
Robotica (2025), 1–22
doi:10.1017/S0263574725102841

RESEARCH ARTICLE

Real-time slip detection with friction-scaled vibrotactile
feedback for robotic sixth-finger-assisted manipulation
Naqash Afzal1 , Basma Hasanen1, Lakmal Seneviratne1, Oussama Khatib2 and Irfan Hussain1

1Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University, Abu Dhabi, United Arab Emirates
2Stanford Robotics Laboratory, Computer Science Department, Stanford University, Palo Alto, CA, USA
Corresponding authors: Naqash Afzal; Email: malik.naqash.afzal@gmail.com; Irfan Hussain; Email: irfan.hussain@ku.ac.ae

Received: 8 April 2025; Revised: 9 October 2025; Accepted: 18 October 2025

Keywords: vibro-tactile; wearable robotics; haptic feedback; friction; extra-robotic limbs

Abstract
The integration of extra-robotic limbs or fingers to enhance and extend motor capabilities, particularly for grasping
and manipulation, remains a major challenge. In contrast to the natural human hand, which achieves highly dexter-
ous and adaptive grasping, the performance of current extra-robotic limbs or fingers is still markedly limited. Human
hands can detect the onset of slip through tactile feedback originating from tactile receptors during the grasping pro-
cess, enabling precise and automatic regulation of grip force. This grip force is scaled by the coefficient of friction
between the contacting surface and the fingers. The frictional information is perceived by humans depending upon
the slip happening between the finger and the object. This ability to perceive friction allows humans to apply just the
right amount of force needed to maintain a secure grip, adjusting based on the weight of the object and the friction
of the contact surface. Enhancing this capability in extra-robotic limbs or fingers used by humans is challenging.
To address this challenge, this paper introduces a novel approach to communicate frictional information to users
through encoded vibrotactile cues. These cues are conveyed on the onset of incipient slip, thus allowing the users
to perceive the friction and ultimately use this information to increase the force to avoid dropping the object. In a
2-alternative forced-choice protocol, participants gripped and lifted a glass under three different frictional con-
ditions, applying a normal force of 3.5 N. After reaching this force, the glass was gradually released to induce
slip. During this slipping phase, vibrations scaled according to the static coefficient of friction were presented to
users, reflecting the frictional conditions. The results suggested an accuracy of 94.53 ± 3.05 (mean ± SD) in per-
ceiving frictional information upon lifting objects with varying friction. The results indicate the effectiveness of
using vibrotactile feedback for sensory feedback, allowing users of extra-robotic limbs or fingers to perceive fric-
tional information. This enables them to assess surface properties and adjust grip force according to the frictional
conditions, enhancing their ability to grasp and manipulate objects more effectively.

1. Introduction
Extra-robotic limbs have gained significant attention over the past decade, particularly for enhancing
human capabilities and, more specifically, for rehabilitation purposes. Stroke is one of the leading causes
of limb paralysis, often resulting in significant and lasting impairment in the affected arm or hand [1].
This impairment can affect either the upper or lower limbs, leading to both physical and psychological
strain. Consequently, it can interfere with essential activities such as walking, dressing, eating, and other
daily tasks, ultimately diminishing the individual’s independence and potentially causing psychological
distress. Statistics from prospective cohort studies indicate that a relatively small proportion of stroke
patients with upper limb paralysis achieve full recovery within six months of the event. Specifically, only
between 5 and 20% of these individuals experience complete restoration of function in their affected arm
[2]. Thus, improving the functionality of the affected hand is essential for the overall recovery of stroke
patients with upper limb paralysis. This enhancement not only contributes significantly to their ability
to perform daily activities but also plays a vital role in their overall rehabilitation process [3, 4]. As a
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result of this trauma, various motor impairments can significantly impact hand function, affecting both
motor execution and motor planning/learning. These impairments may include weakness in the wrist
and finger extensors, increased muscle tone and spasticity in the wrist and finger flexors, cocontraction
of muscles, where opposing muscles contract simultaneously, impairing smooth movement, reduced
independence of finger movements, poor coordination between grip and load forces, making it difficult
to manage objects effectively, inefficient scaling of grip force and peak aperture, leading to difficulties
in grasping and manipulating objects, delays in the preparation, initiation, and termination of gripping
actions, affecting the ability to handle objects safely [5–7]. These motor impairments highlight the com-
plex nature of hand function recovery after stroke and underscore the need for targeted rehabilitation
strategies to address each specific issue.

Humans have developed and harnessed tools to amplify their sensory and motor abilities. This
remarkable aptitude for tool use is a signature trait of our species, profoundly shaping our evolution
and advancement throughout history. Extending sensory processing beyond the nervous system is com-
mon in the animal kingdom; for instance, rodents use whiskers to explore objects, while spiders detect
prey through their webs [8]. Similarly, in humans, the nervous system perceives tools as extensions of
the body’s sensory system, rather than mere connections between the hand and the environment [9–11].
Building on this natural phenomenon, modern technology has advanced robot-assisted therapies, which
are now widely adopted in rehabilitation and have gained significant attention for their seamless integra-
tion into treatment plans [12, 13]. The use of extra-robotic limbs or fingers has been particularly effective,
as evidence shows that their application leads to enhanced neural representations and improvements over
time [14]. Robotic devices enable high-intensity, repetitive, and task-specific exercises, delivering inter-
active treatment to the affected limb. In addition, these technologies offer an objective and reliable means
of tracking patient progress throughout the rehabilitation process. Furthermore, motor augmentation, a
rapidly advancing field, is dedicated to enhancing human physical capabilities beyond rehabilitation.
Consequently, researchers are currently developing advanced supplementary robotic fingers and limbs
designed to provide functional support. These augmentative devices are designed to transform our inter-
action with the environment, leading to alterations in how we move and control our biological bodies.
By integrating with our physical capabilities, they enhance and redefine our physical interactions and
operational efficiency [15–17]. Other approaches have explored embedding additional sensing modali-
ties into prosthetic devices, such as integrating a camera in the palm of the prosthetic hand to support
automated object grasping through machine learning [18]. Recently, Dominijannia et al. addressed a
critical and previously unresolved challenge: allowing users to control extra-robotic limbs effectively
without disrupting their existing functional abilities [19]. Users can receive training to master the use of
extra-robotic limbs while seamlessly integrating them with their routine motor tasks. This proficiency
enables them to perform complex activities with greater efficiency and effectiveness. Despite the rapid
progress in the development of extra-robotic limbs, a critical aspect often overlooked is how to effec-
tively convey sensory feedback from the limb-object interface to the user, particularly during gripping
and manipulation tasks.

In order to match the sensory capabilities of human fingers, providing sensory feedback from the
fingers to the user is essential, especially when robotic limbs are used for gripping and manipulation
tasks. When we hold objects like tools, in addition to automatic motor adjustments, we consciously
sense the slipperiness of the surface and whether the skin provides enough traction for safe and effective
handling. Therefore, sensing friction between the object and the finger is crucial for maintaining safe and
secure contact during manipulation. Grip force regulation using extra-robotics limbs is quite challenging
because of the dynamic nature of the task. In the present study, we developed a novel technique to detect
real-time slip during object lifting with extra-robotic fingers. This approach utilizes vibrotactile cues
to deliver real-time feedback to the same limb, with the intensity of the cues dynamically scaled to the
coefficient of friction between the robotic sixth finger and the object as soon as slip is detected (Fig. 1).
It should be noted that the vibrator used in our system functions solely as an actuator to deliver feedback,
while friction and slip are sensed by the ATI Nano-17 force–torque sensor; the novelty lies in how these
sensor signals are processed and encoded into friction-scaled vibrotactile cues. We further evaluated the
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Figure 1. Instrumented robotic sixth finger: participant performing griping and lifting task using the
instrumented robotic sixth finger.

strategy using a two-alternative force-choice protocol by using three different levels of friction for the
participants. Our results indicated 94.53% overall accuracy in perceiving the three different levels of
friction using the robotic sixth finger.

2. Related work
Supernumerary robotic limbs (SRLs) are an emerging category of wearable auxiliary devices designed
to assist humans, and they have recently become a major area of interest in research around the world.
Various types of SRLs have been developed to serve different functions, acting as an extra arm or leg
to support the human body and assist with tasks or operations. These applications include using robotic
arms to assist aircraft assembly workers in handling heavy tools [20, 21], providing additional fingers to
help hemiplegia patients complete everyday tasks [22], and employing robotic arms to work in coordi-
nation with users to perform complex or fatigue-inducing tasks, such as overhead operations [23]. SRLs
provide essential physical support to their users, offering new possibilities to enhance human motor
skills. However, grasping is one of the most fundamental and critical functions of extra-robotic upper
limbs and fingers that remains a significant challenge. Reliable force control during object grasping is
essential. Applying too much force can damage the object, while insufficient force might cause the object
to slip. Effective grasping requires adjusting grip strength based on the friction between the fingers and
the object. Although many grippers are preprogrammed to handle specific tasks, this approach strug-
gles in unstructured environments where the characteristics of objects are unknown in advance, making
precise grasping more challenging. An effective grasping control strategy should allow a robot to handle
objects with varying characteristics within its operational limits. Relying on maximum force for grasp-
ing is impractical, as it can damage delicate objects. In this regard, current robotic grippers’ grasping
capabilities fall short compared to human hands. Humans can accurately adjust grip force based on the
tactile feedback from their fingers, ensuring that the force applied does not significantly exceed what is
required for a safe grip [24]. These capabilities significantly enhance the range of objects that human
hands can grip and manipulate. Previous research has shown that detecting slips at the fingertip is crucial
for controlling grasping force effectively [25]. The human hand regulates grip force by detecting friction
between the fingers and the contact surface through subtle fingertip movements or slip displacement
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[26–28]. This slip sensation in human hands is detected before larger, more noticeable slips occur [29].
Hence, integrating slip-sensing capabilities into robotic grippers is crucial for improving their grasping
performance, as it mirrors the human ability to sense and adjust grip before significant slipping occurs.

The slip hypothesis in epicritic tactile perception suggests that when sensors and objects move rel-
ative to each other, they act like a frictional system, causing sudden, jerky movements called “slips.”
These slips are influenced by the object’s shape, the forces involved, the materials in contact, and the
surrounding environment. This process helps encode sensory information and shapes how we use our
perceptual strategies, including how we move our sensors [30]. In human hands, all tactile afferents
are responsive to slip events, but fast-adapting type I (FA-I) afferents, in particular, accurately encode
the compressive strain rates associated with these slips. Due to their high density in the fingerpads,
FA-I afferents are especially effective at detecting incipient slips [31]. Slip detection involves two main
phases: macro slip, where the entire surface of two objects slides past each other, and incipient slip,
where only some parts of the surface move while others stay in place. Numerous reviews provide com-
prehensive overviews of the various methods used for slip detection [32, 33]. These reviews reveal that
macro slip detection is limited to indicating just two states: slip or no-slip. When macro slip is absent,
the data fail to reveal how close the situation is to macro slip, restricting its effectiveness in guiding grip
force control. In contrast, human hands can adapt their grip by reducing excessive force, especially when
handling very light objects, to optimize effort and avoid unnecessary strain [34, 35]. Moreover, relying
on macro slip detection alone, which only starts adjusting grip force after a slip has occurred, makes
it challenging to apply sufficient force to prevent the object from falling. In contrast, human hands can
sense friction conditions on the object’s surface and adjust grip force proactively, preventing macro slip
before it happens [29, 36]. In summary, relying solely on the macro slip for controlling grip force lacks
both precision and reliability.

Most current research on detecting incipient slip qualitatively has focused on vibration analysis
[37–39]. However, these studies fail to distinguish between the vibrations associated with incipient slip
and those occurring during macro slip. In addition, some studies for qualitative detection of incipient slip
utilize strain measurements [40], analyze contact regions [41], or rely on specialized sensor designs [42].
However, few studies offer direct validation of whether their detection methods truly identify incipient
slips. While many claim that their techniques can detect incipient slip before macro slip [37–40], they
often do not specify or verify the exact timing of this detection. Hence, Chen et al. have raised concerns
about whether these methods truly detect incipient slip or simply identify it earlier than conventional
macro slip detection techniques. Even if these methods can capture the incipient slip state before macro
slip occurs, they only offer an improvement over macro slip detection. They still fall short in provid-
ing information about how close the contact state is to macro slip when incipient slip is not detected.
Therefore, they remain inadequate for tasks requiring precise grip force control [33]. In addition to
macroscopic force–torque sensing approaches such as the one employed in this study, recent advances
in nano-scale tactile sensors based on carbon–polymer nanocomposites offer ultra-high spatial resolu-
tion and sensitivity for detecting micro-slip and fine textures [43]. Quantitative detection of incipient slip
provides a precise measurement of how close the current contact state is to macro slip by using specific
indicators. By continuously monitoring this data, we can fine-tune the grip force to keep the degree of
incipient slip near a critical threshold, just before macro slip occurs. This approach enables the applica-
tion of the optimal amount of force, avoiding excessive pressure while maximizing the success rate of
grasping tasks. Such control closely mirrors the precision of manual grip adjustments, which are based
on real-time tactile feedback. Therefore, in this paper, we aim to enhance the detection of incipient slip
and integrate haptic feedback mechanisms, ensuring that the robotic sixth finger is equipped with sen-
sory capabilities rather than functioning solely as a mechanical assistive device. By integrating these
advancements, we aim to enhance the adaptability and effectiveness of supernumerary robotic fingers,
making them more responsive and intuitive in handling a diverse range of objects.

Vision-based techniques are widely utilized to assess the extent of incipient slip. The current methods
for assessing incipient slip focus on detecting stick and slip zones on the contact surface, using the ratio
of the stick (or slip) region to the total contact area as a key metric for gauging the extent of slip.
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Maeno et al. measured the shear strain distribution within silicone during contact by embedding strain
gauges into the material [40]. They showed that this distribution could accurately represent the stick-
slip condition on the contact surface. Moreover, the stick and slip regions were identified by analyzing
the strain changes at each strain gauge [44], and the grip force was subsequently adjusted based on the
size of the stick region. Vision-based tactile sensors are gaining popularity for slip detection. These
sensors are integrated with an internal camera and feature multiple embedded markers on their surface.
By tracking the movements of these markers, the sensors can capture detailed deformation data from
the contact surface [45–49]. This approach, which relies on the area ratio of the stick and slip regions,
has a well-defined physical interpretation. It provides a direct measure of how close the system is to
experiencing macro slip, as the complete disappearance of the stick region signals the onset of macro
slip. Furthermore, this approach is effective in cases involving rotational and translational slips [48,
50]. This is because the identification of the stick/slip region is typically unaffected by the specific type
of slip. However, this method is limited to simple contact scenarios and becomes ineffective when the
direction of the tangential force changes or macro slip occurs, making it difficult to accurately assess the
degree of incipient slip. In addition, it is computationally intensive due to the complex image processing
required, which poses a significant challenge. Alternative approaches such as vision-based slip detection,
auditory cues, or direct electrical stimulation have been investigated, but these are either computationally
intensive, intrusive, or cognitively demanding for real-time use. In contrast, vibrotactile feedback (VTF)
provides a noninvasive, low-cost, and intuitive channel for communicating slip and friction information
to the user. In summary, while quantitative slip detection methods have been implemented in robotic
grippers, integrating extra-robotic limbs with slip detection for automatic grip force regulation presents
significant challenges that have not been adequately addressed. To tackle this, our paper proposes a novel
technique for detecting slips and encoding this information in the form of vibrotactile cues. This sensory
feedback is then communicated to the user to sense the friction of the object, which will further enable
extra-robotic limbs to adjust grip force dynamically and optimize stability when handling lightweight
objects in the future.

3. Methods
3.1. Ethical approval
The experimental protocols were approved by the Human Research Ethics Committee (Approval # H23-
007) at Khalifa University, Abu Dhabi. This study conformed to the standards set by the Declaration of
Helsinki, except for registration in a database. All the subjects provided written consent before the start
of the experiment.

3.2. Participants
Eight healthy right-hand-dominant subjects (7 male (age 33.87 ± 6.35 years, mean ± SD); 1 female)
participated in the experiment. All subjects in the study reported no history of neurological disorders
and presented no clinical signs that would indicate altered skin sensitivity or motor function of the hand.
All subjects used their non-dominant hand for the experimental tasks.

3.3. Experimental apparatus
A 3D-printed robotic sixth finger, as developed by ref. [15], features a modular, flexible finger, a sup-
port base, and an adjustable strap for attachment to the user’s arm. This design utilizes a combination
of 3D-printed PLA polymer for structural rigidity and thermoplastic polyurethane for flexibility. The
finger’s movement is driven by a single actuator, which pulls a tendon (or fishing wire) running through
the rigid section of the finger. The tendon is anchored at one end to the fingertip and at the other to a
pulley on the actuator, ensuring a stable grip. The finger automatically adapts to variations during use,
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Figure 2. Schematic of the whole control process after getting force feedback from the sensor and
sensing haptic feedback to the user.

improving grip efficiency. The support base houses the actuator and includes a strap that secures the
device to the user’s forearm, with a symmetrical design allowing for use on either arm. A custom 3D-
printed housing was attached to the fingertip to mount a six-axis ATI Nano-17 force–torque sensor (ATI
Industrial Automation, NC, USA). The finger’s actuation is powered by a Dynamixel MX-64T servo
motor (Robotis Co. LTD, Seoul, Korea), controlled via an ArbotiX-M Robocontroller. For haptic feed-
back, an armband was equipped with an eccentric rotating mass (ERM) coin vibration motor (Precision
Microdrives Co. LTD, USA), which is operated using an L298N Motor Driver Module controlled by an
Arduino UNO (Fig. 2). The ERM coin vibration motor was used solely as the haptic feedback actuator;
it does not sense friction but instead conveys the encoded slip and friction information derived from the
force–torque sensor. An external battery is used to provide power to all the circuits. All the electronics
are enclosed in a 3-D printed box. A transparent water glass was mounted with two different sandpapers
with grit no. P5000 represents the medium friction surface in the experiments, and P800 represents the
high friction surface in the experiments. The weight of the glass was about 280g. A soft PLA-printed
base was affixed to the “Tool Adapter Plate” of the force sensor, which made contact with the gripping
object. To measure friction, we generated slip by gradually releasing the glass, and assessed the friction
between the soft base on the sensor’s fingertip and the glass surfaces. The static coefficient of friction
(μs) was determined by calculating the ratio of tangential to normal force at the point when the entire
fingertip contact area began to slip. Slip timing was identified through visual inspection of the force
traces, specifically when a decrease in tangential force was observed (Table I).
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Table I. Measured coefficient of friction.

Friction level Contacting surface COF (μ)
Low Glass 0.25
Medium Sandpaper (grit no. P5000) 0.55
High Sandpaper (grit no. P800) 0.95

Figure 3. Experimental setup and protocol: (A) participant wearing robotic sixth-finger instrumented
with an ATI-Nano-17 force–torque sensor, an armband with an ERM vibration motor, and an eye shield
(B), GUI designed to guide the experimenter during trials where the sixth finger grips a glass with three
different friction levels. The GUI prompts the experimenter to initiate the grip and, after reaching a
threshold normal force of 3.5 N, lift the glass. Release begins after lift-off. Real-time bar charts dis-
play force/torque levels to ensure target forces are met and to prevent damage during process (C), the
schematic of the experimental sequence (D), schematic illustration of the time course of presentation
and evaluation of the stimulus pairs by subjects touching the friction modulation device (H vs. M and H
vs. L denote pairs of stimuli where H is high friction; L is low friction; M is medium friction). Glass is
gripped for the L condition and sandpaper with different grit no. is gripped for the M and H condition.

3.4. Experimental protocol
Participants were seated comfortably in a height-adjustable chair, with the robotic sixth finger attached
to the distal forearm on the volar side, near the wrist. The device was supported by the volar part of the
wrist, aiding in lifting objects. An armband equipped with an ERM vibration motor was worn on the
biceps of the same arm to provide haptic feedback. To eliminate visual cues, participants wore an eye
shield, preventing them from seeing the glass gripped by the sixth finger. The task required participants
to grip and lift a glass in different orientations, each with varying friction levels at the fingertip (Fig. 3A).
A two-alternative forced-choice (2AFC) protocol was used in the psychophysics study to evaluate partic-
ipants’ ability to perceive slip via haptic feedback on the biceps. For each pair of trials, two grip-and-lift
actions were performed with different friction levels. The experimenter adjusted the glass orientation
and initiated the gripping task using a graphical user interface (GUI) developed in MATLAB, which
displayed commands and force targets via real-time progress bars (Fig. 3B).
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The trial began with the command, ”Press Button-1 to initiate gripping.” The experimenter confirmed
the correct orientation of the glass’s contact surface with the fingertip before pressing Button-1 to start
the finger’s motion. The finger continued to move until it touched the surface of the glass, where a short
vibration cue was delivered to the participant upon initial contact, detected when the grip force reached
0.5N. Next, the GUI prompted, ”Press Button-2 to continue gripping until 3.5 N.” The experimenter
pressed Button-2, increasing the grip force to the target threshold of 3.5 N. Once reached, the GUI
instructed, ”Press Button-3 to slowly release the glass.” The participant was directed to lift the glass
2–3 cm above the table and hold it in the air. The experimenter then pressed Button-3 to initiate a
slow release. When the glass began to slip, a vibrotactile cue, scaled according to the friction between
the glass and the fingertip, was delivered to the participant’s forearm. After the vibration stopped, the
experimenter pressed Button-4 to fully release the object. The next trial, with a different friction level and
glass orientation, followed the same procedure. Once both lifts in the pair were completed, participants
verbally indicated which of the two stimuli felt more slippery (i.e., which vibration cue had less intensity)
(Fig. 3D), and their responses were recorded by the experimenter.

A training block consisting of 10 stimulus pairs was conducted before the experiment to familiar-
ize participants with the task. The 2-AFC protocol was used to assess participants’ ability to perceive
frictional differences through haptic feedback delivered to the forearm. Each condition was tested using
30 stimulus pairs, divided into three experimental blocks of 10 pairs each, with a 5-min break between
blocks to prevent bicep numbness and stimuli adaptation. Each pair of stimuli (H–M: high vs. medium,
M–L: medium vs. low, H–L: high vs. low) was presented 10 times. In 5 trials, the higher-friction stimulus
was presented first, followed by the lower-friction stimulus, and in the remaining 5 trials, the lower-
friction stimulus came first. All stimuli were presented in a pseudorandom order. A schematic of the
entire experimental protocol is shown in Fig. 3(C).

3.5. Statistical analysis
Analysis of variance (ANOVAs) and post hoc paired sample tests (with Bonferroni-corrected values for
multiple comparisons) were performed if a comparison of more than two groups was required. Fractional
degrees of freedom are reported accordingly to the Greenhouse–Geisser correction when Mauchly’s test
of sphericity showed that the assumption of sphericity had been violated. When a D’Agostino–Pearson
normality test P < 0.05 indicated that the data were not normally distributed, instead of ANOVA, the
Friedman test was used.

3.6. Data acquisition
Signals from the force/torque sensor were captured using MATLAB (R2023b) and the Net/FT Box
integrated with a desktop computer equipped with an Intel i9-14900KF processor. The position data
from the Dynamixel MX-64T servo motor, which actuates the tendon-driven mechanism controlled by
the ArbotiX controller, were also recorded using MATLAB and saved in CSV format. All force and
torque measurements, as well as motor position data, were systematically recorded and stored in CSV
files for subsequent analysis.

3.7. Algorithm for friction-scaled haptic feedback on the onset of slip
In the gripping process, two primary forces are crucial for stabilizing the grip and ensuring successful
manipulation. The grip force, or normal force, is applied perpendicular to the object being gripped and is
denoted by fn. During the lifting of the object, a tangential force ft is generated at the interface between the
fingertip and the contacting surface. This tangential force is scaled by the coefficient of friction between
the surface and the weight of the object and acts in the direction opposite to the object’s weight.
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Algorithm 1: Algorithm for friction-scaled haptic feedback.
Input: : Normal Force, : Tangential Force
Output:
Data: : Control Gain, max: Maximum Amplitude, max: Maximum Frequency

1
2

2
thresh

= 0.3 / 2: Tangential Force Acceleration Threshold

2 Initialization:
3 Set initial amplitude = 0 and frequency = 0
4 Set timer start = 0 to start 10 seconds after peak tangential force

5 Detect Peak Normal Force:
6 if reaches its peak value then
7 Set start = current time + 10 seconds

8 Begin monitoring after 10 sec:

9 while Sensor data > 0 and current time start do
10 Compute and

2

2 from sensor data

11 Compute current slip ratio =

12 Check Double Derivative:

13 Compute the difference in double derivative: Δ 2 =
2

2
thresh

−
2

2

14 if Δ 2 > 0 then
15 / ← min( / max · Δ 2 )
16 else
17 / ← max 0 · (−Δ 2 )

18 / ← min

max 30,min 255,
peak ·

1
peak

−Δ 2
,

max 30,min 255 peak ·
1

peak
· (−Δ 2 )

Check Slip Ratio:

19 Compute the difference in slip ratio: Δ = | peak − |
20 if Δ ≥ 0.5 then
21 / ← min 30,max 255, peak ·

peak

22 else
23 / ← 0

24 Simultaneous Condition Check:

25 if Δ 2 > 0 or Δ 0.5 then
26 Adjust amplitude and frequency based on the condition met first

27 if Δ 2 > 0 then
28 Adjust amplitude and frequency based on double derivative
29 else
30 Adjust the frequency based on slip ratio difference

31 Send the signal to the vibration motor with the values and
32 else
33 Motor Silent: ← 0, ← 0
34 No signal sent to vibration motor

35 Update Parameters:

36 Recalculate
2

2 and using the latest sensor data

37 if = max or = max then
38 Reduce to prevent oscillation

39 Log Data:

40 Store current values of , ,
2

2 , and for analysis

41 Final values of amplitude , frequency , and corresponding force rate
2

2
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The ratio of the magnitude of the tangential force to the normal force is denoted as the μs:

μs = | ft|
| fn|

Considering only Coulomb friction, the minimum tangential force required to maintain a secure grip
on the object can be determined. This relationship is defined as:

ft ≥ μs fn

This inequality ensures that the tangential force is sufficient to counteract the frictional resistance and
prevent the object from slipping. However, it will be challenging if the μs is not known because μs can be
measured only at the moment of slip onset, thus we devised instead to use the acceleration of tangential
force to devise the slippage. To detect slip, the double derivative (acceleration) of the tangential force
d2ft
dt2

is monitored. A quantitative measure for d2ft
dt2

greater than the threshold value is set to indicate slip.
After conducting pilot experimentation, we devised the threshold to be 0.3 N/s2.

If the second derivative of the tangential force exceeds a threshold, it is interpreted as an indication
of slippage. Consequently, upon detecting this event, the frequency/amplitude of the vibration motor
delivering haptic feedback is scaled according to the relationship (3):

max

(
30, min

(
255,

fpeak · 1
SRpeak

−�d2ft

))
, if �d2ft < 0 (Low) (1)

max

(
30, min

(
255, fpeak · 1

SRpeak
· �d2ft

))
, if �d2ft > 0 (High) (2)

The final frequency f is the minimum value derived from both conditions:

A/f = min

(
(1)

(2)

)
(3)

where

• fpeak is the peak frequency of the vibration motor (255).
• SRpeak is the peak slip ratio observed after a stable grip.
• �d2ft is the second derivative difference of the tangential force.

Simultaneously, the change in slip ratio is continuously monitored. When the slip ratio difference
exceeds a threshold, it serves as another indicator of slippage. As a result, the frequency and amplitude
of the vibration motor providing haptic feedback are scaled according to the relationship (4):

A/f =
{

min
(

30, max
(

255, fpeak·k
SRpeak

))
if �SR ≥ 0.5

0 if �SR < 0.5
(4)

where

• k is a constant that adjusts the scaling factor to ensure the frequency remains within bounds.

4. Results
First, we computed the static coefficient of friction between the fingertip of the robotic 6th finger and the
contacting surface. We ensured that there was a significant difference in the friction coefficient between
the pair of lifting trials. The coefficient of friction for the three surfaces glass, and two sandpapers is
given in Table I.
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Table II. Confusion matrix for the vibrotactile magnitude perception.

Response
Stimulus High Medium Low Sum
High 137 23 0 160
Medium 0 159 1 160
Low 0 0 160 160
Sum 137 182 161 480

Figure 4. Participants performance: barplots displaying the mean and standard deviation percentages
of correct responses across friction pairs. ∗∗∗∗ P ≤ 0.00001 (Bonferroni corrected). Blue circles show
the individual responses for the hvsM condition, green triangles show individual responses for the MvsL
condition, and red squares show individual responses for the HvsL condition.

4.1. Ability to perceive slip
The ability to perceive friction of the individual subjects for the three pairs of stimuli is shown
in Fig. 4. The overall accuracy across subjects was 94.53 ± 3.05%(mean ± SD;n = 8). For the pairs
of stimuli with the largest frictional difference (H–L), all 8 subjects performed 100%. The dis-
crimination performance between the two stimuli with a smaller frictional difference, H–M and
M–L, also remained very high and was 83.75 ± 9.16% and 98.75 ± 3.54%(mean ± SD;n = 8), respec-
tively. There was a significant difference between the performance of the subjects among the three
pairs of stimuli (one-way repeated-measures ANOVA, (F(2, 21) = 20.351, P < 0.5). Post hoc analy-
ses indicated that the performance differed between stimulus pairs of highest frictional difference
(H−M vs. M−L, P < 0.5, H−M vs. H−L, P < 0.5) and was not significant between pairs of interme-
diate differences (H−M vs. M−L, P = 0.62; Bonferroni-corrected multiple comparisons). Only one
subject, S2 has a performance of 90% for the M–L stimulus pair. Even though only one subject S4
performed 100% during the H–M pair of stimuli, all other subjects were also above 80%.

The experimental results are presented in a 3 × 3 stimulus–response confusion matrix (Table II).
The rows represent the actual intensity of the vibrotactile stimulus, while the columns indicate the per-
ceived intensity reported by the participants. Each cell in the matrix shows the frequency with which a
given stimulus was classified as a specific intensity. Table II lists the data pooled from all the 8 partic-
ipants. Accuracy for the intensity perception ranged 85.6%(High Friction), 99.37%(Medium Friction),
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Figure 5. Normal force and tangential force traces as a function of time: each panel represents the
average of the 20 individual trials. Force traces are superimposed, solid lines indicate the normal force,
and the dotted line indicates the tangential force. The blue lines represent the forces during the high
friction condition, the red lines represent the forces during the medium friction condition, and the green
lines represent the forces during the low friction condition. The inset in each graph represents only
the mean tangential forces and the standard deviation synchronized at 0.5 N for all the 20 individual
trials for all frictional conditions. The solid line indicates the mean, and the shaded region indicates the
standard deviation.

and 100%(Low Friction). A visual inspection of the confusion matrix depicts that the maximum number
of trials falls in differentiating between the high friction and the medium friction.

4.2. Friction-scaled tangential forces during grasping
The normal force exerted by the robotic sixth finger is applied perpendicularly to the object, ensuring a
secure grip, while the tangential force increases simultaneously (Fig. 5). The target normal force applied
to the glass was consistently maintained at 3.5 N across all conditions before lift-off. This specific value
was determined based on the weight of the glass, combined with repeated pilot tests conducted on dif-
ferent surfaces. The pilot tests ensured that the chosen normal force was optimal, allowing for successful
and reliable lifting on the three selected surface types, while preventing unnecessary slippage or failure
during the lifting process. In addition, maintaining a constant force helped standardize the experiment,
ensuring that the variations in performance were due to other experimental factors, such as surface
characteristics, rather than inconsistencies in the applied force.

The inset in each graph (Fig. 5) represents the mean and standard deviation of the tangential forces,
which are synchronized at a baseline of 0.5 N. These tangential forces developed between the fingertip of
the robotic sixth finger and the contacting surface are scaled according to the coefficient of friction of the
surface in contact. An analysis of individual trials was conducted on three different surfaces—Sandpaper
1 (high friction), Sandpaper 2 (medium friction), and Glass (low friction) and demonstrated that the
material in contact with the fingertip had a significant effect on the tangential force generated, even
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Figure 6. Peak TF (tangential forces): barplots displaying the mean and standard deviation of peak
tangential forces across three frictional conditions. ∗ ∗ ∗ ∗ ∗P ≤ 0.000001 (Bonferroni corrected). Blue
circles show the average peak TF for each participant for high friction conditions, green triangles show
the average peak TF for each participant for medium friction conditions, and red squares show the
average peak TF for each participant for low friction conditions.

though the weight of the object remained constant throughout the trials. The results showed that as the
surface became more slippery, the tangential force required to maintain a secure grip and initiate lifting
was notably reduced. This effect was particularly evident during the gripping and lifting phases, where
the nature of the contact surface played a critical role in influencing the force dynamics. It appeared that
forces deviated earlier in the case of low friction surface contact as compared to the high and medium
friction surface contact.

In addition to assessing the overall tangential forces, we conducted a detailed analysis of the peak
tangential forces that were developed during the lifting trials (Fig. 6 (Bar graphs peak tangential force)).
The peak tangential force provides crucial insights into the interaction between the robotic sixth finger
and the varying surface materials, as it reflects the maximum force developed to counter gravity and
avoid dropping of the object during the critical phase of object lifting. The average peak tangential forces
measured across all subjects were 1.47 ± 0.18 N for the high-friction surface (Sandpaper 1), 1.26 ±
0.11 N for the medium friction surface (Sandpaper 2), and 0.61 ± 0.07 N for the low-friction surface
(Glass). These results were consistent across participants (mean ± SD;n = 8), indicating a clear and
predictable relationship between the frictional properties of the surface and the force required to lift the
object.

A one-way repeated-measures ANOVA was performed to statistically compare these peak forces
across the three different friction conditions. The analysis revealed a significant difference between
the frictional conditions (F(2, 21) = 92.46, p < .00001), demonstrating that the type of surface mate-
rial directly influenced the force dynamics during lifting. To further examine these differences, post hoc
analyses using Bonferroni-corrected multiple comparisons were conducted. These tests confirmed that
the peak tangential forces varied significantly between all three conditions, with a notable difference
between high and medium friction surfaces (High vs. Medium, p = .00924), and even more pronounced
differences when comparing medium vs low (p = .00000) and high vs low (p = .00000) friction surfaces.
These findings clearly demonstrate that the level of friction between the fingertip of the robotic sixth
finger and the surface plays a critical role in determining the magnitude of tangential forces required
to grip and lift the object. Higher friction surfaces, such as Sandpaper-1, required more substantial tan-
gential forces to achieve successful lifting, as the increased resistance provided by the rough surface
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Figure 7. Slip initiated at double-derivative threshold: the left axis of the graph has the slip ratio (fn/ft).
The right axis is the double-derivative of the tangential force (ft), which represents the acceleration. A,
represented the slip ratio and double derivative for the high friction. B, represented the slip ratio and
double derivative for the medium friction. C, represented the slip ratio and double derivative for the low
friction.

demanded greater force to overcome static friction. In contrast, the lower-friction surface, like glass,
required considerably less tangential force to initiate movement, as the smooth surface offered minimal
resistance.

4.3. Slip detection via second derivative of tangential force exceeding threshold
We analyzed the trials using the first condition check, where slip feedback was triggered by monitoring
the second derivative of the tangential force, which corresponds to the acceleration of the force applied
between the robotic sixth finger and the object. In this condition, slip feedback was initiated once the
second derivative exceeded a predefined threshold, signaling a slip event. The slipperier the surface, the
quicker the second derivative surpassed the threshold, leading to an earlier detection of slip. This resulted
in lower frequency vibrations being delivered to the biceps, providing more rapid feedback to the user
about the onset of the slip. Conversely, when the threshold was reached more gradually, as observed
with higher friction surfaces, the frequency of the vibration motor increased, delivering stronger and
more pronounced haptic feedback to the user’s biceps. This feedback system allowed the robotic sixth
finger to effectively communicate slip events to the user, giving them an intuitive sense of how securely
the object was being held, depending on the surface’s frictional properties. The dynamics of this process
are illustrated in Fig. 7, where the slip ratio and the second derivative of the tangential force are plotted
as functions of time. The left axis represents the slip ratio, which quantifies the extent of slip relative to
the force applied, while the right axis shows the second derivative of the tangential force, representing
the rate of change in the applied force. The graphs provide a clear visual representation of how slip
develops over time under different friction conditions.

We plotted the average values of the slip ratio and the second derivative of the tangential force across
the trials where slip feedback was triggered under the first condition check. Fig. 7(A) represents this
phenomenon for the high-friction condition (Sandpaper-1), where the slip ratio increases more gradually
over time, reflecting the higher resistance provided by the rough surface. This gradual increase results in
a delay before the slip threshold is reached, leading to higher-frequency, stronger haptic feedback as the
slip progresses more slowly. In contrast, Fig. 7(C) represents the low-friction condition (Glass), where
the slip ratio increases rapidly once slip is initiated, leading to a more abrupt and pronounced slip event.
In this case, once the slip begins, it continues until the object is fully dropped, as the smooth surface
offers minimal resistance. This rapid onset of slip is accompanied by a lower frequency of vibrations,
signaling a quicker detection of the slip event but with less intense feedback. Figure 7(B) represents the
medium friction condition (Sandpaper-2).
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Figure 8. Slip ratio (SR): the solid lines indicate the average slip ratio of all the trials. The shaded region
indicates the standard deviation. The blue line indicates the slip ratio for the high friction condition, the
red line indicates the slip ratio for the medium friction condition, and the green line indicates the slip
ratio for the low friction condition.

This comparison between high-friction and low-friction conditions underscores the importance of
accurately detecting and responding to slip events, particularly when gripping objects with low-friction
surfaces. In these cases, slip occurs more frequently and persists longer, as the robotic sixth finger strug-
gles to maintain a stable grip. As a result, we opted to monitor latency, which is scaled by the coefficient
of friction, as a more reliable indicator for triggering slip feedback. This approach ensures that slip events
are detected and signaled promptly, especially in situations where high slip ratios persist, such as when
manipulating objects with slippery surfaces. By incorporating this real-time slip feedback mechanism,
the robotic sixth finger will enhance the user’s ability to adjust their grip dynamically and maintain
control over objects across different surface types, effectively preventing drops and improving overall
performance in gripping tasks.

4.4. Slip detection based on slip ratio difference threshold
We further analyzed the trials using the second condition check, where slip feedback was triggered based
on the slip ratio difference threshold. This condition provided slip feedback when the difference between
the peak slip ratio, which occurred during the grasping phase, and the instantaneous slip ratio exceeded
the threshold. The feedback system responded to this difference by adjusting the intensity of the vibration
delivered to the user, thereby indicating the degree of slip. Figure 8 provides a detailed representation of
the mean and standard deviation of the slip ratio across three frictional conditions such as high friction,
medium friction, and low friction during trials, where slip was detected using the slip ratio difference.
At the start of each trial, after the sixth finger established a stable grasp on the object, the peak slip ratio
was measured under varying frictional conditions. This peak represented the maximum slip ratio that
occurred while the robotic finger maintained a secure hold on the object. The slip ratio was continuously
monitored throughout the trial, tracking how the grip evolved over time.

Once the experimenter initiated the release phase of the sixth finger, mimicking the scenario where
the object was being dropped, the difference between the peak slip ratio and the instantaneous slip ratio
was calculated in real-time. This difference was critical in determining when and how the feedback sys-
tem should respond. As the deviation between the peak and instantaneous slip ratios surpassed the preset
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threshold, the system activated, adjusting the vibration intensity delivered to the user’s biceps. The inten-
sity of the feedback was inversely proportional to the magnitude of the peak slip ratio measured, with
the larger peak slip ratio resulting in stronger intensity vibrations. This adaptive feedback mechanism
ensured that the user was continuously aware of any subtle changes in the grasp stability, especially as the
slip ratio fluctuated during the lifting and releasing phases. For high-friction surfaces, the peak slip ratio
was relatively small, resulting in high-intensity vibrations. On the other hand, for low-friction surfaces,
such as glass, the peak slip ratio was larger, leading to low-intensity feedback vibration. This highlighted
the system’s ability to detect the more frequent and pronounced slips characteristic of low-friction
conditions, where maintaining grip stability is more challenging.

5. Discussion
The utilization of extra-robotic limbs to enhance human motor abilities is extremely useful, but it also
poses significant challenges to be completely integrated. One of the biggest hurdles is the absence of the
sensory feedback we naturally rely on from our limbs. Without sensations like touch, pressure, or the
awareness of our body’s position (proprioception), it is challenging for the users to control these robotic
limbs smoothly and naturally. This gap in sensory feedback makes it hard to truly incorporate these limbs
into a person’s everyday movements, limiting their potential. To transform extra-robotic limbs from an
assistive device for limb rehabilitation to be a fully functional limb, we need to create advanced sensory
systems that can deliver real-time feedback in a way that feels natural, almost like a body part. If we can
achieve that, we will be able to unlock the full potential of these technologies, allowing them to signif-
icantly enhance human capabilities. In this study, we set out to bridge that gap by developing a novel
technique aimed at providing users with frictional feedback when they try to lift objects and encounter
slippage with these robotic limbs. Grasping and manipulating objects with varying surface textures and
friction requires this kind of information for a secure grip. In humans, tactile feedback from our fingers
provides crucial frictional information, which we sense either through exploratory finger movements
across a surface or when manipulating an object and feeling it start to slip [28, 51]. This feedback about
friction is extremely important for maintaining a stable grip in order to avoid dropping off the objects
and for surface exploration. Without it, even the most advanced robotic limb will struggle to mimic the
natural dexterity of the human hand. The robotic sixth finger was originally designed to assist stroke
patients by compensating for lost hand function, rather than serving as a comprehensive tool for hand
rehabilitation or a fully functional hand replacement. Its primary goal was to provide support for basic
tasks, rather than restoring the full range of motion and sensory feedback that a natural hand offers. As
a result, earlier studies did not attempt to equip the device with sensory feedback or automatic force
control. However, in this study, our goal is to integrate the capability to provide sensory feedback as
a first step. The idea is that this feedback will eventually be used either for manual adjustments by the
user or automatic force control by the device itself. Integrating friction feedback into these extra-robotic
limbs, we believe we can make a significant step forward in enabling smoother, more intuitive control,
allowing users to interact with their environment in a much more natural way. The long-term vision is
that, with sensory feedback systems like this, robotic limbs will become more than just functional tools;
they will start to feel like real extensions of the user’s body. The nature of integrating extra-robotic limbs
or fingers, such as the robotic sixth finger, can be broadly generalized to the concept of redundant design.
This type of design, which involves supplementary physical capacity, offers significant advantages, par-
ticularly in harnessing the resilience of a robotic system. Resilience for machines is a relatively new
concept [52], generally referring to the system’s ability to maintain function despite adverse conditions
or failures. In the context of our work, the supernumerary robotic finger provides functional redun-
dancy that enhances resilience in two ways: first, by compensating for the lasting functional impairment
of an affected hand, such as after a stroke; and second, by enabling the proactive adaptation required
for secure manipulation in unstructured environments. The system achieves this resilience by provid-
ing crucial sensory feedback, which mirrors human tactile ability to sense friction and incipient slip.
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This real-time, friction-scaled VTF allows the user to dynamically adjust grip force based on surface
properties, preventing the catastrophic failure of dropping the object. Thus, the redundancy inherent
in the extra-robotic limb design allows the augmented human–robot system to maintain stability and
effectiveness across varying external challenges, embodying the critical trait of resilience.

Previous studies have demonstrated that VTF is well-suited for providing supplemental sensory infor-
mation without taxing users’ auditory or visual attention, and without interfering with other essential
functions. This makes VTF an ideal choice for applications where additional sensory input is needed,
such as in assistive devices or robotic prosthetics. Furthermore, VTF has practical advantages it is
noninvasive, meaning it does not require complex surgical or physical modifications, and it’s also rela-
tively cost-effective to implement, making it a viable option for wider use in rehabilitation technology
[53, 54]. Given these benefits, we chose to use VTF to convey critical information about friction and to
cue the onset of slippage for users attempting to lift objects with a robotic sixth finger. This was par-
ticularly important for our target application, as the device was designed to assist stroke rehabilitation
patients. To replicate this scenario in our experiments, we simulated a situation where the dorsal region
of a paretic (weakened) hand acts as a support. At the same time, the robotic sixth finger is instrumented
with a force sensor at its fingertip, which gets in contact with the object. Haptic feedback was provided
on the same limb, specifically on the biceps of the same limb, using a single vibration motor, ensuring
that only one limb was engaged in the task. The novelty of this work lies not in the hardware of the vibra-
tor, which is commercially available, but in the real-time algorithm and system integration that translate
force–torque measurements into dynamically scaled vibrotactile cues, enabling users to perceive friction
and incipient slip with high accuracy.

To detect slippage, we developed an algorithm based on two key parameters: the second derivative
of the tangential force (which we refer to as slippage acceleration) and the slip ratio difference. This
allows the algorithm to adjust the intensity of the vibration motor based on friction levels, providing the
user with real-time, precise feedback. The second derivative of the slip ratio is critical for capturing how
quickly slippage occurs. For low-friction objects, slippage tends to accelerate more rapidly, while high-
friction objects experience slower slippage due to increased resistance. By monitoring these changes,
the system can identify different friction levels, enabling users to adjust their grip more effectively. The
second component of the algorithm, the slip ratio difference, acts as an additional safeguard. In some
cases, the first parameter alone might not detect slippage, especially when the hand is partially sup-
porting the object. Here, the object might still slip at the fingertip, but the rate of slippage may not be
significant enough to trigger a response based on slippage acceleration alone. However, the frictional
effects still need to be addressed, and this is where the slip ratio difference comes into play. It provides
a backup mechanism, ensuring that feedback is delivered even if the initial condition doesn’t trigger
the response. To account for the diverse behaviors of slippage and friction across different objects and
environments, we further refined the algorithm to avoid oversimplifications. The updated version con-
tinuously monitors the slip ratio in real-time, allowing it to detect even subtle variations in friction.
This dynamic feedback system instantly alerts the user when grip adjustments are necessary, ensuring a
more natural and intuitive experience. This advanced approach not only enhances rehabilitation efforts
for stroke patients but also paves the way for broader applications in prosthetics and assistive devices. By
offering a noninvasive, real-time method for conveying frictional information, we aim to make robotic
limbs feel like true extensions of the user’s body. This improvement allows users to perform tasks with
greater precision and confidence, making these devices more practical and effective in everyday life.

While the present work demonstrates a proof-of-concept framework for estimating friction and pro-
viding VTF, it does not adopt a formal design methodology such as axiomatic design or other systematic
frameworks commonly used in engineering practice [55, 56]. Our approach instead relied on leveraging
an existing high-precision force sensor (ATI Nano-17) to measure tangential and normal forces, from
which friction was estimated as their ratio, and on top of these estimates, we developed algorithms for
slip detection and translated this information into vibrotactile cues, enabling users to perceive the onset
and extent of slippage as well as the slipperiness of the surface. We acknowledge that the lack of a struc-
tured design methodology may represent a limitation, as it could affect the scalability, reproducibility,
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and systematic optimization of future haptic feedback systems. Nevertheless, the current focus was on
establishing feasibility and validating the perceptual effectiveness of friction-based feedback in human
users, and in subsequent stages we aim to incorporate general design frameworks, including those out-
lined in the suggested references, to systematically guide the extension of our approach toward more
complex perceptual goals, such as texture discrimination and biomimetic encoding strategies, thereby
improving both methodological rigor and the transferability of our findings to broader human–robot
interaction applications. In the subsequent stages, we will explore the concept of soft robots to design
new generation grippers, prosthetic hands, or rehabilitation assistive robots, which are characterized by
being adaptive [57] and resilient. A robust framework for these machines requires consideration of the
concept of resilience. [52]. The systematic design methodology for these advancements may follow prin-
ciples such as bio-inspired design [58], general engineering design methods [59], and the application of
compliant mechanisms. [60]

The ability to perceive friction through vibrotactile cues across three distinct friction conditions was
impressive, with all participants achieving over 90% accuracy across all 30 trials. We used a single-
vibration motor to focus exclusively on delivering slip and friction information by varying the intensity
of the vibrations. This streamlined approach effectively communicated the necessary sensory feedback,
enabling subjects to differentiate between friction levels with high precision. The initial touch was sig-
naled by a single vibration to inform the user that the object had made contact, mimicking the function of
fast-adapting tactile afferents (FA-I). Similar to how FA-I afferents respond rapidly to the onset of touch
(contact timing) but then quickly adapt and become inhibited later [27], the single vibration serves as
an immediate alert without overwhelming the user with continuous feedback. This approach allows the
user to recognize the contact moment while maintaining focus on subsequent actions. The confusion
matrix (Table II) shows that most confusions occurred when distinguishing the intermediate friction
level, while the other friction levels were easily differentiated with high accuracy. Localization of the
vibration motor was chosen carefully to maximize the perceptual accuracy [61]. These results highlight
the effectiveness of the stimulation site and the vibrotactile modality in conveying sensory information.
Augmenting the robotic sixth finger with sensory feedback represents a significant step toward trans-
forming it from a basic assistive device [62] into a more advanced, intuitive tool. This enhancement
improves the user’s ability to interact with objects naturally, bringing the device closer to functioning
as an integrated extension of the body.

In order to validate the study, we intentionally kept the grip force constant throughout the experi-
ments. Our primary aim was to assess the effectiveness of using VTF to convey sensory information,
so we controlled this variable. After conducting several pilot trials, we determined that a grip force of
3.5N was sufficient to lift the glass across all three friction conditions. This value was selected as it pro-
vided consistent performance across the different friction levels. Tangential force analysis showed that
the patterns of grip force regulation and slip closely resembled those seen in precision grip scenarios
with small objects [27]. Johansson et al. demonstrated the load force levels at which slippage occurs by
plotting the acceleration record against load force [26]. In our study, we used the second derivative of
tangential force to detect slippage, which offered a highly accurate measure of when slippage occurred.
A shorter latency in surpassing the threshold indicated a more slippery surface, while a longer latency
corresponded to a higher friction surface. This method enabled us to assess frictional properties based
on the timing of slippage detection, giving us more insight into the interaction between grip force and
surface texture. The ability to sense friction with the robotic sixth finger goes beyond simply controlling
grip force. It also provides valuable sensory information about surface properties and textures, signifi-
cantly enhancing the sensory capabilities of these additional fingers. This enriched feedback can lead to
more refined and effective interactions with various surfaces, improving the overall functionality of the
device.

In this paper, we aimed to integrate three key parameters of sensory information into the robotic
sixth finger during interactions with surfaces and while gripping and lifting objects: contact timing,
frictional information, and incipient slip. Drawing inspiration from the tactile afferents embedded in
human skin, we modeled our approach after the response patterns of these afferents to various contact
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events [25, 63, 64]. One limitation of our study is that it does not address the precise manipulation of
objects, which was not the primary focus of the prototype we developed. Instead, our main objective
was to enable the device to sense slip and friction and to effectively relay this sensory information to the
user. By emphasizing these aspects, we lay the groundwork for future developments in the system. Our
primary goal is to enhance the functionality of the robotic sixth finger by programming it to utilize slip
information for automatic grip force adjustments and more refined manipulation of objects. In addition,
we aim to enhance the capabilities of the robotic sixth finger by enabling it to sense the surface textures
of objects and relay this information to the user, much like a natural finger would. This feature would
provide users with crucial insights into the tactile properties of various surfaces, such as smoothness,
roughness, or stickiness. By incorporating texture sensing, the robotic finger would not only improve
grip stability but also enhance the user’s overall tactile experience. This sensory feedback could help
users make more informed decisions when interacting with different materials, allowing for greater
precision in tasks that require fine motor skills. Ultimately, this development would further bridge the
gap between robotic and biological systems, enabling a more seamless integration of the robotic finger
into everyday activities. This advancement would not only improve user experience but also enable
the device to operate more autonomously, allowing users to interact with objects in a more natural
and effective manner. Ultimately, we envision a future where this technology provides comprehensive
sensory feedback, making robotic limbs feel like an integral part of the user’s body.

6. Conclusion
The work presented in this paper represents an important initial step toward enhancing the sensory
capabilities of extra fingers, transitioning them from mere assistive devices to fully functional extensions
of the hand. By utilizing VTF to encode information about friction and slip, we provide users with
essential sensory input while lifting lightweight objects. This is the first study offering a novel technique
to advance sensory feedback technologies for rehabilitation and the enhancement of motor capabilities.
Our primary goal is to further improve the functionality of the robotic sixth finger, ultimately enabling
it to explore the surface properties of various objects. By doing so, we aim to create a more intuitive and
effective interface that closely mimics the natural capabilities of human fingers, thereby enhancing the
user’s experience and interaction with their environment.

We anticipate that this development will enhance performance, particularly in the manipulation of
objects, leading to greater independence in activities of daily living (ADLs). By providing users with
improved sensory feedback, we aim to reduce reliance on erroneous compensatory motor strategies that
often arise when tackling everyday tasks. This focus on refined control will empower users to inter-
act with their environment more effectively and confidently [65]. We are actively working on further
refining the slip detection algorithm to enable complete regulation of grip force, either manually by the
users or automatically. In humans, most adjustments in grip force occur instinctively, and we aim to
replicate this natural response in our device. By enhancing the algorithm, we hope to provide users with
an experience that allows for intuitive control and improved interaction with objects, ultimately making
the robotic finger function more like a biological one [66]. We are also exploring additional solutions
for controlling these fingers by leveraging electroencephalographic (EEG) activity to drive voluntary
actions. This innovative approach could enable users to control the robotic fingers through their brain
activity, creating a more intuitive interface. In addition, we are considering the integration of functional
electrical stimulation (FES) to activate nerve fibers, providing real-time sensory feedback. By combin-
ing EEG-driven control with FES, we aim to enhance the user experience, allowing for more natural and
responsive interactions with objects. We are also exploring the potential of using our robotic extra fin-
ger for patients with various neurological conditions that impact hand grasping. This includes diseases
such as multiple sclerosis, amyotrophic lateral sclerosis, and paresis resulting from cervical spinal cord
lesions.
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