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Abstract. We show that on a σ -finite measure-preserving system X = (X, ν, T ), the
non-conventional ergodic averages

En∈[N]�(n)f (T
nx)g(T P(n)x)

converge pointwise almost everywhere for f ∈ Lp1(X), g ∈ Lp2(X) and 1/p1 +
1/p2 ≤ 1, where P is a polynomial with integer coefficients of degree at least 2. This
had previously been established with the von Mangoldt weight � replaced by the constant
weight 1 by the first and third authors with Mirek, and by the Möbius weight μ by the
fourth author. The proof is based on combining tools from both of these papers, together
with several Gowers norm and polynomial averaging operator estimates on approximants
to the von Mangoldt function of ‘Cramér’ and ‘Heath-Brown’ type.
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1. Introduction
Throughout this paper, P ∈ Z[n] denotes a polynomial with integer coefficients of some
degree d ≥ 2 in one indeterminate n; a typical case to keep in mind is the quadratic
polynomial P(n) = n2.
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2 B. Krause et al

Define a measure-preserving system to be a triple X = (X, ν, T ), where X = (X, ν)
is a σ -finite measure space and T : X → X is an invertible bimeasurable map which
is measure-preserving in the sense that ν(T −1(E)) = ν(E) for all measurable E. It
is common in the literature to restrict to finite measure systems and to normalize
ν(X) = 1; but our results will not require any hypothesis of finite measure. Given functions
f , g : X → C, a scale N ≥ 1 and a weight function w : N → C, we can then define the
non-conventional averaging operator

AN ,w;X(f , g)(x) := En∈[N]w(n)f (T
nx)g(T P(n)x)

for any x ∈ X (see §2 for our averaging notation).

1.1. Unweighted ergodic averages. In the unweighted casew = 1, the following ergodic
theorem was recently proven by two of the authors with Mirek.

THEOREM 1.1. (Unweighted ergodic theorem [13, Theorem 1.17]) Let (X, ν, T ) be a
measure-preserving system and let f ∈ Lp1(X), g ∈ Lp2(X) for some 1 < p1, p2 < ∞
with (1/p1)+ (1/p2) = (1/p) ≤ 1.

(i) (Mean ergodic theorem) The averages AN ,1;X(f , g) converge in Lp(X) norm.
(ii) (Pointwise ergodic theorem) The averages AN ,1;X(f , g) converge pointwise almost

everywhere.
(iii) (Maximal ergodic theorem) One has

‖(AN ,1;X(f , g))N∈Z+‖Lp(X;�∞) �p1,p2,P ‖f ‖Lp1 (X)‖g‖Lp2 (X)

(see §2.2 for our asymptotic notation conventions).
(iv) (Variational ergodic theorem) If r > 2 and λ > 1, one has

‖(AN ,1;X(f , g))N∈D‖Lp(X;Vr ) �p1,p2,r ,P ,λ ‖f ‖Lp1 (X)‖g‖Lp2 (X)

whenever D ⊂ [1, +∞) is finite and λ-lacunary (see §2.6 for the definition of
λ-lacunarity and the variational norm Vr).

We very briefly review the main ingredients of the proof of Theorem 1.1. Case (iv) is the
main estimate, which easily implies the other three claims. By some standard sparsification
and transference arguments, as well as dyadic decompositions, it sufficed to prove the
variant estimate

‖(ÃN ,1(f , g))N∈D‖�p(Z;Vr ) �p1,p2,r ,P ,λ ‖f ‖�p1 (Z)‖g‖�p2 (Z),

where

ÃN ,w(f , g)(x) := En∈[N]w(n)f (x + n)g(x + P(n))1n>N/2 (1.1)

is the ‘upper half’ of AN ,w;X when X is the integers Z with the usual shift T : n 	→ n+ 1
and counting measure ν.

A crucial observation was that the averages ÃN ,1 are ‘complexity zero’ in the sense
that they are small when the Fourier transform of f or g vanish on ‘major arcs’. Indeed, in
[13, Theorem 5.12], the single-scale minor arc estimate
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Pointwise convergence of bilinear polynomial averages over the primes 3

‖ÃN ,1(f , g)‖�1(Z) �C1 (2
−cl + 〈Log N〉−cC1)‖f ‖�2(Z)‖g‖�2(Z) (1.2)

was proven for N ≥ 1, l ∈ N and f , g ∈ �2(Z) with either the Fourier transform FZf of f
vanishing on the major arc set M≤l,≤− Log N+l or the Fourier transform FZg of g vanishing
on the major arc set M≤l,≤−d Log N+dl ; we refer the reader to §2 for the definition of
the various terms and symbols introduced here. This minor arc estimate was proven by
combining Peluse–Prendiville estimates [24] with a discrete �p improving inequality from
[8], together with a Hahn–Banach argument.

Using equation (1.2), one could now focus attention to major arcs. After some routine
manipulations involving Ionescu–Wainger multiplier theory [10], the task reduced to
controlling the �p(Z; Vr ) norm of tuples of the form

(ÃN ,1(FN , GN))N∈I, (1.3)

where I is a certain λ-lacunary set (bounded from below by certain bounds, but not from
above) and FN , GN are various frequency localizations of f , g, respectively, to major arcs
(see [13, Theorem 5.30] for a precise statement). By estimation of the bilinear symbol of
the averaging operator ÃN ,1, one could approximate this tuple by another tuple

(B
l1,l2,m

Ẑ
(ϕN⊗ϕ̃N )m̃N ,R

(F , G))N∈I, (1.4)

where F , G are again some Fourier localizations of f , g to major arcs and B
l1,l2,m

Ẑ
(ϕN⊗ϕ̃N )m̃N ,R

is a certain bilinear Fourier multiplier adapted to major arcs; see [13, Proposition 7.13] for
a precise statement. At this stage, it became necessary to split the set I of spatial averaging
scales into the small scales I≤ and large scales I>. For the small scales, one could reduce
matters to controlling another tuple

(B
l1,l2,m

Ẑ
m∗ (Tl1ϕN ,t ,j1

F , Tl2
ϕ̃N ,t ,j2

G))N∈I≤

for another bilinear Fourier multiplier B
l1,l2,m

Ẑ
m∗ and Fourier multipliers T l1ϕN ,t ,j1

, T l2
ϕ̃N ,t ,j2

,
while for the large scales, one instead considered tuples of the form

(B1⊗m
Ẑ
(TϕN ,t ,j1⊗1FA, Tϕ̃N ,t ,j2⊗1GA))N∈I> ,

where FA, GA were now defined on the ring AZ = R × Ẑ of adelic integers rather than on
the integers Z. See [13, Theorem 7.28] for a precise statement of the estimates required on
these tuples.

In the small-scale case, it was possible to apply a general two-parameter Radamacher–
Menshov inequality [13, Corollary 8.2] followed by some shifted Calderón–Zygmund
theory [13, Theorem B.1] to reduce matters to obtaining a good �p1(Z)× �p2(Z) →
�p(Z) estimate for the bilinear multiplier B

l1,l2,m
Ẑ

m∗ (see [13, Lemma 8.6]), which was
ultimately proven with the assistance of the minor arc estimate in equation (1.2) and the
approximation result in [13, Proposition 7.13].

In the large-scale case, some interpolation and factorization arguments, together with
a version of equation (1.2) on the profinite integers Ẑ, reduced matters to establishing
L2(Zp)× L2(Zp) → Lq(Zp) bounds on the p-adic averaging operator
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4 B. Krause et al

AZp (f , g)(x) := En∈Zpf (x + n)g(x + P(n)) (1.5)

for all primes p and some q > 2, with the operator norm required to be bounded by 1 for p
large enough; see [13, equations (10.3), (10.4)] for a precise statement. The boundedness
ultimately came from some distributional analysis of the level sets of P on the p-adics (see
[13, Corollary C.2]); getting the bound of 1 for large p required some additional refined
analysis in which one again uses (a p-adic version of) the minor arc estimate in equation
(1.2).

1.2. Möbius-weighted ergodic averages. More recently, another one of us [26] consid-
ered the non-conventional averaging operators AN ,μ;X weighted by the Möbius function
μ instead of 1. Perhaps counter-intuitively, the convergence of ergodic averages weighted
by μ is actually better than that of the unweighted case, especially in light of the recent
progress on quantitative Gowers uniformity of the Möbius function [7, 14–16, 25]. For
instance, as a special case of [26, Theorem 1.2], the following result was shown.

THEOREM 1.2. (Möbius-weighted ergodic theorem) Let X have finite measure,
f ∈ Lp1(X), g ∈ Lp2(X) with (1/p1)+ (1/p2) < 1, and let A > 0. Then,

lim
N→∞(logA N)AN ,μ;X(f , g) = 0 (1.6)

pointwise almost everywhere.

The ingredients used to prove Theorem 1.2 are somewhat different from those used to
prove Theorem 1.1; a key input was [26, Theorem 4.1], which, in our context, establishes
the bound

|Ex∈[−CNd ,CNd ]AN ,θ ;Z(f , g)(x)h(x)| �C,P (N
−1 + ‖θ‖ud+1[N])

1/K (1.7)

for all 1-bounded f , g, h, θ and some 1 ≤ K �d 1, where the ‘little’ Gowers uniformity
norm ‖θ‖ud+1[N] is defined as

‖θ‖ud+1[N] := sup
deg Q≤d

|En∈[N]θ(n)e(−Q(n))|, (1.8)

where Q ranges over all polynomials of degree at most d with real coefficients and e(x) :=
e2πix . The results of [7] show that ‖μ‖ud+1[N] decays faster than any power of log N , and
the claim then follows by standard sparsification and transference arguments.

1.3. Prime-weighted ergodic averages. In this paper, we combine the methods of
[13, 26], together with some additional arguments, to obtain a non-conventional ergodic
theorem in which the weight is selected to be the von Mangoldt function �, defined by

�(n) =
{

log p n is a power of a prime p,

0 otherwise.

More specifically, we show the following.
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Pointwise convergence of bilinear polynomial averages over the primes 5

THEOREM 1.3. (Main theorem) Let (X, ν, T ) be a measure-preserving system and let
f ∈ Lp1(X), g ∈ Lp2(X) for some 1 < p1, p2 < ∞ with (1/p1)+ (1/p2) ≤ 1. Then,
the averages AN ,�;X(f , g) converge pointwise almost everywhere. In fact, one has the
variational estimate

‖(AN ,�;X(f , g))N∈D‖Lp(X;Vr ) �p1,p2,p,r ,P ,λ ‖f ‖Lp1 (X)‖g‖Lp2 (X) (1.9)

whenever λ > 1, p ≥ 1 and r > 2 with (1/p1)+ (1/p2) = (1/p), and D ⊂ [1, +∞) is
finite and λ-lacunary.

The range of r here is optimal, as will be mentioned in §6.4. It is possible to extend the
range of (p1, p2) slightly beyond duality, see the discussion in §6.3.

Using the fact that log n = log N +O(log M) for n ∈ [N/M , N] and the prime
number theorem, we have the following immediate corollary to Theorem 1.3.

COROLLARY 1.4. Let the assumptions be as in Theorem 1.3. Then, the prime-weighted
averages

1
N/ log N

∑
p≤N

f (T px)g(T P(p)x)

converge pointwise almost everywhere.

Previously, the pointwise convergence of ergodic averages over the primes was known
only in the case of a single polynomial iterate. This case was established by Bourgain [2]
and Wierdl [27] for linear polynomials (with the latter work allowing Lq functions for any
q > 1), and the case of an arbitrary single polynomial iterate was handled by Nair [21, 22].
We also mention that the problem of pointwise convergence of ergodic averages with more
than one iterate was discussed by Frantzikinakis in [3, Problem 12]; the specific problem
there about two linear iterates however remains open.

Let us also mention that the norm convergence of non-conventional ergodic averages is
now known for any number of polynomial iterates, thanks to the works of Frantzikinakis,
Host and Kra [4], and Wooley and Ziegler [28].

1.4. Methods of proof. From a high-level perspective, Theorem 1.3 is proven by
combining the methods used in [13] to prove Theorem 1.1 with the methods used in [26]
to prove Theorem 1.2. However, several technical difficulties make the analysis delicate in
places, as we shall now discuss.

The first issue arises when trying to approximate various frequency-localized averages
(analogous to equation (1.3), but with the weight 1 replaced by �) by certain bilinear
model operators (analogous to equation (1.4), but with the symbolmẐ replaced by a variant
mẐ×). It is important for the arguments in [13] that the error in this approximation gains
a polynomial factor N−c in N, or at least a quasipolynomial factor exp(− logc N). Using
the von Mangoldt function as a weight, this is possible in the absence of Siegel zeroes
(and, in particular, assuming the generalized Riemann hypothesis); however, the presence
of a Siegel zero near a given scale N requires one to add a scale-dependent correction
term to the bilinear symbol mẐ to obtain a satisfactory approximation at small scales.
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6 B. Krause et al

While this correction term is ultimately manageable because of the Landau–Page theorem,
it significantly complicates the analysis, in that one cannot simply repeat arguments from
[13] verbatim. See §6 for further discussion.

To avoid this issue, we adapt some ideas from [25] and swap the von Mangoldt weight
� early in the argument with an approximant�N that is not sensitive to Siegel zeroes. The
arguments used in [26] to establish Theorem 1.2 allow one to do so provided that one has
good control of the little Gowers uniformity norm in the sense that

‖�−�N‖ud+1[N] � 〈Log N〉−A

for some large A. One available choice of approximant is the Cramér(–Granville)
approximant

�Cramér,w(n) := W

ϕ(W)
1(n,W)=1

for a suitable parameter w and W = ∏
p≤w p (we end up selecting w := exp(Log1/C0 N)

for some large constant C0); the required bounds follow, for instance, from the results
in [18] (which even extend to shorter intervals). A useful fact, first observed in [25] and
refined further here, is that these approximants are stable in Gowers uniformity norms with
respect to the w parameter; see Lemma 4.5 for a precise statement.

After using the arguments from [26] to replace � by �N , most of the arguments of
[13] proceed with only minor changes; in particular, the analogue of the approximation of
equation (1.3) by equation (1.4) is fairly routine, thanks in large part to the fundamental
lemma of sieve theory; see the proof of Proposition 3.4 in §5. We remark that Siegel zeroes
play no role whatsoever in establishing this proposition, in contrast to what would have
occurred if we retained the original weight � instead of �N . However, three components
of the argument of Theorem 1.3 still require some additional care. The first is a polynomial
improving estimate( ∑

x∈Z
|En∈[N](�(n)+�N(n))f (x + P(n))|2

)1/2

� Nd(1/2−1/p)‖f ‖�p(Z)

for p ∈ (2 − cP , 2], with cP > 0 small (see Lemma 5.1). This is eventually reduced
to the analogous unweighted improving estimate using some properties of the Cramér
approximant, in particular, Corollary 4.4.

The second component is the p-adic estimates, in which the averaging operator in
equation (1.5) ends up being replaced by the variant

AZ×
p
(f , g)(x) := En∈Z×

p
f (x + n)g(x + P(n)).

It is necessary to bound theL2(Zp)× L2(Zp) → Lq(Zp) norm of this operator by exactly
the constant 1 when q > 2 is close to 2 and p is large; losing a multiplicative factor such
as 1 +O(1/p) would not be acceptable as one needs to multiply these constants over all
primes p. Fortunately, the effect of restricting to the invertible elements Z×

p of Zp is not
too severe and the arguments from [13] can be adapted with only a modest amount of effort
to avoid any losses of O(1/p) in the constants.
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Pointwise convergence of bilinear polynomial averages over the primes 7

The most delicate step is to adapt the single-scale estimate in equation (1.2) to the
weighted setting. As the Peluse–Prendiville theory is somewhat complicated, our approach
is to use the approximation theory from [26] to try to replace the approximant �N with an
approximant closer to the constant weight 1. With the theory of the Cramér approximant
from [25], it is not too difficult to replace �N by a Cramér approximant �Cramér,w for
a smaller parameter w, with error terms polynomial in w. However, a technical problem
then arises: this approximant is not a pure ‘Type I’ sum of the form

∑
d|n λd for certain

well-behaved weights λd , preventing one from removing the weight entirely. To resolve
this, we appeal to the theory from [26] once more to replace the Cramér approximant
�Cramér,w with a more Fourier-analytic approximant, which we call the Heath-Brown
approximant (as it was introduced by him in [9]). This approximant is defined by

�HB,Q(n) :=
∑
q<Q

μ(q)

ϕ(q)
cq(n),

where Q is a parameter of similar size to w and cq is a Ramanujan sum; roughly speaking,
this approximant is the main term in the Fourier restriction of the von Mangoldt function
to major arcs. By using the analysis of the little Gowers uniformity norms of Type I sums
from [17], we are able to show that �Cramér,w is close in these norms to �HB,w and then,
by the theory from [26] (and a dyadic decomposition), one can replace the former by the
latter, at least for the purposes of proving an ‘�∞’ Peluse–Prendiville inverse theorem for
weighted averages. As in [13], it is also necessary to obtain a more delicate ‘�2’ inverse
theorem, which requires a weighted version of the �p improving inequality from [8], but
this can be achieved by a variant of the arguments just presented.

Remark 1.5. The proof of Theorem 1.3 quickly yields a version of Peluse’s inverse theorem
[23, Theorem 3.3] with prime weights. This was not needed for proving Theorem 1.3 (what
we did need was in essence a version with the weight function �N ; see Proposition 5.3),
but we believe such a result may be of independent interest, so we record it as Theorem 6.1.
Some combinatorial applications of this result will be investigated in a future work.

Remark 1.6. We expect the methods of this paper to be applicable also to pointwise
convergence of bilinear polynomial ergodic averages weighted by some other weights of
arithmetic interest. The exact requirements for the weight are not so easy to axiomatize,
but we need the weight to satisfy analogues of equations (3.1)–(3.4), as well as a suitable
‘local-to-global’ factorization over the primes to be able to pass to the adeles. In particular,
we expect the methods to be applicable to ergodic averages weighted by the divisor
function τ , but we will not pursue this problem here.

2. Notation
2.1. General notation. Our notation largely follows [13], though somewhat abridged,
as some of the notation in [13] is only used to establish results or arguments that we are
treating here as ‘black boxes’.

We use Z+ := {1, 2, . . .} to denote the positive integers and N := {0, 1, 2, . . .} to
denote the natural numbers.
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8 B. Krause et al

We use 1E to denote the indicator function of a set E. Similarly, if S is a statement, we
use 1S to denote its indicator, equal to 1 if S is true and 0 if S is false. Thus, for instance,
1E(x) = 1x∈E . We use |E| to denote the cardinality of a set E and adopt for f : E → C

the averaging notation

En∈Ef (n) := 1
|E|

∑
n∈E

f (n)

if E is finite and non-empty. We similarly define Lp norms

‖f ‖Lp(E) :=
( ∑
n∈E

|f (n)|p
)1/p

for 0 < p < ∞, with the usual convention that ‖f ‖L∞(E) is the (essential) supremum of f
on E. One can extend these averaging conventions to other measurable spaces E of positive
finite measure (such as a p-adic group Zp equipped with Haar probability measure), if f (or
|f |p) is absolutely integrable, in the obvious fashion. When X is equipped with counting
measure, we will write �p(X) or just �p in place of Lp(X).

Throughout, p′ denotes the dual exponent of p ∈ [1, ∞], so 1/p + 1/p′ = 1.
If f : X → C, g : Y → C are functions, we use f ⊗ g : X × Y → C to denote the

tensor product

(f ⊗ g)(x, y) := f (x)g(y).

2.2. Magnitudes and asymptotic notation. We use the Japanese bracket notation

〈x〉 := (1 + |x|2)1/2

for any real or complex x. We use �x� to denote the greatest integer less than or equal to x.
For any N ≥ 1, we define the logarithmic scale Log N of N by the formula

Log N := �log N/ log 2�; (2.1)

thus Log N is the unique natural number such that 2Log N ≤ N < 2Log N+1.
For any two quantities A, B, we will write A � B, B � A or A = O(B) to denote

the bound |A| ≤ CB for some absolute constant C. If we need the implied constant C
to depend on additional parameters, we will denote this by subscripts; thus, for instance,
A �ρ B denotes the bound |A| ≤ CρB for some Cρ depending on ρ. We write A ∼ B for
A � B � A. To abbreviate the notation, we will sometimes explicitly permit the implied
constant to depend on certain fixed parameters (such as the polynomial P) when the issue
of uniformity with respect to such parameters is not of relevance. Due to our reliance in
some places on tools based on Siegel’s theorem (specifically, Siegel’s theorem is used in
[18], and we will use results from that paper to establish equation (3.1)), several of the
implied constants in our arguments will be ineffective, but we will not track the effectivity
of constants explicitly in this paper.

2.3. Algebraic notation. If R is a commutative ring, we use R× to denote the multiplica-
tively invertible elements of R.

https://doi.org/10.1017/etds.2025.10202 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10202


Pointwise convergence of bilinear polynomial averages over the primes 9

2.4. Number theoretic notation. For any N > 0, [N] denotes the discrete interval
[N] := {n ∈ Z+ : n ≤ N}. If q1, q2 ∈ Z+, we write q1 | q2 if q1 divides q2. If a, q ∈ Z+,
we let (a, q) denote the greatest common divisor of a and q, and [a, q] the least common
multiple.

All sums and products over the symbol p will be understood to be over primes; other
sums will be understood to be over positive integers unless otherwise specified.

In addition to the von Mangoldt function �(n) and Möbius function μ(n) already
introduced, we will also use the divisor function τ(n) := ∑

d|n 1 and the Euler totient
function ϕ(n) := |(Z/nZ)×|.

2.5. Fourier analytic notation. We write e(θ) := e2πiθ for any real θ , and also ‖θ‖R/Z
for the distance from θ to the nearest integer.

For a prime p, we let Zp be the ring of p-adic integers, defined as the inverse limit of
the cyclic groups Z/pjZ for j ∈ N; this is a compact abelian group equipped with a Haar
probability measure. Similarly, let Ẑ be the ring of profinite integers, defined as the inverse
limit of the cyclic groups Z/QZ for all positive integers Q; this is again a compact abelian
group with a Haar probability measure, being the direct product of the Zp. We use EZp

or EẐ to denote averaging with respect to these compact abelian groups. Finally, we let
AZ := R × Ẑ denote the ring of adelic integers, which is a locally compact abelian group.

We define some Fourier transforms on various locally compact abelian groups.
(i) Given a summable function f : Z → C, the Fourier transform FZf : R/Z → C is

defined by the formula

FZf (θ) :=
∑
n∈Z

f (n)e(−nθ).

(ii) Given a Schwartz function f : R → C, the Fourier transform FRf : R → C is
defined by the formula

FRf (ξ) :=
∫
R
f (x)e(−xξ) dx.

(iii) Given a function f : Ẑ → C which is Schwartz–Bruhat in the sense that it factors
through a function fQ : Z/QZ → C on a cyclic group, we define the Fourier
transform FẐf : Q/Z → C by the formula

FẐf

(
a

Q
mod 1

)
:= En∈Z/QZfQ(n)e(−an/Q)

for any integer a.
(iv) Given a function f : AZ → C which is Schwartz–Bruhat in the sense that it factors

through a function fQ : R × Z/QZ which is Schwartz in the first variable, we define
the Fourier transform FAf : R × Q/Z → C by the formula

FÂf

(
ξ ,
a

Q
mod 1

)
:= En∈Z/QZ

∫
R
fQ(x, n)e(−xξ − an/Q) dx

for integer a and ξ ∈ R, and FÂ vanishing otherwise.
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We refer the reader to [13, §4] for a further discussion of the Fourier transform on such
locally compact abelian groups as Z, R, Zp, Ẑ, Z/QZ or AZ, and the various intertwining
relationships among these transforms.

Given a Schwartz symbol m : R/Z → C, we define the Fourier multiplier Tm on �2(Z)

by the formula

Tmf (x) :=
∫
R/Z

m(ξ)FZf (ξ)e(xξ) dξ ,

and, similarly, given a bilinear Schwartz symbolm : R/Z × R/Z → C, define the bilinear
Fourier multiplier Bm by the formula

Bm(f , g)(x) :=
∫
R/Z

∫
R/Z

m(ξ , η)FZf (ξ)FZg(η)e(x(ξ + η)) dξ dη.

Linear and bilinear multipliers are defined similarly for the other locally compact abelian
groups defined here, and obey a certain operator calculus; again, we refer the reader to
[13, §4] for details, as we shall largely use facts and arguments about these operators from
[13] as ‘black boxes’.

We will need the Ionescu–Wainger Fourier multipliers on major arcs. Again, we shall
mostly be using these tools as ‘black boxes’, so their definition and properties are not
of critical importance in this paper; however, for sake of completeness, we recall the main
definitions from [13]. Given a small parameter ρ, it is possible to assign a Ionescu–Wainger
height h(α) = hρ(α) ∈ 2N for each α ∈ Q/Z; see [13, Appendix A]. Using this height, we
define the Ionescu–Wainger arithmetic frequency sets

(Q/Z)≤l := h−1([2l]) = {α ∈ Q/Z : h(α) ≤ 2l}
and the Ionescu–Wainger major arcs

M≤l,≤k := {ξ + α : ξ ∈ R, |ξ | ≤ 2k , α ∈ (Q/Z)≤l}; (2.2)

thus, M≤l,≤k is the union of arcs [α − 2k , α + 2k] for α ∈ (Q/Z)≤l ; we will be focused
on the regime where k is sufficiently small that these arcs are disjoint, which happens
whenever k ≤ −Cρ2ρl . We also use the variants

(Q/Z)l := (Q/Z)≤l\(Q/Z)≤l−1 = h−1(2l) = {α ∈ Q/Z : h(α) = 2l}
and

Ml,≤k := M≤l,≤k\M≤l−1,≤k

with the convention that (Q/Z)≤−1 and M≤−1,k are empty.
The Ionescu–Wainger Fourier projection operator �≤l,≤k for any (l, k) ∈ N × Z is

defined by the formula

�≤l,≤kf (x) =
∑

α∈(Q/Z)≤l

∫
R
η(θ/2k)FZf (α + θ)e(−x(α + θ)) dθ ,
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where η is a smooth even function supported on [−1, 1] that equals 1 on [−1/2, 1/2]. We
then define

�l,≤k := �≤l,≤k −�≤l−1,≤k .

We refer the reader to [13, §5, Appendix A] for the key properties of these projections,
which can be viewed as analogues of Littlewood–Paley projection operators for major arcs.

2.6. Variational norms. A sequence 1 ≤ N1 < · · · < Nk of positive reals is said to be
λ-lacunary for some λ ≥ 1 if

Nj+1/Nj > λ

for all 1 ≤ j < k.
For any finite dimensional normed vector space (B, ‖ · ‖B) and any sequence (at )t∈I

of elements of B indexed by a totally ordered set I, and any exponent 1 ≤ r < ∞, the
r-variation seminorm is defined by the formula

‖(at )t∈I‖V r (I;B) := sup
J∈Z+

sup
t0≤···≤tJ
tj∈I

( J−1∑
j=0

‖a(tj+1)− a(tj )‖rB
)1/r

, (2.3)

where the supremum is taken over all finite increasing sequences in I and is set by
convention to equal zero if I is empty.

The r-variation norm for 1 ≤ r < ∞ is defined by

‖(at )t∈I‖Vr (I;B) := sup
t∈I

‖at‖B + ‖(at )t∈I‖V r (I;B). (2.4)

This clearly defines a norm on the space of functions from I to B. If B = C, then we will
abbreviate V r(I; X) to V r(I) or V r , and Vr (I; X) to Vr (I) or Vr .

2.7. Gowers norms. In addition to the little Gowers uniformity norm ud+1[N] defined
in equation (1.8), we will also need the full Gowers norm Ud+1[N] defined for functions
f : Z → C as

‖f ‖Ud+1[N] := ‖f1[N]‖Ud+1(Z)/‖1[N]‖Ud+1(Z),

where the Ud+1(Z) norm is defined for finitely supported functions by the formula

‖f ‖2d+1

Ud+1(Z)
:=

∑
x,h1,...,hd+1∈Z

∏
ω∈{0,1}d+1

Cω1+···+ωd+1f

(
x +

d+1∑
j=1

ωjhj

)
,

where ω = (ω1, . . . , ωd+1) and C denotes the complex conjugation operator. It is well
known that

‖f ‖ud+1[N] �d ‖f ‖Ud+1[N]; (2.5)

see, e.g. [5, equation (2.2)].
Similar uniformity norms ud+1(I ), Ud+1(I ) can then be defined for other intervals

I ⊂ R than [N] in the obvious fashion.
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3. High-level proof of theorem
We now describe the high-level proof of Theorem 1.3, reducing it to two key statements
(Theorem 3.2 and Proposition 3.4) that we will prove in §5. The arguments here will
closely follow those of [13], and some familiarity with the arguments in that paper would
be highly recommended to follow the text in this section.

In the next section, we shall introduce an approximant �N : N → R to � (depending
on a parameter C0) which enjoys the bound

‖�−�N‖ud+1[N] �A,C0 〈Log N〉−A (3.1)

for any A > 0, as well as the pointwise bound

�N(n) �C0 〈Log N〉O(1), (3.2)

the L1 bound

En∈[N]|�N(n)| �C0 1 (3.3)

and finally the polynomial improving bound

‖En∈[N](�(n)+ |�N(n)|)|g(· − P(n)+ n)|‖
�p

′
(Z) �C0 N

d(1/p′−1/p)‖g‖�p(Z) (3.4)

for all uP < p ≤ 2 and g ∈ �p(Z), with uP < 2 an exponent depending only on P, and
C > 0 a constant also depending only on P.

We shall also require further properties of �N in the following as needed. (Our choice
of approximant �N will in fact be non-negative and, although this is not crucial, it makes
it easier to establish the L1 bound in equation (3.3) and the improving bound in equation
(3.4).)

Arguing as in the proof of [13, Proposition 3.2(i)] (inserting the non-negative weight
� as necessary), we see that the pointwise convergence claim of Theorem 1.3 follows
from the ‘Hölder variational estimate’ in equation (1.9), so we focus now on this estimate.
Henceforth, we fix p1, p2, p, d , P , r , λ, as well as the finite λ-lacunary set D. We allow all
constants to depend on p1, p2, p, d , P , r , λ (but not on D). As in [13, §5], we now select
sufficiently large parameters

1 � C0 � C1 � C2 � C3.

By a routine application of Calderón’s transference principle [13, Theorem 3.2(ii)], adapted
to this weighted setting, it suffices to prove equation (1.9) for the integer shift system
(Z, | · |, x 	→ x − 1), endowed with counting measure | · |. Thus, our task is now to show
that

‖(AN ,�;Z(f , g))N∈D‖�p(Z;Vr ) � ‖f ‖�p1 (Z)‖g‖�p2 (Z)

for all f ∈ �p1(Z) and g ∈ �p2(Z). Arguing as in the proof of [13, Proposition 3.2(iii)]
(inserting the weight � as needed), it suffices to prove the ‘upper half’

‖(ÃN ,�(f , g))N∈D‖�p(Z;Vr ) � ‖f ‖�p1 (Z)‖g‖�p2 (Z) (3.5)

of this estimate, where the averaging operators ÃN ,w were defined in equation (1.1).
The next step is to replace the von Mangoldt weight � by the approximant �N .
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LEMMA 3.1. (From � to �N ) To prove equation (3.5) (and hence, equation (1.9)), it
suffices to show that

‖(ÃN ,�N (f , g))N∈D‖�p(Z;Vr ) �C3 ‖f ‖�p1 (Z)‖g‖�p2 (Z). (3.6)

Proof. Assuming equation (3.6), from the triangle inequality and the lacunarity of D, we
see that equation (3.5) reduces to the single-scale estimate

‖ÃN ,�−�N (f , g)‖�p(Z) �C3 〈Log N〉−2‖f ‖�p1 (Z)‖g‖�p2 (Z)

for each N ∈ D.
Using the triangle and Hölder inequalities, the prime number theorem and the hypoth-

esis in equation (3.3), we may bound

‖ÃN ,�−�N (f , g)‖�p(Z) �C0 ‖f ‖�p1 (Z)‖g‖�p2 (Z),

so by interpolation (modifying the exponents p1, p2, p as needed), it suffices to prove the
�2 × �2 → �1 bound

‖ÃN ,�−�N (f , g)‖�1(Z) �A,C3 〈Log N〉−A‖f ‖�2(Z)‖g‖�2(Z) (3.7)

for any A > 0.
We claim that it suffices to prove equation (3.7) when f , g are supported on intervals

of length Nd . Write

f =
∑
i∈Z

fi , g =
∑
i∈Z

gi , fi = f1(iNd ,(i+1)Nd ], gi = g1(iNd ,(i+1)Nd ].

Let C = CP be such that {P(n) : n ∈ [N]} is contained in an interval of length CNd .
Supposing that equation (3.7) holds whenever f , g are supported on intervals of length
Nd , by the triangle inequality and Cauchy–Schwarz, we have

‖ÃN ,�−�N (f , g)‖�1(Z) �A,C3 〈Log N〉−A
∑
i,j∈Z

|i−j |≤C+1

‖fi‖�2(Z)‖gj‖�2(Z)

�C 〈Log N〉−A max
k∈Z

∑
i∈Z

‖fi‖�2(Z)‖gi+k‖�2(Z)

≤ 〈Log N〉−A max
k∈Z

( ∑
i∈Z

‖fi‖2
�2(Z)

)1/2( ∑
i∈Z

‖gi+k‖2
�2(Z)

)1/2

≤ 〈Log N〉−A‖f ‖�2(Z)‖g‖�2(Z).

Assume henceforth that f , g are supported on intervals of length Nd in equation (3.7). By
translation, we can further assume that g is supported on [Nd ].

By duality, for some function h ∈ �∞(Z) with |h| ≤ 1, we have

‖ÃN ,�−�N (f , g)‖�1(Z)=
∣∣∣∣∑
x∈Z

h(x)ÃN ,�−�N (f , g)(x)
∣∣∣∣=

∣∣∣∣∑
x∈Z

f (x)Ã∗
N ,�−�N (h, g)(x)

∣∣∣∣,
(3.8)

where

Ã∗
N ,�−�N (h, g)(x) := En∈[N](�−�N)(n)h(x + n)g(x − P(n)+ n)
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is one of the adjoint averaging operators. By Cauchy–Schwarz, the desired estimate in
equation (3.7) follows from equation (3.8) if we show that

‖Ã∗
N ,�−�N (h, g)(x)‖�2(Z) �A,C3 〈Log N〉−A‖g‖�2(Z).

By equation (3.4) and the triangle inequality, for all uP < q ≤ 2, we have

‖Ã∗
N ,�−�N (h, g)‖

�q
′
(Z) ≤ ‖Ã∗

N ,�−�N (1, |g|)‖
�q

′
(Z) � Nd(1/q ′−1/q)‖g‖�q (Z). (3.9)

However, [26, Theorem 4.1] (i.e. equation (1.7)), the assumption on the support of g and
the hypotheses in equations (3.1) and (3.2), we have

‖Ã∗
N ,�−�N (h, g)‖�1(Z) �A,C3 〈Log N〉−ANd‖g‖�∞(Z) (3.10)

for any A > 0. Interpolating equations (3.9) and (3.10), the claim in equation (3.7)
follows.

With this lemma, we can now pass to the approximant �N .
We are left with showing equation (3.6). Note from equation (3.3) and the triangle

and Hölder inequalities that ÃN ,�N is bounded from �p1(Z)× �p2(Z) to �p(Z) whenever
1/p1 + 1/p2 = 1/p; the challenge is to estimate all the scales N in D simultaneously in
Vr norm. We can restrict attention to scales N ≥ C3, since the contribution of the case
N < C3 can be handled just from the Hölder and triangle inequalities. The fact that the
weight function �N now depends on N will not significantly impact the arguments that
follow.

As in [13, §5], we introduce the Ionescu–Wainger parameter

ρ := 1/C1.

We use c to denote various small positive constants that can depend on the fixed quantities
p1, p2, d , P , r , but do not depend on C0, C1, C2, C3 (or ρ). As reviewed in §2.5, this
allows us to create major arc sets M≤l,≤k , Ml,≤k for l ∈ N, k ∈ Z, as well as associated
Ionescu–Wainger multipliers�≤l,≤k ,�l,≤k . As in [13, equation (5.8)], we say that the pair
(l, k) has good major arcs if

k ≤ −Cρ2ρl

for some sufficiently large Cρ depending only on ρ. This condition will always be satisfied
in practice and will ensure that the intervals [α − 2k , α + 2k] that comprise M≤l,≤k in
equation (2.2) are disjoint; thus, avoiding any difficulties arising from ‘aliasing’.

In §5, we shall establish the following crucial variant of [13, Theorem 5.12].

THEOREM 3.2. (Single scale minor arc estimate) Let N ≥ 1, l ∈ N, and suppose that
f , g ∈ �2(Z) obey one of the following two properties:
(i) FZf vanishes on M≤l,≤− Log N+l;

(ii) FZg vanishes on M≤l,≤−d Log N+dl .
Then, one has

‖ÃN ,�N (f , g)‖�1(Z) �C1 (2
−cl + 〈Log N〉−cC1)‖f ‖�2(Z)‖g‖�2(Z).
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As in [13, equation (5.22)], we introduce the scales

l(N) := C0 Log Log N

and repeat the arguments in [13, §5] all the way to [13, equation (5.25)], inserting the
weight �N as needed, to reduce to establishing the bound

‖(ÃN ,�N (�l1,≤− Log N+l(N)f , �l2,≤−d Log N+dl(N)g))N∈D;l1,l2≤l(N)‖�p0 (Z;Vr )

�C3 2−ρl‖f ‖�2(Z)‖g‖�2(Z)

for all l1, l2 ∈ N, where l := max(l1, l2).
Now, we fix l1, l2, and (as in [13, equation (5.26)]) introduce the quantity

u := �C222ρl�. (3.11)

As in [13, equations (5.27), (5.28)], we introduce the frequency-localized functions

F
u,l1,s1
N

:=
{
�l1,≤− Log N+s1f −�l1,≤− Log N+s1−1f , s1 > −u,

�l1,≤− Log N−uf , s1 = −u,
(3.12)

and

G
u,l2,s2
N

:=
{
�l2,≤d(− Log N+s2)g −�l2,≤d(− Log N+s2−1)g, s2 > −u,

�l2,≤d(− Log N−u)g, s2 = −u,
(3.13)

for any integers −u ≤ s1, s2 ≤ l(N). Arguing as in the text up to [13, Theorem 5.30],
inserting the weight �N as necessary, it now suffices to establish the following.

THEOREM 3.3. (Variational paraproduct estimates) Let l1, l2 ∈ N, l := max(l1, l2), let
f , g : Z → C be finitely supported and define u by equation (3.11). Let s1, s2 ≥ −u, and
then let FN := F

u,l1,s1
N , GN := G

u,l2,s2
N , I := Il,s1,s2 be defined respectively by equations

(3.12) and (3.13) and

I := {N ∈ D : l, s1, s2 ≤ l(N)}.
Then,

‖(ÃN ,�N (FN , GN))N∈I‖�p(Z;Vr )

�C3 〈max(l, s1, s2)〉O(1)2O(ρl)−c max(l,s1,s2)1p1=p2=2‖f ‖�p1 (Z)‖g‖�p2 (Z). (3.14)

Repeating the proof of [13, Proposition 5.33], inserting the weight �N as needed,
we see that Theorem 3.3 already holds in the ‘high-high’ case where s1, s2 > −u and
p1 = p2 = 2. Thus, we may assume that at least one of the statements s1 = −u, s2 = −u
or (p1, p2) �= (2, 2) holds.

We now begin the arguments in [13, §7]. We introduce the functions

F := �l1,≤−uf , G := �l2,≤−ug

and note that

FN = T l1ϕNF , GN = T
l2
ϕ̃N
G,
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where

ϕN(ξ) :=
{
η(2Log N−s1ξ)− η(2Log N−s1+1ξ), s1 > −u,

η(2Log N+uξ), s1 = −u,
(3.15)

and

ϕ̃N (ξ) :=
{
η(2d(Log N−s2)ξ )− η(2d(Log N−s2+1)ξ ), s2 > −u,

η(2d(Log N+u)ξ), s2 = −u.
(3.16)

Repeating the arguments up to [13, equation (7.7)], we thus see that it suffices to show that
the tuple

(ÃN ,�N (T
l1
ϕN
F , T l2

ϕ̃N
G))N∈I

is ‘acceptable’ in the sense that it has an �p0(Z; Vr ) norm of

�C3 〈max(l, s1, s2)〉O(1)2O(ρl)−c max(l,s1,s2)1p1=p2=2‖F‖�p1 (Z)‖G‖�p1 (Z).

We introduce the arithmetic symbol mẐ× : (Q/Z)2 → C by the formula

mẐ×

(
a1

q
mod 1,

a2

q
mod 1

)
= En∈(Z/qZ)×e

(
a1n+ a2P(n)

q

)
(3.17)

for any q ∈ Z+ and a1, a2 ∈ Z; this differs from the corresponding symbol mẐ in [13]
by restricting n to the primitive residue classes of Z/qZ rather than all residue classes,
which is a key effect of weighting by �. It is easy to see from the Chinese remainder
theorem that mẐ× is well defined, in the sense that replacing a1, a2, q by ka1, ka2, kq for
any positive integer k does not affect the right-hand side of equation (3.17). Given any
Schwartz function m : R2 → C, we then define the twisted bilinear multiplier operator
B
l1,l2,m

Ẑ×
m (f , g) for rapidly decreasing f , g : Z → C by the formula

B
l1,l2,m

Ẑ×
m (f , g)(x) :=

∑
α1∈(Q/Z)l1 ,α2∈(Q/Z)l2

mẐ×(α1, α2)

×
∫
R2
m(ξ1, ξ2)FZf (α1 + ξ1)FZg(α2 + ξ2)e(−x(α1 + α2 + ξ1 + ξ2)) dξ1 dξ2.

As in [13, equation (7.9)], we also introduce the continuous symbol m̃N ,R : R2 → C by
the formula

m̃N ,R(ξ1, ξ2) :=
∫ 1

1/2
e(ξ1Nt + ξ2P(Nt)) dt

and also the cutoff functions

η≤k(ξ) := η(ξ/2k)

for any integer k and frequency ξ ∈ R, where η : R → [0, 1] is a fixed smooth even
function supported on [−1, 1] that equals one on [−1/2, 1/2].

In §5, we will prove the following analogue of [13, Proposition 7.13].
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PROPOSITION 3.4. (Major arc approximation of ÃN ,�N ) For any N ≥ 1 and s ∈ N with
− Log N + s ≤ −u, we have

‖ÃN ,�N (�l1,≤− Log N+s F̃ , �l2,≤−d Log N+dsG̃)

− B
l1,l2,m

Ẑ×
(η≤− Log N+s⊗η≤−d Log N+ds )m̃N ,R

(F̃ , G̃)‖�p(Z)
�C3 2O(max(2ρl ,s)) exp(− Logc N)‖F̃‖�p1 (Z)‖G̃‖�p2 (Z) (3.18)

for all F̃ ∈ �p1(Z), G̃ ∈ �p2(Z).

This is a slightly weaker type of bound than the corresponding result in [13], as the
polynomial gain of N−1 has been reduced to the quasipolynomial gain of exp(− Logc N).
However, this is still good enough to dominate the 2O(max(2ρl ,s)) terms, since from
[13, equation (7.1)], one has

N ≥ max(22max(l,s1,s2)/2 , C3) (3.19)

for all N ∈ I. Because of this, we can repeat the Fourier-analytic arguments in
[13, §7] down to [13, Theorem 7.23] with the obvious changes, and reduce to showing the
acceptability of the small-scale model tuple( ∫ 1

1/2
B
l1,l2,m

Ẑ×
m∗ (Tl1ϕN ,t

F , Tl2
ϕ̃N ,t

G) dt

)
N∈I≤

(3.20)

and the large-scale model tuple( ∫ 1

1/2
B1⊗m

Ẑ× (TϕN ,t⊗1FA, Tϕ̃N ,t⊗1GA)

)
N∈I>

, (3.21)

where:
(i) I≤ := {N ∈ I : N ≤ 22u} and I> := {N ∈ I : N > 22u};

(ii) m∗(ξ1, ξ2) := η≤−2u(ξ1)η≤−2du(ξ2);
(iii) ϕN ,t (ξ) := ϕN(ξ)e(Ntξ), ϕ̃N ,t (ξ) := ϕN(ξ)e(P (Nt)ξ);
(iv) the adelic model functions FA ∈ Lp1(AZ), GA ∈ Lp2(AZ) are defined by the

formulae

FA(x, y) :=
∑

α1∈(Q/Z)l1

∫
R
η≤−2u−1(ξ1)FZF(α1 + ξ1)e(−(ξ1, α1) · (x, y)) dξ1

(3.22)

and

GA(x, y) :=
∑

α2∈(Q/Z)l2

∫
R
η≤−2u−1(ξ2)FZG(α2 + ξ2)e(−(ξ2, α2) · (x, y)) dξ2

(3.23)

for x ∈ R, y ∈ Ẑ.
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We can then repeat the integration by parts arguments in the remainder of [13, §7]
(replacing mẐ by mẐ×) and reduce to establishing the small-scale model estimate

‖(Bl1,l2,m
Ẑ×

m∗ (Tl1ϕN ,t ,j1
F , Tl2

ϕ̃N ,t ,j2
G))N∈I≤‖�p(Z;Vr )

�C3 〈max(l, s1, s2)〉O(1)2O(ρl)−cl1p1=p2=2‖F‖�p1 (Z)‖G‖�p2 (Z) (3.24)

and the large-scale model estimate

‖(B1⊗m
Ẑ× (TϕN ,t ,j1⊗1FA, Tϕ̃N ,t ,j2⊗1GA))N∈I>‖Lp(AZ;Vr )

�C3 〈max(l, s1, s2)〉O(1)2O(ρl)−cl1p1=p2=2‖FA‖Lp1 (AZ)‖GA‖Lp2 (AZ), (3.25)

whenever 1/2 ≤ t ≤ 1 and j1, j2 ∈ {−1, 0, +1} are such that

(s1, j1), (s2, j2) �= (−u, −1), (3.26)

where

ϕN ,t ,j1(ξ1) := (2−s1Nξ1)
j1ϕN ,t (ξ1) (3.27)

and

ϕ̃N ,t ,j2(ξ2) := (2−ds2Ndξ2)
j2 ϕ̃N ,t (ξ2). (3.28)

To prove the small-scale argument in equation (3.25), we use the two-dimensional
Radamacher–Menshov inequality [13, Corollary 8.2] by repeating the arguments of
[13, §8] (replacingmẐ bymẐ×), reducing matters to establishing the following single-scale
estimate.

LEMMA 3.5. (Single-scale estimate) If F̃ ∈ �p1(Z), G̃ ∈ �p2(Z) have Fourier support on
Ml1,≤−3u and Ml2,≤−3du, respectively, then

‖B
l1,l2,m

Ẑ×
m∗ (F̃ , G̃)‖�p(Z) �C3 2−cl1p1=p2=2‖F̃‖�p1 (Z)‖G̃‖�p2 (Z).

However, this can be proven by repeating the proof of [13, Lemma 8.6], using
Proposition 3.4 in place of [13, Proposition 7.13]; the replacement of mẐ with mẐ×
makes no difference here, and the slight reduction in strength of Proposition 3.4 from a
polynomial gain in N to a quasipolynomial gain in N is similarly manageable.

It remains to establish the large-scale estimate in equation (3.25). We repeat the
arguments in [13, §9], replacing mẐ by mẐ× , and noting that B1⊗m

Ẑ× is the tensor
product of the identity and the bilinear operator AẐ× on the profinite integers defined for
f : Z/QZ → C, g : Z/QZ → C for any Q (which one can also view as functions on Ẑ in
the obvious fashion) by the formula

AẐ×(f , g)(x) := En∈(Z/QZ)×f (x + n)g(x + P(n)).

These arguments reduce matters to establishing the following analogue of [13,
Theorem 9.9].
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THEOREM 3.6. (Arithmetic bilinear estimate) Let l ∈ N and let f , g ∈ L2(Ẑ) obey one of
the following hypotheses:
(i) FẐf vanishes on (Q/Z)≤l;

(ii) FẐg vanishes on (Q/Z)≤l .
Then, for any 1 ≤ r < (2d/(d − 1)), one has

‖AẐ×(f , g)‖
Lr(Ẑ) �C3,r 2−cr l‖f ‖

L2(Ẑ)‖g‖L2(Ẑ).

Repeating the arguments in [13, §10] up to [13, equations (10.3), (10.4)], using AẐ×
in place of AẐ and Theorem 3.2 in place of [13, Theorem 5.12], we see that it suffices to
establish the p-adic bound

‖AZ×
p
‖L2(Zp)×L2(Zp)→Lq(Zp) �q 1 (3.29)

for all primes p, together with the improvement

‖AZ×
p
‖L2(Zp)×L2(Zp)→Lq(Zp) ≤ 1 (3.30)

whenever 1 ≤ q < (2d/(d − 1)) and p is sufficiently large depending on q, where the
averaging operator AZ×

p
is defined as

AZ×
p
(f , g)(x) := En∈Z×

p
f (x + n)g(x + P(n)).

Because Z×
p has density (p − 1)/p in Zp, we have the pointwise bound

|AZ×
p
(f , g)(x)| ≤ p

p − 1
AZp (|f |, |g|)(x) (3.31)

from the triangle inequality, where

AZp (f , g)(x) := En∈Zpf (x + n)g(x + P(n)).

Hence, equation (3.29) is immediate from [13, equation (10.3)]. It remains to establish
equation (3.30). As in [13, §10], we may assume 2 < q < (2d/(d − 1)) and ‖f ‖L2(Zp) =
‖g‖L2(Zp) = 1 with f , g non-negative, in which case, our task is to show that

En∈Zp |AZ×
p
(f , g)(x)|q ≤ 1.

Applying equation (3.31) and the bound ‖AZp (|f |, |g|)‖Lq(Zp) ≤ 1 from [13, §10]
would cost a factor of (p/(p − 1))q , which is not acceptable here (the product∏
p(p/(p − 1)) diverges). Instead, we follow the arguments in [13, §10], decomposing

f = a + f0, g = b + g0, where 0 ≤ a, b ≤ 1, f0, g0 have mean zero, and the ‘energies’

Ef := ‖f0‖2
L2(Zp)

, Eg := ‖g0‖2
L2(Zp)

obey 0 ≤ Ef , Eg ≤ 1 and

|a| = (1 − Ef )
1/2, |b| = (1 − Eg)

1/2.

In the case of AZp , we clearly have

AZp (a, b) = ab, AZp (f0, b) = 0
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(was observed in [13, §10]) so that by linearity, we have

AZp (f , g) = ab + AZp (f , g0).

For the averaging operator AZ×
p

, the situation is slightly more complicated; we have

AZ×
p
(a, b) = ab, AZ×

p
(f0, b) = − p

p − 1
bh,

where h : Zp → R is the function

h(x) := En∈Zpf0(x + n)1p|n.

Since f0 has mean zero, h has mean zero as well. Furthermore, from Young’s convolution
inequality, one has the bounds

‖h‖L2(Zp) ≤ ‖f0‖L2(Zp)‖1p|n‖L1(Zp) = p−1E
1/2
f ,

‖h‖Lq(Zp) ≤ ‖f0‖L2(Zp)‖1p|n‖Lr(Zp) = p−1/2−1/qE
1/2
f ,

(3.32)

where 1/q + 1 = 1/2 + 1/r .
We now have the decomposition

AZ×
p
(f , g) = ab + AZ×

p
(f , g0)− p

p − 1
bh

and hence by the Taylor expansion (x + y)q = xq + qxq−1y +O(q2xq−2y2) (as in [13,
§10]), we have

|AZ×
p
(f , g)|q = |ab|q + q|ab|q−1

(
AZ×

p
(f , g0)− p

p − 1
bh

)
+Oq(|AZ×

p
(f , g0)|2 + |AZ×

p
(f , g0)|q + |h|2 + |h|q).

Since a, b ∈ [0, 1], we can bound |ab|q ≤ |ab|2 = (1 − Ef )(1 − Eg). Furthermore,
p/(p − 1)bh has mean zero and AZ×

p
(f , g0) has a mean of at most ‖AZ×

p
(f0, g0)‖L1(Zp)

since AZ×
p
(a, g0) has mean zero. We conclude that

‖AZ×
p
(f , g)‖q

Lq(Zp)
≤ (1 − Ef )(1 − Eg)+Oq(‖AZ×

p
(f0, g0)‖L1(Zp)

+‖AZ×
p
(f , g0)‖2

L2(Zp)
+ ‖AZ×

p
(f , g0)‖qLq(Zp)+p−2Ef+ p−q/2−1E

q/2
f ).

By arguing as in [13, §10] (using Theorem 3.2 in place of [13, Theorem 5.12]), we see that
if l is any large integer and p is sufficiently large depending on q, we have the estimates

‖AZ×
p
(f0, g0)‖L1(Zp) � 2−cq lE1/2

f E
1/2
g ,

‖AZ×
p
(f , g0)‖2

L2(Zp)
� 2−cq lEg ,

‖AZ×
p
(f , g0)‖qLq(Zp) � 2−cq lEq/2g

for some cq > 0 depending only on q, and hence, by the arithmetic mean-geometric mean
inequality and the hypothesis q > 2, we have
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‖AZ×
p
(f , g)‖qLq(Zp) ≤ (1 − Ef )(1 − Eg)+Oq((2−cq l + p−2)(Ef + Eg))

≤ (1 − Ef )(1 − Eg)+Oq((2−cq l + p−2)),

and the right-hand side is bounded by 1 for l and p large enough, as required.
To summarize, to complete the proof of Theorem 1.3, we need to select an approximant

�N to the weight � at each scale N that obeys the estimates in equations (3.1), (3.2), (3.3)
and (3.4), as well as the single scale minor arc estimate in Theorem 3.2 and the major arc
approximation in Proposition 3.4. This will be the focus of the next sections.

4. Approximants to the von Mangoldt function
As seen in the previous section, the arguments rely on using an approximant �N to the
von Mangoldt function � at scale N. There are several plausible candidates for such
approximants, including the following.

(i) � itself.
(ii) A Cramér (or Cramér–Granville) approximant

�Cramér,w(n) := W

ϕ(W)
1(n,W)=1,

where

W :=
∏
p≤w

p

and w ≥ 1 is a parameter.
(iii) A Heath-Brown approximant

�HB,Q(n) :=
∑
q<Q

μ(q)

ϕ(q)
cq(n), (4.1)

where Q ≥ 1 is a parameter and cq(n) are the Ramanujan sums

cq(n) :=
∑

r∈(Z/qZ)×
e(−rn/q). (4.2)

Other possibilities for approximants exist, including Goldston–Pintz–Yıldırım type
approximants (log R)

∑
�|n μ(�)η(log �/ log R) and (log R)(

∑
�|n μ(�)η(log �/ log R))2

for suitable level parameters R and smooth cutoffs η, Selberg sieve approximants
(
∑
�|n λ�)2, or adjustments to several of the previous approximants by a correction term

arising from a Siegel zero, but we will not discuss these other options further here.
The choice of option (i) (that is, setting �N := �) is tempting, particularly in view

of recent advances in quantitative understanding of functions such as � in [15, 25].
However, it turns out that the presence of a Siegel zero would distort the asymp-
totics of � to such an extent that the desired approximation in Proposition 3.4 no
longer holds with quasipolynomial error terms in N, which turns out to significantly
complicate the analysis (particularly in the small-scale regime, in which one has to
modify the Radamacher–Menshov type arguments significantly). See §6 for further
discussion.
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The choice of option (ii) has the advantage of being non-negative, reasonably well
controlled in �∞ and also relatively easy to control in Gowers uniformity norms, and so
we shall take such a choice for our approximant �N ; specifically, we will set

�N = �Cramér,exp(Log1/C0 N). (4.3)

However, there is one aspect in which this approximant�N(n) is not ideal: it is not exactly
equal to a ‘Type I sum’

∑
�|n λ�, where λ� are weights supported on relatively small values

of d. The Heath-Brown approximants �HB,Q introduced in option (iii) are precisely Type
I sums, and so we will switch to those approximants at a certain point in the proof.

To achieve these goals, we will need to collect some basic facts about the Cramér
approximants �Cramér,w and the Heath-Brown approximants �HB,Q, which may be of
independent interest.

4.1. Bounds on the Cramér approximant. We begin with the Cramér approximant. First,
we record an easy uniform bound.

LEMMA 4.1. (Uniform bound on Cramér model) If w ≥ 1, then

0 ≤ �Cramér,w(n) � 〈Log w〉
for all n ∈ Z.

Proof. This is immediate from the Mertens theorem bound

W

ϕ(W)
=

∏
p≤w

p

p − 1
� 〈Log w〉.

The Cramér approximant is not easily expressible as an exact Type I sum once w is
reasonably large (in particular, larger than Log N), but thanks to the fundamental lemma
of sieve theory, it can be approximated by such a sum.

LEMMA 4.2. (Fundamental lemma of sieve theory) If 2 ≤ w ≤ y ≤ N1/10, then there exist
weights λ±

� ∈ [−1, 1], supported on 1 ≤ � ≤ y, such that

∑
�|n

λ−
� ≤ ϕ(W)

W
�Cramér,w(n) ≤

∑
�|n

λ+
�

for all n, and also

En∈I
∑
�|n

λ±
� = ϕ(W)

W
(1 +O(exp(−log y/ log w)))

for any interval I of length N. In particular,

En∈I
∣∣∣∣�Cramér,w(n)− W

ϕ(W)

∑
�|n

λ±
�

∣∣∣∣ � exp(−log y/ log w).

Proof. This follows easily from [11, Lemma 6.3].
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The fundamental lemma can then be used to give many good estimates for the Cramér
model.

PROPOSITION 4.3. (Linear equations in the Cramér model) Let t , m ≥ 1 be integers and
letN ≥ 100. Let� ⊂ [−N , N]d be convex, and let ψ1, . . . , ψt : Zm → Z be linear forms

ψi(�n) = �n · ψ̇i + ψi(0)

for some ψ̇i ∈ Zm and ψi(0) ∈ Z. Assume that the linear coefficients ψ̇1, . . . , ψ̇t ∈ Zm

are all pairwise linearly independent and have magnitude at most exp(log3/5 N). Suppose
that 1 ≤ zi ≤ exp(Log1/10 N) for all i = 1, . . . , t . Then, one has

∑
�n∈�∩Zm

t∏
i=1

�Cramér,zi (ψi(�n)) = vol(�)
∏
p

βp +Ot ,m(N
m exp(−c Log4/5 N))

for some c > 0 depending only on t , m, where for each p, βp is the local factor

βp := E�n∈(Z/pZ)m
∏

1≤i≤t
p≤zi

p

p − 1
1ψi(�n) �=0,

where ψi is also viewed as a map from (Z/pZ)m to Z/pZ in the obvious fashion.
Furthermore, βp obeys the bounds

βp = 1 +Ot ,m(1/p2) (4.4)

for all primes p (and βp = 1 if p > max(z1, . . . , zt )).

Proof. This is essentially [25, Proposition 5.2] (which relies to a large extent on the
fundamental lemma of sieve theory). Strictly speaking, this proposition only covered the
case where the zi were equal to a single parameter z which was also assumed to be at least
2, but an inspection of the argument shows that it applies without significant difficulty to
variable zi as well, even if some of the zi are as small as 1. The bound in equation (4.4)
follows from [25, equations (5.2), (5.5)] (a slightly weaker bound, which also suffices for
our application, can be found in [6, Lemma 1.3]).

Specializing to the t = m = 1 case (and noting that the constant coefficients of ψi can
be large in Proposition 4.3), we immediately obtain the following corollary.

COROLLARY 4.4. (Mean value of Cramér) Let N ≥ 100 and 1 ≤ z ≤ exp(Log1/10 N),
then

En∈I�Cramér,z(n) = 1 +O(exp(−c Log4/5 N))

for any interval I of length N. In particular, since �Cramér,z(n) is non-negative, we also
have

En∈I |�Cramér,z(n)| = 1 +O(exp(−c Log4/5 N)).

More generally, if 1 ≤ q ≤ z and a (q) is a residue class, then

En∈I�Cramér,z(n)1n=a (q) = 1(a,q)=1

ϕ(q)
+O(exp(−c Log4/5 N)).
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As a more sophisticated application of Proposition 4.3, we record the following
improvement of [25, Proposition 1.2].

LEMMA 4.5. (Improved stability of the Cramér model) If 1 ≤ z, w ≤ exp(Log1/10 N), for
any d ≥ 1, one has

‖�Cramér,w −�Cramér,z‖Ud+1(I ) �d w−c + z−c

for any interval I of length N. In particular, by equation (2.5),

‖�Cramér,w −�Cramér,z‖ud+1(I ) �d w−c + z−c.

In fact, one can take c = 1/2d+1 in these estimates.

The result in [25, Proposition 1.2] had an additional term of Log−c N on the right-hand
side. The removal of this term was already conjectured in [25, Remark 5.4].

Proof. Without loss of generality, we may assume that z ≤ w. Expanding out the expres-
sion ‖�Cramér,w −�Cramér,z‖2d+1

Ud+1(I )
into an alternating sum of 2d+1 terms, it suffices to

show that

∑
ε∈{0,1}d+1

∑
n,h1,...,hd+1∈Z

d+1∏
j=1

�Cramér,wε1I (n+ ε1h1 + · · · + εk+1hk+1) = (X +O(z−1))Nd+2

for all choices of parameters wε ∈ {w, z}, where ε = (ε1, . . . , εd+1) and X is a quantity
that is independent of the choice of parameterswε . Applying Proposition 4.3, the left-hand
side is

vol(�)
∏
p

βp +Od(N
d+2 exp(−c Log4/5 N)),

where � is a certain explicit convex polytope of volume β∞Nd+2 for some constant β∞
depending only on d, and the local factors βp are defined by the formula

βp := En,h1,...,hd+1∈Z/pZ
∏

ε∈{0,1}d+1

p≤wε

p

p − 1
1p�n+ε1h1+···+εk+1hk+1 .

The local factors βp are independent of the wε if p ≤ w or p > z. Thus, by equation (4.4),
the product

∏
p βp can be written as Y (1 +O(1/z)) for some Y that is independent of the

wε parameters, and the claim follows.

4.2. Bounds on the Heath-Brown approximant. We now turn to the Heath-Brown
approximants�HB,Q. The nice bounds in �∞ or �1 one has in Lemma 4.1 or Corollary 4.4
are unfortunately not available for this approximant. However, we have reasonable control
in other norms such as �2, in large part due to a good Type I representation.
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LEMMA 4.6. (Moment bounds for Heath-Brown approximant) For any Q ≥ 1, one has
the Type I representation

�HB,Q(n) =
∑
�|n
�<Q

λd (4.5)

for some weights λ� with

λ� � 〈Log Q〉. (4.6)

In particular, we have the pointwise bound

�Q(n) � τ(n, Q)〈Log Q〉, (4.7)

where τ(n, Q) is the truncated divisor function

τ(n, Q) :=
∑
�|n
�<Q

1.

Furthermore, we have the moment bounds

En∈[N]|�Q(n)|k �k 〈Log Q〉2k+k (4.8)

for any positive integer k and N ≥ 1.

Proof. Applying the standard identity cq(n) = ∑
�|(q,n) �μ(q/�) and then writing q = �r ,

we have

�Q(n) =
∑
q<Q

μ(q)

ϕ(q)

∑
�|(q,n)

�μ(q/�)

=
∑
�|n
�<Q

μ(�)�

ϕ(�)

∑
r<Q/�
(�,r)=1

μ2(r)

ϕ(r)
.

We then take

λ� := μ(�)�

ϕ(�)

∑
r<Q/�
(�,r)=1

μ2(r)

ϕ(r)
.

From Rankin’s trick and Mertens’s theorem, for any 1 ≤ d ≤ Q, one has

∑
r≤Q/�
(d,�)=1

μ2(r)

ϕ(r)
�

∑
r≥1

(�,r)=1

μ2(r)

ϕ(r)r1/〈Log Q〉

�
∏
p
p��

(
1 + 1

(p − 1)p1/〈Log Q〉

)

� ϕ(�)

�

∏
p

(
1 + 1

p1+1/〈Log Q〉 +O

(
1
p2

))

� ϕ(�)

�
〈Log Q〉,
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where we used the Euler product formula and the standard bound ζ(σ ) ∼ 1/(σ − 1) for
σ > 1 to estimate the product over the primes. This gives equation (4.6). The bound in
equation (4.7) then follows from the triangle inequality.

Now, we turn to equation (4.8). We may assume that Q ≥ 100, as the claim is trivial
otherwise. We allow all implied constants to depend on k. In view of equation (4.7), it
suffices to establish the bound∑

n∈[N]

τ(n, Q)k � N〈Log Q〉2k .

We expand

∑
n∈[N]

τ(n, Q)k =
∑
n∈[N]

( ∑
�|n
d<Q

1
)k

=
∑
n∈[N]

∑
�1,...,�k<Q

1 =
∑

�1,...,�k<Q

N

[�1, . . . , �k]
,

where [a1, . . . , ak] is the least common multiple of a1, . . . , ak .
Now, we apply Rankin’s trick. For �i < Q, we have �1/〈Log Q〉

i = O(1), and thus,

En∈[N]τ(n, Q)k �
∑
�1,...,�k

1

�
1/ log Q
1 · · · �1/〈Log Q〉

k [�1, . . . , �k]
.

Factorizing into an Euler product, we conclude that

En∈[N]τ(n, Q)k �
∏
p

(
1 +

∑
a1,...,ak∈{0,1}
(a1,...,ak) �=0

1
p1+(a1+···ak)/〈Log Q〉 +O

(
1
p2

))
,

where 0 := (0, . . . , 0). Hence, on taking logarithms, it will suffice to show that∑
p

∑
a1,...,ak∈{0,1}
(a1,...,ak) �=0

p−1−(a1+···+ak)/〈Log Q〉 ≤ 2k log log Q+O(1).

From partial summation and the prime number theorem, we have∑
a1,...,ak∈{0,1}
(a1,...,ak) �=0

∑
p≥Q

p−1−(a1+···+ak)/〈log Q〉

≤
∑

a1,...,ak∈{0,1}
(a1,...,ak) �=0

∫ ∞

Q

t−1−(a1+···+ak)/〈Log Q〉

log t
dt +O(1)

≤ 2k ·
∫ ∞

Q

t−1/〈log Q〉 dt

t log t
+O(1) � 2k +O(1).

Moreover, we can use Mertens’s theorem to estimate∑
a1,...,ak∈{0,1}
(a1,...,ak) �=0

∑
p<Q

p−1−(a1+···+ak)/〈Log Q〉 ≤ 2k log〈Log Q〉 +O(1).

Combining these bounds gives the result.
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4.3. Comparing the Cramér and Heath-Brown approximants. We have a useful com-
parison theorem between the Cramér and Heath-Brown approximants.

PROPOSITION 4.7. (Comparison between Cramér and Heath-Brown) Let N ≥ 1 and
1 ≤ w, Q ≤ exp(Log1/20 N), and let d ≥ 1 be an integer. Then,

‖�Cramér,w −�HB,Q‖ud+1(I ) �d w−c +Q−c

for any interval I of length N. As a consequence, from Lemma 4.5 and the triangle
inequality, we also have

‖�HB,Q1 −�HB,Q2‖ud+1(I ) �d Q−c
1 +Q−c

2

whenever 1 ≤ Q1, Q2 ≤ exp(Log1/20 N).

Proof. We allow all implied constants to depend on d. In view of Lemma 4.5 and the
triangle inequality, it suffices to establish the bound

‖�Cramér,Q −�HB,Q‖ud+1(I ) � Q−c

for any interval I of length N, that is to say, it suffices to show that

|En∈I (�Cramér,Q(n)−�HB,Q(n))e(R(n))| � Q−c

for any polynomial R(n) = ∑d
j=0 αj (n− nI )

d of degree at most d with some real
coefficients αj , where nI denotes the midpoint of I. By subdividing I into smaller intervals
and using the triangle inequality (adjusting the coefficients αj as necessary), we may
assume without loss of generality that

N ∼ exp(Log20 Q).

We can then also assume that Q (and hence N) are large, as the claim is trivial otherwise. In
particular, Log N = LogO(1) Q, which in practice will permit us to absorb all logarithmic
factors of N in the analysis below.

Fix the polynomial R. We may of course assume without loss of generality that

|En∈I (�Cramér,Q(n)−�HB,Q(n))e(R(n))| ≥ Q−1.

Applying Lemma 4.2 (with w = Q and y = exp(Log1/10 N)) as well as Lemma 4.6, we
thus have ∣∣∣∣En∈I

( ∑
�≤exp(Log1/10 N)

�|n

λ�

)
e(R(n))

∣∣∣∣ ≥ Q−1

for some weights λ� of size O(LogO(1) N) = O(LogO(1) Q). Applying [17, Proposition
2.1] (after shifting the summation variable by nI ), we conclude that the polynomial R is
major arc in the sense that there exists an integer 1 ≤ q � QO(1) such that

‖qαj‖R/Z � QO(1)/Nj

for all 1 ≤ j ≤ d . We may assume that q ≥ Q by multiplying q by an integer of size Q
if necessary. Thus, one can write R(n) = R0(n)+ E(n), where R0 is a polynomial of
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degree at most d that is periodic with period q and the error E satisfies supn∈I |E(n+ 1)
− E(n)| = O(QO(1)/N).

Set

w := q, W :=
∏
p<w

p,

and thus, Q ≤ w � QO(1). By Lemma 4.5 and the triangle inequality, it will suffice to
show that

|En∈I (�Cramér,w(n)−�HB,Q(n))e(R(n))| � Q−c.

Breaking up I into intervals J of length
√
N and using the slowly varying nature of E(n),

it suffices to show that

|En∈J (�Cramér,w(n)−�HB,Q(n))e(R0(n))| � Q−c

for any interval J of length
√
N .

From Corollary 4.4 and the q-periodicity of R0, we have

En∈J�Cramér,w(n)e(R0(n)) = En∈(Z/qZ)×e(R0(n))+O(Q−c)

(in fact, the error term is significantly better than this). Using the multiplicativity of the
Ramanujan sums cq(·) and the fact that cp(n) = (p − 1)1n=0 (p) − 1n�=0 (p), we have

∑
�|q

μ(�)

ϕ(�)
c�(n) =

∏
p|q

(
1 − cp(n)

p − 1

)
= 1(n,q)=1

q

ϕ(q)
.

We thus have

En∈J�Cramér,w(n)e(R0(n)) =
∑
�|q

μ(�)

ϕ(�)
En∈[q]e(R0(n))c�(n)+O(Q−c).

Note that for any natural numbers �, a, q with � � q, by the geometric sum formula, we
have

En∈J c�(n)1n≡a(mod q) =
∑

r∈(Z/�Z)×
En∈J e

(
rn

�

)
1n≡a(mod q) � �2/

√
N .

Therefore, from equation (4.1) and the q-periodicity of e(R0(n)), we have

En∈J�HB,Q(n)e(R0(n)) =
∑
�|q
�<Q

μ(�)

ϕ(�)
En∈[q]e(R0(n))c�(n)+O(Q−c)

(again, a better error term is available here). Thus, by the triangle inequality, it suffices to
show that

∑
�|q
�≥Q

μ2(�)

ϕ(�)
|En∈[q]e(R0(n))c�(n)| � Q−c.
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By the divisor bound, q has at most Qo(1) factors, so it will suffice to establish the bound

|En∈[q]e(R0(n))c�(n)| � ϕ(�)Q−c

for each square-free � | q with � ≥ Q. By the triangle inequality, it suffices to show that∑
r∈(Z/�Z)×

|En∈Z/qZe(R0(n)− rn/�)| � ϕ(�)Q−c.

However, from the Plancherel identity (or Bessel inequality) and the fact that � ≤ q, one
has ∑

r∈(Z/�Z)×
|En∈Z/qZe(R0(n)− rn/�)|2 ≤ �

q
≤ 1,

and the claim follows from Cauchy–Schwarz (noting from the hypothesis � ≥ Q that
ϕ(�) � Q1/2, say, so that ϕ(�)1/2 � ϕ(�)Q−1/4).

5. Verifying the properties of the approximant
Recall the definition of�N from equation (4.3). In this section, we verify the properties in
equations (3.1), (3.2), (3.3) and (3.4) for �N , and prove Proposition 3.4 and Theorem 3.2
concerning it.

Verifying equations (3.1), (3.2) and (3.3). The bound in equation (3.3) follows from
Corollary 4.4, while the bound in equation (3.2) follows from Lemma 4.1. The bound in
equation (3.1) follows, for instance, from [18, Theorem 1.1(ii)] (and could also be extracted
from the earlier arguments in [17]). (Strictly speaking, the results in [18] were stated only
for C0 = 10, but an inspection of the arguments reveal that they also apply for larger
choices of C0.)

Verifying equation (3.4). We need the following weighted analogue of [13, Proposition
6.21].

LEMMA 5.1. (Lp improving) Let Q ∈ Z[n] be of degree d ≥ 1. If 2 − cd < p ≤ 2 for
some sufficiently small cd > 0, then

‖En∈[N](�(n)+�N(n))f (· +Q(n))‖�2(Z) �Q Nd/2−d/p‖f ‖�p(Z)
and also for the dual exponent p′ = p/(p − 1), we have

‖En∈[N](�(n)+�N(n))f (· +Q(n))‖
�p

′
(Z) �Q N

d/p′−d/p‖f ‖�p(Z). (5.1)

The value of cd here could be explicitly computed, but we do not attempt to optimize it
here. After Lemma 5.1 has been proven, equation (5.1) together with the non-negativity of
�N immediately implies the required estimate in equation (3.4).

Proof. By interpolation (adjusting cd as necessary), it suffices to show the second estimate
in equation (5.1).

For any polynomial Q(n) ∈ Z[n], we define the averaging operators AQ,0
N , AQN :

�p(Z) → �p(Z) by the formulae

AQ,0
N f (x) := En∈[N]f (x +Q(n))�(n), AQNf (x) := En∈[N]f (x +Q(n))�N(n).
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First, the operators AQN , AQ,0
N are bounded on every �p(Z) thanks to equation (3.3) and the

triangle inequality. With this notation, it suffices to show that

‖AQNf ‖
�p

′
(Z) �Q N

d/p′−d/p‖f ‖�p(Z),
‖AQ,0

N f ‖
�p

′
(Z) �Q N

d/p′−d/p‖f ‖�p(Z).
(5.2)

We can write AQN = AQ
N ,exp(Log1/C0 N)

, where

AQN ,wf (x) := En∈[N]f (x +Q(n))�Cramér,w(n).

On the one hand, from Lemma 4.1 and the results in [8] (see also [13, Proposition 6.21]),
we have

‖AQN ,wf ‖
�p

′
(Z) �Q N

d/p′−d/p〈Log w〉‖f ‖�p(Z) (5.3)

for any 2 − c < p ≤ 2 (where c > 0 depends on d and can vary from line to line). On the
other hand, from Lemma 4.5, we have

En∈[N](�Cramér,w −�Cramér,z)(n)e(Q(n)) �d z−c (5.4)

for any 1 ≤ z ≤ w ≤ exp(Log1/C0 N).
By the Plancherel theorem, this implies that

‖AQN ,wf − AQN ,zf ‖�2(Z) =
( ∫ 1

0

∣∣∣∣∑
x∈Z

(AQN ,wf − AQN ,zf )(x)e(θx)

∣∣∣∣
2

dθ

)1/2

�d z−c
( ∫ 1

0

∣∣∣∣∑
x∈Z

f (x)e(θx)

∣∣∣∣
2

dθ

)1/2

�d z−c‖f ‖�2(Z).

Interpolating (and reducing c as necessary), we see that if 2 − c ≤ p ≤ 2, then

‖AQN ,wf − AQN ,zf ‖
�p

′
(Z) �Q N

d/p′−d/pz−c‖f ‖�p(Z)
if 1 ≤ z ≤ w ≤ exp(Log1/C0 N) is such thatw1/2 ≤ z. Summing this bound telescopically
for suitable values of z, w, we conclude from the triangle inequality that

‖AQNf − AQN ,1f ‖
�p

′
(Z) �Q N

d/p′−d/p‖f ‖�p(Z).
Combining this with the w = 1 case of equation (5.3), we obtain the first estimate in
equation (5.2).

The second estimate in equation (5.2) follows similarly, except that in the proof, we
replace equation (5.3) with

‖AQ,0
N f ‖

�p
′
(Z) �Q N

d/p′−d/p〈Log N〉‖f ‖�p(Z)
and replace equation (5.4) with

En∈[N](�−�Cramér,z)(n)e(Q(n)) �d z−c

and use the first estimate in equation (5.2).
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Proof of Proposition 3.4. Arguing as in the proof of [13, Proposition 7.13], Proposition 3.4
reduces to establishing the symbol estimates∣∣∣∣ ∂j1

∂ξ
j1
1

∂j2

∂ξ
j2
2

M0((α1, ξ1), (α2, ξ2))

∣∣∣∣ �C3 2O(max(2ρl ,s))Nj1+dj2 exp(− Logc N)

for 0 ≤ j1, j2 ≤ 2, α1 ∈ (Q/Z)l1 , α2 ∈ (Q/Z)l2 and ξ1 = O(2s/N), ξ2 = O(2ds/Nd),
where the symbol M0 is defined by the formula

M0((α1, ξ1), (α2, ξ2)) := En∈[N]e(α1n+ α2P(n))e(ξ1n+ ξ2P(n))�N(n)1n>N/2

−mẐ×(α1, α2)m̃N ,R(ξ1, ξ2).

As in the proof of [13, Proposition 7.13], the function n 	→ e(α1n+ α2P(n)) is periodic
of some period

q = Oρ(2O(2
ρl )). (5.5)

In particular, from equation (3.19), one has

q ≤ exp(Logc0 N)

and hence q divides W. So the function �N(n) vanishes outside of the primitive residue
classes modulo q. Meanwhile, we have

mẐ×(α1, α2) = Ea∈(Z/qZ)×e(α1a + α2P(a)).

By the triangle inequality, it thus suffices to show for each a ∈ (Z/qZ)× that∣∣∣∣ ∂j1

∂ξ
j1
1

∂j2

∂ξ
j2
2

(
En∈[N]e(ξ1n+ ξ2P(n))�N(n)1n=a (q)1n>N/2 − 1

ϕ(q)
m̃N ,R(ξ1, ξ2)

)∣∣∣∣
�C3 2O(max(2ρl,s))Nj1+dj2 exp(− Logc N).

Evaluating the derivatives, it suffices to show that∣∣∣∣ ∑
n∈[N]\[N/2]

w(n)1n=a (q)�N(n)− 1
ϕ(q)

∫ N

N/2
w(t) dt

∣∣∣∣
�C3 2O(max(2ρl,s))Nj1+2j2+1 exp(− Logc N),

where

w(t) := e(ξ1t + ξ2P(t))t
j1P(t)j2 .

The function w is smooth with a total variation of O(2O(max(2ρl ,s))Nj1+2j2). Summing (or
integrating) by parts as in [18, Lemma 2.2(iii)], it suffices to show that∣∣∣∣∑

n∈I

(
1n=a (q)�N(n)− 1

ϕ(q)
|I |

)∣∣∣∣ �C3 N exp(− Logc N)

for all intervals I in [N , 2N]. However, this follows from Corollary 4.4.

Proof of Theorem 3.2. The last remaining task is to establish the single-scale estimate in
Theorem 3.2. We first recall an application of the Peluse–Prendiville theory.
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PROPOSITION 5.2. (Unweighted inverse theorem) Let N ≥ 1 and 0 < δ ≤ 1, and let N0

be a quantity with N0 ∼ Nd . Let f , g, h : Z → C be supported on [−N0, N0] with

‖f ‖�∞(Z), ‖g‖�∞(Z), ‖h‖�∞(Z) ≤ 1, (5.6)

obeying the lower bound

|〈ÃN ,1(f , g), h〉| ≥ δNd . (5.7)

Then, there exists a function F ∈ �2(Z) with

‖F‖�∞(Z) � 1, ‖F‖�1(Z) � Nd (5.8)

and with FZF supported in the O(δ−O(1)/N)-neighbourhood of some rational a/b
mod 1 ∈ Q/Z with b = O(δ−O(1)) such that

|〈f , F 〉| � δO(1)Nd . (5.9)

Here, we use the inner product 〈f , F 〉 := ∑
n∈Z f (n)F (n).

Proof. See [13, Proposition 6.6].

We now transfer this to the weighted setting, under an additional (mild) largeness
hypothesis on δ.

PROPOSITION 5.3. (Weighted inverse theorem) Let N ≥ 1 and exp(− Log1/C0 N) ≤
δ ≤ 1, and let N0 be a quantity with N0 ∼ Nd . Let f , g, h : Z → C be supported on
[−N0, N0], obeying equation (5.6) and the lower bound

|〈ÃN ,�N (f , g), h〉| ≥ δNd . (5.10)

Then, the conclusions of Proposition 5.2 hold.

Proof. We may assume that N is sufficiently large depending on the fixed polynomial P,
as the claim is easy to establish otherwise.

For any 1 ≤ z ≤ w ≤ exp(Log1/C0 N), we have from Lemmas 4.5, 4.1 and
[26, Theorem 4.1] (that is, equation (1.7)) that

|〈ÃN ,�Cramér,w−�Cramér,z (f , g), h〉| � z−c〈Log w〉Nd .

In particular, we have

|〈ÃN ,�Cramér,w−�Cramér,z (f , g), h〉| � z−cNd (5.11)

for z ∈ [w/2, w]; summing dyadically using the triangle inequality, we conclude that

|〈ÃN ,�N−�Cramér,w(f , g), h〉| � w−cNd

for any 1 ≤ w ≤ exp(Log1/C0 N).
The weight �Cramér,w is not quite of Type I form, so we now aim to swap it with the

Heath-Brown weight �HB,w. From Lemma 4.7, we have

‖�Cramér,w −�HB,w‖ud+1[N] � w−c. (5.12)
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We would like to apply [26, Theorem 4.1] again, but we have the technical issue that�HB,w

does not quite have a good uniform bound, but is instead only controlled in the �k norm for
arbitrarily large but finite k. However, from Lemma 4.6 (applied with sufficiently large k)
and Chebyshev’s inequality, for any small κ > 0 and ε > 0, we can find an approximation
�′

HB,w to �HB,w with

‖�HB,w −�′
HB,w‖�1[N] ≤ κ and �′

HB,w(n) = Oε(κ
−ε〈Log w〉Oε(1)). (5.13)

We can use the �1 norm to control the ud+1 norm; hence, by equation (5.12) and the triangle
inequality,

‖�Cramér,w −�′
HB,w‖ud+1[N] � κ + w−c. (5.14)

Now, we can apply [26, Theorem 4.1] (and Lemma 4.1) to conclude that

|〈ÃN ,�Cramér,w−�′
HB,w

(f , g), h〉| �ε 〈Log w〉Oε(1)(κc + κ−εw−c)Nd .

Finally, from the triangle inequality and Cauchy–Schwarz, we can crudely bound

|〈ÃN ,�′
HB,w−�HB,w(f , g), h〉| � κNd .

Putting this all together, choosing ε to be sufficiently small and κ to be a small multiple of
w−c for a suitable c, we conclude that

|〈ÃN ,�N−�HB,w(f , g), h〉| � w−cNd

for any 1 ≤ w ≤ exp(Log1/C0 N). In particular, from equation (5.10), we now have

|〈ÃN ,�HB,w(f , g), h〉| � δNd

for some 1 ≤ w � δ−O(1). Expanding equation (4.1) and using the triangle inequality and
crude bounds, we conclude that

|〈ÃN ,e(−r·/q)(f , g), h〉| � δO(1)Nd

for some 1 ≤ r ≤ q � δ−O(1). However, observe the identity

〈ÃN ,e(−r·/q)(f , g), h〉 = 〈ÃN ,1(e(−r · /q)f , g), e(−r · /q)h〉.
We can thus apply Proposition 5.2 to conclude that

|〈e(−r · /q)f , F 〉| � δO(1)Nd

for some function F obeying the conclusions of that proposition. Transferring the plane
wave e(−r · /q) from f to F, we obtain the claim (noting that the denominator b will
remain acceptably under control since q � δ−O(1)).

If we now repeat the arguments of [13, §6.1], using Proposition 5.3 and Lemma 5.1 in
place of [13, Proposition 6.6] and [13, Proposition 6.21], respectively, inserting the weights
�N in the averaging operators in the obvious fashion, we obtain case (i) of Theorem 3.2.
To handle case (ii), we need the following variant of Proposition 5.3.
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PROPOSITION 5.4. (Weighted inverse theorem for g) Under the hypotheses of Proposition
5.3, there exists a function G ∈ �2(Z) with

‖G‖�∞(Z) � 1, ‖G‖�1(Z) � Nd (5.15)

and with FZG supported in the O(δ−O(1)/Nd)-neighbourhood of some rational a/b
mod 1 ∈ Q/Z with b = O(δ−O(1)) such that

|〈g, G〉| � δO(1)Nd . (5.16)

However, this can be derived from [13, Proposition 6.26] in precisely the same way
Proposition 5.3 was derived from [13, Proposition 6.6]. By repeating the remaining
arguments of [13, §6.2], one obtains case (ii) of Theorem 3.2.

6. Remarks
6.1. Peluse’s inverse theorem for the primes. As is clear from the previous sections,
Peluse’s inverse theorem [23] was an important ingredient in the proof of the unweighted
bilinear ergodic theorem in [13]. In the course of proving Theorem 1.3, we essentially
needed a version of this inverse theorem where one of the variables was weighted by the
approximant �N ; see Proposition 5.3. It is natural to ask if one can also obtain a version
of Peluse’s inverse theorem with the von Mangoldt weight �. We record here how such a
result quickly follows from the arguments used to prove Proposition 5.3.

THEOREM 6.1. (Peluse’s inverse theorem with prime weight) Let k, d ∈ N and A > 0. Let
N ≥ 2, (log N)−A ≤ δ ≤ 1 and N0 ∼ Nd . Let P1, . . . , Pk be polynomials with integer
coefficients of distinct degrees, with maximal degree d. Let h, f1, . . . , fk : Z → C be
functions bounded in modulus by 1 and supported on [−N0, N0]. Suppose that∣∣∣∣∑

x∈Z
En∈[N]�(n)h(x)f1(x + P1(n)) · · · fk(x + Pk(n))

∣∣∣∣ ≥ δNd . (6.1)

Then, either N0 �P1,...,Pk δ
−Od(1) or there exists a positive integer q �P1,...,Pk δ

−Od(1) and
δOd(1)N �P1,...,Pk N

′ ≤ N such that

1
Nd

∣∣∣∣∑
x∈Z

Em∈[N ′]f1(x + qm)

∣∣∣∣ �A,P1,...,Pk δ
Od(1).

Proof. Fix P1, . . . , Pk; we allow all implied constants to depend on them. Define the
polynomial averaging operator

TN ,θ (h, f1, . . . , fk) :=
∑
x∈Z

En∈[N]θ(n)h(x)f1(x + P1(n)) · · · fk(x + Pk(n)).

Let w0 = δ−Cd for a large enough constant Cd . We claim that

TN ,�−�N (h, f1, . . . , fk) �A (log N)−A, (6.2)

and

TN ,�N−�Cramér,w0
(h, f1, . . . , fk) � δ2 (6.3)
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and

TN ,�Cramér,w0−�HB,w0
(h, f1, . . . , fk) � δ2. (6.4)

After we have these three estimates, we conclude from equation (6.1) and linearity that

|TN ,�HB,w0
(h, f1, . . . , fk)| � δ.

By equations (4.1) and (4.2), the function �HB,w0 is a linear combination, with 1-bounded
coefficients, ofO(w3

0) indicators of arithmetic progressions of common difference at most
w0. Hence, crudely using the triangle inequality, we obtain

|TN ,1a (q′) (h, f1, . . . , fk)| � δOd(1)

for some 1 ≤ a ≤ q ′ � δ−Od(1). However, now the claim of the theorem follows from
[23, Theorem 3.3] after making a change of variables.

We are left with showing equations (6.2), (6.3) and (6.4). The estimate in equation (6.2)
follows immediately from [26, Theorem 4.1] and equation (3.1). The estimate in equation
(6.3) follows by using Lemmas 4.5, 4.1 and [26, Theorem 4.1] to obtain

TN ,�Cramér,w−�Cramér,z (h, f1, . . . , fk) � w−cd

for some cd > 0 and any z ∈ [w/2, w], 1 ≤ w ≤ exp((log N)1/10), and then summing this
dyadically. For proving equation (6.4), note that from equation (5.14) and [26, Theorem
4.1], we have for any κ > 0, ε > 0, the bound

TN ,�Cramér,w0−�′
HB,w0

(h, f1, . . . , fk) �ε 〈Log w0〉Oε(1)(κc′d + κ−εw−c′d
0 )Nd ,

with �′
HB,w0

obeying equation (5.13). However, from equation (5.13) and the triangle
inequality, we now obtain equation (6.4) by taking ε > 0 small enough and κ = w−c

0 for a
small enough constant c (depending on d). This was enough to complete the proof.

6.2. Siegel zeroes. In this subsection, we mention an alternative approach to
Theorem 1.3 based on working with Siegel zeroes. This approach is somewhat more
complicated than that implemented above and we shall only sketch it very briefly, leaving
the details to the interested reader.

The place in the proof of Theorem 1.3 where passing from the von Mangoldt function�
to the approximant �N avoided dealing with Siegel zeroes is Proposition 3.4, so we begin
by sketching how a variant of Proposition 3.4 can be proven for the weight �.

We say that a modulus q ≥ 2 is exceptional if there exists a non-principal real Dirichlet
character χq(mod q) such that L(s, χq) has a real zero βq > 1 − c0/(log q), where c0

is some small absolute constant. We call the corresponding character χq an exceptional
character and we call βq a Siegel zero. For any given exceptional q, the character χq and
Siegel zero βq are uniquely determined.

For exceptional characters χq , we define the arithmetic symbol

mẐ×,χq

(
a1

q
mod 1,

a2

q
mod 1

)
:= 1

φ(q)

∑
r∈(Z/qZ)×

e

(
a1r

q
+ a2P(r)

q

)
χq(r)
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and the (weighted) continuous multiplier

m̃N ,R,χq (ξ1, ξ2) :=
∫ 1

1/2
e(ξ1t + ξ2P(t))t

βq−1 dt ,

where βq ∈ (0, 1) is the Siegel zero. Then, if we replace in equation (3.18),

B
l1,l2,m

Ẑ×
(η≤− Log N+s⊗η≤−d Log N+ds )m̃N ,R

−→ B
l1,l2,m

Ẑ×
(η≤− Log N+s⊗η≤−d Log N+ds )m̃N ,R

+
∑

q exceptional

B
l1,l2,m

Ẑ× ,χq
(η≤− Log N+s⊗η≤−d Log N+ds )m̃N ,R,χq

,

the conclusion of Proposition 3.4 holds with the von Mangoldt weight � in place of �N .
This follows from essentially the same proof as in §5, but using the Landau–Page theorem
[20, Corollary 11.10] in place of Corollary 4.4.

In the large-scale regime, the error bounds arising from the Siegel–Walfisz theorem
remove the need for the above approximation; in the small-scale regime,

{N ∈ D : 2u
O(1/(C0ρ)) ≤ N ≤ 3C0·2u},

further analysis is required to reduce matters to the two-parameter Rademacher–Menshov
inequality.

The first observation is the classical fact that there is at most one exceptional character
at each dyadic scale:

|{q ∈ (2j , 2j+1] : q exceptional}| ≤ 1. (6.5)

We let qj denote the unique exceptional modulus in (2j , 2j+1] and abbreviate βj = βqj .
We then introduce a dyadic decomposition

∑
q exceptional

B
l1,l2,m

Ẑ× ,χq
(η≤− Log N+s⊗η≤−d Log N+ds )m̃N ,R,χq

=
∑
j≤2ρl

CN ,j (f , g),

where

CN ,j (f , g)(x)

=
∫ 1

1/2

( ∫
T2

∑
(a1/qj ,a2/qj ) : h(ai/qj )=2li

mẐ×,χqj
(a1/qj , a2/qj )e(a1x/qj + a2x/qj )

× (f̂ (ξ1 + a1/qj ) · ϕ(2uξ1) · e(ξ1Nt))

× (ĝ(ξ2 + a2/qj ) · ϕ(2duξ2) · e(ξ2P(Nt)))e(ξ1x + ξ2x) ·Nβj−1tβj−1 dξ1dξ2

)
dt .

The key novelty then derives from proving the following modified Rademacher–
Menshov-type inequality, similar to [13, Lemma 8.2].

LEMMA 6.2. Let V , W be normed vector spaces, K , J be two positive integers and let
0 < q < ∞. Let Bj : V ×W → Lq(X) be a family of bilinear operators for j ∈ [J ]. Let
{f jk }, {gjk } be sets of functions with f jk ∈ V and gjk ∈ W for k ∈ [K] and j ∈ [J ]. Then,
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∥∥∥∥V 2
( ∑
j∈[J ]

Bj (f
j
k , gjk ) : k ∈ [K]

)∥∥∥∥
Lq(X)

�q 〈Log K〉Oq(1) sup
ε
j
k ,εjk∈{±1}

∥∥∥∥ ∑
j∈[J ]

Bj

( ∑
k∈[K]

ε
j
k (f

j
k − f

j

k−1),
∑
k∈[K]

ε
j
k (g

j
k − g

j

k−1)

)∥∥∥∥
Lq(X)

.

This result may be of independent interest, so we provide a brief proof.

Proof. Set ak1,k2 = ∑
j∈[J ] Bj (f

j
k1

, gjk2
). By [13, Lemma 8.1], we have

V 2
( ∑
j∈[J ]

Bj (f
j
k , gjk ) : k ∈ [K]

)
�

∑
M1,M2<KM1,M2 : dyadic

∥∥∥∥� ∑
j≤J

Bj (f
j
M1n1

, gjM2n2
)

∥∥∥∥
�2(n1,n2)

,

where

�
∑
j∈[J ]

Bj (f
j
M1n1

, gjM2n2
) =

∑
j∈[J ]

Bj (f
j
M1n1

, gjM2n2
)−

∑
j∈[J ]

Bj (f
j

(n1−1)M1
, gjM2n2

)

−
∑
j∈[J ]

Bj (f
j
M1n1

, gj(n2−1)M2
)+

∑
j∈[J ]

Bj (f
j

(n1−1)M1
, gj(n2−1)M2

).

Taking

f̃M1n1 = fM1n1 − f(n1−1)M1 , g̃M2n2 = gM2n2 − g(n2−1)M2 ,

we need to bound

〈Log K〉Oq(1) sup
M1,M2<K dyadic

∥∥∥∥
( ∑
n1<k/M1
n2<k/M2

∣∣∣∣ ∑
j∈[J ]

Bj (f̃
j
M1n1

, g̃jM2n2
)

∣∣∣∣
2)1/2∥∥∥∥

Lq(X)

. (6.6)

Applying Khintchine’s inequality( ∑
n

|an|2
)1/2

=
(
Eεn∈±1

∣∣∣∣ ∑
n

εnan

∣∣∣∣
2)1/2

∼q

(
Eεn∈±1

∣∣∣∣ ∑
n

εnan

∣∣∣∣
q)1/q

,

we arrive at the following chain of inequalities:∥∥∥∥V 2
( ∑
j∈[J ]

Bj (f
j
k , gjk ) : k ∈ [K]

)∥∥∥∥
Lq(X)

� 〈Log K〉Oq(1) sup
M1,M2

∥∥∥∥
(
Eεn2 ∈±1

∑
n1

∣∣∣∣ ∑
n2

∑
j∈[J ]

εn2Bs(f̃
j
M1n1

, g̃jM2n2
)

∣∣∣∣
2)1/2∥∥∥∥

Lq(X)

� 〈Log K〉Oq(1) sup
M1,M2

∥∥∥∥
(
Eεn1 ,εn2 ∈±1

∣∣∣∣ ∑
n1

∑
n2

∑
j∈[J ]

εn1εn2Bj (f̃
j
M1n1

, g̃jM2n2
)

∣∣∣∣
2)1/2∥∥∥∥

Lq(X)

�q 〈Log K〉Oq(1) sup
M1,M2

∥∥∥∥
(
Eεn1 ,εn2 ∈±1

∣∣∣∣ ∑
n1

∑
n2

∑
j∈[J ]

εn1εn2Bj (f̃
j
M1n1

, g̃jM2n2
)

∣∣∣∣
q)1/q∥∥∥∥

Lq(X)

�q 〈Log K〉Oq(1) sup
M1,M2,εn1 ,εn2

∥∥∥∥ ∑
n1

∑
n2

∑
j∈[J ]

εn1εn2Bj (f̃
j
M1n1

, g̃jM2n2
)

∥∥∥∥
Lq(X)

.
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By bilinearity, we may consolidate∑
n1

∑
n2

∑
j∈[J ]

εn1εn2Bj (f̃
j
M1n1

, g̃jM2n2
) =

∑
j∈[J ]

Bj

( ∑
n1

εn1 f̃
j
M1n1

,
∑
n2

εn2 g̃
j
M2n2

)
;

putting everything together,∥∥∥∥V 2
( ∑
j∈[J ]

Bj (f
j
k , gjk ) : k ∈ [K]

)∥∥∥∥
Lq(X)

� 〈Log K〉Oq(1) sup
M1,M2
εn1 ,εn2

∥∥∥∥ ∑
j∈[J ]

Bj

( ∑
n1

εn1(f
j
M1n1

− f
j

(n1−1)M1
),

∑
n2

εn2(g
j
M2n2

− g
j

(n2−1)M2
)

)∥∥∥∥
Lq(X)

,

and so we get the result upon telescoping e.g.

εn1(f
j
M1n1

− f
j

(n1−1)M1
) =

∑
(n1−1)M1<k≤M1n1

εn1(f
j
k − f

j
k1
)

=:
∑

(n1−1)M1<k≤M1n1

ε
j
k (f

j
k − f

j

k−1).

6.3. Breaking duality. We briefly remark that one may establish Theorem 1.3 with
r-variation restricted to the range r > 2 + ε for exponents p1, p2 > 1 that satisfy

1 <
1
p

:= 1
p1

+ 1
p2

< 1 + ε′,

where ε′ > 0 is sufficiently small in terms of ε; hence, going beyond the duality range.
The single-scale estimate

‖AN ;�;X(f , g)‖Lp(X) � ‖f ‖Lp1 (X)‖g‖Lp2 (X) (6.7)

anchors the argument; equation (6.7) follows from Hölder’s inequality and the improving
estimate Lemma 5.1, as per [13, Lemma 11.1]. With equation (6.7) in hand, the proof of
[13, Proposition 11.4] can be formally reproduced, with only notational changes arising.
We leave the details to the interested reader.

6.4. Sharpness of the variational result. The unboundedness of the quadratic variation
along polynomial orbits, namely [13, Proposition 12.1], extends to our context.

PROPOSITION 6.3. Let P ∈ Z[n] be a non-constant polynomial and let 0 < p ≤ ∞. Let
I ⊂ N be an infinite set. Then, for every C > 0, there exists a measure-preserving system
(X, μ, T ) of total measure 1 and a 1-bounded f ∈ L∞(X) so that

‖(Ep∈[N]T
P(p)f )N∈I‖Lp(X;V 2) ≥ C.

We shall leave the details of the proof of this proposition to the interested reader as
it is similar to the proof of [13, Proposition 12.1]. The key additional observation is the
equidistribution of
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p 	→ (α1 · P(p), . . . , αK · P(p)) ⊂ TK

over the primes whenever α1, . . . , αK are Q-linearly independent and P ∈ Z[n] is a
non-constant polynomial (which follows from Weyl’s criterion and a standard exponential
sum estimate for polynomials of primes; see e.g. [17, Theorem 1.3]).

To see why this implies the sharpness of the range of the variational estimate in
Theorem 1.3, one may employ the convexity arguments of [19, §5], taking into account
[19, Proposition 4.1], to obtain the lower bound

‖(Ep∈[N]T
P(p)f )N∈I‖Lp(X;V 2) ≤ ‖(En∈[N]�(n) · T P(n)f )N∈I‖Lp(X;V 2) +O(1).

6.5. Continuous extensions. From the perspective of density, the primes are
‘full/dimensional’, with a very ‘Fourier-uniform’ measure,�. A natural question concerns
establishing a continuous analogue of Theorem 1.3, namely the existence of a measure ν
supported on [0, 1], with (say) full Fourier dimension,

|ν̂(ξ)| � (1 + |ξ |)o(1)−1/2

so that

lim
N→∞

1
N

∫ N

0
f (x − t)g(x − P(t)) dν(t), d = deg(P ) ≥ 2

exists almost everywhere whenever f ∈ Lp1(R) and g ∈ Lp2(R) with p1, p2 > 1 and
1/p1 + 1/p2 ≤ 1. The key point is establishing a suitable Sobolev inequality, namely∥∥∥∥ 1

N

∫ N

0
f (x − t)g(x − P(t)) dν(t)

∥∥∥∥
L1([0,CNd ])

� (2−cl +OA(〈log N〉−A))Nd

for some c > 0, whenever |f |, |g| ≤ 1, and f̂ vanishes on {|ξ | � 2l/N} and/or ĝ vanishes
on {|ξ | � 2l/Nd}.

Estimates of this form in the unweighted setting go back to [1], with the strongest
estimates recently established by one of us as part of a much more general phe-
nomenon, see [12]. This approach relies on PET induction, which suggests that certain
Gowers-uniformity conditions might need to be imposed on ν; it is unclear how this might
interact with dimension, so we leave the problem to the interested reader.
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