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Abstract

Near-infrared spectra (NIRS) from plant tissues can be used to predict traits owing to their rela-
tionship to internal biochemical states, shaped by both environmental and genetic components.
Here, we tested the use of NIRS as predictors of budbreak the following year. We measured NIRS
on leaf and bud tissue, collected at several dates during the growing season, of 240 dessert apple
cultivars in 2021 and 2022. NIRS collected in 2021 and budbreak of 2022 were used to train
partial least squares (PLSR) models, then tested using NIRS of 2022 to predict budbreak in
2023. A GWAS using these predictions identified a QTL, previously associated to budbreak in
apple, indicating a significant genetic component was maintained in the predictions. Our results
demonstrate the potential of NIRS to predict future developmental stages, such as budbreak, by
detecting the metabolic states that precede them and could aid in genetic studies of difficult-to-
measure traits.

1. Introduction

The timing of budbreak in temperate fruit trees has an immense bearing on final fruit production
due to the interconnected relationship between seasonal climate conditions and reproductive
physiology. Temperature provides one of the most important environmental signals for the
beginning and end of dormancy in apple; however, its variability inevitably affects the timing of
bud and floral development year to year. The ability to predict this timing facilitates management
practices such as those able to mitigate damaging effects of early frosts (Cannell & Smith, 1986;
Legave et al., 2008). Furthermore, as climate change advances flowering to varying degrees
in many regions (Legave et al., 2013), the development of tools to improve this prediction is
becoming increasingly useful.

The development of apple floral and vegetative buds begins the year prior to their eventual
opening during spring, when floral induction (or not) determines the fate of meristems present
on shoots produced in the spring/summer of that year (Hanke et al., 2007). Buds then form
to protect the meristems over winter and, following fulfilment of the chilling and heating
requirements of the cultivar to overcome endodormancy and ecodormancy (Lang et al., 1987),
respectively, budbreak occurs in spring of the following season. The leaves also undergo trans-
formation during the period from summer to autumn as the gradual reduction in temperature
and photoperiod drive the re-uptake of nutrients, leading to leaf senescence and abscission.
All these changes, in both buds and leaves, are the result of ongoing biochemical processes
regulated by both the genetics of the cultivar and the environmental conditions. Measurements
of the metabolites produced leading up to budbreak found a close relationship between their
occurrence and final budbreak (Beauvieux et al., 2018; Dhuli et al., 2014).

Near-infrared spectroscopy (NIRS) refers to the region of the electromagnetic spectrum from
800 to 2500 nm and has been extensively used in plant trait prediction due to its relationship
with the biochemical composition of the tissues on which it is measured. The traits predicted
are usually those indicative of the current components or condition of the tissue, for example,
the dry matter content of avocado (Rodríguez et al., 2023), apple flesh texture (Wang et al.,
2024) or maize protein composition (Rosales et al., 2011). In addition, the high level of complex
endophenotypic information captured by NIRS means a significant genetic component can
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be represented in the spectra, a characteristic that underlies the
developing field of phenomic prediction. Here, the kinship matrix is
constructed using the NIRS spectra of the various genotypes, rather
than genetic markers, to derive a breeding value associated with
a particular trait (Rincent et al., 2018). This approach has shown
promise in a variety of crops, for a number of traits (Brault et al.,
2022; Lane et al., 2020; Rincent et al., 2018; Robert et al., 2022).

NIRS spectra can also be used to predict traits that have not yet
occurred within the same plant. NIRS measurements on unpicked
fruit in the field may reflect components involved in ripening or
maturity, thereby enabling the prediction of the best harvest date,
as in the case of peach (Minas et al., 2021). Another example
is seed germination and vigour, which may be predicted due to
NIRS mirroring the levels of important growth compounds, e.g.
protein and starch, as has been shown in soybean (Al-Amery et al.,
2018). In these two latter studies, despite the NIRS measurement
and the target trait being separated temporally, the biochemical
fingerprint of the tissue could be linked to the underlying phys-
iological progression and an associated outcome predicted. We
wanted to explore this link in the case of apple and attempt to
extend the application of NIRS to the prediction of the timing
of future flowering stages, evidence of which may be present in
the biochemical components of the plant tissues. Using partial
least squares regression (PLSR), a multivariate analysis able to deal
effectively with high-dimensional, collinear variables, like NIRS
(Wold et al., 2001), we made predictions of budbreak timing in an
apple collection of diverse French cultivars using leaf and bud NIRS
spectra taken the year prior. We then investigated the potential use
of these predictions in genetic association studies.

2. Materials and methods

2.1. Plant material

Plant material consisted of 240 cultivars of a French dessert apple
(Malus domestica Borkh.) core collection, as described by Lassois
et al. (2016), and five commercial cultivars, including Gala, Granny
Smith, Golden Delicious, Starkrimson and Condessa (list of culti-
vars given in Supplementary Table S1). All trees were grafted onto
the M9 Pajam®2 rootstock and planted out in field conditions in
2014 at the INRAE Diascope experimental unit, near Montpellier,
France. Four replicates of each collection cultivar were organ-
ised into 10 rows of 100 trees each, with two replicates planted
opposite each other in adjacent rows, randomly distributed in the
field. Eleven trees required replacement in 2015. Due to tree loss,
twenty-four cultivars had only three replicates and two cultivars
had two. Commercial cultivars were dispersed through the collec-
tion with between five and ten replicates each, making a final count
of 965 trees.

2.2. Phenotyping of flowering stages

Several flowering stages were phenotyped to provide a range of
potential prediction scenarios to test. The timing of phenological
stages was collected in both 2022 and 2023 (Farrera et al., 2024) and
was those as defined by Baggiolini (1980). The timing of budbreak
(including both vegetative and floral buds) was determined as
the number of days from January 1st until approximately 10% of
buds on the tree had reached stage C3 (at least 10 mm of leaf
tips had emerged past bud scales) and was recorded for all trees.
Due to alternate bearing cycles, approximately 20% of trees did

not produce any or very few floral meristems each year, thereby
preventing phenotyping of flowering progression. Therefore, pink
bud stage (buds were sufficiently open for the pink colouration of
the petals to be seen, stage E2), full bloom (inflorescences have
fully emerged from the bud, stage F2) and floral decline (first petals
fall, stage G) were recorded on only 804 and 788 trees in 2022
and 2023, respectively. These four stages will now be referred to as
stages C, E, F and G, respectively. Correlations between 2022 and
2023 flowering stages were calculated from the raw phenotypes of
each tree as the Pearson correlation coefficient, using R statistical
software (R Core Team, 2024). All further analyses were performed
in this software. Only stage C was used in the subsequent model
training and testing phases due to the high correlations of this trait
with the other flowering stages.

2.3. Sample collection and processing

Leaf sampling was performed in the same three months in 2021 and
2022, specifically, late June (23 June, both years) to coincide with
leaf expansion, and late September (23 and 28 September, respec-
tively) and mid-November (19 and 10 November, respectively) to
cover the period of senescence progression. All trees were sampled
by removing eight leaves: four from each side, with two from higher
in the canopy and two from lower down in order to achieve a
representative sample of the whole canopy. These leaves were then
stacked and, while avoiding the midribs, a handheld coring tool
was used to extract eight leaf disks (10 mm diameter). These disks
were pooled in a single tube and immediately snap frozen in liquid
nitrogen. Buds were sampled at two timepoints: 14 December
2021 and 19 January 2022, which coincided with the approximate
entry into endodormancy and the late stages of endodormancy,
respectively. Ten buds were removed per tree, five per side, and buds
were cut 3–4 mm below the approximate position of the meristem.
All buds per tree were pooled in a single tube, already immersed in
liquid nitrogen.

Bud and leaf samples were freeze-dried for 72 hours in a Cryotec
lyophilizator (Cryotec, Montpellier, France) and then ground to a
powder consistency with stainless steel beads using a SPEX Sam-
plePrep 2010 Geno/Grinder tissue homogenizer (SPEX CertiPrep,
Stanmore, UK). Bud samples required an initial grinding step prior
to the homogenizer using a standing electric drill and drill bit. Once
samples were fully ground, they were kept at room temperature.

2.4. Near-infrared spectrometry (NIRS) measurement and
spectra processing

NIRS was measured on all samples from the seven collection dates
using an ASD LabSpec 4 Standard-Res Lab analyser (PANalytical,
Almelo, Netherlands) and the associated spectra acquisition soft-
ware, IndicoPro (Version 6.5, Malvern Panalytical). Reflectance
was recorded from 400 to 2500 nm with a 1 nm spectral resolution.
The full dataset is available from Perez et al. (2025).

Spectra were loaded into R software using the functions
asd_read_dir and asd_read from Ecarnot (2023). An initial clean-
up of all sample spectra was carried out, which included a linear
extrapolation adjustment at two points in the spectra in order
to smooth the jumps that occur during the transition between
detectors of the spectrometer (adj_asd function from Ecarnot,
2023) and discarding of reflectance readings from 400 to 500 nm,
which were unstable. The following four noise-reducing, pre-
processing procedures were then performed for each of the
eight raw spectra datasets: standard normal variate (snv), which
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centres and scales the reflectance readings to correct for light
scattering; detrend (dt), using the prospectr R package (Stevens &
Ramirez-Lopez, 2024), which removes low-frequency, fluctuating
trends in the data, often due to instrumental shifts during multiple
measurements (Barnes et al., 1989); and first and second derivative
(der1 and der2, respectively), using the signal R package (Signal
Developers, 2023; window length of 41 nm), which remove
constant background signals from the spectra thereby improving
peak resolution. Along with the raw spectra, this rendered five
separate spectra matrices for each of the eight collection dates.
A flowchart of the process is given in Supplementary Figure S1.

2.5. Partial least squares regression (PLSR) model selection and
validation

Three PLSR models were trained to predict the timing of stage C
in 2022 using spectra matrices collected on leaf tissue in June,
September and November (2021) and the pls R package (Liland
et al., 2023). With those models, stage C in 2023 was predicted
using the spectra matrices collected in the same months (June,
September and November) in 2022 as predictors. In doing so, the
transferability of the spectra-based models from one year to the
next was tested.

For each of the three models, the model selection procedure
aimed at identifying the best noise-reducing pre-processing (raw,
snv, dt, der1, der2 and all five concatenated) for the spectra
matrices, as well as the optimal number of latent variables (up to 30)
for the PLSR algorithm. The model selection followed a 20-iteration
bootstrapping method to maximise the R2 on the test dataset
(sometimes known as q2) while minimising the Root Mean Square
Error (RMSE). The model selected was that with the lowest RMSE
(Aptula et al., 2005).

The three selected models were then trained on the full dataset,
i.e. not bootstrapping (NIRS 2021, stage C 2022), for subsequent
application on the data of the next year (NIRS 2022, stage C 2023).
Their subsequent performances are a measure of year-to-year trans-
ferability. Additionally, two other PLSR models were trained using
NIRS collected on bud tissue in December 2021 and January 2022.
They underwent model selection but were not advanced to appli-
cation the following year due to their poor performance.

The data used for the five models is summarised in Table 1. As
there was a slight variation in which trees were sampled at each
collection date, only samples present in the training (2022) and
testing (2023) data within each model were kept. This resulted in
varying sample numbers between models, but the same number of
samples in both the training and testing data within each model.
For example, both the June testing and training data consisted

of 929 samples, collected from the same trees in 2021 and 2022,
respectively (Table 1). A flowchart of the prediction process and
data used is given in Supplementary Figure S2.

Finally, to explore the practical value of the PLSR models, the
predictions were also compared to those of a trivial model, where
stage C timing of each tree in 2022 was considered equal to that of
2023.

2.6. Calculation of genotypic values and heritability

Predictions of stage C timing were made on a per tree basis, so
the genotypic component of these values was calculated for use in
genome-wide association studies (GWAS). For this, several linear
mixed models were tested using the lme4 R package (Bates et al.,
2015). The full model included genotype (cultivar) as a random
effect and row and planting year as fixed effects. Both fixed effects
were included in the final model based on the lowest Bayesian
information criterion (BIC) and the random effects (Best Linear
Unbiased Predictions, BLUPs) were extracted. This procedure was
also carried out for the observed stage C timings of all trees in 2022
and 2023. To test the significance of the difference in stage C timing
between 2022 and 2023 due to the year effect, the above mixed
model, with the addition of a fixed term for year and a random
interaction term for year and genotype, was fitted using data from
both years, followed by an ANOVA.

The selected model was also used to calculate the broad-sense
heritability (H2) of the observations and predictions of stage C in
2023 with the variance components, adjusted for the number of
replicates, as follows:

H2 =
VarG

VarG+ VarR
nrep

where VarG is the genotypic variance, VarR is the residual variance
and nrep is the number of replicates per genotype.

2.7. Single nucleotide polymorphism (SNP) markers

The SNP markers used in the GWAS analyses were an amalga-
mation of two datasets, including those of, firstly, an Axiom®
Apple 480 K array (Bianco et al., 2016; Denancé et al., 2022) and,
secondly, a dataset derived from capture sequencing of a selection
of genes related to flowering time control in Arabidopsis thaliana
(Bouché et al., 2016) as well as apple genes located within a quanti-
tative trait locus (QTL) on chromosome 9, previously associated
to budbreak (Trainin et al., 2016). A full description of the cap-
ture sequencing pipeline is provided in Watson et al. (2024) and

Table 1. Summary of the training and testing data used in partial least squares regression (PLSR) models in the selection and testing phases of stage
C timing prediction

Training data Testing data

Tissue Model name Predictor (NIRS) Response Predictor (NIRS) Response No. of samples

Leaf June model June 2021 Phenological stage C, 2022 June 2022 Phenological stage C, 2023 929

Sept model Sept 2021 Sept 2022 942

Nov model Nov 2021 Nov 2022 897

Bud Dec model Dec 2021 - - 953

Jan model Jan 2022 - 946

Note: The trees sampled in the training and testing data within each model were the same each year, and the number of which is given as the number of samples.
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data at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1023873.
Following filtering for bi-allelic SNPs successfully mapped to the
genome with a minor allele frequency (MAF) of ≥0.05 and <95%
heterozygosity, the final dataset contained 290,150 SNPs (40,857
from capture sequencing and 249,293 from the array).

2.8. Genome-wide association studies (GWAS)

GWAS analyses were performed using the BLUPs of stage C 2023
predictions of 238 cultivars of the apple core collection. A single-
locus, mixed model approach was chosen, performed by GEMMA
software (v.0.97; Zhou & Stephens, 2012), where the following
model was fitted for each SNP:

Y =m+Xβ+g+ e,

where Y was a vector of genotypic values, m was the overall mean, X
was a vector of SNP dosage scores (0, 1 or 2 to indicate the number
of the alternate allele), β was a vector of additive effects, g was a
vector of random polygenic effects and e was a vector of random
residual effects. The underlying distributions of the random effects
were assumed as g ∼N (0,Gσ2

g) and e ∼N (0,Iσ2
e ), where G was the

realised genomic matrix, calculated using Method 1 described in
VanRaden (2008) with the rutilstimflutre R package (Flutre, 2019),
I was an identity matrix, σ2

g was the genetic variance and σ2
e was the

residual variance.
To assign statistical significance to SNP-prediction associations,

the effective number of independent tests (Meff; Cheverud, 2001)
was estimated using the simpleM method (Gao et al., 2008, 2010).
An estimation of 85,159 independent tests resulted in a Bonferroni
threshold of−log10(p-value)= 6.23. To test the significance (p-value
≤ 0.05) of differences in stage predictions of cultivars with different
genotypes of significant SNPs, an ANOVA, followed by the Tukey
method to account for multiple comparisons, was performed using
the emmeans R package (Lenth, 2022).

3. Results

3.1. Flowering stages were highly correlated within and
between years

All flowering stages were highly correlated in 2022 and 2023 and
across both years, with correlation coefficients above 0.89 (Figure 1,
left). The correlations between the two years within each flowering
stage were also relatively high, with coefficients of 0.75, 0.87, 0.87
and 0.86 for stages C, E, F and G, respectively (Figure 1, right).
However, for each flowering stage, there was a significant year effect
(p-value = 2.2x10-16), clearly visualised in the distributions, with
all stages appearing to be reached earlier in 2022 than 2023. For
example, in both years, stage C commenced at the beginning of
March; however, by mid-March 2022 (75 days after Jan 1st), Stage
C had been reached by 27% of trees, while only 2% had reached this
stage by the same time in 2023. Due to the flowering stages being
so highly correlated and stage C being recorded for all trees in both
years, only this stage was used in further analyses. Note that Stage
C was the budbreak of both floral and vegetative buds.

3.2. Model performance was unaffected by spectra
pre-processing

Model selection identified the optimal number of latent variables
as well as the best pre-processing of the spectra matrices for all five
models by minimising their RMSE (see Supplementary Figure S4
for detailed results). It was noted that the performance measures, R2
and RMSE, of these selected models were not significantly affected
by the type of pre-processing of the spectra used as the predictor
(Supplementary Figure S5). Therefore, for parsimony, only the raw
spectra were considered in the subsequent model training phase.
Furthermore, the performances of the Dec and Jan models, both of
which used NIRS spectra from bud tissue, were much lower than
those of the three other models, all of which used NIRS spectra

Figure 1. Left: Correlations between flowering stages in 2022 (pink), 2023 (blue) and both years together (black). ∗∗∗ Indicates a p-value < 0.001. Left diagonal: Density

distributions of each stage in 2022 and 2023. Right: Timing of all flowering stages in 2022 versus the same stage in 2023. Values are days from January 1st of that year until the

flowering stage occurred. Correlations were calculated using the phenotypes of all trees.
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Figure 2. Performance (R2 and RMSE) of all PLSR models from the five NIRS collection dates (three leaf and two bud collections), using the raw spectra matrices, during the model

selection phase, to predict stages C in 2023. Error bars represent the 95% confidence interval.

from leaf tissue (Figure 2). Interestingly, the R2 of the Jan model
appeared slightly higher than that of the Dec model; however, due
to the comparatively low performance, these two models were not
advanced beyond model selection. The number of latent variables
included in the optimal models selected for the June, September
and November leaf collection dates was 24, 23 and 19, respectively.

3.3. NIRS collection date influenced PLSR model performance

In the model testing phase, predictions of stage C in 2023 were
made using the selected trained models and the testing NIRS data
of the corresponding collection date in 2022. Figure 3 shows the
predicted versus observed values of stage C in 2023. In terms of
R2, the performance of the June model was much higher than that
of the other two models, although the RMSE measures were all
relatively high and within five days of each other.

In comparison to the spectra-based PLSR models, a trivial
model was used as a prediction ability benchmark. It simply
repeated the timing of stage C in 2022 as the prediction for 2023.
The R2 of this model was much higher than that of the PLSR models
(Supplementary Figure S6), indicating that stage C itself was a
better predictor of the same stage the next year than PLSR models
using NIRS as the predictor. However, the RMSE of the trivial
model was still relatively high at 11 days.

3.4. GWAS using predictions detected a known QTL associated
with budbreak

To examine the extent of the genotypic variance lost through the
prediction process, the H2 and genotypic BLUPs of the prediction
2023 stage C and the observed stage C of 2023 were compared. The
H2 of stage C in 2023 was high at 0.95, much higher than those of the
stage C predictions of the June, Sept and Nov PLSR models, which
were 0.74, 0.66 and 0.65, respectively. Furthermore, the correlation

of the genotypic BLUPs of the predictions from each model and
the genotypic BLUPs of the observed stage C in 2023 also varied,
with the June model having the highest correlation at 0.64 while
the Sept and Nov models had similar correlations of 0.43 and 0.40,
respectively (Supplementary Figure S7).

The genotypic BLUPs of the stage C predictions were also
used in a GWAS analysis to further test their representation
of the genetic component of this trait. A well-known QTL on
chromosome 9 was detected with the predictions of the June
model, although not with the predictions of the Sept or Dec
models (Figure 4). Details of the significant SNPs are given in
Supplementary Table S2. The most significant SNP, AX.115409139,
was located slightly upstream of a peroxidase superfamily gene
(MD09G1010000) and the cultivars homozygous for the A allele
reached state C significantly later than those homozygous for the C
allele (p-value = 0.0001; Supplementary Figure S8).

4. Discussion

4.1. NIRS prediction ability may depend on the metabolic legacy
of budbreak

In an effort to explore the potential of NIRS to predict future
developmental stages, we have demonstrated the ability of PLSR to
predict budbreak timing in apple using NIRS spectra measured on
leaf tissue. The biochemical snapshot provided by NIRS is related
to the internal processes that underlie physiological progression
towards a developmental stage, which are shaped by both envi-
ronmental and genetic factors. Our models rely on this theoretical
link. The NIRS collection dates spanned the period of full leaf
expansion, just following budbreak, to leaf senescence, a process
that has been found to be strongly influenced by the timing of
budbreak. Fu et al. (2014) reported earlier leaf budbreak, induced
by warmer temperatures, in Quercus robur L. and Fagus sylvatica L.,
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Figure 3. Timing of stage C observed in 2023 and timing of stage C predicted by the June, Sept and Nov PLSR models. Performance parameters, R2 and RMSE (days), are

indicated. Values are days from Jan 1st until the stage occurred. A linear line was fitted to each plot and grey shading indicates the standard error of the mean. The identity line (in

red) marks perfect predictions.

resulting in earlier leaf senescence in the same year and budbreak
in the following year. This was hypothesised to be most likely
due to earlier commencement, and therefore satisfaction, of the
chilling requirement to overcome endodormancy. In the current
study, the relatively good prediction ability of the trivial model
clearly indicated a strong relationship between the budbreak of
the two years. This, in part, can be seen through the lens of the
metabolic legacy of the first year budbreak influencing the duration
of senescence and therefore budbreak of the next year. The per-
formance of the June model was better at explaining the variation
(i.e. R2) in the data than the models derived from the later collection
dates in September and November. This may have been due to the
relationship between budbreak of the two years, with the June NIRS
better capturing a metabolic state closely connected to the recent
budbreak stage before senescence began. This may also explain
the poor performance of PLSR models using bud tissue NIRS.
While leaves undergo senescence, the buds, which are protective
structures for dormancy, were sampled much later, once senescence
was largely complete. Moreover, the measurement of NIRS on
dried and ground tissue from complete plant organs may have
affected the detectability of the relevant metabolites. Dhuli et al.
(2014) demonstrated the extensive range of metabolites produced
in Norway spruce (Picea abies) and European silver fir (Abies alba)
in response to de-acclimation (temperature increase to simulate
spring conditions), leading to budbreak. Not only were groups of
metabolites identified as being specific to the process, but high
correlations were found between many of these compounds and the

timing of budbreak. The mixed and processed nature of our samples
may have increased non-target signals in the spectra, leading to a
poorer representation of the metabolic state.

4.2. Environmental factors were influential on budbreak
prediction

Despite the better performance of the June model, the RMSE of
all three models were relatively high and fell within five days of
each other. One of the main challenges of predicting budbreak
is, without doubt, the contribution of environmental factors, par-
ticularly temperature (Cannell and Smith, 1984). This impact can
be seen in the relatively large RMSE of the trivial model, which
largely represents the differing environmental conditions experi-
enced between the two episodes of budbreak. Here, NIRS was
measured the year before budbreak occurred, allowing an extended
period during which the sequence of physiological events leading
to budbreak was influenced by seasonal conditions. In our case,
the presence of a significant year effect on the timing of stage C,
detected between 2022 and 2023, was potentially linked, at least in
part, to the differences in temperature, particularly in spring, where
the warmer temperatures in 2022 (Supplementary Figure S3) may
have accelerated fulfilment of the heating requirement needed to
overcome ecodormancy and begin budbreak. In practice, climate
models or at least temperature variables could be included in PLSR
models to improve predictions. In the current study, however, the
low number of years and a single location used prevented the

http://doi.org/10.1017/qpb.2025.10019
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Figure 4. Manhattan plots from the GWAS analyses using the predictions of stage C 2023 from the June, Sept and Nov PLSR models. The Bonferroni (Bonf.) threshold was

calculated using the effective number of independent tests (Meff).

addition of these factors to the models. Yet, their inclusion is
recommended for future application, especially when the target
trait is strongly affected by environmental factors, as with budbreak.
In instances where the trait is less affected by this, the current
approach may be sufficient to produce predictions good enough for
practical applications.

4.3. NIRS-PLSR prediction offers avenues for genetic studies

Budbreak timing has a large genetic component, as evidenced by
the high H2 of the observed stage C in 2023, and although inclusion
of environmental factors would likely have improved the prediction
performance of the PLSR models, it appears the NIRS spectra
were able to capture a significant genetic component of budbreak
timing, likely through a genotype-specific chemical fingerprint

(Munck et al., 2021). The H2 of the PLSR predictions were all
relatively high, suggesting a considerable portion of the genetic
variation was maintained through the prediction process. This
was further supported by the correlations of the genotypic BLUPs,
which represent the proportion of the phenotype attributable to
the genotype. The June PLSR model prediction BLUPs had the
highest correlation to the observed stage C BLUPs, indicating
more of the genetic variation inherent in this trait was kept by
this model than by the others. In addition, the GWAS with the June
model prediction BLUPs was able to detect a well-known QTL
on chromosome 9, which was previously linked to budbreak in
apple (Allard et al., 2016; Celton et al., 2011; Conner et al., 1998;
Cornelissen et al., 2020; Miotto et al., 2019; Trainin et al., 2016;
Urrestarazu et al., 2017; van Dyk et al., 2010; Watson et al., 2024).
Recently, this QTL was explored more in depth with a GWAS using
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the same population and genotypic dataset as the current study
and stage C recorded over nine years (Watson et al., 2024). This
identified MdPEROXIDASE10 (MdPRX10; MD09G1010000), a
peroxidase superfamily gene, as a strong candidate for involvement
in budbreak, potentially via redox-mediated signalling. The most
significant SNP in the GWAS analysis using the June model BLUP
predictions was located very closely upstream of the same gene.
This suggests that these predictions contained sufficient genetic
information to be associated with the same genomic region, even
gene, as the observed phenotypes.

5. Conclusion

Our results demonstrate that leaf NIRS spectra hold potential to
predict the timing of future developmental stages, such as bud-
break, by detecting the metabolic states that precede them. We
envisage that this approach may reduce the phenotyping burden
for traits that are difficult to measure. Once a PLSR model has
been trained, predictions for the trait in other populations could be
obtained using only NIRS, potentially with enough precision that
these could then be used in genetic studies to identify new genomic
regions of interest related to the trait. Using diverse populations, as
we did here, may also produce models with better generalisation
properties that are applicable to prediction for a wider range of
genotypes. This could further be simplified with the use of hand-
held NIRS devices on intact plant organs, which would negate the
need for sample processing and may even better communicate the
complex nature of the tissue biochemical state.
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