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ABSTRACT: Combinatorial optimization (CO) is essential for improving efficiency and performance in
engineering applications. Traditional algorithms based on pure mathematical reasoning are limited and incapable to
capture the contextual nuances for optimization. This study explores the potential of Large Language Models
(LLMs) in solving engineering CO problems by leveraging their reasoning power and contextual knowledge. We
propose a novel LLM-based framework that integrates network topology and contextual domain knowledge to
optimize the sequencing of Design Structure Matrix (DSM) —a common CO problem. Our experiments on various
DSM cases demonstrate that the proposed method achieves faster convergence and higher solution quality than
benchmark methods. Moreover, results show that incorporating contextual domain knowledge significantly
improves performance despite the choice of LLMs.

KEYWORDS: large language models, combinatorial optimization, systems engineering (SE), concurrent
engineering (CE), design management

1. Introduction

Combinatorial optimization (CO) problems are ubiquitous across fields, where finding an optimal
solution from a finite set often drives improvements in efficiency, cost, and performance (Korte, et al.
2011). For instance, applications such as DNA barcoding and DNA assembly in synthetic biology
(Naseri and Koffas 2020), as well as job scheduling in manufacturing (Xidias and Azariadis 2019), rely
heavily on effective CO solutions. However, due to their NP-hard nature, these problems present
substantial challenges, especially as complexity increases with larger problem sizes and more intricate
dependencies. Traditionally, CO problems in engineering are usually approached through the following
process: the problem is first modelled mathematically, then solved using specific algorithms or heuristics,
and finally interpreted within the context of practical engineering (Pinedo 2012). This separation of
problem-solving and interpretation stages is limited and incapable to capture the contextual nuances
necessary for optimization of real-world problems.

Recent advancements in Large Language Models (LLMs) have demonstrated their powerful capabilities
in natural language generation, semantic understanding, instruction following, and complex reasoning
(Wei, et al. 2022) (Chang, et al. 2024). Furthermore, pioneering studies have shown that LLMs can be
used for continuous and concrete optimization (Romera-Paredes, et al. 2024) (Yang, et al. 2024) (Liu,
et al. 2024). For instance, researchers from DeepMind utilized LLMs as optimizers and evaluated their
effectiveness on classic CO problems (Yang, et al. 2024), such as Traveling Salesman Problems (TSP).
Additionally, prior studies also highlight that LLMs possess extensive domain knowledge pretrained
across a wide range of engineering-related data, which enhances their applicability in engineering fields
(Zhu and Luo 2023) (Makatura, et al. 2024) (Jiang and Luo 2024) (Mei, et al. 2024). Therefore, the
ability of LLMs to combine mathematical and semantic reasoning, along with their possession of
extensive knowledge, motivated us to explore their potential for solving engineering CO problems while
integrating contextual domain knowledge relevant to their network typology. Our hypotheses are: (1)
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LLMs can be effectively applied to solve CO problems in engineering, and (2) incorporating contextual
domain knowledge can further enhance LLM performance by supporting mathematical reasoning with
semantic insights. This paradigm, which leverages both semantic and mathematical reasoning, introduces
a novel approach to combinatorial optimization that traditional pure mathematical methods cannot
achieve for empirical problems. On this basis, we propose a novel LLM-based framework that integrates
both network topology and domain context into the optimization process.

To evaluate our proposed method, we focus on the Design Structure Matrix (DSM) sequencing task, as
an example of CO problems. DSM is a modelling tool in engineering design, which represents
dependency relationships among tasks or components within a system (Steward 1981). Reordering the
node sequence of DSMs can significantly reduce feedback loops and improve modularization (Choi
2011) (Eppinger and Browning 2012). The DSM sequencing is also an NP-hard problem, and traditional
methods typically approach it using heuristics-based algorithms (Eppinger, Whitney, et al. 1994) (Qian,
et al. 2011). Figure 1 illustrates a design activity DSM before and after sequencing (Amen, Rask and
Sunnersjo 1999). In this paper, we conduct extensive experiments on various DSM cases to demonstrate
that our LLM-based method achieves better convergence speed and solution quality compared to
benchmark methods. Notably, results show that incorporating contextual domain knowledge
significantly enhances the performance despite the choice of backbone LLMs.

(A) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (B) 1 2 3 413 7 5 9 141617 8 6 10 11 12 15
Requirements 1 Requirements 1
Prognosis 2 Prognosis 2
Type of concept 3 Type of concept 3 X
Specification 4 Specification 4 X X
Gasketdesign 5 Main dimensions 13 X
Cutter design 6 Material selection 7 X
Material selection 7 Gasket design 5 X X
Product part design 8 Cross section design 9 X X X
Cross section design 9 Cross section analysis 14 X X X X
Tool partdesign 10 Pattem design 16 X X X X X
Tool preparation 11 Strength requirements 17 X X X X X X
Tool manufacturing 12 Product part design 8 X X X X X

Main dimensions 13
Cross section analysis 14
Prototype series 15
Pattern design 16
Strength requirements 17

Cutter design 6

Tool part design 10
Tool preparation 11
Tool manufacturing 12
Prototype series 15

x

Figure 1. lllustration of a design activity DSM: (A) Pre-sequencing; (B) Post-sequencing

2. Methodology

In this section, we introduce our proposed LLM-based framework for solving CO problems. The
framework is designed to harness the generative and reasoning powers of LLMs in combination with
domain knowledge and objective evaluation. The framework begins with the initialization of a solution
randomly sampled in the total solution space. Each solution is evaluated based on predefined criteria by
an evaluator, which quantifies the quality of a solution. Using this evaluation, the framework iteratively
updates the solution base through few-shot learning and suggesting new candidates, guided by crafted
prompts that include both network information in mathematical form and domain knowledge in natural
language description. The newly generated solutions are appended into the solution base, together with
their evaluation results. When the iteration time is reached, the solution base returns the best one as the
final output. In following, we focus on DSM sequencing as a common CO problem to illustrate the
pipeline. The framework is depicted in Figure 2.

Initialization and solution sampling

The Solution Base serves as an essential module to (1) enable storage of explored solutions and their
evaluation results, (2) provide historical solutions to the LLM for few-shot learning, and (3) return the
top-performing solution when iteration ends.

The initialization involves generating an initial solution that is randomly sampled from the entire solution
space. Specific initialization strategies can be designed in future work, as initialization may influence
subsequent reasoning. In the DSM sequencing task, a solution represents a complete and non-repetitive
sequence of nodes (see Fig. 2). This initial solution is then evaluated and added to the Solution Base for
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future use. In subsequent iterations, we design a sampling rule that selects K, top-performance solutions
and randomly samples K, solutions from the remaining K, — K,, solutions to form a solution set, where K,
is the total number of solutions in the Solution Base. K, and K, are adjustable parameters. The obtained
solution set is further refined and crafted into prompts.

init() -
# Initialization 4 Solution Base
N1->N3->N4->N6->N2->N5 20
N1->N3->N4->N6->N2->N5 topk () @ e ——— - ‘ ‘
e ; NS
topl ()
randomk () append ()
wit:?(?livl;vllzidge Edge List Nethrokpltai:::;phon . . "
4 LLM-generated Solution with Evaluation
N1:{Capacity spec.} {N2 -> N1} This Network shows:{}
N2: {Motor spec.} N (N3 -> N2} Node shows:{}
N3:{Structural des.} {N3 -> N1} Edge shows:{} N3->N2->N4->N1->N6->N5
Meta-Instructions Selected Historical Solutions

combine ()

Role:{} N1->N3->N4->N6->N2 > N5
Task: {} NT->N3->N4->N2->N5 > N6
Output Format: {} N3 ->N2->N4->N1>N6->N5

4 Pre-defined Evaluator

@

def evaluate (n: list) -> int:

input ()

gen() | @ New Solution

return score
NT->N3->N4->N6->N2->N5

eval()
Backbone LLM

Figure 2. Overview of the proposed framework

LLM-driven optimization using network information and domain knowledge

In each iteration of the optimization process, we prompt backend LLM with the following information:
(i) Typology Information: These two elements complete the mathematical description of a DSM. It is
noteworthy that there are multiple equivalent representations for describing a network mathematically,
such as an edge list, a dependency relationship list according to node sequence, or an adjacency matrix. In
this research, we choose the edge list as the representation of the network's topology and shuffle all edges
to avoid any possible bias. (if) Contextual Domain Knowledge: This includes the name of each node and
an overall description of the network, which conveys the domain knowledge underlying the DSM’s
mathematical structure to the LLM. For instance, in an activity DSM, each node represents the name of
an activity in the entire design process. (iii) Meta-instructions: We adopt some frequently used prompt
engineering strategies (Zhao, et al. 2023), including role-playing, task specification, and output format
specification. These strategies allow the LLM to follow the guidance to perform reasoning and generate
solutions in a specific format. (iv) Selected historical solutions: As described in the last section, we
obtain a set of up to K, + K, solutions through sampling from the Solution Base for the LLM to use in
few-shot learning.

Once receiving inputs described above, the backend LLM combines the network topology information with
domain knowledge to infer and suggest new solutions. The generated solution must pass the checker, which
verifies that all nodes are present exactly once in the sequence. Once validated, the solution is then
evaluated and appended to the Solution Base. The detailed input prompt is included in Appendix 1.

Evaluation of DSM sequencing solutions

The evaluator is used to quantify each newly generated solution. For the DSM sequencing task, the goal
is to reorder the rows and columns of the DSM to minimize feedback loops. To achieve this objective, the
evaluator calculates the number of backward dependencies in the corresponding sequence.

We formally describe this problem as follows: Given a sequence s, we can use the edge list of the network
to obtain an n-by-n asymmetric adjacency matrix A, representing a directed network of 7 nodes, where a;;
is a typical binary entry. Specifically, a; = 1 represents that node i depends on node j. The task is to
reorder the n correlated rows and columns to minimize the number of entries above the main diagonal in
the corresponding adjacency matrix. On this basis, the objective function can be formally expressed as:
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n n
min ) Y a;, where i < j.
i=1 j=i+1
For each sequence generated by the LLM (including the initial randomly created one), we calculate its
evaluation score using the formula above. In this task, a lower score indicates a higher quality solution.

3. Experiments
3.1. Data

We collected four DSM cases for our experiments, which can be categorized into two types (Browning
2001): (1) Activity-based DSMs, which represent the input-output relationships between different tasks
or activities within a project; and (2) Parameter-based DSMs, which illustrate the relationships among
design parameters of a product. The DSM of the Unmanned Combat Aerial Vehicle (UCAV) includes 12
conceptual design activities conducted at Boeing (Browning 1998). The DSM of the Microfilm Cartridge
was derived from Kodak's Cheetah project including 13 major tasks (Ulrich and Eppinger 2016). These
two activity-based DSMs were constructed based on interviews with relevant engineers, followed by
review, verification, and calibration to ensure accuracy. For the parameter-based DSMs, the Heat
Exchanger (Amen, Rask and Sunnersjo 1999) and the Automobile Brake System (Black, Fine and Sachs
1990), researchers first identified the key components from the product and then interviewed the
corresponding designers to define design parameters and establish precedence relationships. The Heat
Exchanger DSM contains 17 components related to core thermal exchange elements, while the Brake
System DSM includes 14 main parameters covering braking mechanisms and their dependencies. From
the referential documents, we extracted: (1) the name of each node, (2) the edge list obtained from the
adjacency matrix, and (3) the overall description of each network. All data were kept consistent with the
original references. The characteristics of four DSMs are summarized in Table 1. In general, the node
count (N) of DSMs ranges from 12 to 17, and the edge count (E) varies between 32 and 47. The network
diameter, representing the longest shortest path between any two nodes, spans from 2 to 7. We also
present measures such as network density and clustering coefficient to highlight the complexity. For
instance, the UCAV DSM has a high network density of 0.712 and a clustering coefficient of 0.773,
suggesting strong interconnections, while measures of the Heat Exchanger DSM indicate a sparser
network with more distinct relationships.

Table 1. Characteristics of four DSMs

Network Network  Average Clustering Average Path
N E Diameter Density Degree Coefficient Length

Activity-Based DSMs

Unmanned Aerial 12 47 2 0.712 7.833 0.773 1.288
Vehicle(Browning 1998)

Microfilm Cartridge (Ulrich 13 41 3 0.526 6.308 0.682 1.577
and Eppinger 2016)

Parameter-Based DSMs

Heat Exchanger (Amen, et al. 17 41 7 0.302 4.824 0.457 2.397
1999)

Automobile Brake System 14 32 4 0.352 4.571 0.414 1.824

(Black, et al. 1990)

3.2. Experiment setup

Experimental setting

In all our experiments, we ran each method 10 times with different random seeds to ensure robustness.
For solution sampling, we set K,,=5 and K,=5. For the index of each node, we use a string composed of 5
randomly generated characters (a mix of numbers and letters) to represent the node uniquely. The
maximum number of iterations was set to 20. We selected Claude-3.5-Sonnet-20241022 as the backbone
LLM and kept all other settings of the LLM as their default values (Anthropic 2024).
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Comparative methods for benchmarking

We consider two types of approaches for benchmarking.

The first type is stochastic methods, which rely on probabilistic rules to explore the solution space.
We chose the classic Genetic Algorithm (GA) for comparison, as it has been successfully applied to
various optimization problems (Alhijawi and Awajan 2024). We implemented GA using the DEAP
library (Fortin, et al. 2012). We considered three different settings for GA: exploration-focused,
exploitation-focused, and balanced setting. Specific parameter settings of three variants are detailed
in Appendix 2.

The second type is deterministic methods, which rank nodes based on a specific measure and then
use this ranking for reordering. Since the calculation of each measure is deterministic, the resulting
solution is consistent. We considered five deterministic methods for comparison, each reordering
nodes based on different criterion: (i) Out-In Degree (Crofts and Higham 2011): Reordering based
on the difference between out-degree and in-degree of each node. (ii) Eigenvector (Dietzenbacher
1992): Calculating the values of components in the Perron vector of the adjacency matrix and
sorting nodes accordingly. (iii) Walk-based (Exponential) (Estrada and Rodriguez-Velazquez
2005): Considering in-depth connectivity patterns by involving the power of the adjacency matrix
A. It is calculated by: F(A) = exp(A). (iv) Walk-based (Resolvent) (Estrada and Higham 2010):
Calculated by: F(A) = (1 — 8A)~!, where represents the probability that a message will successfully
traverse an edge. We set 6 = 0.025 in experiments following the original reference. (v) Visibility
(MacCormack, Baldwin and Rusnak 2012): Involving the visibility matrix, showing the
dependencies between all system elements for all possible path lengths up to the matrix size. It
is calculated by: F(A) =) }_, A, where n represents the number of nodes. The resulting visibility
matrix is then binarized. For methods (iii), (iv), and (v), once the F(A) is obtained, nodes are
reordered by the sum of rows of F(A). If nodes share the same value, they are then reordered based
on the sum of columns of F(A).

To further investigate the effectiveness of incorporating domain knowledge, we also consider a variant of
our proposed method for comparison. In this variant, all settings are kept the same as in the main method,
except that the contextual knowledge about nodes and the entire network is removed. Therein, only the
topological information of the network is engineered into the input prompt, guiding the LLM to search
for an optimal solution solely through mathematical reasoning.

4. Results and discussion

We first compared the convergence speed among our LLM-based methods and the three variants of
GA, as shown in Figure 3. In GA, due to different parameter settings (e.g., population size,
crossover, and mutation rates), each iteration explores multiple unique solutions. In contrast, our
methods suggest only one unique solution per iteration. Therefore, we standardized the iteration time
(generation) for GA as the number of unique solutions explored and used this as the measure for
convergence speed. Although the maximum number of generations for each GA run was set to 2,000
(refer to Appendix 2), we truncated the comparison to the first 10,000 unique solutions explored for
clearer visualization.

Compared to all three GA settings, our methods show significantly higher convergence speed, reaching
lower objective values faster across all four cases. Overall, our LLM-based methods demonstrate a
consistent advantage over GA, finding high-quality solutions multiple orders of magnitude faster in all
cases. In each of the four cases, our methods can always identify an initial solution of good quality within
the first attempt and continue optimizing the solution through subsequent iterations, approximating the
optimal solution. This demonstrates that LLMs can leverage in-context learning to adapt and improve
solutions efficiently.

Moreover, in Figures 3 (A), (C), and (D), we observe that incorporating domain knowledge enhances the
LLM's performance in both convergence speed and solution quality, as indicated by the red line
consistently lying below the grey line. This suggests that LLMs combining semantic reasoning with
mathematical reasoning can solve CO problems more effectively and efficiently. It is noteworthy that in
the cartridge development case (Figure 3 (B)), both LLM-based methods (with and without knowledge)
found the best solution within the first step. Consequently, the two lines overlap, indicating identical
performance in this case.
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Figure 3. Comparison of convergence speed

We also compared the solution quality among different methods, as presented in Table 2. We
experimented with our methods over single-trial, 5-trial, and 20-trial runs to evaluate their effectiveness.
Compared to stochastic methods and deterministic methods, our methods significantly outperformed the
corresponding benchmarks.

On the one hand, since all deterministic methods can be regarded as single-trial approaches (static
algorithms), we first compared our single-trial results with those methods. As shown in Table 2, except
for the Visibility-based method finding the optimal solution directly in one case (brake system design
DSM), our methods outperformed all other deterministic methods across all cases. Even in the brake
system case, our 5-trial method matched the effectiveness of the Visibility-based method.

On the other hand, when comparing with stochastic algorithms, our 20-trial method consistently found
better solutions than benchmarks and achieved the optimal solution in 3 out of 4 cases. It is important to
note that our experiments only tested up to 20 iterations. If we were to continue with longer iterations, the
heat exchanger design case might also reach the optimal solution. Moreover, even with the 5-trial runs,
our methods outperformed all three variants of GA in 3 out of 4 cases and were close in the UCAV case
(6.1£0.3 vs. 6.0£0.0). This demonstrates that our LLM-based approach, leveraging contextual domain
knowledge and iterative in-context learning, can effectively solve CO problems, suggesting high-quality
solutions in a few attempts.

To evaluate the effect of different backbone LLLMs on our proposed method, we conducted an ablation
study. In addition to Claude-3.5-Sonnet (Anthropic 2024), we repeated the experiments in Table 2 using
three different backbones: two open-source LLMs (Mixtral-7x8B (Jiang, et al. 2024) and Llama3-70B
(Meta 2024)) and one closed-source LLM (GPT-4-Turbo (OpenAl 2024)), accessed via its API. We
report the results for single-trial, 5-trial, and 20-trial runs, and also examine the impact of removing
contextual domain knowledge from the prompts. As indicated by Table 3, Claude-3.5-Sonnet, our
choice, statistically outperforms the other LLMs across all four cases. Llama3-70B follows as the second
top performer in most cases, demonstrating that open-source LLMs can be effective alternatives. This
suggests that our framework is compatible with different LLMs. We recommend users or researchers
may start with Claude-3.5-Sonnet for optimal performance, but may consider open-source models like
Llama for budget or customizability. Furthermore, in all cases, the results across all LLMs show that
incorporating contextual domain knowledge consistently improves solution quality compared to the ones
without knowledge. This finding aligns with our previous observation in Figure 1, highlighting the
robustness of our methods and the significant role of domain knowledge in enhancing LL.Ms' reasoning
performance in such CO tasks with real-world contexts.
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Table 2. Comparison of solution quality.

Activity-Based DSMs Parameter-Based DSMs
Unmanned Aerial Microfilm Heat Automobile Brake
Methods Vehicle Cartridge Exchanger  System
Stochastic Methods!"!
GA (Exploration-focused 6.0+0.0 8.120.3 5.7£1.0 3.840.7
setting)
GA (Exploitation-focused 7.4%1.5 9.9+1.4 7.6x1.4 6.6x1.7
setting)
GA (Balanced setting) 6.0:0.0 8.4+0.5 6.2+1.2 4.2+1.2
Deterministic Methods!?!
Out-In Degree 10.0+0.0 12.3+0.5 10.3+0.6 5.720.9
Eigenvector 15.0+0.0 13.8+0.7 13.1£1.7 11.1£1.4
Walk-based (Exponential) 15.0£0.0 12.0£0.0 8.0£0.0 11.0£0.0
Walk-based (Resolvent) 9.020.0 12.0+0.0 8.0£0.0 11.0£0.0
Visibility 25.62.2 8.8+0.7 6.0£1.3 3.0£0.0
LLM-driven Methods (Ours)
Single-trial with knowledge 6.6+0.7 8.0+0.0 4.840.6 4.4+0.9
Single-trial without 119434 8.1+0.3 5.841.1 5.9+1.4
knowledge
5-trial with knowledge 6.120.3 8.0+0.0 4.0+0.4 3.0+0.0
5-trial without knowledge 7.5£0.9 8.0:0.0 4.910.5 4.0£1.0
20-trial with knowledge 6.0+0.0 8.0+0.0 3.6+0.5 3.0+0.0
20-trial without knowledge 6.4+0.7 8.0+0.0 4.1+0.3 3.4+0.7

5. Concluding remarks

Experimental results demonstrate that our proposed method, particularly when incorporating contextual
domain knowledge, offer significant advantages in both convergence speed and solution quality
compared to benchmarking stochastic and deterministic approaches. Across all experiments and
backbone LLMs, the inclusion of domain knowledge consistently improved performance. While Claude-
3.5-Sonnet is the most effective backbone LLM, open-source models such as Llama3-70B also shows
strong performance. Overall, these findings illustrate the capability of our proposed method to effectively
address DSM sequencing tasks, leveraging both semantic and mathematical reasoning of LLMs for real-
world combinatorial optimization problems.

Despite the promising results, there are some limitations. First, the scope of the current experiments could
be expanded by collecting more diverse DSM cases, including larger and more complex networks, to
achieve more robust statistical results. Second, while we focused on DSM sequencing tasks, the
effectiveness of our proposed method could be explored across a wider range of real-world combinatorial
optimization tasks to assess its generalizability. Third, LLMs exhibit a black-box nature, making it
challenging to fully understand their decision-making mechanisms. Therefore, we plan to delve into the
intermediate changes in LLM outputs during optimization in future work, which may provide greater
interpretability and insights into the LLMs' reasoning processes.

(11 Consistent with Figure 3, all three GA settings show optimization performance with number of unique sequences
explored = 10,000.

(21 All deterministic methods can be considered single-trial approaches, as they produce consistent outcomes for
identical inputs across repeated executions. However, certain nodes might share the same measures. For these
nodes, a random order is applied, and the final results are derived over 10 runs.
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Table 3. Ablation on the Backbone LLM

Activity-Based DSMs Parameter-Based DSMs
# of Backbone Unmanned Aerial Microfilm Heat Automobile Brake
Trial LLM Knowledge Vehicle Cartridge Exchanger  System
1 Mixtral-7x8B  with 12.5+2.2 19.54¢5.0 16.1£2.2 12.14£3.1
without 15.844.6 17.7#3.3 16.8+1.9 16.0+2.3
Llama3-70B  with 7.6:0.8 8.310.5 7.9+2.0 6.1+1.1
without 12.5+3.8 10.2+1.2 10.1+1.8 7.0+£2.2
GPT-4-Turbo with 9.61£3.2 10.0+1.6 9.2+2.1 5.0+1.2
without 13.9+44.3 11.0+1.5 12.943.1 7.5+2.7
Claude-3.5- with 6.6:0.7 8.0+0.0 4.8+0.6 4.4+0.9
Sonnet without 11.9+3.4 8.1+0.3 5.8+1.1 5.9+1.4
5 Mixtral-7x8B  with 10.6+1.4 13.1+2.7 13.0+2.1 9.7+2.5
without 12.3+2.6 15.0+2.2 15.4+2.3 13.8+1.7
Llama3-70B  with 6.7£0.5 8.1+0.3 5.5+0.9 5.4+1.1
without 8.4+1.7 9.3+0.5 8.7+1.2 5.4+1.4
GPT-4-Turbo with 6.810.6 8.4+0.5 6.6+1.3 4.6+0.9
without 8.9+0.8 9.6+0.8 10.1+2.7 5.7+1.8
Claude-3.5- with 6.1:0.3 8.0+0.0 4.0+0.4 3.0+£0.0
Sonnet without 7.5+0.9 8.0+0.0 4.9+0.5 4.0£1.0
20 Mixtral-7x8B  with 10.1+1.2 11.2+2.3 10.7+1.2 8.8+2.0
without 11.3+1.7 13.0+1.2 14.0+1.3 13.1+1.7
Llama3-70B  with 6.710.5 8.0+0.0 4.7+0.5 5.2+1.2
without 7.4+0.8 8.810.6 7.7+1.3 4.6+0.9
GPT-4-Turbo with 6.1+0.3 8.2+0.4 5.1+0.8 4.1+0.7
without 7.3+0.6 9.1+0.3 7.7+1.8 5.0+1.5
Claude-3.5- with 6.0£0.0 8.0+0.0 3.610.5 3.0+£0.0
Sonnet without 6.4+0.7 8.0+0.0 4.1+0.3 3.4+0.7

In conclusion, our study highlights the potential of LLMs for combinatorial optimization of design
structure matrix, showing that including domain knowledge can significantly enhance the performance of
our methods. Future research can build on these findings to further refine LLM-driven methods and
extend applications to more complex and diverse combinatorial optimization problems.
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Appendix 1. Full prompt

Prompt for our proposed method:

You are an expert in the domain of combinational optimization.

Please assist me to find an optimal sequential order that minimizes feedback cycles in the dependency
network described below. Your task is to propose a new order that differs from previous attempts and has
Sfewer feedback cycles than any listed.

<Description of the entire Network< {network_description} </Description of the entire Network>

<Nodes with Descriptions> {node_list_with_description} </Nodes with Descriptions>
<Edges> {edge_list} </Edges>
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Below are some previous sequential orders arranged in descending order of feedback cycles (lower is
better): {selected_historical_solutions}
Please suggest a new order that:

- Is different from all prior orders.

- Has fewer feedback cycles than any previous order.

- Covers all nodes exactly once.

- Starts with <order> and ends with </order>.

- You can use the descriptions of nodes and networks to support your suggestion.

Output Format:
<order> ... </order>

Please provide only the order and nothing else.

Appendix 2. Parameter settings for three variants of GA

In all three variants of the GA used for DSM sequencing tasks, we employed the following shared
settings: the number of generations was set to 2,000, with a selection mechanism using tournament
selection and mutation using shuffled indexes. The GA was implemented using the DEAP library with
standard configurations for initial population generation. The different configurations for each GA
setting are shown in the table below. The meaning of each parameter refers to (Fortin, et al. 2012).

Individual Mutation Tournament Crossover Mutation
Population Prob. Size Prob. Prob.
Exploration- 50 0.05 5 0.6 0.4
focused
Exploitation- 10 0.01 20 0.9 0.1
focused
Balanced 20 0.02 10 0.7 0.3
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