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Abstract

Many pressurized water distribution systems use pumps for the transport of water and tank
filling. Modelling groups of parallel pumps with a common control target remains an open
problem in hydraulic modelling. In this article, the authors show how to model flow- and
pressure-controlled pumping stations in the analysis of hydraulic pipe networks. The process
comprises two distinct phases. In the first phase, the pump station is regarded as a single
surrogate link connected to the remainder of the network. The flow and head gain at the active
pump stations are computed to ensure satisfaction of the network load requirements. In the
second phase, an energy minimization problem is formulated for each local pump station to
ascertain the optimal pump speed andwhich pumps should be active. For real-time applications,
very significant improvements are possible by hybrid modelling, such as coupling deterministic
modelling, surrogate modelling and neural networks. This can lead to performance improve-
ment with a magnitude of the order of 105. The application to optimal pump scheduling in the
context of strongly varying electricity tariffs is summarized.

Impact statement

1. Robust modelling of flow and pressure-controlled pumping stations in the analysis of
hydraulic pipe networks.

2. Minimization of electrical power consumption using lookup tables for pumps operating
within a pumping station is introduced.

3. Hybrid modelling by coupling deterministic modelling, surrogate modelling and neural
networks improves performance by a factor of 105.

Introduction

Many modern pressurized water distribution systems (WDSs) use pumps to add energy where a
system, because of the prevailing conditions, is energy deficient. Fixed-speed pumps (FSPs) come
with characteristic curves (CCs) that define their hydraulic behaviour. WDS modelling software
packages, such as EPANET, adapt the FSP characteristic pump curves to model variable speed
pumps (VSPs). For both FSPs and VSPs, how the pump is used comes from the relationship
between the required pump head and pump flow. VSPs come with a controller that is used to
determine the pump’s revolutions per minute (rpm), which is required to achieve the pump’s set
flow or head at the downstream node. In modelling, it is this pump speed that is required to be
determined from the hydraulics of the system.

Modelling of groups of parallel pumps that have a common control target (given set
downstream head, set suction head, set pressure at a critical node and total pump flow) has still
been an open problem in hydraulic modelling. In this article, the authors show how to model
flow-controlled pumps (FCPs), FCP stations (FCPSs), pressure-controlled pumps (PCPs) and
PCP stations (PCPSs) in water distribution networks.

The approach is based on previous work of the authors and the decomposition of the WDS
model into a modified global model and models for pumping stations (PSs) that are denoted as
local models. In the global model, the PSs are replaced by a single virtual link with control
constraints. It will be shown that the decomposition concept is not only useful for the straight-
forward steady-state simulation of systems with PCPSs and/or FCPSs, but also offers great
benefits for other applications, such as, for example, solving the pump scheduling problem in real
time.

The authors of this article have, over the last few years, developed a framework for solving
WDS problems, which is based on the content function, first introduced by Cherry (1951) and
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Collins et al. (1978). In this approach, the steady-state heads, link-
flows and outflows of aWDS without any flow or pressure controls
are found as the solutions of an equality-constrained convex opti-
mization problem. This same framework was later extended by the
authors by adding flow constraints to the convex optimization
problem, to find the steady-state heads, linkflows and outflows of
WDSs (Piller et al., 2020; Elhay et al., 2022).

In a further development (Deuerlein et al., 2023), the authors
extended the framework to handle pressure-reducing valves (PRVs)
by reformulating the problem as a game between non-cooperating
players (Osborne and Rubinstein, 1994): on the one hand, the link-
flows and outflows comprise one player; on the other hand, the
headlosses of the control valves in the system comprise the other
nv players – one for each PRV. The Nash equilibrium of this system
of nvþ1 optimization problems provides the required solution.

The new contribution in this article is a decomposition concept that
first separates the pump groups from the rest of the network, resulting
in a hybrid surrogate model that replaces the pump groups by virtual
control links and separate models for the pump groups. The hydraulic
calculation at the network level (global model solution) is carried out
for the surrogate model, and the pump groups are treated separately.

There are two cases to consider: FCPs and PCPs. In modelling
FCPs or collections of FCPs in PSs, a positive lower linkflow
constraint is introduced for the virtual link, and so the Lagrange
multiplier of the active flow constraint is understood as pumping
head, not head loss. By contrast, when modelling VSPs, for which
the heads at the nodes downstream of the VSPs are set, the authors’
Nash equilibrium approach is used: this is the case for PCPs or PSs
comprising PCPs, either in parallel or in series. Inmodelling aWDS
with PCPSs, each station is replaced in the model by a single virtual
link with unknown pressure-flow characteristics, and the head at its
downstream node is set. The non-negative variable, which in the
case of a PRV represented a head loss, is now non-positive and
represents a head gain. The operational states of the pumps are
always given by the Lagrange multipliers.

Under certain conditions, similar to those of the control valve
problem, there is a unique solution to the global problem. The flows
and pumping heads calculated for the virtual links are used as input
to the final step, the solution of the local pump station problems. In
general, there exists no unique hydraulic solution to the pump
station problem. Especially, in the case of multiple VSP pumps,
there exist multiple combinations that achieve the PS set flow and
pumping head. Therefore, as an extra criterion, the combination
that delivers the flow and head with minimal electrical power is
sought. The results are the individual speeds of the VSP pumps. In
summary, the benefit of the decomposition results from the ability
to solve the local pump group optimization problem independently
from the hydraulic networkmodel and, vice versa. The latter is done
independently of the behaviour of each individual pump.

As an application example, themodular framework is also used to
solve the pump scheduling problem. Here, the pump groups are also
separated from the rest of the system, and the local problem is solved
for different head and flow combinations, with the results stored in
lookup tables. For better performance that is required for real-time
applications, the surrogate model is replaced by neural networks
(NNs).

In fact, this article is an extension of research that was presented
at the WDSA-CCWI-2024 (Deuerlein et al., 2024). In addition, it
includes detailed information about the solution of the local pump
station problem and, as an example, its application in optimal
pump scheduling with strongly varying electricity tariffs as part
of the project TwinOptPRO (Bernard et al., 2024).

The pump scheduling problem addresses the overall objective of
achieving greenhouse gas neutrality by 2045. The stock market and
day-ahead energy prices are driven by the share of green energy.
The idea is to fill the tanks when the price is low, which is equivalent
to using a higher share of green energy. Therefore, energy mini-
mization is only used at the lower level of local pump station
optimization. The approach could also be used for pure energy
optimization by using constant energy prices. However, that is
beyond the focus of this research.

Pump scheduling in PSs is a problem that demands a significant
computational burden (Marchi et al., 2014; Janus et al., 2024).
Integrating deterministic modelling, machine learning and meta-
modelling provides ways to address this challenge in real-time
management and maintenance settings. This is done as follows.

(a) Precomputation: A set of local solutions to the PS problem
corresponding to a wide range of PS flows or heads is precom-
puted and made into a lookup table.

(b) Precomputation: NNs are trained to solve the hydraulics of the
pumping sections between the PSs and the tanks of the global
problem (with PSs replaced by virtual pressure control or flow
control links) using the Nash equilibrium solution framework
or possibly another hydraulic solver.

(c) An online optimization framework is established for solving
the time-dependent energy cost minimization problem. It inte-
grates the precomputed lookup tables of the local PSs and the
NNs of the pumping sections with the tank differential equa-
tions and constraints.

In the left panel of Figure 1, we show a flow chart schematic for
the whole solution process. The flow chart has two branches that
represent alternative paths that can be taken. The left branch
depicts the path (taken in this study), which uses NNs trained on
the Nash equilibrium global model solutions (or any other suitable
hydraulic solver) to solve the hydraulic simulations and then
recovers the local PS model optimal solution from a lookup table.
The right branch shown in the flow chart depicts the global and
local models solved by directly computing the Nash equilibrium,
and the local pump group optimization involved. We demonstrate
with an example that taking the left branch leads to a 105 factor
speed-up for one simulation.

The right panel of Figure 1 shows, at the top, a schematic diagram
of a local PS and, at the bottom, the simple virtual link by which it is
replaced when the global network model problem is solved.

The paper is organized as follows. The first part dealswith how the
Nash equilibrium is used to solve the problem of pump control, and
the second part of the article is devoted to the solution of the local
pump control problems, that is, the problems within PSs. The third
part of the article deals with a realistic application in which all the
concepts in the study are brought together. An important advantage
of themethods presented in this article is that in no case are heuristics
used: all methods give the actual solutions to the problems set.

Mathematical modelling

A surrogate model of PSs

Pumps are used in WDSs and other hydraulic systems for the
purpose of fluid transportation. The energy supplied by the pump
is used both to overcome geodetic height differences and to com-
pensate for friction losses. In PSs of larger systems, it is common for
several pumps to be combined in so-called pump groups. A dis-
tinction is made between pumps arranged in parallel and series. For
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pumps arranged in parallel, the total discharge of the pump group is
calculated by adding the delivery rates of the individual pumps,
whereas for pumps arranged in series, the delivery heads are added
together. Pumps arranged in parallel increase the supply reliability
of the PSs because a replacement is immediately available if one
pump fails. Where possible, parallel pumps are often operated by
turns to reduce pump wear.

Pump groups with several pumps arranged in parallel can cover a
wide range of flow rates by combining several pumps, thereby not
degrading the efficiency of the whole system. This strategy is par-
ticularly useful if one or more pumps are equipped with frequency
converters. In hydraulic simulationmodels such as EPANET, PSs are
modelled by the hydraulic behaviour of the individual pumps. The
pump curve, or at least an operating point and the current speed,
must be specified for each of these pumps. The total flow rate and
head of the PS result from the hydraulic calculation of the overall
system.Ahigher-level instance for controlling the entire pumpgroup
does not exist, for example, in EPANET. In practice, pump groups
are often operated with a common control task. For example, the
control task could be to ensure that the total delivery rate corresponds
to a specified set point value. Alternatively, it could be that the
delivery head of the pump, or the output or suction pressure of the
entire pump station, should not fall belowor exceed certain values. In
the case of control systems with remote data transmission, the
control objective is often to maintain a certain minimum pressure
at a certain location (critical point) in the network.

Modelling of groups of parallel pumps that have a common
control target (given set downstream head, set suction head, set
pressure at a critical node and total pump flow) has still been an
open problem in hydraulic modelling. For example, in EPANET,
pumps are modelled based on a CC, which can be defined by an
operational point, three points on the CC or by individual points on
this curve. It is also possible to adopt the CC by applying different
pump speeds. However, all these methods have in common that the
calculation is directly based on the individual pump characteristics.
As a workaround, in EPANET, sometimes pump groups are com-
bined with PRVs or FCVs and the pumps are run with maximum
power, thereby enabling a realistic global solution for the pipe
network, but failing to model the real operation of the pump group.
By contrast, the method presented in the article addresses the
inverse problem, where the pump characteristics are unknown

and replaced by a common control target. For one pump, the
problem is very similar to the previously published modelling of
flow and pressure control devices.

The integration of such control systems in stationary hydraulic
simulation calculations poses a number of challenges. We seek the
model parameters (pump rpm) at which a state variable (flow or
pressure) reaches a prescribed value. This is an inverse problem for
which there may be no unique solution. For example, there is no
unique solution for a PS with two VSPs and a specified target flow
rate, because the flow rates of the individual pumps can be com-
bined as required so that the total flow rate corresponds to the target
value. Unique solutions only exist for such problems under certain
conditions. A second complicating factor is that when several
pumps are involved, this introduces the combinatorial problem
of deciding which pump combination to use. For practical reasons,
it is therefore natural to consider, as an additional objective, that the
pump group as a whole should require the minimum amount of
electrical energy to reach the set point, that is, to maximize the
overall efficiency of the system.

However, even if energy optimization is added as an objective, a
unique solution may still not always be guaranteed. For example, if
two parallel pumps are identical in design and only one pump is
required to achieve the set point, the pumping time can be allocated
to the two pumps in any ratio. In this case, further criteria, such as
minimizing the maximum running times of the individual pumps,
may be taken into account to determine the actualmodeof operation.

To overcome these difficulties, the use of surrogate models is
proposed here for the integration of pump groups into hydraulic
simulation software. For this purpose, the system is decomposed
into an aggregated global system and local pump groups. The pump
groups are each replaced in the global system by a simple single link
whose hydraulic properties are unknown. In place of the hydraulic
characteristic of the link, a target value for a state variable (pressure,
pressure increase and flow rate) is specified. For the calculation of a
pumpgroupwith a given set flow, the linkhas an additionalminimum
flow constraint. If the pump group is pressure-controlled, the recently
published Nash equilibrium approach for modelling pressure that
regulates the valves is slightly adapted.

The detailed solution of the local system (the allocation of indi-
vidual pumping speeds and individual flow targets within the PSs)
can be calculated after the solution of the global system equations is

Figure 1.On the left, a flowchart shows the alternative paths for solving the global networkmodel, followed by the local PSmodels. On the right, a pumping stationwith four parallel
pumps is shown, and its surrogate link representation for the global network problem and the determination of PS flow rate and delivery head.
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known. The flow rate and pumping pressure head of the virtual link
resulting from the global solution are used as constraints in the
detailed calculation of the pump group. As already mentioned, the
solution of the local problem is an optimization task. The decision
variables are the individual pump speeds required to achieve the
given total discharge and pumping head from the higher-level global
model with minimum use of electrical energy.

The global network model and its steady-state solution

A recent development in the analysis of pressure-dependent modelled
(PDM) WDSs with flow and pressure controls is the use of the Nash
equilibrium, a concept that comes from game theory. The Nash
equilibrium occurs at a point found by arbitrating between optimiza-
tion problems with conflicting objectives. In the present case, the
conflict is between (i) determining the linkflows and outflows that
minimize the system’s content function, where the decision variables
are linkflows andoutflows, and (ii) determining the local pressure valve
losses (the decision variables) required of the controls that regulate the
pressures by actuating valves, such as PRVs and pressure sustaining
valves. This approach has two merits: it covers all operational regulat-
ing states andderives exact conditions for the existence anduniqueness
of theWDS equilibrium problem with control. The Nash equilibrium
method does not require heuristics, produces the problem solution in
about as many steps as the Global Gradient Method takes to solve a
demand-driven problem without controls and, unlike most existing
methods, which do rely on heuristics, does not require interrogation of
the valve states at each iteration of the solution method.

The solution to this combination of optimization problems is
found by the application of a Newton method to the necessary and
sufficient Karush–Kuhn–Tucker (KKT) conditions, which result
from zeroing the gradient of the Lagrangian associated with the set
of optimization sub-problems defined by (i) and (ii) above. A com-
prehensive exposition of themodelling of PDMWDSswith PCPs and
FCPsas aNash equilibriumproblem, their solution and an illustration
of the method’s use can be found in Deuerlein et al. (2023).

It is relatively straightforward to extend this formulation to
handle pump station controls (Deuerlein et al., 2024). In the context
of PSs with flow control, a minimum positive linkflow constraint is
added to the content minimization, and the associated Lagrange
multiplier is the pumping head necessary to deliver the set flow. In
fact, the modelling of the PSs with flow control can be achieved
through content minimization alone (Piller et al., 2020; Elhay et al.,
2022). By contrast, for PSs with pressure control, an additional local
control problem is added for each PS. The distinction is, however,
that for pump head gain, the non-negative variable representing
head loss is replaced by a non-positive head gain variable.

Local pump station problem

The pump station problem consists of determining the combin-
ation of parallel pumps, one for each PS, for which the total power
consumption of the pump station is a minimum under specified
pumping control constraints of flow or pressure gain. For FSPs,
this means determining which pumps are active, and for VSPs, this
means finding the optimal pump speed. We note that in this
context, we assume that qPS , the PS flow is positive.

There are three typical pump configurations in PSs. These are as
follows:

• All pumps are FSPs. In this case, the operating points of the
pumps (heads and discharges) will be determined by the

intersection of the composite pump curve (determined by the
number of pumps operating and whether the pumps are in
parallel and/or in series) and the system curve (made up of the
static head plus the friction loss in the pipe at the PS discharge).
Thus, it is not possible to select exactly the PS discharge that will
be delivered. If a smaller discharge is required, the valve on the
downstream side of the PS could be closed slightly to throttle
the flow. However, it is not possible to achieve a larger flow.

• All pumps are VSPs. This configuration is used where it is
desired to set the pressure head to a set level on the downstream
side of the PS. An example is an irrigation delivery system to
multiple farmers who have pre-ordered their required flows
and have opened up valves on their properties to water their
crops. An aggregate flowmeter at the outlet of the pump station
measures the total flow being used by all irrigators who are
taking water. A pumping head versus total flow curve can be
used to determine the desired outlet pressure head to maintain
this flow. The speed of the pumps is thus controlled by setting
the speed of the variable speed drives to maintain this outlet
pressure. Variable speed drives are more expensive than FSPs,
so this is a disadvantage.

• Several FSPs and one VSP, all in parallel. In this case, any flow
below the maximum possible but which lies between those that
are achievable by a combination of FSPs can be delivered by
adding the VSP to make up the shortfall.

The non-linear optimization local PS problem can be formu-
lated as the following hierarchical optimization: Find

Outer phase :

min
j∈CP,j

PStation qPS,hPS : j
� �

where (1)

Inner phase :

PStationðqPS,hPS : jÞ≜min
N,q

P
i∈CP,j

PPumpðNi,qi,hPSÞ
� � (2)

subject to

qi ≥ qmin , ∀i∈CP,j
(3)

qi ≤ min qmax ,qPS
� �

, ∀i∈CP,j (4)

X
i∈CP,j

qi ¼ qPS : (5)

The solution of the optimization problem is the minimal consumed
power PStation qPS ,hPS

� �
for a given pump station flow qPS and

pumping head hPS together with the corresponding (active) pump
combination, CP,j, chosen from the set of all possible (active) pump
combinations, CP, and respective flows, qi, through each pump. It
isminimizedwith respect to the single pump flow, qi, and the pump
speed, Ni , for the combination chosen from the set of all pump
speeds N . The inner sum represents the total pump power for a
given combination CP,j of (active) pumps. The cardinality of CP is
2n�1 . The minimum is taken over all possible combinations.
Single-pump flows are restricted to qmin ≤ qi ≤ qmax : they have to
sum up to the pump station flow qPS, which is given or determined
by the global model, and they have to provide at least the required
head gain hPS .

The calculation of the single ith VSP’s pump power PPump for
given speed and flow Ni,qi and head hPS is based on the pump
characteristic plots.
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An example of the inner minimization problem (2) surface is
shown in Figure 2. In the left figure, the objective function for a
sample configuration of two pumps is shown. As a consequence of
the pump station flow constraints, the minimum lies on the right
cut line, which is the reduced search space. As shown in the figure
on the right, this constrained objective function has a clear min-
imum indicated by the black point.

A significant time saving (e.g., for real-time management) can
be achieved by pre-computation: the local PS problem, which is
solved using a Sequential Least Squares Programming (SLSQP)
algorithm (Virtanen et al., 2020), is solved repeatedly for a wide
range of PS heads and flows, and the results are saved in a lookup
table. This lookup table can be dealt with efficiently using param-
eterization/fit or machine learning methods.

Examples

Global solution of a PS example with an FCPS and a PCPS

As illustrated in Figure 3, a link with a positive lower flow bound,
q5 ≥ 300, here models an FCPS, and a link with an imposed posi-
tive head gain, �z6 ≥ 0, can model a PCPS. Each link has diameter
D¼ 500mm and pipe roughness 0.25 mm. Source nodes 6 and
7 have heads of 10 and 200 m, respectively. Links 5 and 6 each
incorporate a pump element and a pipe element with a length of 1
m, while all other links have length L¼ 1000m.

Head loss is modelled by the Darcy–Weisbach formula, and the
pressure outflow relationship used is the one-side regularized

Wagner function of Deuerlein et al. (2019), with a service pressure
head, hs ¼ 20 m, and a minimum pressure head, hm ¼ 0 m. The
linkflow rate in Link 5 is constrained to be ≥ 300 L/s. Furthermore,
at Node 4, which is located downstream of Link 6, the z-value must
be < 0, and its head must be at least 290 m.

The solution was determined after seven iterations of the
authors’ Matlab code to solve the KKT equations for the Nash
equilibrium by a Newton method, yielding a delivery fraction of
75:9%. The demand was reduced at nodes 2, 3 and 5 due to
the failure to meet the service head requirement. For the
PCPS at Node 4, the set head is achieved by a pumping head of
z6 ¼�99:2m: The head differences at nodes 1 ( 5:85m) and 3
ð203:23m) indicate to a designer that the head gain that the pump
in Link 5 would be required to provide is (the Lagrangemultiplier)
κ¼ 197:38m . The complete dataset can be obtained from the
authors upon request.

Local solution of a PS example

The two cases that are considered for a PS with four pumps in
parallel are as follows:

(a) each pump is of type VSP
(b) a combination of three FSPs and one VSP

This results in 2n�1 possible combinations for npumps. For n¼ 4,
the set of possible combinations, Cp, is:

Cp ¼ 1,2,3,4,12,13,14,23,24,34,123,124,134,234,1234f g (6)

Figure 2. Example configuration consisting of two pumps. Left: An objective function dependent on two single pump flows q1,q2 with the cut line given by the pump station flow
constraint (5) (red) and optimum. Right: The line to search (intersection of the objective function with the flow constraint [red line from left]) and the optimum.

Figure 3. Example system with two PSs: PS-1 represents a PS with flow control, and PS-2 represents a PS with pressure control.
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The local PS problem was solved for the two example PSs set to
one prescribed pumping head over a range of pumping flows. The
minimum consumed power, the rotational speeds of the pumps and
the number of active pumps as a function of the pumping flow are
shown in Figure 4.

The results differ for the two example PSs. For low flows, only
one pump is active (VSP in both example pump stations) with
the same rotational speed and, correspondingly, the same min-
imum consumed power. At higher flows, the VSP-only PS
achieves lower minimum consumed powers due to the higher
flexibility of using different pump combinations. As expected,
with decreasing pump flow, a decreasing number of pumps are
put into operation for minimal power consumption. The results
of solving the local PS problem over a range of pumping flows
and pumping heads are shown at the bottom of Figure 4. Cre-
ating a precomputed lookup table of these results can save
significant real application computation time. In addition, cre-
ating the lookup tables for the four-pump station examples used
in this study was achieved with a few minutes of computation on
a modern desktop computer.

Application to optimal pump scheduling

The method for modelling and optimizing PSs is part of a pump
scheduling optimization software package that has been developed

in the multi-partner project TwinOptPRO (Bernard et al., 2024).
The pump scheduling problem is modelled as the following bilevel
optimization:

min
qs,t ∈Q

Xnsteps
t¼1

σt
XnPS
s¼1

P∗
s,t qs,t ,hs,t
� �

(7)

s:t: wi,t ≥wi,min , ∀i¼ 1,…,ntank (8)

wi,t ≤wi,max , ∀i¼ 1,…,ntank (9)

wi,nsteps ¼wi,0, ∀i¼ 1,…,ntank (10)

wi,tþ1 ¼wi,t þai,tbqi,t , ∀i¼ 1,…,ntank (11)

where P∗
s,t is the optimal value determined in Equation (1) for the

local pump station optimization problem for the pump station s, Q
is the box constraining the flows for the whole PS, wi,t is the water
level in the tank i at the time step t and σt is the cost function
coefficient for time t . Equation (10) imposes the constraint that
tank levels at the end of the cycle are back to the initial tank levels.
The last constraint Equation (11) is an integration (forward Euler)
for the time-dependent tank-filling differential equation, where bqi,t
is the total inflow > 0ð Þminus outflows < 0ð Þ to the tank and ai,t is
the inverse surface area of the tank at time t.

Figure 4.Minimumpump station power, the rotational speeds of the pumps, number of active pumps as a function of flow for a given head, as well asminimumpump station power
as a function of flow and head (from top to bottom): VSPs only (left) and 0–3 FSPs and one VSP (right). The rotational speed of the VSP in the second case (one VSP and 0–3 FSPs) is
represented by the red line.
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The objective function in Equation (7) is used to minimize the
total pumping cost; the pump flows qs,t and the corresponding
pump heads, hs,t are the decision variables. The constraints define
the water levels at time t . As described above, the bottom-level
optimization includes the minimization of the electrical power
required to achieve the given flow determined as the top-level
solution. The decision variables of the PS optimization fall into
two categories according to the pump types: (i) in the case of VSPs,
the solution gives optimal rpm of the pumps; and (ii) for FSPs, the
combination of which pumps operate (i.e., are on/off) is deter-
mined. In addition, there are other possible combinations, for
example, where one pump has a frequency controller and the other
pumps do not.

Thus, the non-linear optimization problem builds upon a non-
linear objective function, but is subject to linear constraints. As a
first step, the initial guess is generated by solving the linear opti-
mization problem for the constraints with slack variables (Phase
1 optimization). In the second step, the non-linear problem is
solved using the SLSQP algorithm.

An important contribution of this research is the introduction of
the idea to precomputeminimumpump station power as a function
of flow and head for all possible pump combinations and then to
use table lookup to significantly accelerate the optimization pro-
cess. The implications of this approach to real-time pump station
management are considerable. This is now discussed.

The dependence of the solution on the frictional andminor head
losses along the transport pipes is accounted for in the hydraulic
modelling.

In terms of the computational burden, we find that it is better
not to directly use the hydraulic model but rather to train a NN
offline using the hydraulic model and to use it as a meta-model in
the online context.

Thus, the method described in the main part of this article is
used for the training of the NNmeta-model. Figure 5 shows (a) the
original main distribution system in the hydraulic model and
(b) the meta-model where the cloud symbol indicates the parts that
have been replaced by NN models.

As suggested above, the local pump station problem can be
solved in advance, and the results can be used via lookup tables
during real-time optimization. Similarly, the calculation of the
network hydraulics in combination with the PS can be simulated
in advance for a set of pumping flows, load cases and combinations
of tankwater levels. For the training phase of theNNmodels, the PS
can be replaced by a virtual link and a prescribed total flow or outlet
pressure, as described earlier in this article. In the online context,
the minimum power required for a set pump flow, load factor and
tankwater level difference is immediately available by first using the
NNmodel to determine the required pumping head, and then using
the lookup tables for the minimum electrical power and the cor-
responding pump speeds that are required to achieve the combin-
ation of pump flow and head.

Figure 1 of Bernard et al., 2024 shows a compact schematic of
(i) two boundary nodes, groundwater works on the left, (ii) a spring
water input node on the right, (iii) two main mixing, storage tanks,
(iv) a trio of PSs and (v) twomajor demand nodes. The NNs, which
are in place of the hydraulic models for the optimization, are shown
as clouds. The hydraulic modelling was performed using the soft-
ware package SIR 3S®.

As the results of the optimization are determined, they are
delivered to a digital twin of the actual WDS so that they can be
validated by comparison with an extended period simulation that
spans the next 24 h.

Conclusions

This study proposes a methodology for the regulation of pressure
and flow in WDSs by PSs. The methodology is adaptable to com-
plex scenarios and accounts for the interplay between demand and
distribution constraints. It involves a two-stage process: first, the
operating flow or head gain is determined for each pump station,
taking into account the demand load and the distribution network’s
constraints; second, at the pump station level, the selection of active
pumps and optimal pump speed is decided tomeet specific require-
ments while minimizing power consumption.

In the initial phase of themethod, amathematicalmodel is used to
ascertain the global network model solution. This model incorpor-
ates the Nash equilibrium concept for the control of pump station
pressure, or alternatively, a lower bound constraint for the regulation
of flow rate. In the subsequent phase of the method, an energy
optimization problem was formulated in order to ascertain the
optimal selection of pumps and pump speeds within a pump station.

As an application example, the decomposition method was used
to solve the pump scheduling problem. It was illustrated using a real
network comprising multiple tanks and pump stations. In the initial
phase, it was imperative to substitute a meta-model via artificial NNs
with training on the mathematical model of the global hydraulic
network solution. Other essential components include deterministic
modelling of the time-dependent tank model and solving the local
optimality problem in advance and utilizing the results via a lookup

Figure 5. Full system (top) and meta-model (bottom).
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table. In addition to operational optimization, the integration of these
techniques results in a factor of 105 speed enhancement in the
execution of hydraulic simulations. The implementation of these
lookup tables within real-world programmable logic controllers
facilitates the optimal operation of FCPSs or PCPSs.

Openpeer review. To view the openpeer reviewmaterials for this article, please
visit http://doi.org/10.1017/wat.2025.10005.
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Appendix

Illustration of the use of Lagrange multipliers for
characterization of operating states for pressure-
controlled PSs

In this section, we derive, via the relevant hydraulic equations, KKT
conditions, and the conditions of complementary slackness, the
four possible operating states of a VSP.

Consider the WDS link, k which connects nodes i and j and
which has a PCP, and suppose that the flow in the link is from node
i to node j. Denote by hi and hj the heads at nodes i, j, respectively,
ξk qk
� �

the total head loss (i.e., including frictional and minor head
losses) in the link k, zk the head gain (negative head loss) in the link
kand denote the Lagrange multiplier associated with the lower flow
bound constraint, qk ≥ qmin, by κk and the Lagrange multiplier for
the upper z bound, zk ≤ 0, constrained by χk . Denote also the
downstream node’s set head by hsj. It follows from the theory of the
Nash equilibrium conditions that the PCP can assume four possible
states: two (open and active) states when q > 0and two closed states
when q¼ 0. These states are now discussed.

It is important to note that there may be, in some practical
situations, a discrepancy between the model’s set points and a pump
group’s actually achievable pumping head. For example, the model’s
set point for a given pump group might be beyond the reach of the
characteristic curve for those pumps. There is no accommodation, for
example, in the form of a constraint, for a maximum pump group
head. In the case of design, appropriate pump groupswould be chosen
tomeet the requirements determined by themodel, and the set points
would then always fall within the pump group’s achievable head.

The characterization of the four PCP states can be derived from
the following three conditions on the PCP link:

(a) The energy equation for the PCP link

hi� ξk qk
� �� zkþκk ¼ hj (12)

where κk ≥ 0is the Lagrangemultiplier for the lower flow bound
constraint in the link k,

(b) The KKT condition for local optimality

hi� ξk qk
� �� zk� χk ¼ hsj (13)

where χk is the Lagrange multiplier for the head gain constraint
in the link k,

(c) Complementary slackness

zkχk ¼ 0: (14)

Subtracting Equation (12) from (13) gives, dropping subscripts
where there is no ambiguity,

�χ�κ¼ hs�hj (15)

PCP closed states

The PCP closed state is characterized by q¼ 0 and κ≥ 0 and this
immediately implies that
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hs ≤ hj: (16)

Furthermore Equation (12) simplifies to

z¼ κþhi�hj (17)

and so, complementary slackness requires

κþhi�hj
� �

κþhs�hj
� �¼ 0

This equation has two solutions: κ¼ hj�hi and κ¼ hj�hs .
The first solution implies hj ≥ hi and the second implies
hj ≥ hs , which is consistent with Equation (16). These two
relations can be simultaneously satisfied for hi⪋hs . The first
case is:

hj ≥ hi ≥ hs

κ¼ hj�hi ≥ 0

z¼ 0

χ¼ hi�hs ≥ 0

(18)

and the second case is

hj ≥ hs ≥ hi
κ¼ hj�hs ≥ 0

χ¼ 0

z¼ hi�hs ≤ 0

(19)

PCP open and active states

A similar analysis leads to the characterizations of the open and
active states. There, q > 0, κ¼ 0 and the case z¼ 0 represents an
open PCP and the case z < 0 represents an active PCP.

(a) If z¼ 0 (open state), then Equation (12) becomes

hi� ξ qð Þ¼ hj (20)

and Equation (13) becomes

hi� ξ qð Þ� χ¼ hsj (21)

from which it follows that

χ¼ hj�hs

and so

hj ≥ hs

z¼ 0

χ¼ hj�hs ≥ 0

(22)

(b) If z < 0 (active state), then Equations (12) and (13) together
imply that

hj ¼ hs

z < 0

χ¼ 0

(23)
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