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ABSTRACT: This study explores the role of ChatGPT in the completeness of collaborative computer-aided design
(CAD) tasks requiring varying types of engineering knowledge. In the experiment involving 22 pairs of mechanical
engineering students, three different collaborative CAD tasks were undertaken with and without ChatGPT support.
The findings indicate that ChatGPT support hinders completeness in collaborative CAD-specific tasks reliant on
CAD knowledge but demonstrates limited potential in assisting open-ended tasks requiring domain-specific
engineering expertise. While ChatGPT mitigates task-specific challenges by providing general engineering
knowledge, it fails to improve overall task completeness. The results underscore the complementary role of AI and
human knowledge.
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1. Introduction
Over 50 years ago, researchers began exploring and utilising artificial intelligence (AI) techniques to
apply large amounts of data representing engineering knowledge to solve engineering problems
(Mcdermott, 1982). Since then, AI has evolved dramatically, becoming one of the most discussed
subjects in the modern digital era. With this progress, the focus has shifted from whether AI is feasible at
all to whether it can adapt as a human collaborator or a teammember (Korteling et al., 2021), contributing
directly and proactively to solving a problem, or whether it merely responds reactively to human queries
(McComb et al., 2023), functioning solely as a support tool. Among the latter, generative large language
models (LLMs) have emerged as prominent tools in the field. In addition to efficiently acquiring, storing,
and applying knowledge from a variety of domains, these models are based on a vast amount of general
knowledge gained from large datasets. Thus, they can generate coherent and contextually credible text
outputs based on text- or image-based inputs (Memmert et al., 2024). This capability enables users to
interact with these models directly in a conversational manner. Such a rise of generative LLMs has been
led by ChatGPT, the OpenAI’s conversational tool built on the generative pre-trained transformer (GPT)
model, launched in 2022. While earlier generative LLMs were often designed for specific tasks
(Memmert & Tavanapour, 2023), ChatGPT is a versatile and broadly applicable tool. Due to the vast
amount of general knowledge ChatGPT has been trained on, it can be utilised for various tasks
(Bouschery et al., 2023).
Generative LLMs, such as ChatGPT, have demonstrated significant potential to be integrated into the
engineering design process by acting as an AI expert to assist with various engineering tasks (Wang et al.,
2023). This potential is already utilised across a variety of engineering design stages and is the subject of
extensive research (Khanolkar et al., 2023). Such LLMs have also opened new possibilities for
engineering design knowledge acquisition, holding the potential to transform the way engineering design
problems are approached (Hu et al., 2023). In addition to domain-specific engineering knowledge, an
essential part of today’s design engineers’ qualifications is Computer-Aided Design (CAD) knowledge
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(Mandorli & Otto, 2013). Over time, CAD has evolved from standalone to cloud-based collaborative
CAD, allowing multiple designers to work synchronously on the same CAD file regardless of their
location (Cheng et al., 2023). In this context, there is a potential for ChatGPT to serve as a knowledge
support tool in design activities that involve execution of collaborative CAD tasks. This raises an
important question about the role of ChatGPT support on the execution of such tasks. More specifically,
it is important to identify which collaborative CAD tasks could benefit from the support of ChatGPT and
which should be approached without ChatGPT support. Therefore, this study aims to evaluate the
ChatGPT’s role in collaborative CAD by examining collaborative CAD task completeness as a
standardised CAD output quality dimension (Company et al., 2015). The study aims to provide an
answer to the following research question: Does the completeness of collaborative CAD tasks vary when
supported by ChatGPT, considering the requirement for different types engineering knowledge?
The paper is structured as follows. In Section 2, an overview of existing research work is presented.
Section 3 describes the research methodology. Furthermore, section 4 presents the results, followed by a
discussion and conclusion in Sections 5 and 6, respectively.

2. Related work
Generative LLMs have gained increasing attention for their ability to support engineers in various
engineering tasks. Therefore, this section presents the research work exploring the LLMs in engineering
tasks (2.1.) and the current insights of the research work of LLM in CAD specifically (2.2.).

2.1. Generative LLMs in engineering tasks
The impact of AI on the success of engineering tasks depends not only on the task itself but also on the
type of AI tool being used and users’ AI-related knowledge and skills, such as prompt engineering skills.
Understanding this distinction is important, as task-specific AI systems are designed to be utilised in
narrowly defined domains related to the specific task, thus leveraging task-specific knowledge.
Significant research has shown that using task-specific or custom-made LLMs in engineering tasks can
outperform traditional approaches for the same tasks. For example, studies related to the CAD domain
show that LLMs utilising historical knowledge from multiple modalities (CADmodels, text, and images)
enhance the efficiency of the assembly process and overall manufacturing efficiency (Hu et al., 2023).
They also outperform traditional approaches when searching design repositories and creating
engineering knowledge bases (Meltzer et al., 2024).
In contrast, general-purpose LLMs, such as ChatGPT, are trained on broad datasets encompassing
knowledge from various domains. That makes them suitable for general knowledge acquisition (Ritala
et al., 2024), including engineering knowledge (Xu et al., 2024). Unlike task-specific AI tools that are
limited to well-defined tasks, general-purpose LLMs can address both open-ended and well-defined tasks
(Wang et al., 2023). For example, Urban et al. (2024) found that designers produced higher-quality
solutions in open-ended tasks like concept generation with ChatGPT support. Moreover, participants
who had prior experience with ChatGPT generated even higher-quality solutions. However, while
ChatGPT, on average, outperforms humans in providing creative solutions to a problem, the best human
solutions exceeded those of ChatGPT (Koivisto & Grassini, 2023). Research also shows that individuals
with low creative abilities benefit from ChatGPT support in brainstorming (Memmert et al., 2024).
However, when focusing only on the ideas generated independently by humans, excluding ChatGPT’s,
both low- and high-creativity individuals produced fewer ideas. When observing how individuals engage
with the ChatGPT, low-creativity individuals request and accept more ChatGPT suggestions than high-
creativity individuals. Furthermore, the output quality in open-ended engineering tasks, such as
brainstorming, is highly sensitive to the prompts provided by ChatGPT (Memmert et al., 2024). Refining
prompt engineering could enhance output quality (Memmert & Tavanapour, 2023). In prototyping tasks,
design teams supported with ChatGPT yielded outcomes similar to human teams without ChatGPT
support, but faced challenges such as ChatGPT’s tendency to abandon concepts too early, unnecessary
complexity, providing vague responses with forgetting previous information or prompts and design
fixation (Ege et al., 2024). For well-defined engineering tasks, particularly in programming, ChatGPT
yielded lower output quality compared to task-specific generative LLMs that receive code-based prompts
(Mnguni et al., 2024). However, among general-purpose LLMs, ChatGPT demonstrated the highest
output quality (Coello et al., 2024). Despite that, the role of user feedback in a manner that the models can
understand, which is proven to be time- and resource-intensive, remains important. Furthermore, the
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LLMs’ programming style can affect the output quality, which may differ from that of the users.
Engineering expertise is, therefore, essential for providing contextual understanding, particularly when
dealing with ambiguities associated with problems that require domain-specific engineering knowledge
(Wang et al., 2023), especially since ChatGPT may generate articulate, accurately sounding solutions
that are nonetheless incorrect (Mnguni et al., 2024). That aligns with the notion that domain-specific
engineering knowledge and hard skills are crucial in the interaction of user and ChatGPT (Giordano
et al., 2024). Ultimately, this suggests a complementary relationship between human intelligence and AI
in solving both open-ended and well-defined engineering tasks (Wang et al., 2023). Thus, ChatGPT also
demonstrates potential in supporting CAD tasks since CAD encompasses both open-ended tasks like
concept generation and well-defined detailed design engineering tasks. That highlights the need to
explore which types of CAD tasks are best suited for ChatGPT support, particularly as these tasks require
varying types engineering knowledge.

2.2. LLMs for Computer-Aided Design (CAD)
CAD has long been an essential tool used throughout various design phases. Designers utilise CAD tools
to create and test digital representations of their ideas, such as virtual product concepts or prototypes,
prior to manufacturing (Azemi et al., 2018). With the integration of LLMs like ChatGPT into the design
process, researchers are also exploring how ChatGPT can support various CAD tasks. Those endeavours
mainly focus on automating the generation of 3D objects or CAD models and variations of those models
based on different ChatGPT input modalities, including text- and image-based prompts (Makatura et al.,
2024). Text inputs being explored involve interpreting human language instructions, while others focus
on utilising CAD programming languages such as CADQuery and OpenSCAD (Makatura et al., 2023).
The findings suggest the potential benefits of using ChatGPT, such as generating CAD models
representing standard mechanical engineering elements and their variations. However, it struggles with
creating complex CAD models or those not representing standard mechanical engineering elements
solely through text. Additionally, using ChatGPT in CAD workflows can be time-consuming and
requires multiple iterations, as it generates flawed CAD models, requiring user interactions to correct
them. While most studies have focused on CAD tasks that primarily require CAD knowledge,
specifically the creation or modification of CAD models, there has been limited research into how LLMs
like ChatGPT can assist with other types of CAD tasks. These tasks may require other types of expertise
and knowledge, such as tasks that include optimisation of models based on various design requirements,
including material or manufacturing technology selection.
This gap is even more pronounced in collaborative CAD, which has gained considerable research focus
due to the shift from standalone CAD. This transition addresses common challenges associated with
collaboration, such as limitations in cloud-based synchronous editing, issues with seamless file sharing,
and visibility of design changes (Cheng et al., 2023). Researchers have focused on various collaborative
CAD tasks that require different types of knowledge, including concept creation (domain-specific
engineering knowledge) (Deng et al., 2022) or modification of existing CAD models (CAD knowledge)
(Phadnis et al., 2021). The success of these tasks has been evaluated based on several criteria, particularly
the outcome quality (Sadeghi et al., 2016), with task completeness being the important dimension
(Company et al., 2015). Findings suggest that the quality of collaborative CAD outcomes depends on the
context, including team size and the nature of tasks. However, there remains a research gap regarding the
role of generative LLMs, such as ChatGPT, in solving collaborative CAD tasks with different types of
knowledge, especially concerning the quality and completeness of such tasks.

3. Research methodology
The study is designed as an experiment to explore the influence of ChatGPT support on completeness of
collaborative CAD tasks. Participants in the experiment were pairs of individuals engaged in three
different collaborative CAD tasks under two experimental conditions, categorising independent variable
as: pairs supported by ChatGPT and those not supported by ChatGPT.

3.1. Experimental sample and tasks
The study involved 44 mechanical engineering students (11 females and 33 males) from the Faculty of
Mechanical Engineering and Naval Architecture from the University of Zagreb, spanning undergraduate
and graduate levels. Participation required students to have completed both basic (first year) and

ICED25 1587



advanced (third year) CAD courses at the university, ensuring they possessed both declarative and
procedural CAD knowledge (Chester, 2007), along with a prior understanding of design for
manufacturability principles. They were divided into 22 pairs. Each pair was assigned to one of two
experimental conditions: with or without ChatGPT support.
The experiment consisted of three consecutive collaborative CAD tasks aimed at integrating different
types of knowledge - CAD knowledge (declarative and procedural) and knowledge from the
engineering design domain, such as design for manufacturability. The first task, referred to as Task 1,
involved both the declarative and procedural CAD knowledge. Participants were tasked with creating a
3D CAD model of a crankshaft by measuring and replicating a provided model in STEP format (Figure
2). Task 2 required both CAD and domain-specific knowledge. Participants were tasked with creating a
functional assembly from the five models provided previously by researchers that were not
dimensionally adequate: the housing, along with crankshaft, upper and lower parts of connecting rod
and a piston. Unlike creating a single part, assembly creation requires understanding how components
fit together and interact in a functional assembly. Domain-specific knowledge was required to maintain
appropriate clearances and ensure the parts’ correct alignment and interaction. Participants also needed
CAD knowledge on the declarative level to select the appropriate CAD assembly operations to
complete the assembly successfully. Among the five provided parts, four had visible feature trees (a
crankshaft, connecting rod parts and a piston), while housing was in STEP format, meaning its feature
tree was not accessible and, consequently, not modifiable, requiring the other parts to be adjusted
accordingly. The third task, Task 3, required more domain-specific knowledge than the previous tasks
by involving redesigning a CAD model of a crankshaft based on design-for-manufacturability
principles specific to forging technology. Participants needed to consider the shape and dimensions of
the model as it would be forged before any machining occurred. The model to be modified represented
the same crankshaft geometry as in Task 1 (Figure 2) and included a visible feature tree, enabling
participants to modify the CAD model.

3.2. Experimental setup and procedure
The experimental setup for both conditions consisted of one room with two working places facing each
other, as shown in Figure 1. Each working place was equipped with an office chair and table, a high-
performance computer, two monitor screens (22”with a resolution of 1920x1080 pixels), a keyboard and
a mouse. In both conditions, participants utilised Onshape, a cloud-based CAD software accessed via
web browser on each monitor screen. Onshape enables synchronous collaboration on a single CAD
model, allowing participants to simultaneously interact with the same CAD model, follow each other’s
work and share views. Like other CAD software, Onshape, in addition to creating or modifying a CAD
model (single part or assembly), also provides basic viewing functionalities like measuring, sectioning,
moving, and hiding parts. Each monitor screen had a different setup. The left screen displayed an
Onshape working document. In Task 1, this document was blank; Task 2 included an empty assembly
document alongside five CAD models of parts to be assembled; and Task 3 contained a CAD model of a
crankshaft that needed modification. The right screen presented another Onshape document with detailed
task explanations (imported as a PDF) and the crankshaft CAD model, which participants used to create
their models. Task 3 also provided the original crankshaft model in case participants needed it while
modifying the model on the left screen. Pairs with the ChatGPT support had an additional web browser
window on the right monitor screen with the ChatGPT application (Figure 2). To facilitate synchronous
collaboration during the execution of CAD tasks, the content of the right monitor of one team member
was shared on the right monitor of the other one screen mirroring. This setup enabled team members to
follow each other’s work in real-time, whether it involved measuring the part in Task 1 or interacting with
the ChatGPT. Participants utilizing ChatGPT received support from ChatGPT-4 model, from the
customized GPT Onshape Usage and Collaboration, developed specifically for the experiment by the
authors of this study. To prevent the information from being reused for other pairs’ tasks, the training
option for the ChatGPT model was disabled, and its memory was cleared after each pair’s session by the
researcher. Additionally, all screen content was recorded for the entire duration of the experiment using
OBS Studio. Video and audio recordings of the tasks were captured using a conference camera, and small
video cameras were placed on each monitor screen. The experimental procedure consisted of 5 steps: 1)
Pre-experiment preparation, 2) Introductory collaborative CAD session, 3) First collaborative CAD
session, 4) Second collaborative CAD session, and 5) Third collaborative CAD session.
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In the first step, participants received an information package via email a few days before the experiment.
The package included detailed tutorials on using Onshape, although all participants were already familiar
with the software from their CAD courses at the university. Additional tutorials were provided on
ChatGPT to participants in the experimental condition, focusing on the user interface, application usage
and prompt engineering techniques. Consent forms were also signed in the first step. Furthermore, steps
two through five took place on the same day as the experiment for each team, beginning with a 15-minute
introductory session. Participants worked on a simple CAD task during this session, collaborating
constantly and synchronously. Participants in the experimental condition were also required to consult
ChatGPT to make every decision, the same as they would consult each other. After the introductory
session, the first, second, and third collaborative CAD sessions were conducted, corresponding to the
tasks mentioned earlier. Teams were allocated 40 minutes, 25 minutes, and 20 minutes for Task 1, Task
2, and Task 3, respectively. Before starting and upon finishing each of the four sessions, the researcher
provided each team with details about the next steps. In addition to audio and video recordings, the
researcher collected the final CAD outputs after each task session for data analysis.

3.3. Data analysis
The collaborative CAD task completeness was measured via a CAD model completeness, one of the
CAD model’s quality dimensions (Company et al., 2015). According to that, a task is considered
complete if it includes all the geometry aspects relevant to the design it represents, specifically regarding
its sub-dimensions of shape and size. Therefore, the dependent variable in this study is collaborative
CAD task completeness, measured by two specific sub-variables: shape replication and size replication
(Company et al., 2015). Shape replication refers to the accuracy of the geometric features constituting the
resulting design that the CAD model represents (e.g., a cylinder, a slot, a fillet, a constituting part of an
assembly : : : ). Size refers to the accuracy of geometric dimensions, which quantify the physical aspects
of the design represented by a CAD model (e.g., length, width, height, radius, and angles). Even though
the completeness variable is usually defined as a dichotomous variable, indicating that it is fully
accomplished, herein we used intermediate scoring values for each sub-variable, namely both shape and
size replication. This approach allowed us to capture partial and nuanced levels of task completeness.
In Tasks 1 and 3, shape replication refers to the accuracy of the geometric features that make up the
resulting CAD model. In contrast, size pertains to the accuracy of geometric dimensions that quantify the
physical characteristics of the CAD model. In Task 1, the analysis focuses on evaluating whether all the
geometric features present in the provided CAD model are also included in the CAD model created by

Figure 1. Experimental setup

Figure 2. Left and right monitor screen set-up (Task 1 - experimental condition)
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the pairs participating in the experiment (shape), and whether they are dimensionally accurate (size).
Task 3 has a similar focus but relates specifically to design for manufacturability principles. That
includes modifying geometric features (such as defining parting lines, adding drafted surfaces and
rounded edges) (shape) and ensuring that the dimensions for these features are appropriate (size) (Bralla,
1998). Task 2 is inherently different since its output is a functional assembly. Therefore, the evaluation of
shape and size follows the definition of assembly (Lupinetti et al., 2018), which considers the parts and
their relationships while considering different levels of information (Chen, 2012): topological structure
and relationships between assembly components (shape), and geometric information (size). In our case,
the first two aspects involve verifying whether the constituent parts are included in the assembly, whether
the parts are correctly placed in relation to each other, and whether the appropriate mates are applied
(mates that mimic the intended movements). The geometric information concerns the dimensions
between parts, as four of them are not dimensionally suitable for the provided housing. Additionally,
functionality dictates certain dimensional relationships, such as those required for a simple engine
mechanism represented in the assembly of Task 2.
The following number of measurement elements for sub-variables of shape and size is established for
each task: Task 1 has 18 elements for shape and 32 for size; Task 2 has 16 for shape and 10 for size, and
Task 3 has 14 elements for both shape and size. The researcher evaluated each element in the resulting
CAD models by determining if the element was correctly addressed in the task, receiving a score of 1 for
correct and 0 for incorrect. Shape and size scores were calculated by summing the corresponding
elements for each sub-variable. These scores were then normalized as percentages and averaged for each
pair to provide an overall task completeness. Statistical analyses were conducted using Python.

4. Results
On average, teams without support of ChatGPT achieved higher completeness scores in Task 1 with a
score of 100%, compared to 67.1% for teams with support of ChatGPT. The same is observed in Task 2,
where teams without ChatGPT support averaged CAD task completeness of 83.1%, while those with
ChatGPT support averaged 62.5%. In Task 3, however, teams with ChatGPT support had a higher
average CAD task completeness of 45.1%. The difference between teams with and without ChatGPT
support in this task is smaller than in Tasks 1 and 2; teams without ChatGPT support completed an
average of 36.4% of Task 3. The results are visualised in Figure 3. Before statistically testing the means
across tasks within each experimental condition and the differences in completeness of each task, the
normality and homogeneity of variance were assessed. Since statistical tests, such as ANOVA or t-tests,
assume that the data is normally distributed and the variances are equal, these assumptions were tested
using the Shapiro-Wilk test for normality and Levene’s test for homogeneity of variance.

The Shapiro-Wilk test indicated that the data were normally distributed for both experimental conditions
in Task 1 and Task 3, but not in Task 2. Levene’s test showed that the assumption of equal variances was
not met in Task 1, while it was met in Task 2 and Task 3. The following sections present the statistical

Table 1. Comparison of completeness in collaborative CAD tasks with and without ChatGPT
support

Task Condition
Completeness
Mean (%)

Std.
deviation

(%)
Normality
(p-value)

Homogeneity
(p-value)

Task 1 ChatGPT support 67.1 29.3 0.056 1.669×10-6*
Without ChatGPT
support

100.0 0.0 1.000

Task 2 ChatGPT support 62.5 24.4 0.0498* 0.405
Without ChatGPT
support

83.1 17.9 0.005

Task 3 ChatGPT support 45.1 18.1 0.126 0.113
Without ChatGPT
support

36.4 30.8 0.158

*Significant value (p<0.05)
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differences in task completeness means across tasks and between experimental conditions, accounting
violations of normality and homogeneity. The results are shown in Table 1.

4.1. Comparing completeness within each condition
To assess whether task completeness differs significantly across tasks within the same experimental condition,
the Friedman test was conducted. This non-parametric test is suitable for analysing repeated measures data
when the assumption of normality is violated. Additionally, pairwise comparisons were conducted using
Wilcoxon signed-rank tests with Bonferroni correction to identify differences between tasks when a significance
is found.

The Friedman test revealed a statistically significant effect of task on task completeness in the condition
without ChatGPT support (χ2=17.610; p=0.002), with a large effect size (W=0.800). Pairwise
comparisons using Wilcoxon signed-rank tests with Bonferroni correction, furthermore, indicated that
completeness of Task 1 were significantly higher than Task 2 (W=0.0; p=0.020) and Task 3 (W=0.0;
p=0.015). Additionally, completeness of Task 2 was significantly higher than Task 3 (W=1.0; p=0.006).
In contrast, in the condition with ChatGPT support, the Friedman test did not reveal a significant
difference (χ2=3.818; p=0.148) in completeness across tasks. The corresponding effect size is small
(W=0.174). The summary of results is shown in Table 2.

4.2. Comparison of completeness within each task
To compare task completeness between conditions with ChatGPT and without ChatGPT support for each
task, different statistical tests were used based on the characteristics of the data. For Task 1, Welch’s t-test
was used due to violations of the equal variances. For Task 2, the Mann-Whitney U test was applied due
to violations of the normality assumption, as it is a non-parametric alternative suitable for comparing
medians between two independent groups. For Task 3, the standard t-test was appropriate as both
normality and homogeneity of variance assumptions were met.

Table 2. Analysis of collaborative CAD task completeness across experimental conditions

Condition Test Task comparison Statistic p-value Effect size

Without ChatGPT support Friedman - χ2=17.610 0.002* W=0.800
Wilcoxon signed-
rank

Task 1 vs Task 2 W=0.0 0.020* -

Wilcoxon signed-
rank

Task 1 vs Task 3 W=0.0 0.015* -

Wilcoxon signed-
rank

Task 2 vs Task 3 W=1.0 0.006* -

ChatGPT support Friedman - χ2=3.818 0.148 W=0.174

*Significant value (p<0.05)

Figure 3. Task completeness across collaborative CAD tasks
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For Task 1, Welch’s t-test indicated a statistically significant difference between conditions (t=-3.728,
p=0.004), with a large effect size (d=1.589). In Task 2, the Mann-Whitney U test also indicated a
statistically significant difference (U=21.5, p=0.011), with a large effect size (r=0.645). In Task 3,
however, the standard t-test did not reveal a statistically significant difference (t=0.815, p=0.425) of
completeness scores between pair with ChatGPT and without ChatGPT support. The effect size for Task
3 is small to medium (d=0.347). The results are summarised in Table 3.

5. Discussion
The study reveals insights into the role of ChatGPT support on the completeness of collaborative CAD tasks.
Overall, the findings suggest that ChatGPT support, with its broad general knowledge, is not suitable for
CAD-specific tasks requiring minimal general engineering knowledge. Task-specific LLMs, which focus on
more CAD-specific inputs, may be more suitable. That is similar to findings in the programming domain,
where the users with support of task-specific LLMs that process lines of code produce higher quality task
output than ChatGPT (Mnguni et al., 2024). Additionally, the lower task completeness observed, despite the
ChatGPT support, implies that participants may lack proficiency in prompt engineering (Memmert et al.,
2024) since the research has shown that effective prompt engineering enhances the quality of task outputs.
Furthermore, user feedback and the need for additional prompting when ChatGPT provides vague responses
or factually inaccurate information (Ege et al., 2024) can be time-consuming (Coello et al., 2024), potentially
contributing to lower task completeness. Additionally, ChatGPT’s approach to solving tasks may differ from
that of the participants, necessitating additional prompting and spending time that could have been dedicated
to the tasks. That underscores the importance of human intervention in refining ChatGPT responses (Coello
et al., 2024) through additional prompting, implying the complementary relationship between human
intelligence and AI (Wang et al., 2023). Humans have to remain the decision-makers in CAD tasks.
Therefore, ChatGPT should be seen as a tool to augment, not replace, the engineer’s knowledge.
The study also revealed a significant effect of task type on the participants’ performance who completed
tasks without ChatGPT support. The effect size was large, indicating practical significance. Task
completeness declines as the tasks become more open-ended and require greater domain-specific
engineering knowledge. In contrast, pairs with ChatGPT support did not show significant differences in
task completeness across the tasks, suggesting that ChatGPT support mitigates task-specific challenges,

Table 3. Analysis of difference in task completeness across collaborative CAD tasks

Task Test Statistic p-value Effect size

Task 1 Welch’s t-test t=-3.728 0.004* d=1.589
Task 2 Mann-Whitney U test U=21.5 0.011* r=0.645
Task 3 Standard t-test t=0.815 0.425 d=0.347

*Significant value (p<0.05)

Figure 4. Comparison of completeness across tasks
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such as the knowledge required to solve a task; however, it did not substantially improve overall task
completeness. All of that indicates a complementarity between humans and AI, highlighting the
importance of engineering knowledge in interactions with ChatGPT (Giordano et al., 2024).
Additionally, collaborative CAD tasks require coordination and communication among team members,
which can further slow the process when handling ChatGPT’s suggestions (Phadnis et al., 2021).
The presented insights have implications for both industry and education. This study highlights the
complementary relationship between human intelligence and AI, emphasizing that knowledge of CAD
and engineering remains irreplaceable, even with the support of LLMs like ChatGPT. Experienced
practitioners have to maintain and continuously improve their engineering expertise to effectively
validate ChatGPT’s outputs while addressing complex, open-ended CAD or design challenges.
Education should focus on developing strong CAD skills and domain-specific engineering knowledge,
ensuring novice engineers can critically evaluate suggestions from ChatGPT. Additionally, effective
communication with tools like ChatGPT through prompt engineering techniques is becoming an
increasingly valuable skill for practitioners, both novices and experts.

6. Conclusion
This study explored the role of ChatGPT on the completeness of collaborative CAD tasks solved by pairs of
CAD users requiring varying types of engineering knowledge - CAD and domain-specific engineering
knowledge. The findings highlight the context- and task-dependency of ChatGPT support in collaborative
CAD.While ChatGPT support hinders task completeness in tasks requiring more CAD-specific knowledge
(Tasks 1 and 2), it showed limited potential in assisting open-ended tasks (Task 3) that demand more
domain-specific engineering knowledge. However, this study has several limitations. The evaluation was
limited to a specific set of tasks, which may not fully represent the diversity of collaborative CAD tasks.
Also, the quality and consistency of prompts used by participants were not standardised, which could
influence the ChatGPT’s support and pairs’ interaction with ChatGPT. Lastly, the study focused only on
novice users and did not explore how individual differences, such as prior experience with CAD or
ChatGPT, might have affected task completeness. Therefore, future research work should explore the
influence of ChatGPT in the similar setups that include professional engineers and CAD users. It should
also examine the potential reasons behind the lower task completeness observed in pairs supported by
ChatGPT. This includes pairs’ interaction with ChatGPT, impact of used prompt engineering techniques,
prior experience with both CAD and ChatGPT, and the dynamics of collaboration and communication.
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