Δ� ∪ {→ sj} for

some 1� j � n. By (†), then, ri ∈M for some 1� i� k.

By the last lemma, in case that k= 1, we therefore have:

Corollary 2.

Let π be a disjunctive logic program, Δ⊆∼A(π) and r ∈ CnL(π ∪Δ). If M is a model

of π�Δ� and M ⊆ �Δ�, then r ∈M .

Now we can show the main results of this section.

Proposition 2.

If M is a stable model of π, then M is a stable extension of ABF(π).

Proof.

Suppose that M is a stable model of π. We show first that M is conflict-free in ABF(π).

Otherwise, there is some ∼p∈M such that π,M � p. The former implies that p 
∈M .

But since M is a model of πM , by Corollary 2, p∈ CnL(π ∪M) implies that p∈M , a

contradiction to p 
∈M
We now show that M attacks every ∼p∈∼A(π) \M . This means that we have to

show that π,M � p for every p∈M . This follows from Corollary 1.

Proposition 3.

If E is a stable extension of ABF(π), then E is a stable model of π.
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Proof.

We first show that E is a model of πE . Indeed, let p1, . . . , pn,∼q1, . . . ,∼qm → r1 ∨
. . .∨ rk ∈ π. If qj ∈ E for some 1≤ j ≤m we are done: the rule is satisfied by E .
Otherwise, q1, . . . , qm 
∈ E , and so p1, . . . , pn → r1 ∨ . . .∨ rk ∈ πE . Again, if pj 
∈ E for

some 1≤ j ≤ n we are done, as the rule is satisfied by E . Thus, p1, . . . , pn ∈ E . In other

words, ∼p1, . . . ,∼pn 
∈ E and ∼q1, . . . ,∼qm ∈ E . Since E is a stable extension of ABF(π),

this means that π, E � r1 ∨ . . .∨ rk. Suppose now for a contradiction that∼ri ∈ E for every

1� i� k. Then by [Res], π, E � ri for every 1� i� k and thus E attack itself, which contra-

dicts the fact that E is conflict-free. Consequently, there is at least one 1� i� k such that

∼ri 
∈ E , thus ri ∈ E , which means that E satisfies p1, . . . , pn ∼q1, . . . ,∼qm → r1 ∨ . . .∨ rk.
To show the minimality of E , suppose that there is anM � E that is a model of πE . Let

p∈ E \M . Since p∈ E , ∼p 
∈ E . Since E is stable, this means that π, E � p. By Corollary 2,

any model of πE satisfies p, a contradiction to p 
∈M .

4. Representation of ABA by DLP

The main body of literature on ABA frameworks is concentrated on languages that

consist solely of formulas of the form p1, . . . , pn → p (where p, p1, . . . , pn are atomic for-

mulas). As noted previously, for such assumption-based frameworks (or at least when the

frameworks are flat) it has been shown that there is a straightforward translation into nor-

mal logic programs that preserve equivalence for all the commonly studied argumentation

semantics (see Caminada and Schulz 2017, 2018). To the best of our knowledge, the more

complicated classes of ABA frameworks that are considered in this paper for character-

izing disjunctive LP (and which are based on a logic allowing to reason with disjunctive

rules of the form p1, . . . , pn,∼q1, . . . ,∼qm → r1 ∨ . . .∨ rk) have not been investigated

for other purposes other than the translation of DLPs. We thus do not see any moti-

vation for investigating the reverse translation from these assumption-based frameworks

into disjunctive logic programs. We do believe, however, that it is interesting to see if

the more general class of assumption-based frameworks based on an arbitrary proposi-

tional logic (as defined and studied in Arieli and Heyninck 2021, 2025) and Heyninck

and Arieli (2020)) can be translated in a class of logic programs, probably more general

than disjunctive ones. This is a subject for a future work.

5. Beyond two-valued stable semantics

So far we have discussed two-valued stable models for (disjunctive) logic programs and

their correspondence to the stable extensions of the induced ABA frameworks. In this

section we check whether similar correspondence may be established between other

semantics of logic programs, such as three-valued stable semantics, and other types of

argumentative extensions.

For switching to a three-valued semantics we add to the two propositional constants

T and F, representing in the language L the Boolean values, a third elements, denoted

U, which intuitively represents uncertainty. These constants correspond, respectively, to

the three truth values of the underlying semantics, t, f, u, representing truth, falsity and
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uncertainty. As in Kleene’s semantics (Kleene 1950), these values may be arranged in

two orders:

• a total order ≤t, representing difference in the amount of truth that each value

represent, in which f<t u<t t, and

• a partial order ≤i, representing difference in the amount of information that each

value depicts, in which u<i f and u<i t.

In what follows, we denote by − the ≤t-involution, namely −f= t, −t= f, and − u= u.

Accordingly, we extend the notion of interpretations of a logic program π from subsets

of A(π) (as in Definition 6) to pairs of subsets of A(π):

Definition 10.

A three-valued interpretation of a program π is a pair M = (x, y), where x⊆A(π) is the

set of the atoms that are assigned the value t and y⊆A(π) is the set of atoms assigned

a value in {t, u}.
Clearly, in every three-valued interpretation it holds that x⊆ y, and the two-valued

interpretations (onto {t, f}) of the previous sections may be viewed as three-valued

interpretations in which x= y.

Interpretations may be compared by two order relations, generalized from the order

relations among the truth values:

1. the truth order ≤t, where (x1, y1)≤t (x2, y2) iff x1 ⊆ x2 and y1 ⊆ y2, and

2. the information order ≤i, where (x1, y1)≤i (x2, y2) iff x1 ⊆ x2 and y2 ⊆ y1.

The information order represents differences in the “precisions” of the interpretations.

Thus, the components of higher values according to this order represent tighter evalua-

tions. The truth order represents increased ”positive” evaluations. Truth assignments

to complex formulas are then recursively defined as in the next definition (see also

Przymusinski 1991):

Definition 11.

The truth assignments of a 3-valued interpretation (x, y) are defined as follows:

• (x, y)(p) =

⎧⎪⎨
⎪⎩

t if p∈ x and p∈ y,
u if p 
∈ x and p∈ y,
f if p 
∈ x and p 
∈ y,

• (x, y)(∼φ) =−(x, y)(φ),

• (x, y)(ψ ∧ φ) = lub≤t
{(x, y)(φ), (x, y)(ψ)},

• (x, y)(ψ ∨ φ) = glb≤t
{(x, y)(φ), (x, y)(ψ)}.

The next definition is the three-valued counterpart of Definitions 6 and 7.

Definition 12.

Let π be a logic program and let (x, y) be a 3-valued interpretation of π.

• (x, y) is a (3–valued) model of π, if for every φ→ψ ∈ π, (x, y)(φ)≤t (x, y)(ψ).
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• The Gelfond-Lifschitz transformation (Gelfond and Lifschitz 1991) of a disjunc-

tively normal program π with respect to a 3-valued interpretation (x, y), denoted

π(x,y), is the positive program obtained by replacing in every rule in π of the form

q1, . . . , qm,∼r1, . . . ,∼rk → p1 ∨ . . .∨ pn, any negated literal ∼ri ( 1≤ i≤ k) by: F if

(x, y)(ri) = t, T if (x, y)(ri) = f, and U if (x, y)(ri) = u. That is, replacing ∼ri by
the propositional constant that corresponds to (x, y)(∼ri).

• An interpretation (x, y) is a 3-valued stable model of π (Przymusinski 1991), if it

is a ≤t-minimal model of π(x,y).

There is a host of other semantics for both normal and disjunctive logic programs,

including several semantics that refine the three-valued stable models by, for exam-

ple, selecting only the ≤i-minimal three-valued stable models (as is done for normal

logic programs in the so-called 3-valued well-founded models), or taking the ≤i-maximal

three-valued stable models. The latter, called M-stable models (or L-stable models), were

introduced for DLPs by Sacca and Zaniolo Sacca and Zaniolo (1990, 1991, 1997). For

normal logic programs, M-stable models coincide with regular models , as defined by You

and Yuan (1994, Definition 8). However, for disjunctive logic programs, M-stable models

do not coincide with regular models, since the latter are guaranteed to exist (see [You

and Yuan, 1994, Proposition 5.1]) whereas the former are not (as three-valued stable

models in general might not exist for DLPs, see Przymusinski 1991). A detailed overview

of the relations between the above-mentioned semantics, as well as other semantics for

DLPs, is given by Eiter, Leone and Saccá (1997).

Likewise, there are many proposals in the literature for extending the well-founded

semantics from normal logic programs to disjunctive logic programs. We refer, for exam-

ple, to Brass and Dix (1995), Seipel (1998), Alcantara et al . (2005), Wang and Zhou

(2005), and Knorr and Hitzler (2007), for some examples. However, there is no consensus

about which are the most suitable ones, or even what should be the criteria for com-

paring them (see Alcantara et al . 2005; Wang and Zhou 2005), including existence and

uniqueness. In what follows, for considering the correspondence with ABA frameworks,

we restrict our attention to the 3-valued stable models, leaving the investigations of other

semantics such as the ones discussed above to future work.

Note 6.

As shown in Caminada and Schulz (2017, 2018), when π is a normal logic program, its

3-valued models that are defined above have some counterparts in terms of the induced

assumption-based argumentation framework ABFNorm(π), described in Example 8 . To

recall these results, we first need to extend the notions in Definition 4 with the following

argumentative concepts:

Definition 13.

Let ABF= 〈L, Γ,Λ,−〉 be an assumption-based framework and let Δ⊆Λ. The set of all

the formulas in Λ that are attacked by Δ is denoted by Δ+, and the set of all the formulas

in Λ that are defended by Δ (namely, the formulas whose attackers are in Δ+) is denoted

Def(Δ). We say that Δ is a complete extension of ABF, if it is conflict-free (Definition 4)

and Def(Δ) =Δ (namely, Δ defends exactly its own elements). A ⊆-maximally complete
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extension of ABF is called preferred extension of ABF, and a ⊆-minimally complete

extension of ABF is called grounded extension of ABF.8

In Caminada and Schulz (2017, 2018), it was shown that the 3-valued stable models

of a normal logic program π correspond to the complete extensions of ABFNorm(π), the

M-stable models of π correspond to preferred extensions of ABFNorm(π), and the well-

founded model of π corresponds to the grounded extension of ABFNorm(π). Using the

notations in Definition 9 , these results can be expressed as follows:

• If (x, y) is a 3-valued stable model of a normal logic program π, then y is a complete

extension of ABFNorm(π).

• If E is a complete extension of ABFNorm(π), where π is a normal logic program,

then (�E+�, E) is a 3-valued stable model of π.

We note that Caminada and Schulz (2017, 2018) also establish a connection between

the well-founded models [respectively, the M-stable models] for normal logic programs

and the grounded extensions [respectively, the preferred extensions] of assumption-based

argumentation frameworks.9 In other words, true atoms p∈ x on the LP-side correspond

to attacked negations of these atoms ∼p∈ y+ on the ABA-side, whereas false atoms

p∈A(π) \ y correspond to accepted negations of these atoms ∼p∈ y on the ABA-side.

We illustrate this with an example:

Example 10.

Consider the normal logic program π4 = {∼q→ q, ∼r→ s}. This program has a single

3-valued stable model ({s}, {s, q}), in which s is true, q is undecided and r is false.

The induced assumption-based framework is ABFNorm(π4) = 〈LMP, π4, {∼q,∼r,∼s},−〉.
(A fragment of) its attack diagram is the following:

{∼q}{∼r}{∼s}

ABFNorm(π4) has a single preferred extension: {∼r}, which attacks {∼s}. Intuitively
(also according to the 3-valued labeling semantics for this case, see Baroni et al. 2018),

this makes ∼r true (i.e., r is false), ∼s false (and so s is true), and ∼q undecided (since

it is neither accepted nor attacked by ∼r).10 This corresponds to the 3-valued stable model

of π4, which is in-line with the results stated above.

The correspondence described above, between 3-valued stable models of logic programs

and extensions of the induced argumentation frameworks, does not carry on to disjunctive

8 Note that, using the notations in Definition 13, Δ⊆Λ is a stable extension of ABF according to
Definition 4, iff Δ∩Δ+ = ∅ (namely, Δ is conflict-free) and Δ∪Δ+ =Λ.

9 In Caminada and Schulz (2017, 2018), the M-stable models are called regular models, but as Caminada
and Schulz restrict the attention to normal logic programs, these are the same as M-stable models (as
we have noted before). The comparison of preferred extensions with M-stable models of normal logic
programs is justified by the similarity of their intuitions, namely minimization of undecidability.

10 In general, an extension E ⊆Λ may be associated with a 3-valued ‘labeling’ in which the element of E
are accepted, the elements that are attacked by E (those in E+) are rejected, and the other elements
are undecided (see, e.g., Baroni et al . 2018). In the notations of Definition 11, then, this corresponds
to the 3-valued interpretation (E,Λ−E+).
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logic programs. This immediately follows from the fact that, while a 3-valued stable model

(respectively: a ≤i-minimal 3-valued stable model, a ≤i-maximal 3-valued stable model)

of a DLP are not guaranteed to exist (Reiter 1978),11 complete (respectively: grounded,

preferred) extensions of the induced ABF always exist. Clearly, this consideration is

independent of the used translation. However, the next example shows that, moreover,

even when 3-valued stable models of a DLP do exist, the correspondence to the related

ABF extensions ceases to hold under our translation.

Example 11.

Consider the disjunctive logic program π5 = {∼q→ q, q→ r ∨ s}. The 3-valued stable

models of π5 are (∅, {q, r}) and (∅, {q, s}).
The assumption-based argumentation that is induced by π5 is ABF(π5) =

〈L, π5, {∼q,∼r,∼s},−〉. This results in the following (fragment of the) attack diagram:

{∼q}

{∼q, ∼r} {∼q, ∼s}

{∼r}{∼s}

The unique complete set of assumptions in this case is ∅. This set does not attack

any assumption, thus corresponding to (∅, {q, r, s}). We thus see here that there is a

discrepancy between the three-valued stable models of π5 and complete extensions of

ABF(π5).

Note 7.

A closer inspection of the last example may reveal some of the reasons for the inadequacy

of our translation under 3-valued semantics: In the 3-valued setting, the interpretations

(∅, {q, r}), (∅, {q, s}), and (∅, {q, r, s}), are all models of π5, whereas only the first two

are stable. This means that in this setting, f-assignments are not minimized (indeed, in

either of the first two models, the set of the atoms that are assigned f properly contains

the corresponding set of the other model). To reflect such a minimization in the induced

argumentation framework, additional rules are required. For instance, in the last example,

if r ∨ s is undecided (since ∼q is undecided), one needs a rule that would bring about

mutual attacks between ∼r and ∼s.

11 Indeed, Przymusinski (1991) shows that the DLP π= {→∼p∨∼q ∨∼r, ∼r→ p, ∼p→ q, ∼q→ r}
does not have a 3-valued stable model. There are other semantics that are guaranteed to exist for
this program, such as the regular models (You and Yuan 1994) or stationary semantics (Przymusinski
1990). We will see below that for these semantics, the correspondence breaks down as well.
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We conclude this section by noting that some other semantics for disjunctive logic

programs have been suggested in the literature, for example stationary semantics

(Przymusinski 1991), (weakly) supported semantics (Brass and Dix 1995; Heyninck et al .

2024), determining inference semantics (Shen and Eiter 2019), semi-equilibrium seman-

tics (Amendola et al . 2016; Heyninck and Bogaerts 2023), and several variants of the

well-founded semantics (Amendola et al . 2016; Heyninck and Bogaerts 2023). Whether

these semantics can be characterized by argumentation frameworks is a subject for future

work.

6. Extended disjunctive logic programs

Intuitively, the connective ∼ may be understood as representing ”negation as failure”

(to prove the converse) (Clark 1978). This kind of negation is also known as ”weak

negation.” Extended (disjunctive) logic programs are obtained by introducing another

negation connective, ¬, which acts as an explicit (strong, classical) negation, and allowing

¬-literals (namely, atomic formulas or their explicit negation) instead of the atoms in the

rules (�) of Definition 5. Formally:

Definition 14.

An extended disjunctive logic program π (Przymusinski 1991) is a finite set of rules of

the form

(��) l1, . . . , lm,∼lm+1, . . . ,∼lm+k → lm+k+1 ∨ . . .∨ lm+k+n

where m, k≥ 0, n≥ 1, and each li (1≤ i≤m+ k+ n) is a ¬-literal, that is: li ∈ {pi,¬pi}
for some pi ∈A(π).

The semantics of extended disjunctive logic programs is defined by reduction to dis-

junctive logic programs, using a standard method in LP that views a literal of the form

¬p as a strangely written atomic formula. Under this view, rules of the form (��) may

be treated just as if they are of the form (�). Relations between atomic formulas that

correspond to positive and negative occurrences of the same atomic assertion (namely,

without or with a leading explicit negation, respectively) are made on the semantic level.

Indeed, while the semantics of disjunctive logic programs is two-valued (where an atom

p is verified in a model M if p∈M and is falsified otherwise), the semantics of extended

disjunctive programs is four-valued . To see this, given a rule r of the form (��), replace

every occurrence of p by p+ and every occurrence of ¬p by p−. Denote by r± by the

resulting rule (and by π± the corresponding program). Suppose that M is a model of

r±. Then:

• p is true in M , if p+ ∈M and p− 
∈M ,

• p is false in M , if p+ 
∈M and p− ∈M ,

• p is contradictory in M , if p+ ∈M and p− ∈M ,

• p is undecided in M , if p+ 
∈M and p− 
∈M .

The next example illustrates this distinction between the semantics of disjunctive logic

programs and extended disjunctive logic programs, and shows how this is reflected by

the stable extensions of the corresponding ABFs.
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Example 12.

1. Let π6 = {∼p→¬p}. This program depicts a ‘”closed world assumption” (Reiter

1978) regarding p: Any statement that is true is also known to be true, therefore, if

p is not known to be true, it must be false. The conversion of π6 to a normal logic

program is π±
6 = {∼p+ → p−}, the stable model is {p−}, which in turn is associated

with the the two-valued stable model of π6, in which p is false (see above). In the

corresponding assumption-based framework ABF(π6) = 〈L, π±
6 , {∼p+,∼p−},−〉 we

have that {∼p+} attacks {∼p−}, and so {∼p+} is the unique stable model in this

case (as indeed indicated in Proposition 2).

Note that if π6 is extended with {p}, the situation is reversed: the sole stable

extension of (π6 ∪ {p})± is {p+}, and in the corresponding ABF we have that

{∼p+} is attacked by {∼p−}. Thus, the latter is the unique stable extension in this

case, as expected.

2. Consider the following extended disjunctive logic program:

π7 = {→¬p∨¬q, ∼¬p→ p, ∼¬q→ q, p→ s, q→ s}.
We obtain the following translated disjunctive logic program:

π±
7 = {→ p− ∨ q−, ∼p− → p+, ∼q− → q+, p+ → s+, q+ → s+}.

The corresponding assumption-based framework is:

ABF(π±
7 ) = 〈L, π±

7 , {∼p+,∼p−,∼q+,∼q−,∼s+,∼s−},−〉.
A fragment of the resulting attack diagram is given below:

{∼q−}{∼p−}

{∼q+}{∼p+}

{∼s+}

{∼s−}

There are two stable sets of assumptions, {∼q−,∼p+,∼s−} and {∼p−,∼q+,∼
s−}, corresponding (respectively) to the stable models of π±

7 {p−, q+, s+} and

{q−, p+, s+}, which in turn correspond (respectively) to the two stable models of

π7 {¬p, q, s} and {¬q, p, s}.
3. Let π8 = {→ p, → q, → r, →¬p∨¬q}. This logic program reflects an incon-

sistent information regarding {p, q}. The translated program is π±
8 = {→

p+, → q+, → r+, → p− ∨ q−}, and the induce induced ABFs is ABF(π±
8 ) =

〈L, π±
8 , {∼p+,∼p−,∼q+,∼q−,∼r+},−〉. Part of the attack diagram in this case

is the following:
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{}

{∼p+} {∼q+} {∼r+}

{∼p−} {∼q−}

The stable extensions of ABF(π±
8 ) are therefore {∼q−} and {∼p−}, corresponding

to the stable models {p+, p−, q+, r+} and {q+, q−, p+, r+} of π±
8 . In both models,

inconsistency is ‘”localized”: p is the only contradictory atoms in the former model,

and q is the only contradictory atom in the latter.

We observe that in Item 3 of the last example the two stable models of the logic

program π±
8 coincide with the paraconsistent stable models of π8 according to Sakama

and Inoue (1995). Next, we show that this is not a coincidence. First, we recall the

definition of the paraconsistent stable semantics in Sakama and Inoue (1995):

Definition 15.

Let M be a set of ¬-literals.

• The satisfiability relation |= is defined as follows (cf. Definition 6 , where M is a set

of atoms):

– M |= l iff l ∈M (for any ¬-literal l)
– M |= l1 ∨ . . .∨ ln iff M |= li for some 1≤ i≤ n (for any set of ¬-literals

{l1, . . . , ln}),
– M |= l1, . . . , lm,∼lm+1, . . . ,∼lm+k → lm+k+1 ∨ . . .∨ lm+k+n iff whenever M |= li

for every 1≤ i≤m and M 
|= lm+i for every 1≤ i≤ k, then M |= lm+k+1 ∨ . . .∨
lm+k+n.

We say that M is a model of an extended disjunctive logic program π iff M |= r for

every r ∈ π.
• The (2-valued) reducts of extended DLPs can be constructed just as in the

case without strong negation (cf. Definition 7), that is: πM consists of all the

rules l1, . . . , lm,→ lm+k+1 ∨ . . .∨ lm+k+n such that l1, . . . , lm,∼lm+1, . . . ,∼lm+k →
lm+k+1 ∨ . . .∨ lm+k+n ∈ π and lm+i 
∈M for every 1≤ i≤ k.

• A set of literals M is a paraconsistent stable model of π, iff M is a ⊆-minimal

model of πM .12

We now define a translation δ from ±-atomic formulas to ¬-literals by: δ(p−) =
¬p, δ(p+) = p, and denote δ(Θ) = {δ(p±) | p± ∈Θ}. Likewise, we define: δ−1(¬p) = p−,
δ−1(p) = p+, and denote δ−1(Θ) = {δ−1(l) | l ∈Θ}.

12 These notions are identical to the corresponding notions of Sakama and Inoue (2000), adapted to our
notations.
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The following correspondence result is now easily obtained:

Proposition 4.

let π be an extended disjunctive logic program. Then:

a) If E is a stable extension of ABF(π±), then δ(E) is a paraconsistent stable model

of π.

b) If M is a paraconsistent stable model of π, then δ−1(M) is a stable extension of

ABF(π±).

Proof.

The proof immediately follows from the following two observations:

• A setM of ¬-literals is a paraconsistent stable model of π iff δ(M) is a stable model

of π±. (This is straightforward from the definition of a paraconsistent stable model.

In particular, there are no rules governing interactions between ¬p and p for any

atom p, thus p and ¬p behave as unrelated literals in this semantics.)

• If E is a stable extension of ABF(π±), then E is a stable model of π±, and vice-versa:

if M is a stable model of π± then M is a stable extension of ABF(π±). (This follows
from Propositions 2 and 3.)

By the last proposition it follows that our approach allows to capture the paracon-

sistent stable semantics for extended disjunctive LP introduced in Sakama and Inoue

(1995) by a rather simple revision of the language. We refer also to Wakaki (2022, 2024),

where a further study of argumentative representations of extended disjunctive LP has

been undertaken. The latter requires to extend the set of rules in the translation. Thus,

depending on the application at hand, each approach has its benefits and downsides.

7. Related work and conclusion

This work generalizes translations from LP into assumption-based argumentation to cover

also (extended) disjunctive logic programs. Our framework was introduced in Heyninck

and Arieli (2019) and then generalized in Wakaki (2022), where Wakaki shows a seman-

tic correspondence between generalized assumption-based argumentation (Definition 2),

based on the logic in Section 3.1, and extended disjunctive LP. In Wakaki (2024), this

correspondence is carried on to further formalisms for non-monotonic reasoning, includ-

ing disjunctive default theory, parallel circumscription, and prioritized circumscription.

Even though a different symbol for disjunction (denoted by | ) is used in Wakaki 2022,

2024), the semantics of this connective is the same as the one we consider here, when pro-

grams are restricted to ¬-free disjunctive logic programs (i.e., programs without strong

negation, see also the supplementary material). When looking at more general classes of

logic programs, different semantics have been proposed, for example Gelfond’s answer

set semantics for extended disjunctive logic programs (which are represented argumen-

tatively in Wakaki 2022, 2024)). Thus, the family of extended logic programs considered

here is somewhat different than the extended logic programs considered in Wakaki 2022,

2024). In that respect, some difficulties that arise when representing disjunctive informa-

tion in Reiter’s default theory (Reiter 1980) are indicated and resolved in Wakaki (2024).
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Rationality postulates and connections to related non-monotonic formalisms, such as

answer set semantics and disjunctive default theories, are also discussed in Wakaki 2022,

2024).

A work with a similar motivation is presented in Wang (2000), where a representation

of DLPs by structured argumentation frameworks is proposed. In this framework, the

assumptions are disjunctions of negated atoms ∼p1 ∨ . . .∨∼pn, instead of just negated

atoms as in our translation. Furthermore, unlike Wang (2000), we define our translation

in assumption-based argumentation, which means that meta-theoretical insights (e.g.,

complexity results (Dimopoulos 2002) or results on properties of the non-monotonic con-

sequence relations (Čyras and Toni 2015; Heyninck and Arieli 2020; Arieli and Heyninck

2025), dialectical proof theories (Dung et al . 2006a, 2006b), and different implementations

(Craven et al . 2013; Toni 2013), can be directly used.

A representation of disjunctive LP by abstract argumentation is studied in Bochman

(2003). In that translation, nodes in the argumentation framework correspond to single

assumptions ∼p, as opposed to sets of such assumptions as in our translation. Because of

this, the translation in Bochman (2003) has to allow for attacks on sets of nodes , instead

of just nodes, necessitating a generalization of Dung’s abstract argumentation frame-

works (Dung 1995). Since we work in assumption-based argumentation, where nodes

in the argumentation framework correspond to sets of assumptions, the argumentation

frameworks generated by our translation are normal abstract argumentation frameworks.

This is important since in that way results and implementations for abstract argumen-

tation frameworks can be straightforwardly used and applied. Yet, the characterizations

in Bochman (2003) of 3-valued semantics of disjunctive logic programs by generalized

abstract argumentation frameworks could provide valuable insights into the conditions

(if any) under which a similar correspondence may be established with assumption-based

argumentation.

Another related, but more distant line of work, is concerned with the integration of

disjunctive reasoning in structured argumentation with defeasible rules (see Beirlaen et

al . 2017, 2018). We differ from this work both in the goal and the form of the knowledge

bases.

In future work, we plan to generalize our results to other semantics for disjunctive LP,

such as the disjunctive well-founded (Brass and Dix 1998), extended well-founded (Ross

1992), and stationary semantics (Przymusinski 1990). Some of these semantics are based

on ideas that are very similar to the ideas underlying several well-known argumentation

semantics. Likewise, for example, both the stationary semantics for disjunctive LP and

the preferred semantics from abstract argumentation (Dung 1995) can be characterized

using three instead of two “truth values”. Indeed, as noted in Section 5, for normal logic

programs the correspondence between the 3-valued stable models for normal logic pro-

grams (Przymusinski 1990) and complete labelings for ABA framework has been proven

by Caminada and Schulz 2017, 2018). On what conditions, if any, the correspondence

holds also for disjunctive logic programs, is still an open question. Finally, we hope to

extend our results to more expressive languages, such as epistemic (Gelfond 1994) and

parametrized LP (Goncalves and Alferes 2010).

https://doi.org/10.1017/S1471068425100070 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100070


Argumentative Characterizations of (Extended) DLPs 25

Acknowledgments

We would like to thank the reviewers of this paper for their detailed and insightful com-

ments. The work on this paper was partially supported by the Israel Science Foundation

(Grant No. 550/19).

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/

S1471068425100070.

References
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