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Abstract

We introduce a notion of modulated topological vector spaces, that generalises, among others, Banach and
modular function spaces. As applications, we prove some results which extend Kirk’s and Browder’s fixed
point theorems. The theory of modulated topological vector spaces provides a very minimalist framework,
where powerful fixed point theorems are valid under a bare minimum of assumptions.
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1. Introduction

Fixed point theory for contractive and nonexpansive mappings defined in Banach
spaces has been extensively developed since the mid 1960s. Fixed point theory has
been extended to general metric spaces and independently to modular function spaces
(see [10, Ch. 2] or standard texts on metric fixed point theory such as [5, 7]).
The theory of modular function spaces was introduced in the late 1980s in [14–16]
as a generalisation of several classes of function and sequence spaces including
lp, Lp, Orlicz, Musielak–Orlicz, Lorentz and Marcinkiewicz spaces, and then used
extensively in the fixed point theory starting from the seminal 1990 paper [11]. For
recent surveys of this theory we refer to [10, 17, 18] and also [8, 9]. It has been
frequently noted that modular equivalents of the norm notions of contractions and
nonexpansive mappings naturally occur in applications and quite often allow results
not available within the limitations of normed spaces. Despite essential differences
between norms and modulars (the latter are allowed to take infinite values and may
not have the triangle property), many surprising analogies have been discovered. To
give just a few examples, the property (R) plays a similar role to reflexivity, ρ-a.e.
convergence relates well to the weak topology, modular uniform convexity (though
more complex) plays a similar role to norm uniform convexity, and major fixed
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point theorems like the Banach Contraction Principle and the fixed point theorems
of Browder and Kirk have been expressed and proved in the language of modulars
(see [10]).

The aim of this note is to introduce a large class of vector spaces that include both
Banach spaces and modular function spaces (and many others) and to indicate possible
applications to fixed point theory.

2. Foundations

Let X be a real vector space. Following the classical work by Nakano [20] (see also
[19]), we start with the following definition.

Definition 2.1. A functional ρ : X → [0,∞] is called a convex modular if

(1) ρ(x) = 0 if and only if x = 0;
(2) ρ(−x) = ρ(x);
(3) ρ(αx + βy) ≤ αρ(x) + βρ(y) for any x, y ∈ X, and α, β ≥ 0 with α + β = 1.

If there exists an s > 0 such that for any x, y ∈ X and α, β ≥ 0 with α + β = 1 the
condition

(3′) ρ(αx + βy) ≤ αsρ(x) + βsρ(y)

is satisfied (instead of (3)), then ρ is called an s-convex modular. Of course, a 1-convex
modular is simply a convex modular.

The vector space Xρ = {x ∈ X : ρ(λx)→ 0, as λ→ 0} is called a modular space.

Remark 2.2. In the literature devoted to topics related to modular spaces, notions of
pseudomodulars and semimodulars are frequently utilised. With some care, most of
the results discussed in this paper can be adapted to the language of semimodulars and
a few to pseudomodulars. For both clarity and brevity we always assume here that ρ is
a modular.

In fixed point theory for mappings acting in modular function spaces, the notion of
ρ-convergence proved extremely useful (see [8–10]). Since ρ-convergence is a pure
modular concept, we can use this idea and related notions also in the context of
any modular spaces and, in particular, for modulated topological vector spaces (see
Definition 2.4). Note that ρ-convergence is, in general, different from the modular
convergence as defined in [19, 20]. The notions introduced in Definition 2.3 below
for general modular spaces follow the same pattern as their equivalents in modular
function spaces (see [10, Definition 3.4]).

Definition 2.3. Let ρ be a convex modular defined on a vector space X.

(a) We say that {xn}, a sequence of elements of Xρ, is ρ-convergent to x and write

xn
ρ
→ x if ρ(xn − x)→ 0.

(b) A sequence {xn}where xn ∈ Xρ is called ρ-Cauchy if ρ(xn − xm)→ 0 as n,m→∞.
(c) Xρ is called ρ-complete if every ρ-Cauchy is ρ-convergent to an x ∈ Xρ.
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(d) A set B ⊂ Xρ is called ρ-closed if for any sequence of xn ∈ B, the convergence

xn
ρ
→ x implies that x belongs to B.

(e) A set B ⊂ Xρ is called ρ-bounded if its ρ-diameter δρ(B) is finite, where δρ(B) =

sup{ρ(x − y) : x ∈ B, y ∈ B}.
(f) A set K ⊂ Xρ is called ρ-compact if for any {xn} in K, there exists a subsequence

{xnk } and an x ∈ K such that ρ(xnk − x)→ 0.
(g) Let x ∈ Xρ and C ⊂ Xρ. The ρ-distance dρ(x,C) between x and C is defined as

dρ(x,C) = inf{ρ(x − y) : y ∈ C}.
(h) A ρ-ball Bρ(x, r) is defined by Bρ(x, r) = {y ∈ Xρ : ρ(x − y) ≤ r}.

It can be easily proved that the ρ-limit is well (uniquely) defined (see [10,
Proposition 3.2]), and that if a sequence {xn} of elements of Xρ is ρ-convergent to x ∈ X
then x ∈ Xρ (see [10, Proposition 3.2]). However, there are some essential differences
between ρ-convergence and convergence in the sense of norm spaces. First of all,
ρ-convergence does not necessarily imply the ρ-Cauchy condition. Also, xn

ρ
→ x does

not imply in general that λxn
ρ
→ λx, where λ > 1.

Let us introduce the main concept of this work.

Definition 2.4. Let ρ be a convex modular defined on X and let τ be a linear, Hausdorff
topology on Xρ. The triplet (Xρ, ρ, τ) is called a modulated topological vector space if
the following two conditions are satisfied:

(i) ρ is τ-lower semicontinuous on X;

(ii) if xn
ρ
→ x then there exists a subsequence {xnk } of {xn} such that xnk

τ
→ x, where

x, xn ∈ X.

Proposition 2.5. Let (Xρ, ρ, τ) be a ρ-complete modulated topological vector space.
The following assertions follow immediately from the above definitions.

(i) Every τ-closed set is also ρ-closed.
(ii) Every ρ-compact set is also sequentially τ-compact.
(iii) Every ρ-ball Bρ(x, r) is τ-closed (and hence also ρ-closed).

Remark 2.6. The theory of modulated topological vector spaces provides a very
minimalist framework compared with the theory of Banach or modular function
spaces. As shown in the next section, in this framework powerful theorems are valid
under a bare minimum of assumptions.

Remark 2.7. In this note we assume for the sake of simplicity that ρ is a convex
modular. However parallel results can be obtained for s-convex modulars.

In the Introduction we claimed that the surprising similarity between concepts and
methods of Banach spaces and modular function spaces was the primary inspiration
for the introduction of modulated topological vector spaces. By a quick inspection
one can easily verify that in the case where ρ is a norm in a Banach space X and τ
is the corresponding weak topology in X, all conditions of Definition 2.4 are satisfied

https://doi.org/10.1017/S0004972719000716 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000716


328 W. M. Kozlowski [4]

(recall that the norm is weak lower semicontinuous in Banach spaces) and obviously
the completeness comes by definition. Hence every Banach space is a ρ-complete
modulated topological vector space. Similarly (X∗, ‖ · ‖X∗ , τ), where τ is the weak∗-
topology is a complete modulated topological vector space.

It is also easy to see that every modular function space Lρ, where ρ is a regular
convex function modular (see [10, Definition 3.1]), is a ρ-complete modulated
topological vector space. In this case, (i) of Definition 2.4 follows from the Fatou
property of ρ [10, Proposition 3.4], while (ii) is proved in [10, Theorem 3.1]. The
ρ-completeness of Lρ is actually proved in [10, Theorem 3.2]. A surprising fact is
that all these definitions and proofs significantly depend on the order and orthogonal
subadditivity properties of function modulars, concepts completely absent from the
theory of modulated topological vector spaces. However, the absence of order-related
assumptions in the definition of modulated topological vector spaces allows this
theory to be used for the study of a large variety of modular spaces, for example
Fenchel–Orlicz spaces introduced by Turett [22] or generalised Orlicz–Sobolev spaces
introduced by Hudzik [6], and many others.

The following example illustrates the flexibility of modulated topological vector
spaces.

Example 2.8. Let Xρ = L1[0, 1], the space of all functions summable with respect to
the Lebesgue measure m, where ρ = ‖ · ‖L1 . We can consider Xρ as a Banach space and
hence modulated topological vector space (with τ being the weak topology) or as a
modular function space and hence modulated topological vector space (in which case
τ will be topology of convergence m-almost everywhere). However it is also easy to
check (using Fatou’s Lemma) that the triplet (Xρ, ρ, τm), where τm is the topology of
convergence in measure m, also satisfies the conditions of Definition 2.4 and hence is
a modulated topological vector space as well. Interestingly, it is known that L1[0, 1]
fails the w-fpp (weak fixed point property) (see [1, 10]) but it has the τm-fpp.

3. Normal structure in modulated topological vector spaces

For the last 30 years, the evolution of fixed point theory has demonstrated the
great usefulness of modular space techniques. Therefore, the fundamental fixed point
existence theorems serve as an excellent example of the application of the theory of
modulated topological vector spaces introduced in the previous section. Because of
the important role played by normal structure during the first 20 years (since the 1965
paper by Kirk [12]) in fixed point theory, we have chosen this property as an illustration
of the power of the theory introduced in the current note. Observe that an analogous
property in modular function spaces was defined and investigated in [11] as early as
1990 (see also [10]).

Let us start with some basic definitions and results valid generally in modular
function spaces. Most of the references below refer to the context of modular function
spaces but can be easily applied in the general case of modular spaces. As in the
previous section, X is a vector space and ρ is a convex modular defined on X.
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Definition 3.1 (see [10, Definitions 5.2 and 5.6] for function modular equivalents). Let
C be a ρ-bounded subset of Xρ.

(1) A mapping T : C → C is called ρ-nonexpansive if ρ(T (x) − T (y)) ≤ ρ(x − y) for
any x, y ∈ C.

(2) The quantity rρ(x,C) = sup{ρ(x − y) : y ∈ C} will be called the ρ-Chebyshev
radius of C with respect to x.

(3) The ρ-Chebyshev radius of C is defined by Rρ(C) = inf{rρ(x,C) : x ∈ C}.
(4) The ρ-Chebyshev centre of C is defined by Cρ(C) = {x ∈ C : rρ(x,C) = Rρ(C)}.

Note that Rρ(C) ≤ rρ(x,C) ≤ δρ(C), for any x ∈ C and any ρ-bounded nonempty
subset C of Xρ. Observe that Cρ(C) may be empty.

Definition 3.2 (see [10, Definition 5.7] for function modular equivalents). Let C be a
ρ-bounded subset of Xρ.

(1) We say that A is a ρ-admissible subset of C if A =
⋂

i∈I Bρ(xi, ri) ∩ C, where
xi ∈ C, ri ≥ 0 and I is an arbitrary index set. The family of all ρ-admissible
subsets of C will be denoted byAρ(C). If D is a subset of C, we write

coC(D) =
⋂
x∈D

Bρ(x, rρ(x,D)) ∩C.

Note that coC(D) ∈ Aρ(C) and is the smallest ρ-admissible subset of C which
contains D.

(2) We say that Aρ(C) is countably compact if any decreasing sequence {An}n≥1 of
nonempty elements ofAρ(C), has a nonempty intersection.

(3) Aρ(C) is said to be normal (or equivalently, that C has ρ-normal structure) if
for each ρ-admissible subset A of C, not reduced to a single point, we have
Rρ(A) < δρ(A).

Next we discuss a constructive result discovered for Banach spaces by Kirk [13] and
evolved for modular function spaces in [11]. The main ingredient in this constructive
proof is a technical lemma due to Gillespie and Williams [4]. The next lemma is the
modular version of this technical result.

Lemma 3.3. Let C be a ρ-bounded subset of Xρ. Let T : C → C be a ρ-nonexpansive
mapping. Assume thatAρ(C) is normal. Let A ∈ Aρ(C) be nonempty and T-invariant,
that is, T (A) ⊂ A. Then there exists a nonempty A0 ∈ Aρ(C) such that A0 is T -invariant,
A0 ⊂ A and

δρ(A0) ≤
δρ(A) + Rρ(A)

2
.

Proof. The proof follows the same path as the original one, and remains essentially
the same as in the case of modular function spaces (see [11, Lemma 5.4]). �

We are now ready to exhibit a modular analogue of Kirk’s fixed point theorem [13].
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Theorem 3.4 (see [10, Theorem 5.10] for a function modular equivalent). Let ρ be
a convex modular on X. Let C be a ρ-bounded and ρ-closed nonempty subset of Xρ.
Assume thatAρ(C) is normal and countably compact. If T : C→ C is ρ-nonexpansive,
then T has a fixed point.

Proof. Let F = {D ∈ Aρ(C) : D , ∅ and T (D) ⊂ D}. Note that F , ∅ since C ∈ F .
Define δ̃ : F → [0,+∞) by

δ̃(D) = inf{δρ(B) : B ∈ F and B ⊂ D}.

Set D1 = C. By definition of δ̃(D1), there exists D2 ∈ F such that D2 ⊂ D1 and
δρ(D2) < δ̃(D1) + 1. Using the same argument we can inductively construct a sequence
{Dn} such that Dn+1 ∈ F , δρ(Dn+1) < δ̃(Dn) + 1/n and Dn+1 ⊂ Dn. Since Aρ(C) is
countably compact, D∞ =

⋂
n≥1 Dn is not empty. Clearly, D∞ ∈ F . It remains to be

proved that D∞ is reduced to one point. Using Lemma 3.3, there exists D∗ ∈ F and
D∗ ⊂ D∞ such that

δρ(D∗) ≤
Rρ(D∞) + δρ(D∞)

2
. (3.1)

Since D∗ ⊂ Dn,

δρ(D∗) ≤ δρ(D∞) ≤ δρ(Dn+1) ≤ δ̃(Dn) +
1
n
≤ δρ(D∗) +

1
n
,

for any n ≥ 1. If we let n→∞, we get δρ(D∗) = δρ(D∞). Then the inequality (3.1)
implies δρ(D∞) ≤ Rρ(D∞). Since Aρ(C) is normal, this is only possible if D∞ is
reduced to one point. Since D∞ is T -invariant, this point is a fixed point of T . �

As a corollary we get the following generalisation of Kirk’s theorem which covers
both norm and modular cases.

Theorem 3.5. Let (Xρ, ρ, τ) be a ρ-complete modulated topological vector space. Let C
be a ρ-bounded and ρ-closed nonempty subset of Xρ. Assume that C is τ-sequentially
compact and Aρ(C) is normal. If T : C → C is ρ-nonexpansive, then T has a fixed
point.

Proof. Recall that ρ-balls are τ-closed. Hence any element of Aρ(C) is a τ-closed
subset of C. Since C is τ-sequentially compact, we deduce that Aρ(C) is countably
compact. Therefore the conclusion of Theorem 3.5 follows from Theorem 3.4. �

As discussed by Brailey Sims in [21], Banach spaces which are uniformly convex
in every direction (UCED) have weak normal structure (that is, every weak compact
convex set has normal structure), an important result that originated in work of Garkavi
[3]. Hence, via Kirk’s theorem, UCED spaces enjoy the weak fixed point property.
As it turns out, the same can be said of modulated topological vector spaces. To see
this, let us first introduce a relevant notion of UCED, in which we will follow the
relevant notion introduced for modular function spaces in [11] (see also a more recent
application of UCED for function modulars in [2]).
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Definition 3.6. Let ρ be a convex modular. For any nonzero u ∈ Xρ and r > 0, we
define the r-modulus of uniform convexity of ρ in the direction of u as

δ(r, u) = inf
{
1 −

1
r
ρ
(
y +

1
2

u
)}
,

where the infimum is taken over all y ∈ Xρ such that ρ(y) ≤ r and ρ(y + u) ≤ r.
We say that Xρ is ρ uniformly convex in every direction (ρ-UCED) if δ(r, u) > 0 for

every nonzero u ∈ Xρ and all r > 0.

Proposition 3.7. Let a modular space Xρ be ρ-UCED and let C ⊂ Xρ be convex,
ρ-bounded and not a singleton. Then C has a ρ-nondiametral point.

Proof. Take any distinct elements x, y of C and define ε = δρ(C)ρ((x − y)/2). Notice
that 0 < ε <∞. Fix temporarily any h ∈ C and set u = x − y, w = y − h and r = δρ(C).
Then ρ(w) = ρ(y − u) ≤ r and ρ(w + u) = ρ(x − h) ≤ r. By UCED,

ρ
(
w + 1

2 u
)
≤ r(1 − δ(r, u)),

which by a straightforward calculation gives

ρ
( x + y

2
− h

)
≤ r(1 − δ(r, u)).

Hence,

sup
h∈C

ρ
( x + y

2
− h

)
≤ δρ(C)(1 − δ(r, u)) < δρ(C),

because δ(r, u) > 0, and consequently (x + y)/2 is not a ρ-diametral point in C. �

By combining Theorem 3.5 with Proposition 3.7, we obtain the following result
which is an extension of the Browder fixed point theorem to the case of modulated
topological vector spaces.

Theorem 3.8. Let (Xρ, ρ, τ) be a ρ-UCED ρ-complete modulated topological vector
space. Let C ⊂ Xρ be convex, ρ-bounded and τ-sequentially compact. If T : C → C is
ρ-nonexpansive, then T has a fixed point.
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