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Abstract In this paper, we establish variational principles for the metric mean dimension of random
dynamical systems with infinite topological entropy. This is based on four types of measure-theoretic
ε-entropies: Kolmogorov-Sinai ε-entropy, Shapira’s ε-entropy, Katok’s ε-entropy and Brin–Katok local
ε-entropy. The variational principle, as a fundamental theorem, links topological dynamics and ergodic
theory.
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1. Introduction

Mean dimension, introduced by Gromov [11], serves as a novel topological invariant for
dynamical systems. It quantifies the number of parameters per second required to describe
a dynamical system, analogous to how topological entropy measures the number of bits
per second. It especially exhibits some applications in solving the embedding problems
of dynamical systems [12, 13, 21, 24]. Inspired by the definition of Minkowski dimension,
Lindenstrauss and Weiss introduced the metric mean dimension and demonstrated that
it serves as an upper bound for mean dimension. See also some discussions about the
applications of metric mean dimension in estimating the upper bound of mean dimension
for some complex dynamical systems [32–34], some aspects of the analog compression [14]
in information theory, operator algebras and L2-invariants [7, 18, 20]. Notably, both mean
dimension and metric mean dimension are zero when the topological entropy is finite.
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Therefore, they are valuable tools for characterizing the topological complexity of infinite
entropy systems.
Two fundamental kinds of entropies in dynamical systems are the topological

entropy and measure-theoretic entropy, which are interconnected through the well-known
variational principle established by Goodwyn [10] and Goodman [9]:

htop(T ) = sup
µ∈M(X,T )

hµ(T ),

where T denotes a homeomorphism from a compact metric space X to itself, and the
supremum is taken over all T -invariant Borel probability measures on X. It is natural to
expect that there are variational principles for infinite entropy systems. The absence of
a role for measure-theoretic metric mean dimension is the main obstruction to obtaining
such variational principles. In 2018, using the foundations of lossy data compression meth-
ods, Lindenstrauss and Tsukamoto [22] established the following variational principles
for metric mean dimension in terms of rate distortion functions:

mdimM(X,T, d) = lim sup
ε→0

supµ∈M(X,T ) Rµ,L∞(ε)

| log ε|
.

Additionally, if (X, d) has the tame growth of covering numbers, then for p ∈ [1,∞),

mdimM(X,T, d) = lim sup
ε→0

supµ∈M(X,T ) Rµ,p(ε)

| log ε|
,

where mdimM(X,T, d) denotes upper metric mean dimension of X, Rµ,p(ε) and Rµ,L∞(ε)
are referred to as the Lp and L∞ rate distortion functions, respectively. For an exten-
sion of this result to amenable groups, see [4]. Subsequently, in 2019, Lindenstrauss and
Tsukamoto [23] proved the double variational principles for mean dimension, utilizing
rate-distortion dimension for systems possessing the marker property. Since then, many
researchers have been devoted to obtaining the new variational relations for metric mean
dimension by replacing rate-distortion functions. For instance, Velozo-Velozo [35] proved
an analogous variational principle using Katok’s ε-entropy instead of a rate distortion
function, while Gutman and Spiewak [14] derived a variational principle for metric mean
dimension in terms of Kolmogorov-Sinai ε-entropy. Additionally, Shi [30] obtained varia-
tional principles for metric mean dimension using Shapira’s ε-entropy, Katok’s ε-entropy,
and Brin–Katok local ε-entropy. Inspired by the work of Feng and Huang, the authors
in [36, 38] introduced the concepts of Bowen and packing metric mean dimensions for
subsets and established variational principles for non-empty compact sets.
The modeling of random dynamical systems arises in some phenomena of physics,

biology, climatology, economics, etc. When uncertainties or random influences, which
we call noises, are taken into account, it not only compensates for the defects in some
deterministic models, but also reveals some rather intrinsic phenomena. The study of
the ergodic theory of random transformations can date back to 1980s, which emerged
from Kifer [15], Crauel [5], Ledrappier and Young [17], Bogenschutz [2], etc. Briefly,
a continuous bundle random dynamical system is a family T = (Tω)ω of continuous
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transformations on the fibers of X driven by a measure-preserving system (Ω,F ,P, θ)
and is equipped with a induced skew product transformation Θ : Ω × X → Ω × X.
Bogenschutz [2] and Kifer [16] proved the variational principle of random topological
entropy for random dynamical systems:

hr
top(T ) = sup

{
hr
µ(T ) : µ is Θ-invariant

}
,

where hr
µ(T ) and hr

top(T ) are the measure-theoretic entropy and topological entropy of
random dynamical systems, respectively. Based on the previous work on Z-actions, Ma,
Yang and Chen [27] introduced the mean dimension and metric mean dimension for
random dynamical systems. However, the variational principles for random metric mean
dimension in the setting of random dynamical systems remain still vacant and have not
been built up to now.
For a measurable subset E ⊂ Ω×X, the fibers Eω = {x ∈ X : (ω, x) ∈ E} with ω ∈ Ω.

Let µ ∈ EP(E) denote the set of all ergodic measures on E having the marginal P over Ω.
Let PX and Co

X denote the set of partition and open cover of X, respectively. Our aim in
this paper is to formulate some variational principles for random metric mean dimension
of continuous bundle random dynamical systems. The main results of this paper are the
Theorems 3.2–3.6, which can be stated as follows:

Theorem 1.1. Let T be a homeomorphic bundle RDS (random dynamical system) on
E over an ergodic measure-preserving system (Ω,F ,P, θ). Then

EmdimM(T, E , d) = lim sup
ε→0

1

| log ε|
sup

µ∈EP(E)
F (µ, d, ε),

EmdimM(T, E , d) = lim inf
ε→0

1

| log ε|
sup

µ∈EP(E)
F (µ, d, ε),

where

F (µ, d, ε) ∈

 inf
diam(α)≤ε

α∈PX

hr
µ(T, (Ω× α)E), inf

diam(U)≤ε

U∈CoX

hS
µ(T, (Ω× U)E), h

K

µ (T, ε), h
BK

µ (T, ε)

 .

The definitions of EmdimM(T, E , d), EmdimM(T, E , d) and F (µ, d, ε) see § 2 and 3.

The aforementioned theorem generalizes previous variational principles of metric mean
dimension in the context of Z-actions [14, 30] whenever the space Ω is just a single
point. There are still some difficulties for us to obtain above theorems from Z-actions
to random dynamical systems. It can be explained as two aspects. One is the local
variational principle of Shapira’s entropy is still missing for random dynamical systems.
The other one is how to link different types of measure-theoretic ε-entropies by some
proper inequalities.
This paper is structured as follows. In § 2, we revisit some fundamental definitions that

are essential for our discussion. In § 3, we establish the variational principles, specifically
theorems 3.2–3.6.
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2. Preliminaries

2.1. The setup of random dynamical systems

In this subsection, we recall the settings and related notions of random dynamical
systems investigated in [1, 5, 15].
Let (Ω,F ,P, θ) be a measure-preserving system, where (Ω,F ,P) is countably gen-

erated probability space and θ is an invertible measure-preserving transformation. We
always assume that F is complete, countably generated, and separates points. Hence
(Ω,F ,P) is a Lebesgue space. Let X be a compact metric space endowed with the Borel
σ-algebra BX . This endows Ω×X with the product σ-algebra F ⊗BX . For a measurable
subset E ⊂ Ω×X, the fibers Eω = {x ∈ X : (ω, x) ∈ E} with ω ∈ Ω are non-empty com-
pact subsets of X. A continuous (or homeomorphic) bundle random dynamical system
(RDS for short) over (Ω,F ,P, θ) is generated by mappings Tω : Eω → Eθω with iterates

Tn
ω =

{
Tθn−1ω ◦ · · · ◦ Tθω ◦ Tω, if n > 0

id, if n = 0

such that (ω, x) 7→ Tωx is measurable and x 7→ Tωx is continuous (or homeomorphic,
respectively) for P-almost all ω. The map Θ : E → E defined by Θ(ω, x) = (θω, Tωx) is
called the skew product transformation.
A finite family U = {Ui}ki=1 of measurable subsets of Ω × X is said to be a cover if

Ω×X =
⋃k

i=1 Ui, and for each i ∈ {1, · · · , k} the ω-section

Ui(ω) := {x ∈ X : (ω, x) ∈ Ui} ⊆ X

is a Borel set of X. This implies that U(ω) = {Ui(ω)}ki=1 is a Borel cover of X. A
partition of Ω × X is a cover of Ω × X whose elements are mutually disjoint. An open
cover of Ω ×X is a cover of Ω ×X whose ω-sections are open sets. Denoted by PΩ×X ,
CΩ×X and C0

Ω×X the set of all finite partitions, finite covers and finite open covers of

Ω × X, respectively. Specially, by C0′
Ω×X we denote the set of U ∈ C0

Ω×X formed by

U = {Ω× Ui} with the finite open cover {Ui} of X. The notions PE , CE , C
0
E and C0′

E
denote the restriction of PΩ×X , CΩ×X , C0

Ω×X and C0′
Ω×X on E , respectively. Given the

covers ξ ∈ CΩ and W ∈ CX , we sometimes write (Ω ×W)E = {(Ω ×W ) ∩ E : W ∈ W}
and (ξ ×X)E = {(A×X) ∩ E : A ∈ ξ}. Given two covers U , V ∈ CΩ×X , U is said to be
finer than V (denote as U � V) if each element of U is contained in some element of V.
The join of U and V is defined by U ∨ V = {U ∩ V : U ∈ U , V ∈ V}. For a, b ∈ N with

a ≤ b and U ∈ CΩ×X , we define Ub
a =

b∨
n=a

Θ−nU .

We collect some examples of continuous bundle RDSs below.

Example 1. Among interesting examples of continuous bundle RDSs are random
sub-shifts, which appeared in the literature [3, 16]. Let (Ω,F ,P) be a Lebesgue space
and θ : (Ω,F ,P) → (Ω,F ,P) an invertible measure-preserving transformation. Set
X = {(xi)i∈Z : xi ∈ N ∪ {+∞} , i ∈ Z}, a compact metric space equipped with the metric
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d((xi)i∈Z, (yi)i∈Z) =
∑
i∈Z

1

2|i|
|x−1

i − y−1
i |,

and let F : X → X be the translation (xi)i∈Z → (xi+1)i∈Z. Then, the integer group Z
acts on (Ω × X,F ⊗ BX) measurably with (ω, x) → (θiω, F ix) for each i ∈ Z, where
BX denotes the Borel σ-algebra of the space X. Now let E ∈ F ⊗ BX be an invariant
subset of Ω×X such that Eω ⊂ X is compact for P-a.e. ω ∈ Ω. This defines a continuous
bundle RDSs, for P-a.e. ω ∈ Ω, Fi,ω is just the restriction of F i over Eθiω for i ∈ Z.
A very special case is when the subset E is given as follows. Let k be a random N-valued

random variable satisfying

0 <

∫
Ω

log k(ω)dP(ω) < ∞,

and, for ω ∈ P, let M(ω) be a random matrix (mi,j(ω) : i = 1, · · · , k(ω), j =
1, · · · , k(θ(ω))) with entries 0 and 1. Then the random matrix M generates a random
sub-shift of finite type, where

E =
{
(ω, (xi)i∈N) : ω ∈ Ω, 1 ≤ xi ≤ k(θiω),mxi,xi+1

(θiω) = 1, i ∈ Z
}
.

It is not hard to see that this is a continuous bundle RDS.

Example 2. There are many other interesting examples of random dynamical systems
coming from smooth ergodic theory, see for example [19, 25]. Let M be a C∞ compact
connected Riemannian manifold without boundary and Cr(M,M), r ∈ Z+ ∪ {+∞}
the space of all C r maps from M into itself endowed with the usual Cr topology and
the Borel σ-algebra. Let (Ω,F ,P) be a Lebesgue space and {φt : Ω → Cr(M,M)t≥0}
be a stochastic flow of Cr(M,M) diffeomorphisms. It is well known that every smooth
stochastic differential equation (SDE) in the finite dimensional compact manifold has a
stochastic flow of diffeomorphisms as its solution flow. When the SDE is non-degenerate,
it has a unique stationary measure, which is ergodic and equivalent to Lebesgue measure.

2.2. Metric mean dimension of RDSs

In this subsection, we recall the definitions of topological entropy [2, 15] and metric
mean dimension introduced by Ma et al. [27] for continuous bundle random dynamical
systems.
Let ω ∈ Ω, n ∈ N and ε> 0. For each x, y ∈ Eω, the n-th Bowen metric dωn on Eω is

defined by

dωn(x, y) = max{d(T i
ωx, T

i
ωy) : 0 ≤ i < n}.

Then the (n, ε, ω)-Bowen ball around x with radius ε in the metric dωn is given by

Bdωn
(x, ε) = {y ∈ Eω : dωn(x, y) < ε} .
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Fix ω ∈ Ω and let α = {Ai : 1 ≤ i ≤ m} be a finite open cover of Eω. We define the
mesh of α with respect to the metric dωn as follows

diam(α, dωn) = max
1≤i≤m

diam(Ai, d
ω
n),

where the diameter of a set Ai with respect to the metric dωn is given by

diam(Ai, d
ω
n) = sup {dωn(x, y) : x, y ∈ Ai} .

Let #(E , ω, ε, n) = inf
{
|α| : α ∈ C0

Eω , diam(α, dωn) < ε
}
. A set E ⊂ Eω is said to be

an (ω, ε, n)-separated set if x, y ∈ E, x ≠ y implies that dωn(x, y) > ε. The maximum
cardinality of (ω, ε, n)-separated sets is denoted by sep(E , ω, ε, n). A subset F of Eω is said
to be an (ω, ε, n)-spanning set if for any x ∈ Eω, there exists y ∈ F such that dωn(x, y) ≤ ε.
The smallest cardinality of (ω, n, ε)-spanning sets is denoted by span(E , ω, n, ε). Let

S′(E , ω, ε) = lim sup
n→∞

1

n
log#(E , ω, ε, n).

Set

S′(E , ε) =
∫

S′(E , ω, ε)dP(ω). (2.2)

The quantity (2.2) is non-decreasing as ε → 0. One can define a quantity to measure how
fast S′(E , ε) increases as follows:

EmdimM(T, E , d) = lim sup
ε→0

S′(E , ε)
| log ε|

, (2.3)

EmdimM(T, E , d) = lim inf
ε→0

S′(E , ε)
| log ε|

.

We call (2.3) the upper and lower metric mean dimension of E for RDSs, respectively.
It is easy to show that

#(E , ω, 2ε, n) ≤ sep(E , ω, ε, n) ≤ #(E , ω, ε, n). (2.4)

Notice that sep(E , ω, ε, n) is measurable in ω [16, lemma 2.1]. Then metric mean dimension
can also defined by separated sets. Set

S(E , ω, ε) = lim sup
n→∞

1

n
log sep(E , ω, ε, n)

and

hr
top(T, E , d, ε) =

∫
S(E , ω, ε)dP(ω).

https://doi.org/10.1017/S0013091525100990 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525100990


Metric mean dimension for random dynamical systems 7

By (2.4) and the fact that | log ε|
| log 2ε| = 1, we have

EmdimM(T, E , d) = lim sup
ε→0

hr
top(T, E , d, ε)

| log ε|
,

EmdimM(T, E , d) = lim inf
ε→0

hr
top(T, E , d, ε)

| log ε|
.

Clearly, the metric mean dimension depends on the metrics on X and hence is not
topologically invariant. Furthermore, Ma et al. [26] proved that any finite entropy systems
have zero metric mean dimension in the setting of random dynamical systems. So metric
mean dimension is a useful quantity to describe the topological complexity of infinite
random entropy systems.

3. Variational principles for metric mean dimension

In this section, we establish four types of variational principles for metric mean dimension.
The main results are Theorems 3.2–3.6.

3.1. Variational principle I: Kolmogorov-Sinai ε-entropy

In this subsection, we first introduce the local variational principle for the topological
entropy of a fixed finite open covers in terms of measure-theoretic entropy of a fixed finite
open covers given in [6, 26]. Subsequently, we prove the first main result Theorem 3.2 by
using the local variational principle of RDSs.
By PP(Ω×X) we denote the space of probability measures on Ω×X with the marginal P

on Ω. Let PP(E) = {µ ∈ PP(Ω×X) : µ(E) = 1}. It is well-known [5, proposition 3.6] that
µ ∈ PP(E) on E can be disintegrated as dµ(ω, x) = dµω(x)dP(ω), where µω is the regular
conditional probabilities with respect to the σ-algebra FE formed by all sets (A×X)∩E
with A ∈ F . The set of Θ-invariant measures µ of PP(E) is denoted by MP(E). By
Bogenschutz [2], the measure µ ∈ MP(E) if and only if Tωµω = µθω for P-a.e. ω. And the
set of ergodic elements in MP(E) is denoted by EP(E). This means that µω is a probability
measure on Eω for P-a.e.ω and for any measurable set R ⊂ E , µω(R(ω)) = µ(R|FE),
where µ(R|FE) is the conditional expectation of the characterization function 1R of R
with respect to FE , Rω = {x ∈ Eω : (ω, x) ∈ Ri} and so µ(R) =

∫
µω(R(ω))dP(ω). Let

R = {Ri} be a finite measurable partition of E and Ri(ω) = {x ∈ Eω : (ω, x) ∈ Ri}. Then
R(ω) = {Ri(ω)} is a finite partition of Eω. Set FE = {(A×X) ∩ E : A ∈ F}.
The conditional entropy of R for the given σ-algebra FE is defined by

Hµ(R|FE) = −
∫ ∑

i

µ(Ri|FE) log µ(Ri|FE)dP(ω) =
∫

Hµω (R(ω))dP(ω),
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where Hµω (P ) denotes the usual partition entropy of P. Let µ ∈ MP(E), ξ ∈ PE and
define

hr
µ(T, ξ) = lim

n→∞

1

n
Hµ

(
n−1∨
i=0

(Θi)−1ξ|FE

)

= lim
n→∞

1

n

∫
Hµω

(
n−1∨
i=0

(T i
ω)

−1ξ(θiω)

)
dP(ω),

where the limit exists due to the subadditivity of conditional entropy[15]. If P is ergodic,

then hr
µ(T, ξ) = lim

n→∞

1

n
Hµω

(∨n−1
i=0 (T

i
ω)

−1ξ(θiω)
)
for P-a.e. ω.

Let U ∈ C0
E and µ ∈ MP(E). We define the measure-theoretic entropy of open cover U

w.r.t. µ as

hr
µ(T,U) = inf

α�U,α∈PE
hr
µ(T, α).

For each U ∈ C0′
E , it is not difficult to verify (see [2, 6, 15]) that infimum above can only

take over the partitions Q of E into sets Qi of the form Qi = (Ω×Pi)∩E , where P = {Pi}
is a finite partition of X.
Let U ∈ C0

E , n ∈ N and ω ∈ Ω. Put

N(T, ω,U , n) = min

{
#F : F is a finite subcover of

n−1∨
i=0

(T i
ω)

−1U(θiω) over Eω

}
,

By the proof of [16, proposition 1.6], the quantityN(T, ω,U , n) is measurable with respect
to ω. The Kingman’s subadditive ergodic theorem then gives us the following:

hr
top(T,U) : =

∫
lim

n→∞

1

n
logN(T, ω,U , n)dP(ω) (3.1)

= lim
n→∞

1

n

∫
logN(T, ω,U , n)dP(ω),

and (3.1) remains valid for P-a.e ω without taking the integral on the right-hand side if
P is ergodic.
The proof of the variational principle I as stated in Theorem 3.2 is based on the

random version of the local variational principle for entropy of a fixed open cover. Local
entropy theory for deterministic dynamical systems has been studied by Romagnoli [28]
and proved by Glasner and Weiss [8]. In the case of random dynamical systems, authors
[6, 26] established the following local variational principle.
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Theorem 3.1. Let T be a homeomorphic bundle RDS on E over a measure-preserving

system (Ω,F ,P, θ). If U ∈ C0′
E , then

hr
top(T,U) = max

µ∈MP(E)
hr
µ(T,U).

Additionally, if P is ergodic, then

hr
top(T,U) = sup

µ∈EP(E)
hr
µ(T,U).

Given a finite open cover U of X, We define diam(U) as the diameter of U , i.e., the
maximal diameter of the elements of U . The Lebesgue number of U , denoted by Leb(U),
is the largest positive number δ with the property that every open ball of X with radius
δ is contained in an element of U .

Lemma 3.1 ([14, lemma 3.4]). For any compact metric space (X, d) and ε> 0,
there exists a finite open cover U of X such that diam(U) ≤ ε and Leb(U) ≥ ε

4 .

Lemma 3.2. Let σ = {Ai} be a finite open cover of X. Let U = (Ω × σ)E =
{(Ω×Ai) ∩ E : Ai ∈ σ} be a finite open cover of E. Then for each fixed ω,

S(E , ω, diam(σ)) ≤ lim
n→∞

1

n
logN(T, ω,U , n) ≤ S(E , ω,Leb(σ)). (3.2)

Proof. One can obtain the desired result by using

sep(E , ω, diam(σ), n) ≤ N(T, ω,U , n) ≤ sep(E , ω,Leb(σ), n).

�

Theorem 3.2. Let T be a homeomorphic bundle RDS on E over a measure-preserving
system (Ω,F ,P, θ). Then

EmdimM(T, E , d) = lim sup
ε→0

1

| log ε|
sup

µ∈MP(E)
inf

diam(α)≤ε,
α∈PX

hr
µ(T, (Ω× α)E),

EmdimM(T, E , d) = lim inf
ε→0

1

| log ε|
sup

µ∈MP(E)
inf

diam(α)≤ε,
α∈PX

hr
µ(T, (Ω× α)E).

Additionally, if (Ω,F ,P, θ) is ergodic, then the results are also valid by changing the
supremum into supµ∈EP(E)

.

Proof. It suffices to show the variational principles hold for EmdimM(T, E , d). Let
ε> 0. From Lemma 3.1, there exists a finite open cover U of X such that diam(U) ≤ ε
and Leb(U) ≥ ε

4 .
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Note that, for any finite Borel partition α of X satisfying α � U , we have diam(α) ≤ ε.
By Theorem 3.1, we obtain

sup
µ∈MP(E)

inf
diam(α)≤ε,

α∈PX

hr
µ(T, (Ω× α)E) ≤ sup

µ∈MP(E)
inf

α�U,
α∈PX

hr
µ(T, (Ω× α)E) = hr

top(T, (Ω× U)E).

(3.3)

Using Lemma 3.2,

hr
top(T, (Ω× U)E) ≤

∫
S(E , ω,Leb(U))dP(ω) ≤

∫
S(E , ω, ε

4
)dP(ω). (3.4)

It follows from inequalities (3.3) and (3.4) that

sup
µ∈MP(E)

inf
diam(α)≤ε,

α∈PX

hr
µ(T, (Ω× α)E) ≤

∫
S(E , ω, ε

4
)dP(ω).

So we get

lim sup
ε→0

1

| log ε|
sup

µ∈MP(E)
inf

diam(α)≤ε,
α∈PX

hr
µ(T, (Ω× α)E) ≤ EmdimM(T, E , d).

On the other hand, for every finite Borel partition α of X such that diam(α) ≤ ε
8 , we

have α � U . Then Theorem 3.1 and Lemma 3.2 give us

sup
µ∈MP(E)

inf
diam(α)≤ ε

8 ,

α∈PX

hr
µ(T, (Ω× α)E) ≥ sup

µ∈MP(E)
inf

α�U,
a∈PX

hr
µ(T, (Ω× α)E)

= hr
top(T, (Ω× U)E)

≥
∫

S(E , ω, diam(U))dP(ω) ≥
∫

S(E , ω, ε)dP(ω),

which yields the desired results. If (Ω,F ,P, θ) is ergodic, one can get the variational
principles by the similar arguments. �

3.2. Variational principle II: Shapira’s ε-entropy

In this subsection, we introduce the notion of Shapira’s entropy in the setting of ran-
dom dynamical systems and prove Theorem 3.3, which reflects the relationship between
Shapira’s entropy and the measure-theoretic entropy of a fixed finite open cover U for
random dynamical systems. Using this result, we can establish the variational principle
of Shapira’s ε-entropy.
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Let U = {Ui}ki=1 be a finite open cover of E and µ ∈ EP(E). Given ω ∈ Ω and 0 < δ < 1,
we define

Nµω (U , δ) = min

{
#I : µω

(⋃
i∈I

Ui(ω)

)
> 1− δ

}
.

In order to define Shapira’s entropy of random dynamical systems, we need to prove the
measurability of Nµω (U , δ).

Proposition 3.1. Let T be a continuous bundle RDS over a measure-preserving
system (Ω,F ,P, θ). Let U ∈ C0

E . Then the function ω 7→ Nµω (U , δ) is measurable.

Proof. For every q > 0, we have

Ωq := {ω : Nµω (U , δ) = q}

=
⋃

#I=q,
I⊂{1,··· ,#U}

{
ω : µω

(⋃
i∈I

Ui(ω)

)
>1−δ

}⋂ ⋂
#J<q,

J⊂{1,··· ,#U}

{
ω : µω

(⋃
i∈J

Ui(ω)

)
≤1−δ

}.

For each I ⊂ {1, · · · ,#U}, the graph(AI)= {(ω, x) : x ∈
⋃

i∈I Ui(ω)} = ∪i∈IUi ∩ E is a
measurable set of Ω × X. By [5, corollary 3.4], the map ω → µω(Ui(ω)) is measurable.
Then Ωq is a measurable set of Ω. This implies that ω 7→ Nµω (U , δ) is measurable since
the map only takes finite many values. �

Using proposition 3.1, we can define Shapira’s entropy of U ∈ C0
E with respect to µ as

h
S

µ(T,U) := lim
δ→0

lim sup
n→∞

1

n

∫
logNµω (Un−1

0 , δ)dP(ω).

hS
µ(T,U) := lim

δ→0
lim inf
n→∞

1

n

∫
logNµω (Un−1

0 , δ)dP(ω).

If the limit supremum and infimum agree, we denote the common value by hS
µ(T,U).

By the above definition, the essence of Shapira’s entropy is the alternative of
Katok’s entropy defined by open covers. The Lemma 3.3 states the well-known
Shannon–McMillan–Breiman Theorem for RDSs [39]. The result of topological dynami-
cal systems can be seen in [31]. For ξ ∈ PE and n ∈ N, denote by An

ξ,ω(x) be the atom of∨n−1
i=0 (T

i
ω)

−1ξ(θiω) containing the point x ∈ Eω.

Lemma 3.3 (Shannon-McMillan-Breiman Theorem). Let T be a continuous
bundle RDS on E over a measure-preserving system (Ω,F ,P, θ) and µ ∈ MP(E). Then
for any ξ ∈ PE , we have
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(1)

lim
n→∞

1

n
Iµω (

n−1∨
i=0

(T i
ω)

−1ξ(θiω))(x)

= Eµ(r|τ)(ω, x) µ− a.e.and in L1(µ),

where Iµω (
∨n−1

i=0 (T
i
ω)

−1ξ(θiω)) = − logµω(A
n
ξ,ω(x)) is the information function,

r(ω, x) = Iµω (ξω|
∨∞

i=1(T
i
ω)

−1ξ(θiω)(x) and τ is the σ-algebra of Θ-invariant sets;
(2) hr

µ(T, ξ) =
∫
Hµω (ξ(ω)|

∨∞
i=1(T

i
ω)

−1ξ(θiω))dP(ω);
(3) if µ is ergodic, then

lim
n→∞

− 1

n
logµω(A

n
ξ,ω(x)) = hr

µ(T, ξ) µ− a.e.and in L1(µ).

Adapting the ideas from [29] and [37, lemma 6.1], the following theorem establishes the
bridge between Shapira’s entropy and measure-theoretic entropy of a fixed finite open
cover U for random dynamical systems.

Theorem 3.3. Let T be a homeomorphic bundle RDS on E over a measure-preserving
system (Ω,F ,P, θ). Let U ∈ C0

E and µ ∈ EP(E). Then

h
S

µ(T,U) = hS
µ(T,U) = hS

µ(T,U) = hr
µ(T,U).

Proof. Step 1: We prove hr
µ(T,U) ≥ h

S

µ(T,U).
Take any finite measurable partition ξ of E such that ξ � U . According to Lemma 3.3,

there exists F ⊂ E such that µ(F ) = 1 and for each (ω, x) ∈ F ,

lim
n→∞

− 1

n
logµω(A

n
ξ,ω(x)) = hr

µ(T, ξ).

Fix ω ∈ πΩ(F ) and let a > 0. Set

Lω,n =

{
x ∈ Eω : − 1

m
logµω(A

m
ξ,ω(x)) ≤ hr

µ(T, ξ) + a, ∀m ≥ n

}
.

By Lemma 3.3, µω(Lω,n) > 1− δ for n sufficiently large. Fix n and choose a finite subset
Gω,n =

{
x1, · · · , xsω,n

}
of Lω,n such that Lω,n ⊂

⋃sω,n
i=1 An

ξ,ω(xi). Since the sets A
n
ξ,ω(xi)

are distinct and µω measure of each member of them is not less than exp(−n(hr
µ(T, ξ) +

a)), then

#Gω,n = sω,n ≤ exp(n(hr
µ(T, ξ) + a)).

Note that µω(Lω,n) > 1− δ, we have

Nµω (Un−1
0 , δ) ≤ Nµω (ξ

n, δ) ≤ exp(n(hr
µ(T, ξ) + a)). (3.5)
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Thus for any a > 0

lim sup
n→∞

1

n

∫
logNµω (Un−1

0 , δ)dP(ω) ≤ hr
µ(T, ξ) + a.

Letting a → 0, we obtain

lim sup
n→∞

1

n

∫
logNµω (Un−1

0 , δ)dP(ω) ≤ hr
µ(T, ξ).

Taking infimum over ξ � U and δ → 0, we have

h
S

µ(T,U) ≤ hr
µ(T,U).

Applying the approach from [37, lemma 6.1], we have

Claim 1. For any V ∈ C0
E and 0 < δ < 1, there exists β ∈ PE such that β � V and

Nµω (β, δ) ≤ Nµω (V, δ) for P-a.e. ω ∈ Ω.

Proof. Let πΩ : (E ,FE , µ,Θ) → (Ω,F ,F, θ) be a factor map. Let V = {V1, · · · , Vm} ∈
C0

E . For P-a.e. ω ∈ Ω, there exists Iω ⊂ {1, · · · ,m} with cardinality Nµω (V, δ) such that
µω(
⋃

i∈Iω
Vj(ω)) ≥ 1 − δ. Hence we can find ω1, · · · , ωs ∈ Ω such that for P-a.e.ω ∈ Ω,

Iω = Iωi for some i ∈ {1, · · · , s}. For i = 1, · · · , s, define

Ωi =

ω ∈ Ω : µω(
⋃

j∈Iωi

Vj(ω)) ≥ 1− δ

 .

Let C1 = Ω1, Ci = Ωi\
⋃i−1

j=1 Ωj , i = 2, · · · , s. Fix i ∈ {1, · · · , s}. Assume that Iωi ={
k1, · · · , kti

}
, where ti = Nµωi

(V, δ). Take
{
W

ωi
1 , · · · ,Wωi

ti

}
such that

W
ωi
1 = Vk1

,W
ωi
2 = Vk2

\ Vk1
, · · · ,Wωi

ti
= Vkti

\ ∪ti−1
j=1 Vkj

.

Define A := E \
(
∪s
i=1(π

−1
Ω Ci ∩ ∪ti

j=1W
ωj
j )
)
. Set A1 = A ∩ V1, Al := A ∩ (Vl \ ∪l−1

j=1Vj),

l = 2, · · · ,m. Finally, take

β =
{
π−1
Ω C1 ∩W

ω1
1 ,· · ·, π−1

Ω C1 ∩W
ω1
t1

,· · ·, π−1
Ω Cs ∩Wωs

1 ,· · ·, π−1
Ω Cs ∩Wωs

ts , A1,· · ·, Am

}
.

Then β � V and Nµω (β, δ) ≤ Nµω (V, δ) for P-a.e. ω. �

Definition 3.1. A measure-preserving system (X,B, µ, T ) is said to be aperiodic, if
for every n ∈ N, µ({x|Tnx = x}) = 0.

Lemma 3.4 (Lemma 1.5.4 in [30]). If δ < 1
2 , then

∑
j≤δK

(
K
j

)
≤ 2H(δ), where

H(δ) = −δ log δ − (1− δ) log(1− δ).
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The following lemma is the strong Rohlin Lemma [29, lemma 2.5].

Lemma 3.5. Let (X,B, µ, T ) be an ergodic, aperiodic system and let α ∈ PX . Then
for any δ > 0 and n ∈ N, one can find a set B ∈ B such that B, TB, ⋯, Tn−1B are

mutually disjoint, µ
(⋃n−1

i=0 T iB
)
> 1 − δ and the distribution of α is the same as the

distribution of the partition α|B that α induces on B.

The data (n, δ,B, α) will be called a strong Rohlin tower of height n and error δ with
respect to α and with B as a base.
Step 2: Our aim is to prove

hr
µ(T,U) ≤ hS

µ(T,U)

where µ is an ergodic measure and U ∈ C0
E .

Case 1: If the system (E ,FE , µ,Θ) is periodic, then µ is supported on a periodic point
of Θ. In this case, it is straightforward to see that

hr
µ(T,U) = hS

µ(T,U) = 0.

Now, we can assume that the system is aperiodic. Let U = {U1, · · · , UM} be a open
cover of E . For fixed n ∈ N, by claim 1, we can find a partition β ∈ PE such that
β � Un−1

0 . There exists a subset A of E such that µ(A) < ρ and for any (ω, x) ∈ A, we
have Nµω (β, ρ) ≤ Nµω (Un−1

0 , ρ). Choose δ > 0 with 0 < ρ+ δ < 1/4. By Lemma 3.5, we
can construct a strong Rohlin tower with respect to β with height n and error less than
δ. Let B̃ denote the base of tower and B = B̃ \A. That is

• the sets {B̃,ΘB̃, · · · ,Θn−1B̃} are disjoint and µ(∪n−1
i=0 Θ

iB̃) > 1− δ;
• µ(A) = µB̃(A) for any A ∈ β.

Note that β is constructed according to Claim 1, we get that A is the union of the atoms
of β. Since the distribution of β is equal to the distribution of βB̃ , we have µ(B) >

(1 − ρ)µ(B̃). Define E = ∪n−1
i=0 Θ

iB, then µ(ΘiB) ≥ (1 − ρ)µ(ΘiB̃) and hence µ(E) >
(1− δ)(1− ρ) = 1− (δ + ρ) + δ · ρ > 1− (δ + ρ).
Since βB̃ � Un−1

0 , there exist sequences i0, · · · , in−1 and Bi0,··· ,in−1
∈ β|B̃ , such that

ΘjBi0,··· ,in−1
⊂ Uij

for every 0 ≤ j ≤ n− 1. Let α̂ =
{
Â1, · · · , ÂM

}
be a partition of E

defined by

Âm :=
⋃{

ΘjBi0,··· ,in−1
: 0 ≤ j ≤ n− 1, ij = m

}
.

Note that Âm ⊂ Um for every 1 ≤ m ≤ M . Extend α̂ to a partition α of E in some way
such that α � U and #α = 2M .
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Set η4 = ρ+ δ. For large enough k >n large enough, define

fk(ω, x) =
1

k

k−1∑
i=0

1E(Θ
i(ω, x))

and Lk :=
{
(ω, x) ∈ E : fk(ω, x) > 1− η2

}
. By Birkhoff ergodic theorem, we have∫

fkdµ > 1− η4 and

η2µ(Lc
k) ≤

∫
Lc
k

1− fkdµ ≤
∫
E
1− fkdµ ≤ η4.

It follows that µ(Lk) ≥ 1− η2. Since E is measurable, Lk is measurable with respect to
(ω, x) ∈ E . For all j ≥ k, take

Jk =
{
(ω, x) ∈ E :µω(A

j
α,ω(x)) < exp(−(hr

µ(T, α)− η)j)
}⋂

{
(ω, x)∈E :

∣∣∣∣1j
j−1∑
i=0

logNµ
θiω

(Un−1
0 , ρ)1B(Θ

i(ω, x))−
∫
logNµω (Un−1

0 , ρ)1B(ω, x)dµ

∣∣∣∣≤η

}
.

Applying Lemma 3.3 and the Birkhoff ergodic theorem, we conclude that µ(Jk) > 1− η2

for k sufficiently large k. Then by [5, corollary 3.4], the set{
(ω, x) ∈ E : µω(A

j
α,ω(x)) < exp(−(hr

µ(T, α)− η)j), ∀j ≥ k
}
,

is measurable. Since Nµω (Un−1
0 , ρ) is measurable with respect to ω ∈ Ω, then the

function Nµω (Un−1
0 , ρ) is measurable with respect to (ω, x) ∈ E by [5, lemma 1.1].

And 1B(Θ
i(ω, x)) = 1Θ−iB(ω, x) is a measurable function. Then Jk is measurable.

Set Gk = Lk ∩ Jk, then Gk is measurable and µ(Gk) > 1 − 2η2. Define G̃k =
{(ω, x) ∈ Gk : µω(Gk(ω)) ≥ 1− 4η}, we have

G̃c
k ∩ E = {(ω, x) ∈ Gk : µω(G

c
k(ω)) > 4η} ∪ (Gc

k ∩ E).

Therefore,

µ(G̃c
k ∩ E) · 4η ≤

∫
µω(G

c
k(ω))dP+ µ(Gc

k) = 2µ(Gc
k) ≤ 4η2,

i.e., µ(G̃c
k ∩ E) ≤ η.

Fix ω ∈ πΩ(G̃k) and choose a sufficiently large k >n. Let 0 ≤ i1 ≤ · · · ≤ im ≤ k − n,
and set

Cω = {x ∈ G̃k(ω) : T
i1
ω x ∈ B(θi1ω), · · · , T im

ω x ∈ B(θimω)}.

Because each element of this partition corresponds to a collection of subintervals of
[0, k − 1] of length n, which covers all but at most η2k + 2n elements of [0, k − 1] in a
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one-to-one manner, we have the number of elements in the partition of G̃k(ω) is bounded
above by

∑
j<η2k+2n

(
k

j

)
.

In the sequel, we will want to estimate the number of αk−1
0 (ω)-elements needed to cover

it. If 0 ≤ i1 ≤ · · · ≤ im ≤ k−n are the times elements of Cω visit B(θi1ω), · · · , B(θimω),

then we need at most Nµ
θ
ij ω

(Un−1
0 , ρ) α

ij+n−1

ij
(ω)-elements to cover Cω. Because the size

of [0, k− 1] \∪j [ij , ij +n− 1] is at most η2k+2n, we need at most Πm
j=1Nµ

θjω
(Un−1

0 , ρ) ·

(2M)η
2k+2n αk−1

0 (ω)-elements to cover Cω. Since G̃k ⊂ Jk, we know that G̃k(ω) can be
covered by no more than

∑
j<η2k+2n

(
k

j

)
· (2M)η

2k+2n · ek(
∫
B logNµω (Un−1

0 ,ρ)dµ+η) (3.6)

αk−1
0 (ω) elements. By Lemma 3.4, the above equation (3.6) less than

ekH(η2+2n/k) · (2M)η
2k+2n · ek(

∫
B logNµω (Un−1

0 ,ρ)dµ+η).

Note that ω ∈ πΩ(G̃k), then we have

1− 4η ≤ µω(G̃k(ω)) ≤
exp(−(hr

µ(T, α)− η)k) · exp(kH(η2 + 2n/k))·

(2M)η
2k+2n · exp

(
k(

∫
logNµω (Un−1

0 , ρ)1B(ω, x)dµ+ η)

)
. (3.7)

Combining with (3.7), we obtain

hr
µ(T, α) ≤ η +H(η2) + η2 log(2M) +

∫
logNµω (Un−1

0 , ρ)1B(ω, x)dµ+ η

≤ 2η +H(η2) + η2 log(2M) +
1

n

∫
logNµω (Un−1

0 , ρ)1B(ω, x)dµ

≤ 2η +H(η2) + η2 log(2M) +
1

n

∫
logNµω (Un−1

0 , ρ)1Ω×X(ω, x)dµωdP(ω)

≤ 2η +H(η2) + η2 log(2M) +
1

n

∫
logNµω (Un−1

0 , ρ)dP(ω).

Letting n → ∞ and then ρ → 0, we get

hr
µ(T,U) ≤ hr

µ(T, α) ≤ hS
µ(T,U).

�
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Theorem 3.4. Let T be a homeomorphic bundle RDS on E over an ergodic measure-
preserving system (Ω,F ,P, θ). Then

EmdimM(T, E , d) = lim sup
ε→0

1

| log ε|
sup

µ∈EP(E)
inf

diam(U)≤ε,

U∈CoX

hS
µ(T, (Ω× U)E).

EmdimM(T, E , d) = lim inf
ε→0

1

| log ε|
sup

µ∈EP(E)
inf

diam(U)≤ε,

U∈CoX

hS
µ(T, (Ω× U)E).

Proof. Fix ε> 0 and µ ∈ EP(E). Then by Theorem 3.3, we have

inf
diam(U)≤ε,

U∈Co
X

hS
µ(T, (Ω× U)E) = inf

diam(U)≤ε,
U∈Co

X

hr
µ(T, (Ω× U)E),

= inf
diam(U)≤ε,α�U

hr
µ(T, (Ω× α)E)

≥ inf
diam(α)≤ε,

α∈PX

hr
µ(T, (Ω× α)E). (3.8)

By Lemma 3.1, we can choose a finite open cover U ′ of X with diam(U ′) ≤ ε and
Leb(U ′) ≥ ε

4 . Then

inf
diam(U)≤ε

U∈Co
X

hS
µ(T, (Ω× U)E) ≤ hS

µ(T, (Ω× U ′)E)

= hr
µ(T, (Ω× U ′)E), by Theorem 3.3

= inf
α�U′

,α∈PX

hr
µ(T, (Ω× α)E)

≤ inf
diam(α)≤ ε

8 ,

α∈PX

hr
µ(T, (Ω× α)E). (3.9)

We finally get the desired results by the inequalities (3.8), (3.9) and Theorem 3.2. �

3.3. Variational principle III: Katok’s ε-entropy

In this subsection, we prove the third main result by replacing Shapira’s ε-entropy with
Katok local ε-entropy. Given µ ∈ MP(E), let

Nδ
µω (n, ε) = min

{
j : µω

(
j⋃

i=1

Bdωn
(xi, ε)

)
> 1− δ

}
.
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Based on proposition 3.1, we similarly obtain the measurability of Nδ
µω (n, ε) and define

the upper and lower Katok’s ε-entropies of µ as follows

h
K

µ (T, ε) = lim
δ→0

lim sup
n→∞

1

n

∫
logNδ

µω (n, ε)dP(ω),

hK
µ (T, ε) = lim

δ→0
lim inf
n→∞

1

n

∫
logNδ

µω (n, ε)dP(ω).

Theorem 3.5. Let T be a homeomorphic bundle RDS on E over an ergodic measure-
preserving system (Ω,F ,P, θ). Then

EmdimM(T, E , d) = lim sup
ε→0

1

| log ε|
sup

µ∈EP(E)
h
K

µ (T, ε),

EmdimM(T, E , d) = lim inf
ε→0

1

| log ε|
sup

µ∈EP(E)
h
K

µ (T, ε).

The results are valid if we change h
K

µ (T, ε) into hK
µ (T, ε).

Proof. It suffices to show the results hold for EmdimM(T, E , d) since the second one
follows similarly. Fix ε> 0. Let 0 < δ < 1 and µ ∈ EP(E). Let U = {U1, · · · , Ul} be a
finite open cover of X with diam(U) < ε. Then the family U(ω) formed by the sets U ∩Eω
with U ∈ U is an open cover of Eω. This implies that each element of

∨n−1
i=0 (T

i
ω)

−1U(θiω)
can be contained in an (n, ε, ω)-Bowen ball. So

Nδ
µω (n, ε) ≤ Nµω

(
n−1∨
i=0

(T i
ω)

−1U(θiω), δ

)
.

This shows

h
K

µ (T, ε) ≤ inf
diam(U)≤ε,

U∈CoX

h
S

µ(T, (Ω× U)E). (3.10)

By Lemma 3.1, we can choose a finite cover U of X such that diam(U) ≤ ε and Leb(U) ≥
ε
4 . Since each (n, ε

4 , ω)-Bowen ball is contained in some element of
∨n−1

i=0 (T
i
ω)

−1U(θiω),
then Nµω (

∨n−1
i=0 (T

i
ω)

−1U(θiω), δ) ≤ Nδ
µω (n,

ε
4 ). This shows

inf
diam(U)≤ε,

U∈CoX

h
S

µ(T, (Ω× U)E) ≤ h
K

µ (T,
ε

4
). (3.11)

Since µ ∈ EP(E), we have h
S

µ(T, (Ω×U)E) = hS
µ(T, (Ω×U)E) by Theorem 3.3. Therefore,

by inequalities (3.10), (3.11) and Theorem 3.4, we get the desired results. �
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3.4. Variational principle IV: Brin–Katok local ε-entropy

In this subsection, we borrow the Shannon-McMillan-Breiman theorem of random
dynamical systems and Theorem 3.5 to establish the fourth variational principle for
metric mean dimensions in terms of Brin–Katok local ε-entropy.
Let µ ∈ MP(E), ω ∈ Ω and x ∈ Eω. Put

h
BK

µω (T, x, ε) = lim sup
n→∞

− 1

n
logµω(Bdωn

(x, ε)),

hBK
µω

(T, x, ε) = lim inf
n→∞

− 1

n
logµω(Bdωn

(x, ε)).

We define the upper and lower Brin–Katok local ε-entropies of µ at x as

h
BK

µ (T, ε) =

∫
h
BK

µω (T, x, ε)dµ(ω, x),

hBK
µ (T, ε) =

∫
hBK
µω

(T, x, ε)dµ(ω, x).

The Brin–Katok’s entropy formula for RDS is given by Zhu in [40, theorem 2.1][39,
theorem 2.1]. When µ ∈ MP(E), they stated that

lim
ε→0

h
BK

µ (T, ε) = lim
ε→0

hBK
µ (T, ε) = hr

µ(T ).

In particular, when µ is ergodic, lim
ε→0

h
BK

µω (T, x, ε) = lim
ε→0

hBK
µω (T, x, ε) = hr

µ(T ). We give

the following equalities for given ε> 0.

Proposition 3.2. Let T be a continuous bundle RDS on E over a measure-preserving
system (Ω,F ,P, θ). If µ ∈ EP(E), then for every ε> 0,

h
BK

µω (T, x, ε) = h
BK

µ (T, ε) and hBK
µω

(T, x, ε) = hBK
µ (T, ε) (3.12)

for µ-a.e (ω, x).

Proof. Let µ ∈ EP(E). By [5, proposition 3.6], µ can be disintegrated as dµ(ω, x) =
dµω(x)dP(ω). Here the definition of µω can see [5, defintion 3.1]. Let F (ω, x) :=

h
BK

µω (T, x, ε). Fix n ∈ N and ω ∈ Ω, we have

Bdωn
(x, ε) = ∩n−1

j=0 (T
j
ω)

−1(B(T j
ωx, ε) ∩ Eθjω)

= T−1
ω

(
∩n−1
j=1 (T j−1

θω )−1(B(T j−1
θω (Tωx), ε) ∩ Eθj−1θω)

)
∩ (B(x, ε) ∩ Eω)

⊆ T−1
ω B

dθωn−1
(Tωx, ε),
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and hence µω(Bdωn
(x, ε)) ≤ µω(T

−1
ω B

dθωn−1
(Tωx, ε)) = µθω(Bdθωn−1

(Tωx, ε)) for P-a.e ω by

using the fact Tωµω = µθω. This shows for µ-a.e (ω, x)

F (ω, x) = h
BK

µω (T, x, ε) ≥ h
BK

µθω
(T, Tωx, ε) = F ◦Θ(ω, x).

Since µ is ergodic, this shows for µ-a.e (ω, x) h
BK

µω (T, x, ε) = h
BK

µ (T, ε). �

Theorem 3.6. Let T be a homeomorphic bundle RDS on E over an ergodic measure-
preserving (Ω,F ,P, θ). Then

EmdimM(T, E , d) = lim sup
ε→0

1

| log ε|
sup

µ∈MP(E)
h
BK

µ (T, ε),

EmdimM(T, E , d) = lim inf
ε→0

1

| log ε|
sup

µ∈MP(E)
h
BK

µ (T, ε).

Moreover, both MP(E) in the above equalities can be replaced by EP(E).

Proof. Given ε> 0 and µ ∈ MP(E), choose a finite Borel partition ξ of X with diamξ ≤
ε. By Lemma 3.3, we have∫

lim
n→∞

− 1

n
logµω(A

n
(Ω×ξ)E ,ω(x))dµ(ω, x) = hr

µ(T, (Ω× ξ)E).

It is clear that An
(Ω×ξ)E ,ω(x) ⊂ Bdωn

(x, ε) for every n ∈ N. Then∫
lim sup
n→∞

− 1

n
logµω(Bdωn

(x, ε))dµ(ω, x) ≤
∫

lim
n→∞

− 1

n
logµω(A

n
(Ω×ξ)E ,ω(x))dµ(ω, x).

Moreover

h
BK

µ (T, ε) ≤ hr
µ(T, (Ω× ξ)E).

Therefore,

EmdimM(T, E , d) = lim sup
ε→0

1

| log ε|
sup

µ∈MP(E)
inf

diamξ≤ε
ξ∈PX

hr
µ(T, (Ω× ξ)E),by Theorem 3.2

≥ lim sup
ε→0

1

| log ε|
sup

µ∈MP(E)
h
BK

µ (T, ε).

We next verify the converse direction. By (3.12), there exists a µ-full measure set E ⊂
Ω×X so that for (ω, x) ∈ E,

lim sup
n→∞

− 1

n
logµω(Bdωn

(x, ε)) = h
BK

µ (T, ε).
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Note that P(πΩE) = 1 and µ(E) =
∫
πΩE

µω(E(ω))dP(ω) = 1, where E(ω) = {x ∈ Eω :

(ω, x) ∈ E}. Then we can obtain that µω(E(ω)) = 1 for all ω ∈ πΩE. Given ω ∈ πΩE,
ρ> 0 and n ∈ N, set

Gω
n,ρ =

{
x ∈ E(ω) : − 1

n
logµω(Bdωn

(x, ε)) < h
BK

µ (T, ε) + ρ

}
.

Let 0 < δ < 1. Then for all sufficiently large n ∈ N (depending on δ, ω, ρ), one has
µω(G

ω
n,ρ) > 1 − δ. Let Hn be a maximal (ω, 2ε, n)-separated subset of Gω

n,ρ. Therefore

it is also an (ω, 2ε, n)-spanning subset of Gω
n,ρ and the family

{
Bdωn

(x, ε) : x ∈ Hn

}
is

pairwise disjoint. It follows that µω(
⋃

x∈Hn
Bdωn

(x, 2ε)) ≥ µω(G
ω
n,ρ) > 1− δ and

#Hn · e−n(h
BK
µ (T,ε)+ρ) ≤

∑
x∈Hn

µω(Bdωn
(x, ε)) = µω(

⋃
x∈Hn

Bdωn
(x, ε)) ≤ 1.

Then Nδ
µω (n, 2ε) ≤ #Hn ≤ en(h

BK
µ (T,ε)+ρ). This yields that

h
BK

µ (T, ε) + ρ ≥
∫
πΩE

lim sup
n→∞

1

n
logNδ

µω (n, 2ε)dP(ω)

=

∫
lim sup
n→∞

1

n
logNδ

µω (n, 2ε)dP(ω)

≥ lim sup
n→∞

1

n

∫
logNδ

µω (n, 2ε)dP(ω),by Fatou’s lemma.

Letting δ → 0 and then letting ρ → 0, we obtain h
K

µ (T, 2ε) ≤ h
BK

µ (T, ε) for every
µ ∈ EP(E). Then by Theorem 3.5, we have

EmdimM(T, E , d) = lim sup
ε→0

1

| log ε|
sup

µ∈EP(E)
h
K

µ (T, ε) ≤ lim sup
ε→0

1

| log ε|
sup

µ∈EP(E)
h
BK

µ (T, ε).

To illustrate our main theorem, we discuss the following example.

Example 3. Let (Ω,F ,P, θ) be an ergodic measure-preserving system. Define the
standard metric on torus T as follows:

||x− y||T = min{|x− y − n| : n ∈ N}

for each x, y ∈ T. Set TZ equipped with the metric

d(x, y) =
∑
n∈Z

2−|n|||xn − yn||T

and let σ : TZ → TZ be the shift on T. Assume that h : Ω → TZ is a measurable map.
We consider the Tω(x) generated by Tω(x) = σ(x) + h(ω) for ω ∈ Ω, x ∈ TZ. Observer
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that for any 0 ≤ j < n,

T j
ω(x) = σj(x) +

j−1∑
k=0

σj−1−mh(θkω).

The skew product is defined by Θn(w, x) → (θnw, Tn
ω x) for n ∈ Z. Let 0 < ε < 1

2 , set

l = dlog2(4/ε)e. Then
∑

|n|>l 2
−|n| ≤ ε/2. Consider the cover of T by

Ik =

(
(k − 1)ε

12
,
(k + 1)ε

12

)
, 0 ≤ k ≤ b12/εc.

Ik has length ε/6. For n ≥ 1, consider

TZ =
⋃

0≤k−l,...,kn+l≤b12/εc

{
x | ||x−l −

k`ε

12
||T <

ε

12
. . . , ||xn+` −

kn+`ε

12
||T <

ε

12

}
.

Each open set in the right-hand side has diameter less than ɛ with respect to the distance
dn. Hence

#(TZ, dn, ε) ≤ (1 + b12/εc)n+2l+1 = (1 + b12/εc)n+2dlog2(4/ε)e+1 (3)

On the other hand, any two distinct points in the sets

{x ∈ TZ | xm ∈ {0, ε, 2ε, . . . , b1/εcε}for all 0 ≤ m < n}

have distance ≥ ε with respect to dn. It follows that

#(TZ, dn, ε) ≥ (1 + b1/εc)n.

Thus

mdimM(TZ, σ,d) = 1.

Let dΩ be the metric on Ω. Take the metric d ′ on Ω× [0, 1]Z as follows:

d′((ω1, x), (ω2, y)) = d(x, y) + dΩ(w1, w2), ∀ω1, ω2 ∈ Ω, x, y ∈ TZ.

Note that for any ω ∈ Ω, k ≥ 0 and x, y ∈ TZ,

d′(Θk(ω, x),Θk(ω, y))

= d′((θkω, Tn
ω x), (θ

kω, Tn
ω y))

= d′((θkω, σj(x) +

j−1∑
k=0

σj−1−mh(θkω)), (θkω, σj(y) +

j−1∑
k=0

σj−1−mh(θkω))

= d(σkx, σky).
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Hence for any ε> 0, and n ≥ 1, one has

sep(Ω× TZ, ω, ε, n) = sep(TZ, ε, n), ∀ω ∈ Ω.

Thus

EmdimM (T,Ω× TZ, d)

= lim
ε→0

∫
Ω

1

| log ε|
lim sup
n→∞

1

n
log sep(Ω× TZ, ω, ε, n)dP(ω)

= lim
ε→0

1

| log ε|
lim sup
n→∞

1

n
log sep(TZ, ε, n)

= mdimM (TZ, σ, d) = 1.

Let L be the Lebesgue measure on T and µω = L
⊗

Z for P a.e ω. Set dµ(ω, x) =
dµω(x)dP(ω). Let 0 < ε < 1

2 , x ∈ TZ. Take ` = dlog2 4
ε e such that

∑
|n|>`

1

2|n|
≤ ε

2 . Let

In(x, ε) =
{
y ∈ TZ : ||yk − xk||T ≤ ε

6
, ∀ − ` ≤ k ≤ n+ `

}
,

and

Jn(x, ε) =
{
y ∈ TZ : ||yk − xk|T ≤ ε, ∀0 ≤ k < n

}
.

It is easy to see that for any ω ∈ Ω,

In(x, ε) ⊂ Bdωn
(x, ε) ⊂ Jn(x, ε).

Since µω(In(x, ε)) ≥
(
ε
6

)n+`
and µω(Jn(x, ε)) ≤ (4ε)n, we obtain that

log
1

4ε
≤ hBK

µω (x, ε) ≤ log
3

ε

for ∀ω ∈ Ω. Therefore

lim
ε→0

∫
hBK
µω (x, ε)dµ(ω, x)

|log ε|
= 1 = EmdimM (T,Ω× TZ, d).
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