Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10194

ICEDYAS

Dallas. TX

Finding optimal solution principles in conceptual
design

Philipp Rosenthal->4, Artur Liebert and Oliver Niggemann
Helmut Schmidt University, Germany

X philipp.rosenthal@hsu-hh.de

ABSTRACT: Automating the structuring of Solution Principles within conceptual design is crucial for efficiently
covering Function Structures while reducing time-intensive manual processes. Solution Principles are central in
bridging functional requirements and technical implementations, yet traditional methods depend heavily on human
expertise. To address this, a novel approach leveraging a search algorithm is proposed to automatically identify an
optimal set of Solution Principles for a given Function Structure. The approach formalizes the problem and
provides rules for the selection and application of Solution Principles. Key components include a function for
applying Solution Principles to functions and a heuristic that minimizes principle selection, guiding the search
toward optimal solutions. An evaluation shows the potential of this method to reduce time and effort in early
product design.

KEYWORD: Conceptual design, Artificial intelligence, Computational design methods, Solution Principles,
Function Structures

1. Introduction

Recent advancements in Artificial Intelligence (AI) have reshaped engineering design, particularly
during the early conceptual stages, where traditional methods and cognitive limitations often constrain
the exploration of expansive design spaces (Allison et al., 2022). The early design phase plays a pivotal
role in product development, laying the groundwork for the entire process and significantly influencing
the final product’s performance, cost, and feasibility. During this phase, design engineers transition from
abstract functional requirements to concrete solutions, commonly referred to as the “conceptual design”
phase (Bender and Gericke, 2021). A critical aspect of this phase is identifying Solution Principles that
fulfill specific functional requirements (Hubka and Eder, 1996).

The concept of Solution Principles plays a central role in engineering design, serving as the bridge
between abstract functions and their physical realizations. Rooted in the foundational work of Pahl and
Beitz (Bender and Gericke, 2021), they are described as technical concepts that combine physical effects
with geometrical and material characteristics to fulfill specific functions. Unlike working principles,
Solution Principles avoid detailing specific physical specifications, focusing instead on their functional
essence. According to Rot. (2000), the realization of a function is inherently tied to an effect, a
relationship formalized as the function-effect-law. This law underscores the necessity of linking
functions to effects, as no function can be practically realized without one. Complementing this
perspective, the German VDI guideline (Verein Deutscher Ingenieure, 1997) defines principal solutions
as basic solutions for delimited design tasks that outline modes of operation without specifying them in
detail. These principal solutions, referred to as Solution Principles when detached from specific
construction tasks, provide a systematic means of addressing design challenges. In practice, Solution
Principles encompass a wide array of technical solutions, including mechanisms, entire systems, or
processes that address individual functions within a product’s overall structure.

ICED25 1803

https://doi.org/10.1017/pds.2025.10194
mailto:philipp.rosenthal@hsu-hh.de

The classical method in conceptual design for systematically finding and structuring Solution Principles
begins with a Function Structure as a starting point. A Function Structure is created by breaking down the
overall function of a product into manageable subfunctions, a process known as functional
decomposition. This decomposition is described by Pahl and Beitz (Bender and Gericke, 2021) and
is also present in the VDI guideline (Verein Deutscher Ingenieure, 2019a,b). Then the systematic
exploration for Solution Principles often involves searching in catalogs. This approach is supported by
Roth (2000, 2001) and Koller and Kastru. (1998). While these catalogs reduce the effort of finding
Solution Principles for given functions, significant human effort is required to interpret the descriptions
and adapt them for the Function Structure.

The process of identifying suitable Solution Principles for Function Structures is tedious and complex
due to the vast number of possible combinations and interactions between functions and Solution
Principles. Each function may have multiple potential solutions, leading to a combinatorial explosion of
possibilities (Ehrlenspiel and Meerkamm, 2017). Constraints, such as input and output requirements,
further restrict the search space, making the lack of systematic methods for automating this process
particularly limiting. The result is often a trial-and-error approach, consuming considerable time and
resources.

Automating the identification of Solution Principles has the potential to significantly reduce the manual
effort involved, leading to more efficient design processes. However, despite advancements in
computational design tools, identifying appropriate Solution Principles remains a major challenge. The
complexity arises from the vast solution space and the interdependencies between functions within a
product’s Function Structure. While algorithms and Al-based tools have been developed to assist
designers in exploring potential solutions, the process is still not fully automated or reliable enough to
consistently deliver optimal solutions. To address this challenge, three key research questions are
derived:

RQ I: How do Solution Principles and their structures need to be defined to make them accessible
for AI algorithms to find optimal Solution Principle Structures?

RQ 2: What set of rules exist that guide the application of Solution Principles on functions in a
Function Structure?

RQ 3: What algorithm is suitable for finding an optimal Solution Principle Structure given a
Function Structure?

This work introduces the Solution Principle Structure Finder, a new algorithm, which efficiently
identifies optimal Solution Principle Structures. The algorithm is supported by a formalized framework
for defining and applying Solution Principles in conceptual design, demonstrating scalability and
robustness across Function Structures of varying complexity. The algorithm is evaluated on synthetic
Function Structures, assessing its efficiency in identifying optimal Solution Principle Structures.

2. Related work

Recent work by Khanolkar et al. (2023) systematically maps Al methods across the stages of engineering
design, emphasizing their critical role in the conceptual design phase. This phase, marked by high
uncertainty and iterative problem-solving, relies on methods, which can be subdivided into symbolic and
subsymbolic approaches.

The symbolic approaches often revolve around functional reasoning and expand upon the generation of
solutions and their structures. These methods were mainly driven by Chakrabarti and Bligh (1994, 1996).
Later the authors tested several of these models and concluded that none are guaranteed to find solution
concepts, i.e. Solution Principles and their structures on their own (Chakrabarti and Bligh, 2001). Bhatta
and Goe. (1994) introduce the Structure-Behavior-Function (SBF) modeling language, which formalizes
the link between structural elements, causal behaviors, and functions within complex systems, offering a
structured approach similar to the organization of Solution Principles within Function Structures. SBF’s
emphasis on causal mechanisms parallels the role of Solution Principles in bridging abstract functions
and concrete implementations, highlighting the need for systematic, interpretable models in design.
Additionally, an interactive tool, SBFAuthor, supports model refinement, underscoring the value of
clear, adaptable structures that facilitate human understanding in Al-assisted design (Goel et al., 2009).
Kitamura and Mizoguch. (2003) developed a framework to systematically represent knowledge about
functional decomposition and functional achievement.

1804 ICED25

Subsymbolic approaches are methods that represent and process knowledge not through explicit symbols
or logical rules but through distributed, numerical representations, such as neural networks, and are
driven by data. Rosenthal and Niggeman. (2021) examine the limitations of Al methods in conceptual
product design, highlighting challenges that subsymbolic approaches encounter, particularly with
problem characteristics like decomposability and interdependencies. In complex design problems, where
functions must be decomposed and interrelated, subsymbolic methods, such as neural networks, often
struggle with interpretability and flexibility, functioning more as “black-box” models. The authors
emphasize that, while data-driven techniques excel in recognizing patterns, they frequently rely on
existing knowledge bases. This reliance underscores a key limitation in early-stage design, where
minimal predefined information is available. Jiang et al. (2021) examine the use of design-by-analogy
methods that apply data-driven approaches, particularly machine learning and neural networks, to
support designers in identifying Solution Principles across domains. Their work addresses subsymbolic
methods for retrieving analogous Solution Principles. However, it points out the challenging need for
extensive, well- curated datasets, which are usually not widely available. Berton. (2020) also highlights
the shortcomings of data driven approaches in concept development. These mainly revolve around the
lack of proactive data collection.

Despite the structured approach provided by functional decomposition and construction catalogs,
identifying and adapting Solution Principles remains a labor-intensive process. While symbolic
approaches have contributed to functional reasoning, none directly addresses the automatic generation of
Solution Principle Structures for given Function Structures. Recent developments in subsymbolic design
synthesis have aimed to automate parts of this process. However, the early stages of conceptual design
are marked by high uncertainty, and relevant data are sparse and not readily available. Additionally, as
the design process is largely team-oriented and involves various human stakeholders, there is a critical
need for methods that are interpretable and comprehensible. Subsymbolic algorithms generally lack
transparency, making them challenging for designers to interpret. This highlights the need for Al tools in
conceptual design that not only assist in finding Solution Principles and their structures but are also
accessible and understandable to design teams.

3. Solution

This paper aims to find optimal Solution Principle Structures for given Function Structures by
representing the problem as a search problem. A Solution Principle Structure is then correct, if and only if
every function in a Function Structure is covered by a Solution Principle leading to the fulfillment of the
function. A minimal number of Solution Principles is optimal as it reduces the effort required for
detailing and embodiment in later design stages. So the goal state is an optimal Solution Principle
Structure.

Crucial for the presented solution are Roth Functions (Roth, 2000). These are a set of 30 generalized
functions used in engineering design to represent the fundamental operations a product or system must
perform to fulfill its intended purpose. Developed as part of Karlheinz Roth’s framework for product
design, these functions provide a standardized way of breaking down complex product functions into
manageable, well-defined operations. Roth Functions are particularly useful in conceptual design and
Function Structure modeling because they offer a common language for designers to describe what a
system needs to do in terms of transforming entities, i.e. material, energy and information.

3.1. Problem formalization

Definition 1. The Roth Function Set R is the set of all Roth Functions:
R = {f | f represents a Roth Function }
Definition 2. A Structure graph S is a directed graph S = (V, E) with:

e V=A{(f,c) | f € R,c €{0,1}}, with Roth Function Set R
o E={(u,w) | u,w eV}, where E is subject to the combination rules of the Roth Functions.

ICED25 1805

Definition 3. A Solution Principle is a function sp : S — S, where S = {S | S is a Structure graph},
such that applying sp to a Structure graph S = (V, E) results in a new Structure graph S’ = (V', E’),
denoted as sp (S) = S, with the following property:

(a) sp updates up to two specific vertices v,v, € V, where:
vi=(,0—vi=(f,1) e S, ie{l,2}

meaning that f is covered by the Solution Principle sp

Additionally sp may satisfy one, both or neither of the following properties:
(b) sp adds a vertex set V* and a correspondent edge set E * to S, hence:

S' = SU(V+,EY)
with
Vt={(f,0) | f €R,ce€{0,1}} and E* = {(u,w) |lue VUV +,we V*}
(c) sp removes a vertex set V~ C V and the correspondent edge set E- C E, hence:
S = S\(V-,E")
where V- = {(f,0) | (f,0) € V} and E= = {(u,w) |lue V,we V~}

Definition 4. A Function Structure S, is a Structure graph Sy = (Vo,Eq), where none of the Roth
Functions f R are covered by a Solution Principle sp yet, i.e.:

VveVy:v=(f,0), feR

Definition 5. A Solution Principle Structure S, is a Structure graph S; = (V1, E;), where each Roth
Function f R in Vy is covered by a Solution Principle sp, i.e.:

YveVi:v=(f,1), f€R

Definition 6. A valid Solution sp; is a finite ordered sequence of Solution Principles {spy, ..., Sp,}, so
that when applied to the initial Function Structure SO the output is a Solution Principle Structure S1, i.e.:

Sps = {SPO7 cee 7Spn}an € N7 > with SPS(SO) = (spn © SPpp—1-°- -° SPO)(SO) = Sl

Definition 7. The Goal Test is a function S — {0, 1}. It checks for a given Structure graph S € S
whether it is a Solution Principle Structure. If that is the case it returns 1 otherwise O.

The Optimization Problem can be formalized as finding an optimal Solution Principle Structure
ST = sp5(Sp), where ST is the output of a Solution sp; with minimal sequence length, i.e.:

spi = mi}{}{{spo7 ooy 8Pt | {SPos - - -, SP,}is a solution to Sy}
ne

This section directly answers RQ I. By using these formalizations, the problem of finding optimal
Solution Principle Structures is made accessible for Al algorithms.

3.2. Rules for applying solution principles

When applying a Solution Principle to a function, the Solution Principle itself may influence the
Structure graph, as shown in Definition 3. This influence arises from constraints that may come with the
Solution Principle and is rooted in how Roth Functions can connect to each other. These constraints can
be expressed as additional functions that need to be fulfilled for the Solution Principle to work.

A practical example would be the conversion of energy from electrical to kinetic in a Battery Electric
Vehicle. A viable Solution Principle might be an electric motor. This motor primarily transforms
electrical energy into kinetic energy to drive the vehicle. However, due to electromagnetic induction,
electric motors inherently transform kinetic energy back into electrical energy when rotating under
specific conditions. This means that applying an electric motor as a Solution Principle may also cover the
function of braking by transforming kinetic energy into electrical energy. It also introduces a new
function of transmitting the generated electrical energy to the battery for storage. Thus, the electric motor
exemplifies how a Solution Principle can both fulfill an additional intended function and introduce a new
function as a consequence of its inherent physical constraints.

The intended algorithm will need a central function that can apply Solution Principles to structures with
respect to the combination rules of Roth Functions. This central function is responsible for applying a

1806 ICED25

specific Solution Principle to a target function within the structure, updating the structure by covering
that function and modifying other elements in the structure as needed. The central function operates by
first applying the selected Solution Principle to a specified target function, then updating the structure to
reflect the new relationships introduced by this application. Each Solution Principle includes conditions
that dictate its usage, involving entities, input and output constraints.

When a Solution Principle is applied to a target function, the coverage attribute of the target function is
updated. This action marks the function as addressed within the current structure, which is crucial for
tracking the overall coverage.

Input constraints define the prerequisites that must be met before a Solution Principle can be applied to a
function, like in the electric motor, electric energy needs to be transmitted from its source.

If the constraint entity matches with the function, the constraint function is added between the function
covered by the Solution Principle and its predecessors in the Function Structure (Figure 1a).

When the entities do not match, the constraint function gets added to the structure without a successor. In
the case that it is not a store function, such a function is added as a source for the entity (Figure 1b). Input
constraints may involve combine functions that require specific input configurations. If an input
constraint requires a combine operation, it will always involve the function entity and an additional one.
A source function needs to be added in that case as well (Figure 1c).

Output constraints specify the expected conditions for downstream functions after the application of a
Solution Principle. If such an output constraint does not match any uncovered function in the structure it
gets added to the structure (Figure 1d).

It is important to point out that output constraints, in contrast to input constraints, are always covered by
the Solution Principle itself. This is because they are a result and not a prerequisite of the Solution
Principle. When looking at the electric motor again, thermal energy may be transmitted as a result of
resistive losses. In case that an output constraint is similar to an uncovered function in the structure it
replaces that function. In turn any of the predecessors that are not covered may get pruned from the
structure (Figure le).

Output constraints may include split operations, where a function’s output is distributed among multiple
successors. When an output constraint involves a split function, it gets inserted between the target
function and its successors, as needed. This ensures the split function aligns with the main entity
associated with the Solution Principle. Then the successor links get updated, inserting the split function
as required and adjusting the successors of the split function accordingly (Figure 1f).

This ensures that the output conditions created by the Solution Principle application propagate correctly
through the structure.

In general, applying a Solution Principle can be defined as updating a structure by marking a function as
covered, adding required functions or connections, and removing any redundant elements, ensuring the
structure remains consistent. Additionally a unique identifier is assigned to each new function, to ensure
compatibility within the structure. This identifier makes it also comprehensive for human designers.
This set of rules gives an answer to RQ 2. By adhering to these rules, handled by a central function,
Solution Principles will be applied in a correct way on functions within a Function Structure.

3.3. Search strategy

An adaptation of the A* search algorithm is used to automatically identify optimal Solution Principle
Structures for a given Function Structure. A state in the sense of search algorithms represents a Structure
graph S as described in Definition 2. An action is to select a Solution Principle to cover a function. The
goal is to cover all functions in the Function Structure with as few Solution Principles as possible. The
cost function g(S) is the number of Solution Principles chosen so far. The heuristic function A(S)
considers the number of uncovered functions. It is important to point out that /(S) needs to be admissible
(Pearl, 1984). Since every function could be covered by a dedicated Solution Principle, this heuristic will
be admissible in regards of minimizing the number of chosen Solution Principles. The algorithm will
choose the Structure graph S that minimizes the function f (S) = g (S) + & (5).

3.4. The search algorithm

Russell and Norvi. (2021) give a good overview of informed search algorithms. The present approach
leverages the knowledge about the A* search algorithm in particular and adapts it to solve the problem of

ICED25 1807

N
a [Functionn_l 4-[Functionm]——m Functiony, Functiony d
J
Function,_, Function,, Function,,
b tTTT T T \
1 . 1 .
Functiony, 41 Function,,
1
_________ !
Function,, Function,+1
Function,_1 e
C ________ Funcnonn
’
1
IFunction, 41
1
N mmm e = !
(TTTT T T \
| source 1 Functi
; 1 unction,
\ Function n+1
Seo—____.
g " Function J 1 f
Solution & st
Principle
applied

Figure 1. Rules for handling constraints when applying Solution Principles to functions

finding Solution Principle Structures. This similarity ensures that the presented algorithm is both sound
and complete. In addition it also guarantees an optimal solution (Pearl, 1984). The algorithm applied to
find Solution Principle Structure is shown in Algorithm 1.

Input: Sp: Function Structure, SP: Set of Solution Principles
Output: Optimal Solution Principle Structure S}

1: OpenSet — {(So,calculate_cost(So))}

2: ClosedSet — {}

3. while OpenSet # 0 do

4: (CurrentStructure, f _cost) < pop lowest-cost structure from OpenSet
5 if goal_test(CurrentStructure) then return CurrentStructure

6: end if

7 ClosedSet — ClosedSet U {CurrentStructure}

8: UncoveredFunctions «— {f € S : S[f].covered_by = 0}

9: for each function € UncoveredFunctions do
10: ApplicablePrinciples — {sp € SP : sp.covers(function)}

11 for each principle € ApplicablePrinciples do
12: SuccessorStructure — apply_principle(CurrentStructure, function, principle)
13: if SuccessorState ¢ ClosedSet then

14: f_cost — calculate_cost(SuccessorStructure)

15: add (SuccessorStructure, f _cost) to OpenSet

16: end if

17: end for

18: end for

19: end while
20: return No solution found

Algorithm 1 Solution Principle Structure Finder

The input needed for the Solution Principle Structure Finder (SPSF) to work is a viable Function
Structure Sy consisting of Roth Functions and the set of Solution Principles SP. The algorithm begins by
initializing the OpenSet with a single element: the initial Function Structure Sy, paired with its calculated
cost f (Sp). The ClosedSet in line 2 starts as an empty set, which will later store explored structures to
avoid redundant calculations. As long as the OpenSet is not empty, the algorithm proceeds.

In line 4, it selects the structure in OpenSet with the lowest cost, assigning it to CurrentStructure and
storing its associated cost. This follows the A* principle of expanding the most promising node first.
Next, line 5 checks if the current structure satisfies the goal condition. The goal is achieved if all

1808 ICED25

functions within the Structure graph S are covered by Solution Principles, as described in Definition 7. If
goal_test returns true, the algorithm terminates, returning CurrentStructure as the optimal solution.

If the goal is not yet met, line 7 adds Current Structure to the ClosedSet, ensuring that this structure is not
revisited, which helps enhance efficiency by avoiding redundant calculations. The algorithm then
identifies all uncovered functions within the current structure S in line 8. These functions are stored in the
set Uncovered Funct ions, containing all functions in S whose covered_by attribute remains empty. For
each f unction in Uncovered Funct ions, the algorithm proceeds to line 10 to determine which Solution
Principles in the set SP are applicable. The set ApplicablePrinciples holds Solution Principles that can
cover the selected f unction, considering any constraints associated with each principle.

At line 11, the algorithm iterates over each principle in ApplicablePrinciples. For each principle, it
generates a new structure, SuccessorStructure, by applying the Solution Principle to the f unction. The
function apply_principle described in section 3.2 handles this application, creating a new state that
respects the constraints of the applied principle. Line 13 ensures that SuccessorSt ructure has not already
been explored by checking if it exists in ClosedSet. If SuccessorStructure is in ClosedSet, it is skipped to
avoid redundant calculations. Otherwise, the algorithm proceeds to line 14. Here, the AS) of
SuccessorStructure is calculated using calculate_cost described in section 3.3. This cost helps prioritize
structures in the OpenSet. Afterward, in line 15, SuccessorStructure along with its calculated cost is
added to OpenSet for further exploration.

Once all functions in Uncovered Functions and all applicable Solution Principles have been evaluated,
the algorithm loops back to line 4, continuing to expand the next lowest-cost structure in OpenSet. This
process repeats until either all functions are covered and the goal is reached, or the OpenSet becomes
empty. Finally, if no solution is found (i.e., OpenSet is empty), the algorithm terminates in line 20,
returning “No solution found.” This outcome indicates that it was not possible to cover all functions
within the Function Structure S, using the available Solution Principles in SP.

The described algorithm SPSF is the answer to RQ 3. SPSF is able to solve the problem of finding
optimal Solution Principle Structures for given Function Structures by leveraging the knowledge about
A* search.

4. Experimental results

To evaluate the algorithm, synthetic Function Structures and Solution Principles were used to ensure
systematic and scalable testing. Real-world Function Structures are often proprietary and they tend to be
anecdotal, limiting their suitability for reproducible and comprehensive analysis. Similarly, catalogs of
Solution Principles in the proposed formalized manner do not currently exist yet, necessitating the use of
synthetic Solution Principles to build a consistent and accessible knowledge base. The synthetic data was
generated using two custom algorithms that adhere to the formalizations in section 3.1 and were designed
to randomly create Function Structures and Solution Principles, ensuring diversity and replicability. This
approach offers precise control over complexity, enabling thorough testing across a wide range of
scenarios. It also ensures comparability and neutrality, avoiding the biases and inconsistencies often
present in real-world examples.

4.1. Case study

The application of Algorithm 1 is demonstrated on a synthetic example Function Structure with 13
interconnected nodes, representing distinct Roth Functions. The example illustrates how the SPSF
systematically applies Solution Principles to achieve complete function coverage while adhering to
constraints and optimizing for a minimal amount of chosen Solution Principles. The applied Solution
Principles are enlisted in Table 1 and stem from a synthetic Solution Principle catalog with 10 individual
Solution Principles for each of the 30 Roth Functions.

ICED25 1809

Table 1. Solution Principles

Name Input Constraint Output Constraint SP
store energy 8 transform information shape material (a)
store information 6 (b)
split energy with material 2 transform information shape material ()
transmit energy 2 (d)
combine material with information 10 transform information (e)
transmit material 8 transform information ®

Figure 2 depicts the initial Function Structure as well as the generated Solution Principle Structure.
Algorithm 1 was able to simplify the structure and cover all function with only 6 distinct Solution
Principles. To achieve this, the functions store materiall, split information with material6 and transmit
material8 were pruned from the structure. However, the two functions transform informationl4 and
transform information16 had to be added to adhere to the constraints of the chosen Solution Principles.
By choosing Solution Principles that also cover the added functions an optimal result was achieved.

(combine
I store .
1 , material
, materiall .
N e info9
(" sl it (CTTTTTTTY - materiall3
store . split Vo transmit -
) -= infow. F-= . r
info3 . . . , material8
< material6_., N .

transmit
energyll

store
energy?2

energy w.
materiall0

transmit
materiall?2

-------- flow of entity Solution
pruned flow of entity ~ Principle

____________ ->
_added flow of entity N @

function

Figure 2. Solution Principle Structure for an initial Function Structure with 13 functions

4.2. Empirical performance testing

The empirical evaluation of Algorithm 1 was conducted using a synthetic dataset comprising 40 Function
Structures, evenly distributed across four categories based on size: 10, 20, 50, and 100 functions. For
each size category, 10 distinct Function Structures were generated to ensure diversity in complexity and
topology. All experiments were conducted on a system with an Intel Core i5-10210U CPU @ 1.6 GHz, 8
GB DDR4 RAM (2667 MHz) and a 256 GB NVMe SSD.

The evaluation focused on three primary metrics: the number of Solution Principles chosen to achieve
full function coverage, the total number of covered functions, and the execution time required for each
instance. Figure 3 illustrates the relationship between the number of covered functions, the number of
chosen principles, and the execution time for each Function Structure. With the latter being depicted in
color gradient and size.

1810 ICED25

1750

1500

5 8 N
w o w
o
®
OOO
|

1250

-
v
[=]
[

o

-
N
n
)
o
L[]

° ° 1000

—
o
o

oo

°

N

a

o

Chosen Principles
~
w

Execution Time (s)

o000 500

b
o
°

° 250

N
5}

00 20 40 60 80 100 120 140 o

Covered Functions

Figure 3. Relationship between Solution Principles, covered functions, and execution time

The results showcase SPSF’s scalability and robustness across varying Function Structure complexities.
For smaller Function Structures (10 and 20 functions), SPSF efficiently identified minimal sets of
Solution Principles, resulting in shorter execution times. In contrast, larger structures (50 and 100
functions) exhibited greater variation in execution time, as seen in the spread of larger bubbles towards
the upperright corner of the plot. This behavior is attributed to the increasing complexity of the search
space and the interconnectedness of functions, leading to more iterations and is expected.

Notably, an outlier is visible in the upper-right corner of the plot, corresponding to a Function Structure
with significantly higher execution time. This outlier suggests that specific structural properties of
Function Structures, such as densely interconnected functions or an imbalance in constraints, can heavily
influence computational performance.

Overall, the testing demonstrated the algorithm’s capability to consistently handle diverse Function
Structures. The execution times indicate that the algorithm performs predictably across most instances,
with only a few edge cases requiring disproportionately high computational effort while still finding an
optimal Solution Principle Structure.

5. Conclusion and outlook

This paper introduces a novel approach for automating the identification and structuring of Solution
Principles in conceptual design, addressing key challenges in early-stage product development. The
formalization presented in section 3.1 directly addresses RQ 1, making the problem accessible to Al
algorithms. Section 3.2 introduces a structured set of rules that guide the application of Solution
Principles, effectively answering RQ 2. Leveraging the A* search algorithm, the SPSF described in
section 3.4 efficiently identifies minimal sets of Solution Principles to achieve full coverage of Function
Structures, providing a robust answer to RQ 3.

The algorithm demonstrated scalability and robustness across synthetic Function Structures of varying
complexities, from 10 to 100 functions. While occasional computational outliers emerged, the method
consistently delivered optimal solutions, significantly reducing the manual effort required in the
conceptual design phase. By adhering to standardized formalizations like Roth Functions and
systematically managing constraints, the approach ensures transparency and interpretability, critical for
adoption by design teams. Empirical evaluations with synthetic datasets validate its effectiveness and
demonstrate its capacity to handle diverse scenarios systematically.

Nevertheless, several avenues for future research remain. Validation using real-world datasets is a
priority, as it would bridge the gap between synthetic testing and practical application. The development
of curated datasets of Function Structures and Solution Principles could enable broader applicability.
Further exploration of alternative heuristics may enhance computational efficiency, while integrating
user-defined preferences or additional constraints, such as cost or manufacturability, could increase the
method’s practical relevance. These steps will not only improve the proposed approach but also advance
the integration of Al in conceptual design.

ICED25 1811

References

Allison, James T., Cardin, Michel-Alexandre, McComb, Chris, Ren, Max Yi, Selva, Daniel, Tucker, Conrad, With-
erell, Paul, and Zhao, Yaoyao Fiona. Special Issue: Artificial Intelligence and Engineering Design. Journal of
Mechanical Design, 144 (2), 2022. ISSN 1050-0472. http://dx.doi.org/10.1115/1.4053111.

Bender, Beate and Gericke, Kilian, editors. Pahl/Beitz Konstruktionslehre: Methoden und Anwendung
erfolgreicher Produktentwicklung. Springer eBook Collection. Springer Vieweg, Berlin and Heidelberg, 9.
auflage edition, 2021. ISBN 9783662573037. http://dx.doi.org/10.1007/978-3-662-57303-7.

Bertoni, Alessandro. DATA-DRIVEN DESIGN IN CONCEPT DEVELOPMENT: SYSTEMATIC REVIEW
AND MISSED OPPORTUNITIES. Proceedings of the Design Society: DESIGN Conference, 1:101-110,
2020. ISSN 2633-7762.

Bhatta, Sambasiva R. and Goel, Ashok K. Discovery of physical principles from design experiences. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 8 (2):113-123, 1994. ISSN 0890-0604.

Chakrabarti, Amaresh and Bligh, Thomas P. An approach to functional synthesis of solutions in mechanical
conceptual design. Part I: Introduction and knowledge representation. Research in Engineering Design, 6 (3):
127-141, 1994. ISSN 0934-9839. http://dx.doi.org/10.1007/BF01607275.

Chakrabarti, Amaresh and Bligh, Thomas P. An approach to functional synthesis of solutions in mechanical
conceptual design. Part II: Kind synthesis. Research in Engineering Design, 8 (1):52-62, 1996. ISSN
09349839. http://dx.doi.org/10.1007/BF01616556.

Chakrabarti, Amaresh and Bligh, Thomas P. A scheme for functional reasoning in conceptual design. Design
Studies, 22 (6):493-517, 2001. ISSN 0142-694X.

Ehrlenspiel, Klaus and Meerkamm, Harald. Infegrierte Produktentwicklung: Denkabldufe, Methodeneinsatz,
Zusammenarbeit. Hanser eLibrary. Carl Hanser Verlag, Miinchen, 6., iiberarbeitete und erweiterte auflage
edition, 2017. ISBN 9783446449084. http://dx.doi.org/10.3139/9783446449084.

Goel, Ashok K., Rugaber, Spencer, and Vattam, Swaroop. Structure, behavior, and function of complex systems:
The structure, behavior, and function modeling language. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 23 (1):23-35, 2009. ISSN 0890-0604.

Hubka, Vladimir and Eder, W. Ernst. Design Science: Introduction to the Needs, Scope and Organization of
Engineering Design Knowledge. Springer London, London, 1996. ISBN 9781447130918.

Jiang, Shuo, Hu, Jie, and Luo, Jianxi. Data-Driven Design-by-Analogy: State of the Art. ASME 2021 International
Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
2021.

Khanolkar, Pranav Milind, Vrolijk, Ademir, and Olechowski, Alison. Mapping artificial intelligence-based
methods to engineering design stages: a focused literature review. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 37, 2023. ISSN 0890-0604. http://dx.doi.org/10.1017/
S0890060423000203.

Kitamura, Yoshinobu and Mizoguchi, Riichiro. Ontology-based description of functional design knowledge and its
use in a functional way server. Expert Systems with Applications, 24 (2):153-166, 2003. ISSN 0957-4174.

Koller, Rudolf and Kastrup, Norbert. Prinziplosungen zur Konstruktion technischer Produkte. Springer eBook
Collection Computer Science and Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg and s.1., 2.,
neubearbeitete auflage edition, 1998. ISBN 9783642587559.

Pearl, Judea. Heuristics: Intelligent Search Strategies for computer problem solving. Addison-Wesley Publishing
Company, Reading, Massachusetts and Menlo Park, California and London and Amsterdam and Don Mills,
Ontario and Sydney, 1984. ISBN 0-201-05594-5.

Rosenthal, Philipp and Niggemann, Oliver. Problem examination for Al methods in conceptual product design. In
LJCAI 2021 Workshop — Al and Product Design, Montreal, Canada, 2021.

Roth, Karlheinz. Konstruieren mit Konstruktionskatalogen: Band 1: Konstruktionslehre. Springer, Berlin, 3.
auflage, erweitert und neu gestaltet edition, 2000. ISBN 9783642174667. http://dx.doi.org/10.1007/978-3-
642-17466-7.

Roth, Karlheinz. Konstruieren mit Konstruktionskatalogen: Band 2: Kataloge. Springer eBook Collection
Computer Science and Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg and s.1., 3. auflage, mit
wesentlichen ergiinzungen edition, 2001. ISBN 9783642174674.

Russell, Stuart J. and Norvig, Peter. Artificial intelligence: A modern approach. Pearson Series in Artificial
Intelligence. Pearson, Hoboken, NJ, fourth edition edition, 2021. ISBN 9780134610993.

Verein Deutscher Ingenieure. VDI-Richtlinie 2222 Blatt 1: Konstruktionsmethodik Methodisches Entwickeln von
Losungsprinzipien, 1997.

Verein Deutscher Ingenieure. VDI-Richtlinie 2221 Blatt 2: Entwicklung technischer Produkte und Systeme
Gestaltung individueller Produktentwicklungsprozesse, 2019a.

Verein Deutscher Ingenieure. VDI-Richtlinie 2221 Blatt 1: Entwicklung technischer Produkte und Systeme Modell
der Produktentwicklung, 2019b.

1812 ICED25

http://dx.doi.org/10.1115/1.4053111
http://dx.doi.org/10.1007/978-3-662-57303-7
http://dx.doi.org/10.1007/BF01607275
http://dx.doi.org/10.1007/BF01616556
http://dx.doi.org/10.3139/9783446449084
http://dx.doi.org/10.1017/S0890060423000203
http://dx.doi.org/10.1017/S0890060423000203
http://dx.doi.org/10.1007/978-3-642-17466-7
http://dx.doi.org/10.1007/978-3-642-17466-7

	Finding optimal solution principles in conceptual design
	1.. Introduction
	2.. Related work
	3.. Solution
	3.1.. Problem formalization
	3.2.. Rules for applying solution principles
	3.3.. Search strategy
	3.4.. The search algorithm

	4.. Experimental results
	4.1.. Case study
	4.2.. Empirical performance testing

	5.. Conclusion and outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

