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Abstract

We derive large- and moderate-deviation results in random networks given as planar
directed navigations on homogeneous Poisson point processes. In this non-Markovian
routing scheme, starting from the origin, at each consecutive step a Poisson point is
joined by an edge to its nearest Poisson point to the right within a cone. We establish
precise exponential rates of decay for the probability that the vertical displacement of
the random path is unexpectedly large. The proofs rest on controlling the dependencies
of the individual steps and the randomness in the horizontal displacement as well as
renewal-process arguments.
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1. Introduction

We consider decentralized traffic-flow networks or drainage networks, where nodes transmit
data individually to dedicated neighboring nodes according to local rules, or respectively liquid
flows towards a certain direction. For this, directed navigations on homogeneous Poisson point
processes in the Euclidean plane can be used as an underlying network model [3, 5]. The traffic
generated at each node is forwarded iteratively to the nearest node, for example, to the right
in the horizontal direction. While analyzing such models, it has been observed in [10], that
the spatial traffic-flow density at a given location in the domain, i.e. the spatial average of
accumulated traffic at a microscopic area around that point, follows a law of large numbers
in the high-density limit. Here, the asymptotic traffic density can be captured as an integral
in terms of the spatial intensity of the point process along with their rate of traffic generation.
The bulk contribution in the limit in this asymptotics comes from the traffic generated within a
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2 P. P. GHOSH ET AL.

thin horizontal strip at that given point due to sub-ballisticity of the trajectory of the navigation.
This sub-ballistic behavior is nothing but a version of the straightness condition studied in [11].

Going beyond sub-ballisticity and the law of large numbers, questions about the deviation
behavior of paths in the traffic network arise. In a stationary setting, is it rare to have a path orig-
inating from the origin to deviate much away from the horizontal axis? For this, we denoted by
Yt the vertical position of the path measured as a function of horizontal position t. If the answer
to the question is no then essentially these paths are not so unlikely to miss the microscopic
region around a given location, and the traffic accumulated along the path may not contribute
to the aggregated traffic at the location of interest. This in turn would lead to deviations in the
throughput at the target location and it is an indication of unexpected network performance.
On the other hand, if the answer is yes, that means that the paths do not deviate too much and
contribute to the bulk of the throughput. But how rare is the deviation event? In other words,
at what scale does the probability of such an event live on and what are the rates? To answer
these sort of questions, in this paper we investigate the large- and moderate-deviation behavior
of the deviation of these paths away from the horizontal axis in a Poisson navigation model
where the consecutive successors are defined as the closest neighbor within a cone to the right
of the current point in the Euclidean plane.

Large- and moderate-deviation principles constitute a cornerstone in the analysis of ran-
dom geometric models and, in general, in stochastic processes in the last four to five decades,
well documented, for example, in [7, 8, 17]. These principles essentially capture rare events
by quantifying their asymptotic unlikeliness. The small probability of the events is expressed
in terms of an exponential rate and a rate function. In the context of telecommunication net-
works, large-deviation principles can be used to point out how badly the network is performing
and what the most prominent reasons for this behavior are. The large-deviation principle has
been studied for many different telecommunication network models, mainly identifying a poor
service indicator; see, for example, [12, Chapter 6] and references therein. On the other hand,
moderate deviations are nothing but large deviations with a slower scaling. The moderate-
deviation principle for a sequence of independent and identically distributed (i.i.d.) centered
random variables has been studied, for example, in [9] as a much cleaner and shorter version
of [1] and for sequences of Banach-space-valued random variables, see the classic work of
Ledoux [13]. In the case of moderate deviations, the rate function turns out to be of Gaussian
type irrespective of the model under consideration, whereas in large deviations the rate function
depends on characteristics of the random variables.

The model we study in this paper is the underlying setup for the traffic-flow network men-
tioned above. It is known as a navigation on Poisson point processes in Euclidean space and
specifically the directed and radial navigation were introduced in [5]. However, we introduce
an additional parameter 0 < θ ≤ π/2 that controls the angle of the cone in which the navigation
searches for the next neighbor. By definition, if the navigation starts at multiple points, this type
of navigation gives rise to a tree structure. In applications to telecommunication networks, the
root of the spanning trees can be seen as a network head where all the information is gathered
along the edges of the tree and processed. Hence, it is worthwhile to know the local and global
structural properties of the tree. In the work of Baccelli and Bordenave [3], which only deals
with the case θ = π/2, the quantities of interest were the local tree functionals around a vertex,
for example, the degree, properties of the path in the tree from a vertex to the root, namely
the total length or properties of the tree structure, and its shape. In a somewhat more geomet-
ric and analytical work, the convergence of the tree to a Brownian web under the appropriate
scaling limit has been studied in [6, 15] for the Poisson setting, in general dimensions, and
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Large and moderate deviations in Poisson navigations 3

more recently, for a discrete setting on perturbed planar lattices [16]; however, all this is only
in the case θ = π/2. In this paper, in particular, we improve the polynomial-decay properties
in [3, Lemma 4.11] to stretched-exponential decay of a moderate-deviation type as well as go
beyond the associated central limit theorem [3, Theorem 4.7]. Let us also mention the work of
Bonichon and Marckert [4], where navigation characteristics are investigated in a high-density
regime for not necessarily homogeneous Poisson point processes.

When π/4 < θ ≤ π/2, the model of navigation possesses a challenging dependence struc-
ture along its path, since each step of the navigation carries an extra piece of information
from the previous steps via nontrivial regions that have been observed as void spaces for the
underlying Poisson point process. We call this piece of information the history set and iden-
tify the steps where the history set is well behaved, giving rise to a renewal structure that
is essential for our analysis. However, the tail properties of the step variables of the renewal
process are challenging to analyze, which makes up for the bulk of the technical part of the
paper. For this, we control the exponential decay of the inter-stopping time gaps via bounds
on the dynamics of the width of the history set, using Markov-chain comparison ideas from
[6, Proposition 3.1]. However, this control fails to be sufficiently detailed in order to establish
the large deviations in the whole parameter regime. Indeed, the model becomes substantially
simpler for θ ∈ (0, π/4] as the steps become i.i.d. and we can then provide the full large- and
moderate-deviation analysis with rather explicit rate functions.

Let us mention that our main results should still hold in higher dimensions with appropri-
ately adjusted definitions, for example, of higher-dimensional angles. The associated proofs
should not pose any additional substantial difficulties. In order to keep the exposition more
accessible, we focus here only on the planar case. Similarly, the qualitative picture should
remain intact if the directed navigation defined below, which is based on a nearest-neighbor
relation, is replaced by a navigation based on connecting, for example, to the kth nearest
neighbor, k≥ 1. However, at least for θ ∈ (π/4, π/2], many of the underlying definitions and
arguments would need to be changed, but a corresponding renewal structure should still be
present. Another interesting direction for future research could be to assign individual angles
to every vertex via i.i.d. marks and study the resulting navigation process.

Organization of the paper is as follows. In Section 2 we describe the model in detail, state
the main results about large- and moderate-deviation principles and the scaling property of the
rate functions with respect to the intensity of the Poisson point process. In Section 3 we first
uncover the hidden independence structure in the model and state the key supporting results
that enable us to prove the main result for the moderate deviations for θ < π/2. In Section 4
we discuss the large-deviation principle in the dependent case, i.e. for π/4 < θ < π/2, and
prove it under a key assumption for the tail behavior of the renewal-step variables. Section 5
contains the proofs of all the supporting results that are stated in Section 3. Section 6 contains
the separate argument for the moderate-deviation principle in case θ = π/2 and in Section 7
we prove all statements regarding large deviations. Finally, in the Appendix A we elaborate on
a connection between moderate and large deviations.

2. Setting and Main Results

Let Pλ denote the homogeneous Poisson point process with intensity λ > 0 on R
2 and con-

sider an additional point o at the origin such that Pλ ∪ {o} is the Poisson point process under
its Palm distribution P. We are interested in the large and moderate deviations of a dependent
sequence of waypoints, starting at o, that are defined iteratively by choosing a successor point,
which is the closest Poisson point towards the right within a cone. More precisely, for any
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4 P. P. GHOSH ET AL.

FIGURE 1. Simulated sample path of V̄ for θ = arctan (5).

v ∈R
2, let (rv, ϕv) ∈R+ × [− π, π ) denote its polar coordinates, with the first unit vector e1

corresponding to the polar coordinates (1,0), and consider

Cθ := {v= (rv, ϕv) : rv > 0, |ϕv| ≤ θ},

the cone with angle 2θ centered at the origin. For 0≤ θ ≤ π/2, we might say that the cone is
facing towards the right. For any v ∈R

2, we write Cθ (v) := v+ Cθ and Co
θ (v) for the interior

of Cθ (v). Then, we consider the following family of navigations based on the usual Euclidean
metric | · | in R

2.

Definition 1. (Navigations.) Let V0 = o. Then, we call V := {Vn}n≥0 ⊂Pλ, iteratively
defined as

Vi+1 := argmin{|v− Vi| : v ∈Pλ ∩ Cθ (Vi)},

a directed θ navigation. Here Vi+1 is denoted the successor of Vi ∈Pλ and Ui := Vi − Vi−1 the
ith progress of the navigation.

Note that, under P, the argmin is uniquely defined almost surely (a.s.). We are interested in a
continuous-time process based on the navigation V . For this, consider V̄ := ⋃

k≥0 [Vk, Vk+1],
the interpolated trajectory for the navigation, where [Vk, Vk+1]⊂R

2 should be understood as
the one-dimensional line segment that connects Vk and Vk+1. Then, we can see the interpolated
trajectory V̄ as a piecewise affine and continuous path, parametrized with respect to time t as
{(t,Yt)}t≥0, where the parameter t denotes the progress along the x axis and Yt ∈R is the
corresponding y coordinate or vertical displacement at time t. In particular, for t= π1(Vk),
where π1 denotes the projection to the first Cartesian coordinate, we have Yt = π2(Vk), for
every k≥ 0, where π2 denotes the projection to the second Cartesian coordinate; see Figure 1
for an illustration.
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Large and moderate deviations in Poisson navigations 5

The following standard notation is used throughout the paper. For any set �, we denote
its interior by �o, its closure by �, and its complement by �c. Our first main result is the
moderate-deviation principle for Y = {Yt}t≥0.

Theorem 1. For any 0 < λ, 0 < θ ≤ π/2 and 0 < ε < 1/2, {t−1/2−εYt}t≥0 obeys the moderate-
deviation principle with rate t2ε and rate function Iλ,θ (x) := ρ(λ, θ )x2, where ρ(λ, θ ) > 0,
meaning that, for any Borel set � ⊆R,

− inf
x∈�o

Iλ,θ (x)≤ lim inf
t→∞ t−2ε log P(t−1/2−εYt ∈ �)

≤ lim sup
t→∞

t−2ε log P(t−1/2−εYt ∈ �)

≤− inf
x∈�

Iλ,θ (x).

Additionally, ρ(λ, θ ) satisfies the scaling relation ρ(λ, θ )=√λρ(1, θ ).

The constant ρ(λ, θ ) can be generally expressed in a semi-explicit way; see (6) in Section 3.
In the case 0 < θ ≤ π/4, it is given by

ρ(λ, θ ) :=
∫∞

0 dr r2 exp(−λθr2)
∫ θ

−θ
dϕ cos ϕ

2
∫∞

0 dr r3 exp(−λθr2)
∫ θ

−θ
dϕ sin2 ϕ

=
√

πλθ sin θ

2θ − sin (2θ )
. (1)

Let us mention that Theorem 1 can readily be used to establish also the strong law of large
numbers t−1Yt → 0 a.s. In fact, Theorem 1 implies that even t−1/2−εYt → 0 a.s. for all 0 <

ε < 1/2.
For all sufficiently small angles, we show that Y also satisfies the large-deviation principle.

The rate function is given in terms of the multivariate rate function of i.i.d. progress variables
defined in terms of the usual scalar product 〈·, ·〉 in R

2.

Lemma 1. Consider i.i.d. copies {Ũi}i≥1 of the progress variable U1 ∈R
2 in the directed θ

navigation. Then, {n−1 ∑n
i=1 Ũi}n≥1 satisfies the large-deviation principle with rate n and rate

function

Jλ,θ (u) := sup{〈γ, u〉 − Jλ,θ (γ ) : γ ∈R
2},

where, for all γ ∈R
2,

Jλ,θ (γ ) := log

(
λ

∫ ∞

0
dr r exp(−λθr2)

∫ θ

−θ

dϕ exp(γ1r cos ϕ + γ2r sin ϕ)

)
<∞.

Furthermore, u �→Jλ,θ (u) is continuous on {u ∈R
2 : Jλ,θ (u) <∞}= Co

θ .

We are now in the position to state our second main theorem.

Theorem 2. For any 0 < λ and 0 < θ ≤ π/4, {t−1Yt}t≥0 obeys the large-deviation principle
with rate t and rate function Iλ,θ (x) := inf{βJλ,θ (1/β, x/β) : β > 0}, meaning that, for any
Borel set � ⊆R,
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− inf
x∈�o

Iλ,θ (x)≤ lim inf
t→∞ t−1 log P(t−1Yt ∈ �)

≤ lim sup
t→∞

t−1 log P(t−1Yt ∈ �)

≤− inf
x∈�

Iλ,θ (x).

Additionally, Iλ,θ satisfies the scaling relation Iλ,θ =
√

λI1,θ .

We believe that Y also satisfies the large-deviation principle for π/4 < θ < π/2, but with
a substantially more involved rate function I ′λ,θ (see Theorem 3). As we highlight in the fol-
lowing sections, the challenge comes from the fact that, for π/4 < θ < π/2, the individual
steps are not i.i.d. any more. The underlying renewal structure, mentioned in the introduc-
tion and explained in detail in the next section, which is also crucial for the proof of the
moderate-deviation principle, has individual renewal steps with exponential tails. One renewal
step therefore makes a negligible contribution on the moderate-deviation scale, but is non-
negligible on the large-deviation scale. Due to the challenging dependence structure within
the renewal steps, we are only able to give the large-deviation principle in Theorem 3 below
assuming control on the tail behavior of the interarrival steps, see Assumption 1, and postpone
the details to Section 4.

Before we enter a more detailed discussion about the proofs, let us elaborate on the
connection between Theorems 1 and 2.

Remark 1. There is a heuristic that suggests that ρ(λ, θ ) coincides with the second derivative
of the large-deviation rate function at zero, that is, ρ(λ, θ )= Ïλ,θ (0)/2, which stems from the
following intuition. With h= xtε−1/2 small, we roughly have, for large t,

t−2ε log P(t−1/2−εYt ≈ x)= t−2ε log P(t−1Yt ≈ xtε−1/2)

≈−t1−2εIλ,θ (xtε−1/2)

=−x2h−2Iλ,θ (h)

≈−x2Ïλ,θ (0)/2,

where we used the fact that Iλ,θ (0)= İλ,θ (0)= 0 by the strong law of large numbers mentioned
above. However, as we will investigate in detail in Appendix A, this intuition fails already
in the independent case where 0 < θ ≤ π/4. Roughly, this comes from the fact that, on the
large-deviation level, there is a non-negligible interplay between the progress in the vertical
and horizontal direction, which manifests itself also in Ïλ,θ (0). However, this is not the case
on the level of moderate deviations. Here, deviations in the horizontal direction come at an
exponential cost of rate t, and hence, play no role at rate t2ε, with 0 < ε < 1/2.

3. Strategy of Proof

The proof of Theorem 2 is a consequence of Lemma 1 and stepwise independence in the
case θ ≤ π/4. We present the arguments in Section 7. Let us now focus on the moderate devi-
ations. In general, the setting of Theorem 1 is more challenging since, for θ > π/4, we do not
see independence in every step. However, for θ < π/2, independence can be recovered and we
think of this case in the following. In the case θ = π/2, we almost surely never see indepen-
dence of a step from the previous steps and we deal with this case separately in Section 6. More
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Large and moderate deviations in Poisson navigations 7

precisely, for θ < π/2, the navigation will occasionally make a step that is independent of the
past. Conceiving the in-between steps as one segment, we re-enter a regime of independent
segments for which we derive the moderate-deviation result. However, the distribution of the
segments is hard to trace and has exponential tails. This is the main reason why we restrict our-
selves to moderate deviations and only establish the large deviations under some assumptions
on the segment distribution in Section 4.

To make this precise, we iteratively define a sequence of history sets. We set H0 =∅ and
define

H1 := Cθ (U1)∩ B(o, |U1|),
where we recall that our navigation starts at the origin o. Here, B(x, r) denotes the open ball
with radius r centered at x ∈R

2. In words, the history set at step 1 is given by the region that
lies both in the (potential) future of the first waypoint V1 =U1 and in the void space that is
responsible for finding the first waypoint. Note that H1 =∅ whenever 0≤ θ ≤ π/4. For all
larger n, we define

Hn := Cθ (Vn−1 +Un)∩ {Hn−1 ∪ B(Vn−1, |Un|)},
the region in the future of the nth waypoint that intersects the joint history. One way to look at
the history set Hn is to realize that this is the region where, for the next step, we already know
that a certain part of space is already empty of points since we already searched for points there
in the previous steps.

Based on our history sets, for 0 < θ < π/2, we define τ θ
0 = 0 and

τ θ
1 := inf{n > 0: Hn =∅},

to be the first step where there is no history. For k > 1,

τ θ
k := inf{n > τθ

k−1 : Hn =∅}

is the kth step where the history set is empty. Note that the inter-stopping time gaps {τ θ
k −

τ θ
k−1}k≥1 are i.i.d. random variables due to the total independence of the underlying Poisson

point process. In particular, τ θ
k = k a.s., whenever 0 < θ ≤ π/4. We will later verify that τ θ

1 is
almost-surely finite and has exponential tails. As anticipated, we now build segments

U′i :=
τ θ

i∑
j=τ θ

i−1+1

Uj

and note that the sequence {U′i}i≥1 is i.i.d., again due to the total independence of the underly-
ing Poisson point process. Furthermore, let us denote the number of steps before hitting time t
by

Kt := sup
{

n > 0:
n∑

i=1

Xi < t
}
,

where Ui =: (Xi, Yi) in Cartesian coordinates. Based on our hitting times, we now define

K′t := sup{n > 0: τ θ
n ≤Kt} (2)
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as the index of the largest stopping time before Kt. In particular, writing

Y ′t :=
K′t∑

i=1

Y ′i ,

where U′i =: (X′i, Y ′i ) in Cartesian coordinates, we have

Kt∑
i=1

Yi =Y ′t +
Kt∑

i=τ θ

K′t
+1

Yi. (3)

Let us start by noting that U′1 possesses some exponential moments.

Lemma 2. For some γ = (γ1, γ2) with γ1, γ2 > 0, we have E[exp(〈γ, U′1〉)] <∞.

We present the proof of this lemma, along with the proofs of all other statements in this
section, later in Section 5. In Section 4, roughly speaking, we make the assumption that U′1
obeys a large-deviation principle, which is the critical input in order to establish the large-
deviation principle for Yt with π/4 < θ < π/2.

For the moderate deviations, the difference between Yt and Y ′t is irrelevant in the following
sense.

Proposition 1. For any 0 < λ, 0 < θ < π/2, and 0 < ε < 1/2, {t−1/2−εYt}t≥0 and
{t−1/2−εY ′t }t≥0 are exponentially equivalent, i.e. for any δ > 0,

lim sup
t↑∞

t−2ε log P(|Yt −Y ′t | ≥ δt1/2+ε)=−∞. (4)

Now, we want to deal with the randomness in the number of steps K′t in the definition of Y ′t .
For this, we define, for w > 0, the process

Yw
t :=

�tw�∑
i=1

Y ′i

and establish in the following statement that it obeys the moderate-deviation principle.

Proposition 2. For any 0 < λ, 0 < θ < π/2, 0 < w, and 0 < ε < 1/2, {t−1/2−εYw
t }t≥0 obeys the

moderate-deviation principle with rate function Iw
λ,θ (x) := x2/(2wE[Y ′21 ]).

Now let κ := E[X′1]−1 denote the inverse expected horizontal progress. By Lemma 2, we
have κ > 0 and, by Lemma 8 below, also κ <∞. The following result now presents the final
ingredient for the proof of Theorem 1 in the case 0 < θ < π/2.

Proposition 3. For any 0 < λ, 0 < θ < π/2, and 0 < ε < 1/2, {t−1/2−εYκ
t }t≥0 and

{t−1/2−εY ′t }t≥0 are exponentially equivalent, i.e. for any δ > 0,

lim sup
t↑∞

t−2ε log P(|Yκ
t −Y ′t | ≥ δt1/2+ε)=−∞. (5)

Proof of Theorem 1, case 0 < θ < π/2. By Propositions 1 and 3, we have the exponential
equivalence of Yt and Yκ

t and, by Proposition 2, we have that Yκ
t obeys the moderate-deviation

principle with rate function

Iλ,θ (x) := x2 E[X′1]

2E[Y ′1
2]

, (6)
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Large and moderate deviations in Poisson navigations 9

as desired. For the scale invariance, if we denote by U′λ,1 = (X′λ,1, Y ′λ,1) the progress of the first
independent segment in the navigation based on a Poisson point process with intensity λ > 0,
then, by scaling both the coordinates by

√
λ, we find that (

√
λX′λ,1,

√
λY ′λ,1) and (X′1,1, Y ′1,1)

have the same distribution. Therefore, we obtain

2ρ(λ, θ )= E[X′λ,1]

E[Y ′λ,1
2]
=
√

λE[X′1,1]

E[Y ′1,1
2]

= 2
√

λρ(1, θ ),

which completes the proof.

Note that, when 0 < θ ≤ π/4, we have U′1 =U1 and the expression (1) for ρ follows from
a simple computation; see, for example, the proof of Lemma 1 in Section 7. The case θ = π/2
requires a refined construction of a renewal process. We present the details in Section 6.

4. Large Deviations in the Dependent Case

In this section we study the large-deviation behavior of the model in the dependent case,
where π/4 < θ < π/2. Let us start with the large deviations for the empirical average.

Lemma 3. For any 0 < λ and π/4 < θ < π/2, {n−1 ∑n
i=1 U′i}n≥1 satisfies the large-deviation

principle with rate n and rate function

J ′λ,θ (u) := sup{〈γ, u〉 − J′λ,θ (γ ) : γ ∈R
2},

where, for all γ ∈R
2, J′λ,θ (γ ) := log E[exp(〈γ, U′1〉)].

We present the proof of this lemma and the following statements at the end of the paper in
Section 7. One would like to establish now a large-deviation principle for Y ′t similar to the one
provided in Theorem 2. However, the situation is more complicated. The key reason for this is
that the upper tails of |U1| are of exponential order O(−t2) (this is crucially used in step 2 in
the proof of Theorem 2), however, the upper tails of |U′1| are only of exponential order O(−t),
as can be seen from the following statement.

Lemma 4. Let π/4 < θ < π/2, then, for all n≥ 0, P(τ θ
1 > n)≥ ((4θ − π )/(4θ ))n.

We present the proof further below. As a consequence, for example, for X′1, we have, for all
n and s > 0,

P(X′1 > t)≥ P

( τ θ
1∑

i=1

Xi > t, τ θ
1 > n

)

≥ P(τ θ
1 > n)− P

(
n∑

i=1

Ri cos θ ≤ t

)

≥ ean − est+n log E[exp(−sR cos θ)],

where a := log ((4θ − π )/(4θ )) and R and {Ri}i≥1 are as in Lemma 5. Hence, we have at
least exponential decay if, for n coupled to t as n= bt with b > 0, we have s/b+ log E[exp(−
sR cos θ )] < a. But this is the case by first picking s large and then picking b large. We can
proceed similarly for Y ′1.

Hence, it is reasonable to assume that we have the following tail behavior within a segment.
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Assumption 1. Let 0 < λ and π/4 < θ < π/2. Then, for all a > 0, b ∈R, we have

lim
t↑∞ t−1 log P

( �t�∑
i=1

Xi < at,
�t�+1∑
i=1

Xi ≥ at,
�t�∑
i=1

Yi ≥ bt, τ θ
1 > t

)
=−Hλ,θ (a, b) ∈ (−∞, 0).

Note that, it is clear that the rate function must obey our usual scaling relation Hλ,θ =√
λH1,θ . With this in mind, we can prove the large-deviation principle for Yt.

Theorem 3. Let Assumption 1 hold. Then, for any 0 < λ and π/4 < θ < π/2, {t−1Yt}t≥0 obeys
the large-deviation principle with rate t and rate function

I ′λ,θ (x) := inf
b∈R,

c∈(0,1)

{
inf{βJ ′λ,θ (c/β, b/β) : β > 0} + inf{dHλ,θ ((1− c)/d, (a− b)/d) : d > 0}}.

Moreover, I ′λ,θ (x) satisfies the scaling relation I ′λ,θ (x)=√λI ′1,θ (x).

Let us try to explain the rate function in words. In the dependent case, the rate function is
given by an optimization between the unlikely vertical displacement (up to level b, represented
by the term involving J ′λ,θ ), which is cheaper to achieve if the navigation performs fewer
steps (up to level c < 1) and the, then necessary, cost produced by having an unlikely large
last horizontal step (of length of order (1− c)t that covers the remaining vertical displacement,
represented by the term involving Hλ,θ ). The proof is presented in Section 7.

5. Proofs for the Moderate Deviations in Case θ < π/2

5.1. Exponential tails of the stopping times

Let us start by establishing exponential-decay properties of the inter-stopping time gaps.

Proposition 4. Let 0 < λ and 0 < θ < π/2. Then, for all n, k ∈N, there exist constants c, C > 0
depending only on θ such that

P(τ θ
k − τ θ

k−1 ≥ n)≤Ce−cn. (7)

In particular, for all n, k ∈N, P(τ θ
k ≥ n)≤ kCe−cn/k.

First note that it suffices to prove that P(τ θ
1 ≥ n)≤Ce−cn since the remaining statements

then follow from the fact that {τ θ
k − τ θ

k−1}k≥1 are i.i.d. We write τ := τ θ
1 for the rest of the

proof. It is worth noting that τ is invariant under scaling both the coordinates by
√

λ, and
therefore, P(τ ≥ n) does not depend on λ. Note also that we can focus on the case π/4 < θ <

π/2 since, for θ ≤ π/4, we have almost surely that τ = 1 as mentioned before; see the first
paragraph in the proof of Theorem 2 in Section 7.

Our arguments rest on ideas developed in [6], more precisely the proof of [6, Proposition
3.1], where however a slightly different situation is analyzed. Let us define, for all n≥ 0,

Ln := sup

{
x−

n∑
i=1

Xi : (x, y) ∈Hn

}
∨ 0,

the width of the history set and write Un = (Xn, Yn)= (Rn, �n) for the progress variables first in
Cartesian and alternatively in polar coordinates. In particular, L0 = 0 and P(τ ≥ n)= P(Hm �=
∅ for all m < n).
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Since Hn ⊆Hn−1 ∪ B(Vn−1, Rn), we have

Ln ≤ sup

{
x−

n∑
i=1

Xi : (x, y) ∈Hn−1 ∪ B(Vn−1, Rn)

}
∨ 0

= sup

{
x−

n∑
i=1

Xi : (x, y) ∈Hn−1

}
∨ sup

{
x−

n∑
i=1

Xi : (x, y) ∈ B(Vn−1, Rn)

}
∨ 0

= (Ln−1 − Xn)∨ (Rn − Xn)∨ 0

=max{(Ln−1 − Xn)+, Rn − Xn},
where x∨ y := max{x, y} and x+ := max{x, 0}. Note that, if �n ∈ [− π/2+ θ,

π/2− θ ] =: Tθ then the nth step escapes its immediate history, i.e. Hn = Cθ (Vn)∩Hn−1. In
that case Hn ⊆Hn−1 and, thus, we have

Ln ≤ (Ln−1 − Xn)+.

Therefore, for all n≥ 1, we have

Ln ≤ (Ln−1 − Xn)+1{�n ∈ Tθ } +max{(Ln−1 − Xn)+, (Rn − Xn)}1{�n /∈ Tθ }.
The key ingredient for the proof is the following (random) monotone coupling of the progress
variables with respect to an i.i.d. sequence, which is also used on multiple occasions throughout
the proof section. Denoting x∧ y := min{x, y}, we have the following statement.

Lemma 5. For any 0 < θ < π/2, there exists a sequence of i.i.d. quadruplets of random vari-
ables {(Rn, �n, Rn, �n)}n≥1, defined on an extended probability space, such that, for all
n≥ 1,

(i) Rn ≤ Rn ≤ Rn a.s.,

(ii) if �n ∈ Tθ then �n =�n =�n a.s., and

(iii) (Rn, �n, Rn, �n)
d= (R, �, R, �), where (R, �) := argmin{|v| : v ∈ Cθ ∩Pλ} and

(R, �) := argmin{|v| : v ∈ Cθ∧(π/2−θ) ∩Pλ}, �∼Uniform(−θ, θ ) and �∼Uniform

(−θ ∧ (π/2− θ ), θ ∧ (π/2− θ )), P(R > t)= e−λθ t2 and P(R > t)= e−λ(θ∧(π/2−θ))t2 .

We present the proof of this lemma later in this section. Now, observe that, almost surely,

Ln ≤ (Ln−1 − Rn cos θ )+1{�n ∈ Tθ } +max{(Ln−1 − Rn cos θ )+, Rn(1− cos θ )}1{�n /∈ Tθ }
≤ (Ln−1 − Rn cos θ )+1{�n ∈ Tθ } +max{Ln−1, Rn}1{�n /∈ Tθ }
= (Ln−1 − Rn cos θ )+1{�n ∈ Tθ , �n ∈ Tθ } + (Ln−1 − Rn cos θ )+1{�n ∈ Tθ , �n /∈ Tθ }
+max{Ln−1, Rn}1{�n /∈ Tθ , �n ∈ Tθ } +max{Ln−1, Rn}1{�n /∈ Tθ , �n /∈ Tθ }

≤ (Ln−1 − Rn cos θ )+1{�n ∈ Tθ } +max{Ln−1, Rn}1{�n /∈ Tθ }.
Note that, by Lemma 5(ii), we have {�n ∈ Tθ } ⊆ {�n ∈ Tθ }, which, together with the fact
that Ln−1 − Rn cos θ ≤ Ln−1 ≤max{Ln−1, Rn}, implies the final inequality. We now make a
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comparison with a Markov chain {Mn}n≥0 on N0, defined as M0 := 0 and

Mn := (Mn−1 − �Rn cos θ�)+1{�n ∈ Tθ } +max{Mn−1, �Rn�}1{�n /∈ Tθ }, n > 0.

The following result establishes that the stopping time τM := inf{n > 0: Mn = 0} of the
Markov chain to hit 0 has an exponential tail.

Lemma 6 For any n > 0, P(τM ≥ n)≤Ce−cn for some C, c > 0.

Proof of Proposition 4. The reason for constructing the Markov chain is to dominate the
sequence of widths {Ln}n≥0. More precisely, by construction, Mn ≥ Ln for all n≥ 0 and, in
particular, when Mn = 0, we have Ln = 0. Therefore, almost surely, τM ≥ τ , which completes
the proof.

Proof of Lemma 6. Note that the Markov chain {Mn}n≥0 is irreducible since, for any
m > 0,

P(M1 =m |M0 = 0)≥ P(�R1� =m and �1 /∈ Tθ ) > 0 and

P(M1 = 0 |M0 =m)≥ P(�R1 cos θ�> m and �1 ∈ Tθ ) > 0.
(8)

Now, we demonstrate the recurrence of {Mn}n≥0 by establishing that 0 is a recurrent state.
From Lemma 5, we know that, for all h≥ 2,

P(�R1�> h)≤ P(R1 > h/2)= exp(−λ(π/2− θ )h2/4).

Let us define the sequence {an}n≥1 as

an :=
⌈(

8

λ(π/2− θ )
log n

)1/2
⌉

.

Then, for all sufficiently large n, we have P(�R1�> an)≤ n−2. This implies that, for all
sufficiently large n,

P

(
n

max
i=1
�Ri� ≤ an

)
≥ (1− n−2)n

and, therefore,

lim
n↑∞ P

(
n

max
i=1
�Ri� ≤ an

)
= 1. (9)

Now, let Gn := 1{�n ∈ Tθ and Rn cos θ ≥ 1} and q := P(G1 = 1) > 0. From the definition of
Mn, it follows that, whenever Gn = 1, we have Mn ≤ (Mn−1 − 1)+. We define An to be the
event that the finite sequence {Gi}ni=1 has a run of 1s of length at least an. Since {Gi}ni=1 are
i.i.d., we have

P(Ac
n)≤ (1− qan )�n/an�.

Furthermore, since, for all sufficiently large n,

an ≤ 1

2(−log q)
log n,
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we have, for all sufficiently large n,

P(Ac
n)≤ (1− n−1/2)�2(−log q)n/ log n�,

which tends to 0 as n→∞. Therefore, we obtain

lim
n↑∞ P(An)= 1. (10)

Now, by construction, we have

P(Mi = 0 for some 1≤ i≤ n |M0 = 0)

≥ P

(
n

max
i=1

Mi ≤ an and {Gi}ni=1 has an consecutive 1 s
∣∣∣ M0 = 0

)

≥ P

(
n

max
i=1
�Ri� ≤ an and {Gi}ni=1 has an consecutive 1 s

∣∣∣ M0 = 0
)

= P

(
n

max
i=1
�Ri� ≤ an and {Gi}ni=1 has an consecutive 1 s

)
.

But this tends to 1 as n→∞ by (9) and (10). As a result, we established that 0 is a recurrent
state, and therefore, in view of (8), the Markov chain {Mn}n≥0 is recurrent.

The rest of the proof is similar to the proof of [2, Proposition 5.5], but we include some
details for the convenience of the reader. Observe that

E[eM1 |M0 = k]

=E
[
exp

(
(k− �R1 cos θ�)+1{�1 ∈ Tθ } +max{k, �R1�}1{�1 /∈ Tθ }

)]
= ek

E
[
exp

(−min{k, �R1 cos θ�}1{�1 ∈ Tθ } +max{0, �R1� − k}1{�1 /∈ Tθ }
)] (11)

and note that

exp
(−min{k, �R1 cos θ�}1{�1 ∈ Tθ } +max{0, �R1� − k}1{�1 /∈ Tθ }

)≤ exp(�R1�),
which has finite expectation. Therefore, for all k≥ 0,

E[exp(M1) |M0 = k] <∞. (12)

Moreover, by the dominated-convergence theorem, we get

lim
k↑∞E[exp(−min{k, �R1 cos θ�}1{�1 ∈ Tθ } +max{0, �R1� − k)}1{�1 /∈ Tθ })]

=E[exp(−�R1 cos θ�1{�1 ∈ Tθ })]
< 1

and, thus, there exists r > 1 and k0 ≥ 0 such that, for all k > k0,

E[exp(−min{k, �R1 cos θ�}1{�1 ∈ Tθ } +max{0, �R1� − k)}1{�1 /∈ Tθ })] < r−1.

But this, together with (11), implies that, for all k > k0,

E[exp(M1) |M0 = k] < r−1 exp(k). (13)
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Let σ := inf{n > 0: Mn ≤ k0} denote the first time that Mn is below k0 and fix any l > k0. In
view of (13), note that, for M0 = l, the process {Yn}n≥0 defined as Yn := rn∧σ exp(Mn∧σ ) is
a nonnegative supermartingale. Therefore, by the recurrence of the Markov chain {Mn}n≥0,
almost surely,

Yn → Y∞ := rσ exp(Mσ )≥ rσ .

This, together with Fatou’s lemma, implies that

E[rσ |M0 = l]≤E[Y∞ |M0 = l]≤ lim inf
n↑∞ E[Yn |M0 = l]≤E[Y0 |M0 = l]= exp(l).

Since l > k0 is arbitrary, we have, for all l > k0,

E[rσ |M0 = l]≤ exp(l).

Therefore, for any z≤ k0,

E[rσ |M0 = z]≤ r+ r
∑
l>k0

P(M1 = l |M0 = z)E[rσ |M0 = l]

≤ r+ r
∑
l>k0

P(M1 = l |M0 = z) exp(l)

≤ r+ rE[exp(M1) |M0 = z]

<∞.

Note that, for any z≤ k0 and l > k0,

P(M1 = l |M0 = z)= P(�1 /∈ Tθ , �R1� = l)= P(M1 = l |M0 ≤ k0),

which does not depend on z. Therefore, if we define {σi}i≥0 as σ0 := 0 and, for all i≥ 1,

σi := inf{n > σi−1 : Mn ≤ k0},
then {σi − σi−1}i≥1 are i.i.d. copies of σ . Moreover, for all z≤ k0,

c1 := E[rσ |M0 ≤ k0]=E[rσ |M0 = z] <∞.

We choose c2 > 0 such that c1
c2 < r. Then, by Markov’s inequality,

P(σ�c2n� ≥ n |M0 = 0)≤ r−n
E[rσ�c2n� |M0 = 0]= r−n

E[rσ1 |M0 = 0]�c2n� ≤ (r−1c1
c2 )n,

and thus,

P(τM > n |M0 = 0
)

≤ P(τM > n, σ�c2n� < n |M0 = 0)+ P(σ�c2n� ≥ n |M0 = 0)

≤ P

( �c2n�⋂
i=1

{�σi+1 /∈ Tθ or �Rσi+1 cos θ�< k0}
)
+ P(σ�c2n� ≥ n |M0 = 0)

≤ P(�1 /∈ Tθ or �R1 cos θ�< k0)�c2n� + (r−1c1
c2 )n

≤C1e−cn

for some C1, c > 0. This proves the result.
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Now, the only thing that remains to be proven is Lemma 5. For this, let us first verify the
following statement.

Lemma 7. For any n≥ 0 and π/4≤ θ < π/2, we have Cπ/2−θ (Vn)∩Hn =∅.

Proof of Lemma 7. From the definition of Hn, we see that, for any n≥ 0,

Hn ⊆
n−1⋃
m=0

B(Vm, Rm+1).

Now, since, for any 0≤m≤ n− 1, Vn ∈ Cθ (Vm), it follows that Rm+1 ≤ |Vn − Vm|. Therefore,

Hn ⊆
n−1⋃
m=0

B(Vm, |Vn − Vm|).

Hence, it suffices to show that, for any 0≤m≤ n− 1, Cπ/2−θ (Vn)∩ B(Vm, |Vn − Vm|)=∅.
For this, note that the lines

Ln(π/2− θ ) := Vn + {(r, ϕ) : r > 0, ϕ = π/2− θ} and

Ln(−π/2+ θ ) := Vn + {(r, ϕ) : r > 0, ϕ =−π/2+ θ}
are the two boundary lines of Cπ/2−θ (Vn). Hence, it is also adequate to prove that, for any
0≤m≤ n− 1, (Ln(π/2− θ )∪ Ln(−π/2+ θ ))∩ B(Vm, |Vn − Vm|)=∅.

We now fix m < n and write Vm and Vn in Cartesian coordinates as Vm = (Vm,1, Vm,2) and
Vn = (Vn,1, Vn,2). If Vm,2 = Vn,2 then |Vn − Vm| = Vn,1 − Vm,1 and since, for any x= (x1, x2) ∈
Ln(π/2− θ )∪ Ln(−π/2+ θ ), we have x1 > Vn,1 > Vm,1, it follows that

|x− Vm| ≥ x1 − Vm,1 > Vn,1 − Vm,1 = |Vn − Vm|.
Therefore, (Ln(π/2− θ )∪ Ln(−π/2+ θ ))∩ B(Vm, |Vn − Vm|)=∅.

Now, suppose that Vm,2 �= Vn,2. Without loss of generality, we assume that Vm,2 < Vn,2.
Then, for any x= (x1, x2) ∈ Ln(π/2− θ ), we have x1 > Vn,1 > Vm,1 and x2 > Vn,2 > Vm,2,
which implies that

|x− Vm| =
√

(x1 − Vm,1)2 + (x2 − Vm,2)2 >

√
(Vn,1 − Vm,1)2 + (Vn,2 − Vm,2)2 = |Vn − Vm|.

Therefore, Ln(π/2− θ )∩ B(Vm, |Vn − Vm|)=∅. Now, we draw two horizontal line segments
VmA and VnB passing through Vm and Vn, respectively, such that VmA intersects Ln(−π/2+ θ )
at point C; see Figure 2 for an illustration. From the definition of Ln(−π/2+ θ ), we know
that ∠BVnC= π/2− θ . Since VmA and VnB are parallel, we also have ∠VnCVm = π/2− θ .
Furthermore, as Vn ∈ Cθ (Vm), it follows that ∠VnVmC≤ θ . Now, focusing on the triangle
�VnVmC, we observe the relationship

∠VnCVm +∠VnVmC+∠VmVnC= π,

which implies that ∠VmVnC≥ π/2, and this, in turn, implies that cos ∠VmVnC≤ 0. Therefore,
for any x ∈ Ln(−π/2+ θ ), by the law of cosines,

|x− Vm| =
√
|Vn − Vm|2 + |x− Vn|2 − 2 cos ∠VmVnC · |Vn − Vm| · |x− Vn|> |Vn − Vm|,
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FIGURE 2. Illustration for the proof of Lemma 7.

which means that Ln(π/2− θ )∩ B(Vm, |Vn − Vm|)=∅. This proves that, for any
0≤m≤ n− 1, Cπ/2−θ (Vn)∩ B(Vm, |Vn − Vm|)=∅, thereby completing the proof.

Proof of Lemma 5. For 0 < θ ≤ π/4, the random variables {(Rn, �n)}n≥1 are i.i.d.
Therefore, Lemma 5 holds trivially by taking (Rn, �n)= (Rn, �n)= (Rn, �n) for all n≥ 1.
So, we now assume that π/4 < θ < π/2. We define a sequence of sets {Dn}n≥1 as

Dn := Cθ (Vn−1)∩ B(Vn−1, Rn)∩Hc
n−1.

Essentially, Dn is the previously unexplored set where we have explored at the nth step to
find Vn. Clearly, {Dn}n≥1 are pairwise disjoint. Let {P (n)

λ }n≥1 be i.i.d. copies of the Poisson

point process Pλ. We define {Q(n)
λ }n≥1 as

Q(n)
λ := (Pλ ∩Dn)∪ (P (n)

λ ∩Dc
n).

Since the Dn are disjoint, {Q(n)
λ }n≥1 is a sequence of i.i.d. Poisson point processes with

intensity λ. We write

Wn := argmin{|v− Vn−1| : v ∈ Cθ (Vn−1)∩Q(n)
λ },

and define (Rn, �n) to be the polar coordinates of Wn − Vn−1. Similarly, we write

Wn := argmin{|v− Vn−1| : v ∈ Cπ/2−θ (Vn−1)∩Q(n)
λ },

and define (Rn, �n) to be the polar coordinates of Wn − Vn−1. From the definition, it follows
that (Rn, �n, Rn, �n) and (R, �, R, �) are equal in distribution. Furthermore, note that, since

{Q(n)
λ }n≥1 are i.i.d., {(Rn, �n, Rn, �n)}n≥1 are also i.i.d. We know that (Rn, �n) are the polar

coordinates of Vn − Vn−1, where
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Vn = argmin{|v− Vn−1| : v ∈ Cθ (Vn−1)∩Pλ}
= argmin{|v− Vn−1| : v ∈ Cθ (Vn−1)∩ B(Vn−1, Rn)∩Hc

n−1 ∩Pλ}
= argmin{|v− Vn−1| : v ∈Dn ∩Pλ}
= argmin{|v− Vn−1| : v ∈Dn ∩Q(n)

λ }
= argmin{|v− Vn−1| : v ∈ Cθ (Vn−1)∩ B(Vn−1, Rn)∩Hc

n−1 ∩Q(n)
λ }

= argmin{|v− Vn−1| : v ∈ Cθ (Vn−1)∩Hc
n−1 ∩Q(n)

λ }.
Now, from Lemma 7, we obtain Cπ/2−θ (Vn−1)⊆ Cθ (Vn−1)∩Hc

n−1 ⊆ Cθ (Vn−1), which implies
that Rn ≥ Rn ≥ Rn. Additionally, if �n ∈ Tθ then we have (Rn, �n)= (Rn, �n)= (Rn, �n). This
concludes the proof.

5.2. Proof of Lemma 2 and Proposition 2

Proof of Lemma 2. Using Proposition 4, Lemma 5, and the Cauchy–Schwarz inequality,
we get

E[e〈γ,U′1〉]≤
∑
n≥1

E[e2〈γ,
∑n

j=1 Uj〉]1/2
P(τ θ

1 ≥ n)1/2 ≤
∑
n≥1

E[e2(γ1+γ2)R]n/2
√

Ce−cn/2.

Since R has all exponential moments finite, for all sufficiently small γ1, γ2 > 0, the above sum
is also finite.

Proof of Proposition 2. By symmetry and the exponential Markov inequality, for suffi-
ciently small s > 0,

P(|Y ′1| ≥ n1/2+ε)≤ 2e−sn1/2+ε

E[esY ′1 ] <∞,

where we also used Lemma 2, and thus,

lim sup
n↑∞

n−2ε log P(|Y ′1| ≥ n1/2+ε)≤−s lim sup
n↑∞

n1/2−ε =−∞.

Hence, {Yw�t�}t≥0 satisfies the conditions of [9, Theorem 2.2] and, thus, obeys the moderate-

deviation principle with rate x2/(2wE[Y ′21 ]). But {Yw�t�}t≥0 and {Yw
t }t≥0 are exponentially

equivalent since, for all δ > 0,

lim sup
t↑∞

t−2ε log P(|Yw�t� −Yw
t | ≥ δt1/2+ε)≤ lim sup

t↑∞
t−2ε log P

( �w+1�∑
i=1

|Y ′i | ≥ δt1/2+ε

)
,

as �tw� − ��t�w� ≤ �w+ 1�. Hence, again using symmetry, independence, and the exponential
Markov inequality, for sufficiently small s > 0,

P

( �w+1�∑
i=1

|Y ′i | ≥ δt1/2+ε

)
≤ e−sδt1/2+ε

E[es|Y ′1|]�w+1� ≤ e−sδt1/2+ε

2�w+1�
E[esY ′1 ]�w+1� <∞,
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and thus,

lim sup
t↑∞

t−2ε log P(|Yw�t� −Yw
t | ≥ δt1/2+ε)≤−sδ lim sup

t↑∞
t1/2−ε =−∞,

as desired.

5.3 Proof of Propositions 1

Proof of Proposition 1. First note that we have Yt =∑Kt
i=1 Yi + YKt+1(t−∑Kt

i=1 Xi)/XKt+1

with (t−∑Kt
i=1 Xi)/XKt+1 ≤ 1, and hence, by Lemma 5,

P(|Yt −Y ′t | ≥ δt1/2+ε)≤ P

( Kt+1∑
i=τ θ

K′t
+1

|Yi| ≥ δt1/2+ε

)

≤ P

( τ θ

K′t+1∑
i=τ θ

K′t
+1

|Yi| ≥ δt1/2+ε

)

≤
�t2�∑
j=0

P

( τ θ
j+1∑

i=τ θ
j +1

|Yi| ≥ δt1/2+ε, K′t = j

)
+ P(K′t ≥ t2)

≤ t2P

( τ θ
1∑

i=1

|Yi| ≥ δt1/2+ε

)
+ P(K′t ≥ t2)

≤ t2P

( �tε′ �∑
i=1

Ri ≥ δt1/2+ε

)
+ t2P(τ θ

1 > �tε′ �)+ P

( �t2�∑
i=1

X′i ≤ t

)

for some ε′ ∈ (2ε, 1/2+ ε). This, together with Proposition 4 and the exponential Markov
inequality, implies that

P(|Yt −Y ′t | ≥ δt1/2+ε)≤ t2e−δt1/2+ε

E[eR]�tε
′ � + t2Ce−c�tε′ � + et

E[e−X′1 ]�t2�,

and therefore,

lim sup
t↑∞

t−2ε log P(|Yt −Y ′t | ≥ δt1/2+ε)

≤−min
{

lim inf
t↑∞ t−2ε(δt1/2+ε − �tε′ � log E[eR]), lim inf

t↑∞ c�tε′ �t−2ε,

− lim sup
t↑∞

t−2ε(t+ �t2� log E[e−X′1 ])
}

=−∞,

as desired.
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5.4. Proof of Proposition 3

Before we prove Proposition 3, let us collect concentration properties of the horizontal
displacement.

Lemma 8. We have κ := E[X′1]−1 ∈ (0,∞) and, for all ε > 0, there exist constants c1, c2 > 0
such that, for all t > 0,

P(K′t/t /∈ Bε(κ))≤ c1e−c2t. (14)

Proof of Lemma 8. First, note that

κ−1 =E[X′1]

≥E[X11{τ θ
1 = 1}]

= λ

∫ ∞

0
dr r2e−θr2

∫ θ

−θ

dϕ cos ϕ1

{
θ − π

2
≤ ϕ ≤ π

2
− θ

}

> 0,

since independence after one step is achieved precisely if the angle is in the interval
[θ − π/2, π/2− θ ]. Using Lemma 5 and Proposition 4 together with the Cauchy–Schwarz
inequality, we get

κ−1 =E[X′1]

=E

[
τ∑

i=1

Xi

]

≤E

[
τ∑

i=1

Ri

]

≤
∞∑

i=1

E[Ri1{τ ≥ i}]

≤
∞∑

i=1

(E[R
2
i ]P(τ ≥ i))1/2

≤
∞∑

i=1

(E[R
2
]C)1/2e−ci/2

<∞.

For the second part of the statement, note that we can bound

P(K′t/t /∈ Bε(κ))≤ P(K′t ≤ t(κ − ε))+ P(K′t ≥ t(κ + ε))

≤ P

( �t(κ−ε)�∑
i=1

X′i ≥ t

)
+ P

( �t(κ+ε)�∑
i=1

X′i < t

)
, (15)
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where we used the fact that K′t , as defined in (2), can also be represented as

K′t = sup

{
n > 0:

n∑
i=1

X′i < t

}
.

Now, by the exponential Markov inequality, for any s > 0,

lim sup
t↑∞

t−1 log P

( �t(κ−ε)�∑
i=1

X′i ≥ t

)
≤−s(1− (κ − ε)s−1 log E[esX′1 ]).

Using Lemma 5 and Proposition 4 together with the Cauchy–Schwarz inequality, we obtain

E[esX′1 ]≤E[e
∑τ

i=1 sRi]

=
∞∑

n=1

E[e
∑n

i=1 sRi1{τ = n}]

≤
∞∑

n=1

(E[e
∑n

i=1 2sRi]P(τ = n))1/2

≤
∞∑

n=1

(E[e2sR])n/2
√

Ce−cn/2,

which is finite for all 0 < s≤ s0 and for some s0 > 0, as a consequence of Lemma 5. Hence,
we can use dominated convergence to conclude that lims↓0 E[esX′1 ]= 1. Then, we have

lim
s↓0

s−1 log E[esX′1 ]= lim
s↓0

s−1 log (1+ (E[esX′1 ]− 1))

= lim
s↓0

s−1(E[esX′1 ]− 1)

=E[ lim
s↓0

s−1(esX′1 − 1)]

=E[X′1]

= κ−1.

Here, the third equality also follows from dominated convergence using the bound
s−1(esX′1 − 1) < s−1

0 (es0X′1 − 1) for all 0 < s≤ s0, where E[s−1
0 (es0X′1 − 1)] <∞. Therefore,

there exists c′1 > 0 such that

lim sup
t↑∞

t−1 log P

( �t(κ−ε)�∑
i=1

X′i ≥ t

)
<−c′1. (16)

Again, by using the exponential Markov inequality on the other term, we obtain, for all s > 0,

lim sup
t↑∞

t−1 log P

( �t(κ+ε)�∑
i=1

−X′i >−t

)
≤ s(1+ (κ + ε)s−1 log E[e−sX′1 ]).
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Since, by the dominated-convergence theorem, lims↓0 E[e−sX′1 ]= 1, we have

lim
s↓0

s−1 log E[e−sX′1 ]= lim
s↓0

s−1 log (1− (1−E[e−sX′1 ]))

= lim
s↓0
−s−1(1−E[e−sX′1 ])

=E[ lim
s↓0
−s−1(1− e−sX′1 )]

=E[− X′1]

=−κ−1.

Here, the third equality follows from the dominated-convergence theorem, using the bound
s−1

(
1− e−sX′1

)
< X′1, where X′1 has finite expectation. Therefore, there exists c′2 > 0 such that

lim sup
t↑∞

t−1 log P

( �t(κ+ε)�∑
i=1

−X′i >−t

)
<−c′2. (17)

Now, combining (15), (16), and (17) proves the lemma.

Proof of Proposition 3. Let us fix ε′ > 0 and note that

P(|Yκ
t −Y ′t | ≥ δt1/2+ε)≤ P

({∣∣∣∣∣
K′t∑

i=�tκ�+1

Y ′i

∣∣∣∣∣≥ δt1/2+ε

}
∩
{

κ ≤ K′t
t
≤ κ + ε′

})

+ P

({∣∣∣∣∣
�tκ�∑

i=K′t+1

Y ′i

∣∣∣∣∣≥ δt1/2+ε

}
∩
{

κ − ε′ ≤ K′t
t
≤ κ

})

+ P

(
K′t
t
�∈ Bε′ (κ)

)
,

(18)

where, by Lemma 8, lim supt↑∞ t−2ε log P(K′t/t �∈ Bε′ (κ))=−∞ and, hence, the third sum-
mand plays no role, by logarithmic equivalence. For the first summand in (18), since the Y ′i are
i.i.d., we have the bound

�t(κ+ε′)�∑
m=�tκ�+1

P

({∣∣∣∣∣
K′t∑

i=�tκ�+1

Y ′i

∣∣∣∣∣≥ δt1/2+ε

}
∩ {K′t =m}

)
≤

r1(t,ε′)∑
m=1

P

(∣∣∣∣∣
m∑

i=1

Y ′i

∣∣∣∣∣≥ δt1/2+ε

)
, (19)

where the number of summands in the above sum is r1(t, ε′) := �t(κ + ε′)� − �tκ�. Note that
the corresponding upper bound is valid also for the second summand in (18) with r1(t, ε′)
replaced by r2(t, ε′) := �tκ� − �t(κ − ε′)�. Furthermore, since lim supt↑∞ t−2ε log r(t, ε′)= 0,
where r(t, ε′)= r1(t, ε′)∨ r2(t, ε′), we have

lim sup
t↑∞

t−2ε log P(|Yκ
t −Y ′t | ≥ δt1/2+ε)≤ lim sup

t↑∞
t−2ε sup

0≤α≤ε′
log P

(∣∣∣∣∣
�tα�∑
i=1

Y ′i

∣∣∣∣∣≥ δt1/2+ε

)

≤ lim sup
t↑∞

t−2ε log P

(∣∣∣∣∣
�tε′�∑
i=1

Y ′i

∣∣∣∣∣≥ δt1/2+ε

)
,

https://doi.org/10.1017/apr.2025.10025 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.10025


22 P. P. GHOSH ET AL.

where we used the fact that, by symmetry and independence,

P

( �tα�∑
i=1

Y ′i ≥ δt1/2+ε

)
= 2P

( �tα�∑
i=1

Y ′i ≥ δt1/2+ε,

�tε′�∑
i=�tα�+1

Y ′i ≥ 0

)
≤ 2P

( �tε′�∑
i=1

Y ′i ≥ δt1/2+ε

)
,

and similar for P(
∑�tα�

i=1 Y ′i ≤−δt1/2+ε). Hence, using the moderate-deviation principle,
Proposition 2, we have

lim sup
t↑∞

t−2ε log P(|Yκ
t −Y ′t | ≥ δt1/2+ε)≤−Iε′

λ,θ (δ),

which tends to −∞ as ε′ tends to 0, as desired.

6. Proofs for the Moderate Deviations in Case θ = π/2

As we can see, for θ = π/2, the history set will never vanish, so we never observe inde-
pendence between consecutive steps. In this case, we define the renewal steps as in [6,
Section 4]. For a constant κ ≥ 6 and u ∈R

2, we define u→ := u+ (κ, 0). We set ς0 = 0 and
then iteratively define

ςj := inf

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n > ςj−1 :

Ln ≤κ,

n∑
i=ςj−1+1

Xi ≥κ + 1,

#
(Cπ/2(Vn)∩ B(Vn,κ + 1)∩Pλ

)= 1 and

#
(Cπ/2(V→n )∩ B(V→n , 1)∩Pλ

)= 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

We call the ςjth step the jth renewal step. At a renewal step, the width of the history set is
at most κ, and the condition

∑ςj
i=ςj−1+1 Xi ≥κ + 1 ensures that the history sets at different

renewal steps are disjoint. There is only one Poisson point in the set Cπ/2(Vςj )∩ B(Vςj ,κ + 1),
which is actually included in the subset Cπ/2(V→ςj

)∩ B(V→ςj
, 1). Therefore, this Poisson point

is the next point in our exploration, i.e. it is Vςj+1. Moreover, if we had started our exploration
from V→ςj

then Vςj+1 would still have been the next exploration point. As noted in [6], con-
ditional on being at the jth renewal step, this Poisson point Vςj+1 is uniformly distributed on
Cπ/2(V→ςj

)∩ B(V→ςj
, 1). Thus, for j≥ 1, the paths starting from V→ςj

and ending at Vςj+1 are i.i.d.
copies of the path starting at o until the first renewal step, with the following initial conditions.

(a) A single point is uniformly distributed in Cπ/2(o)∩ B(o, 1).

(b) The set
(Cπ/2((−κ, 0))∩ B((−κ, 0),κ + 1)

) \ (Cπ/2(o)∩ B(o, 1)
)

contains no points.

(c) An independent Poisson point process is placed on(Cπ/2((−κ, 0))∩ B((−κ, 0),κ + 1)
)c.

Let Z= (Z1, Z2) be the position of the path at the first renewal step. Then, writing

U′j+1 := Vςj+1 − Vςj ,

the sequence {U′j+1}j≥1 consists of i.i.d. copies of Z+ (κ, 0), as stated in [6, Proposition 4.5].
Furthermore, as in [6, Proposition 4.2], there exist constants c, C> 0 such that, for any j≥ 0
and any n≥ 1,

P(ςj+1 − ςj > n)≤ Ce−cn. (20)
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As earlier, we now define

K′t := sup{n > 0: ςn ≤Kt} (21)

as the index of the largest stopping time before Kt. In particular, writing

Y ′′t :=
K′t∑
i=2

Y′i,

where U′i =: (X′i,Y′i) in Cartesian coordinates, we have, for K′t ≥ 1,

Kt∑
i=1

Yi =
K′t∑
i=1

Y′i +
Kt∑

i=ςK′t+1

Yi =Y′1 +Y ′′t +
Kt∑

i=ςK′t+1

Yi. (22)

Note that, since Y′1 does not have the same distribution as the other Y′is, we have taken the
sum from i= 2 in the definition of Y ′′t to ensure that Y ′′t is a sum of i.i.d. random variables.
As earlier, for the moderate deviations, the difference between Yt and Y ′′t is irrelevant in the
following sense.

Proposition 5. For any λ > 0 and 0 < ε < 1/2, {t−1/2−εYt}t≥0 and {t−1/2−εY ′′t }t≥0 are expo-
nentially equivalent, i.e. for any δ > 0,

lim sup
t↑∞

t−2ε log P(|Yt −Y ′′t | ≥ δt1/2+ε)=−∞.

Note that we cannot use Lemma 5 to obtain a bound for the Yis in the case θ = π/2.
Therefore, we need the following result to prove Proposition 5.

Lemma 9. For any 0 < θ ≤ π/2, there exist two sequences of nonnegative random variables
{X̃i}i≥1 and {Ỹi}i≥1, defined on the same probability space as {(Xi, Yi)}i≥1, such that

(i) {X̃i}i≥1 are i.i.d. with P(X̃1 ≥ t)= e−λθ t2 for all t≥ 0, and
∑n

i=1 Xi ≤∑n
i=1 X̃i for all

n≥ 1 a.s.;

(ii) {Ỹi}i≥1 are i.i.d. with P(Ỹ1 ≥ t)= e−λθ t2/2 for all t≥ 0, and
∑n

i=1 Yi ≤∑n
i=1 Ỹi for all

n≥ 1 a.s.

Proof of Lemma 9. We treat the domination in the vertical and horizontal direction
separately. Let us start with the horizontal direction.

Part (i): Existence of {X̃i}i≥0.Let {Ui}i≥1 be the sequence of progress random variables.
Recall that we write Ui = (Xi, Yi) in Cartesian coordinates and Ui = (Ri, �i) in polar coor-
dinates. Recall further that V0 = o and Vk = (

∑k
i=1 Xi,

∑k
i=1 Yi) for all k≥ 1. Now, we set

Ṽ0 := V0 and define the sequences {Ṽk}k≥1, {W̃k}k≥1, and {X̃k}k≥1 using the following recursive
equations:
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0 = ˜0

1 = ˜ 1

˜1

˜ 2

FIGURE 3. A realization of part (i): existence of {X̃i}i≥0.

W̃k := arg min
{∣∣v− Ṽk−1

∣∣:v ∈P ∩Cθ (Ṽk−1)
}
,

X̃k := |W̃k − Ṽk−1| and

Ṽk :=
(

k∑
i=1

X̃i,

k∑
i=1

Yi

)

(see Figure 3 for an illustration). Namely, the sequence of new points {Ṽk}k≥1 is constructed
in such a way that it dominates the original navigation along the x axis, by considering X̃k to
be the maximum progress made along the x axis and the first coordinate of Ṽk to be the total
maximum progress made by the original navigation along the x axis.

Note that, by construction, for all k≥ 1 and for all 1≤ i≤ k− 1,

Cθ (Ṽk)∩ B(Ṽi, X̃i+1)=∅.

As a consequence, by the total independence of the underlying Poisson point process, {X̃k}k≥1
are i.i.d. Also, by construction,

P(X̃1 ≥ t)= e−λθ t2 .

Now, we show the domination by induction. First, note that X1 ≤ R1 = X̃1. Then, by assuming
that

∑k
i=1 Xi ≤∑k

i=1 X̃i, we note that

Cθ (Vk)⊇Cθ (Ṽk) ! W̃k+1.
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Therefore,

Xk+1 ≤ Rk+1 ≤ |W̃k+1 − Vk| ≤ |W̃k+1 − Ṽk| + |Ṽk − Vk| = X̃k+1 +
k∑

i=1

X̃i −
k∑

i=1

Xi,

which implies that
∑k+1

i=1 Xi ≤∑k+1
i=1 X̃i. This, by induction, proves Lemma 9(i).

Part (ii): Existence of {Ỹi}i≥0. Given an angle θ > 0, we define

Cu
θ := {y= (ry, ϕy):ry > 0, 0≤ ϕy ≤ θ}

and, for any v ∈R
2, we write Cu

θ (v) := v+Cu
θ . Then, similar to part (i), we set V̂0 := V0 and

define sequences {V̂k}k≥1, {Ŵk}k≥1, and {Ỹk}k≥1 using the recursive equations

Ŵk := arg min
{∣∣v− V̂k−1

∣∣:v ∈P ∩Cu
θ (V̂k−1)

}
,

Ỹk := |Ŵk − V̂k−1|, and

V̂k :=
(

k∑
i=1

Xi −
k∑

i=1

Yi cot θ +
k∑

i=1

Ỹi cos θ,

k∑
i=1

Ỹi sin θ

)
;

see Figure 4 for an illustration. Similar to above, {∑k
i=1 Ỹi sin θ}k≥1, the sequence of second

coordinates of V̂k, makes sure that the navigation stays dominated along the y axis, as Ỹk sin θ

is the maximum progress that can be made along the y axis starting from V̂k−1. Whereas the
first coordinates of V̂k are chosen in such a way that the domination holds, as described in (23).
Note that, by construction, for all k≥ 1 and for all 1≤ i≤ k− 1,

Cu
θ (V̂k)∩ B(V̂i, Ỹi+1)=∅.

Hence, by the independence of the Poisson point process in disjoint regions, {Ỹk}k≥1 are i.i.d.
Also, by construction,

P(Ỹ1 ≥ t)= e−λθ t2/2.

Now, we show the domination by induction. First, note that Y1 ≤ R1 sin θ ≤ Ỹ1 sin θ . Then, by
assuming that

∑k
i=1 Yi ≤∑k

i=1 Ỹi sin θ , we note that

Cθ (Vk)⊇Cu
θ (V̂k) ! Ŵk+1.

Therefore,

Yk+1

sin θ
≤ Rk+1 ≤ |Ŵk+1 − Vk| ≤ |Ŵk+1 − V̂k| + |V̂k − Vk|

= Ỹk+1 + 1

sin θ

(
k∑

i=1

Ỹi sin θ −
k∑

i=1

Yi

)
, (23)

which implies that
∑k+1

i=1 Yi ≤∑k+1
i=1 Ỹi sin θ . This, by induction, proves Lemma 9(ii), thus

completing the proof.
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0 = ˆ0

1

ˆ1
ˆ 1
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FIGURE 4. A realization of part (ii): existence of {Ỹi}i≥0.

Proof of Proposition 5. We can proceed as in the proof of Proposition 1. Note that, by (22),

|Yt −Y ′′t | ≤
∣∣∣∣∣

ς1∑
i=1

Yi

∣∣∣∣∣+max

{∣∣∣∣∣
Kt∑

i=ςK′t+1

Yi

∣∣∣∣∣,
∣∣∣∣∣

Kt+1∑
i=ςK′t+1

Yi

∣∣∣∣∣
}

and, therefore, by symmetry,

P(|Yt −Y ′′t | ≥ δt1/2+ε)≤ P

(∣∣∣∣∣
ς1∑

i=1

Yi

∣∣∣∣∣≥ 1

2
δt1/2+ε

)
+ P

(∣∣∣∣∣
Kt∑

i=ςK′t+1

Yi

∣∣∣∣∣≥ 1

2
δt1/2+ε

)

+ P

(∣∣∣∣∣
Kt+1∑

i=ςK′t+1

Yi

∣∣∣∣∣≥ 1

2
δt1/2+ε

)

= 2P

(
ς1∑

i=1

Yi ≥ 1

2
δt1/2+ε

)
+ 2P

( Kt∑
i=ςK′t+1

Yi ≥ 1

2
δt1/2+ε

)

+ 2P

( Kt+1∑
i=ςK′t+1

Yi ≥ 1

2
δt1/2+ε

)
,
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which, together with Lemma 9, yields

P(|Yt −Y ′′t | ≥ δt1/2+ε)

≤ 2P

(
ς1∑

i=1

Ỹi ≥ 1

2
δt1/2+ε

)
+ 4P

( ςK′t+1∑
i=ςK′t+1

Ỹi ≥ 1

2
δt1/2+ε

)

≤ 2P

(
ς1∑

i=1

Ỹi ≥ 1

2
δt1/2+ε

)
+ 4

�t2�∑
j=0

P

( ςj+1∑
i=ςj+1

Ỹi ≥ 1

2
δt1/2+ε,K′t = j

)
+ 4P(K′t > �t2�)

≤ 6P

(
ς1∑

i=1

Ỹi ≥ 1

2
δt1/2+ε

)
+ 4�t2�P

(
ς2∑

i=ς1+1

Ỹi ≥ 1

2
δt1/2+ε

)
+ 4P(K′t > �t2�)

≤ (6+ 4�t2�)P
( �tε′ �∑

i=1

Ỹi ≥ 1

2
δt1/2+ε

)
+ 6P(ς1 > �tε′ �)+ 4�t2�P(ς2 − ς1 > �tε′ �)

+ 4P

( �t2�∑
i=1

X′i < t

)

for some ε′ ∈ (2ε, 1
2 + ε). This, together with (20) and the exponential Markov inequality,

implies that

P(|Yt −Y ′′t | ≥ δt1/2+ε)≤ (6+ 4�t2�)e− 1
2 δt1/2+ε

E[eỸ1 ]�tε
′ �

+ (6+ 4�t2�)Ce−c�tε
′ � + 4et

E[e−X′1 ]�t2�,

and therefore,

lim sup
t↑∞

t−2ε log P(|Yt −Y ′′t | ≥ δt1/2+ε)

≤−min
{

lim inf
t↑∞ t−2ε

( 1
2δt1/2+ε − �tε′ � log E[eỸ1 ]

)
, lim inf

t↑∞ c�tε′ �t−2ε,

− lim sup
t↑∞

t−2ε(t+ �t2� log E[e−X′1 ]
)}

=−∞,

as desired.

Proof of Theorem 1, case θ = π/2. Using Proposition 5, it suffices to consider Y ′′t .
However, an argument similar to that in the proof of Propositions 2 and 3 gives us that, for
any 0 < λ and 0 < ε < 1/2, the process {t−1/2−εY ′′t }t≥0 obeys the moderate-deviation principle
with rate function

Iλ,π/2(x) := x2 E[Z1]

2E[Z2
2]

,
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and hence, setting

ρ(λ, π/2) := E[Z1]

2E[Z2
2]

gives us the required form. From the definition of moderate deviations, it follows that, by
scaling both the coordinates by

√
λ, we have

Iλ,π/2(x)= λεI1,π/2(xλ1/4−ε/2),

and hence,
ρ(λ, π/2)=√λρ(1, π/2).

This completes the proof of the theorem.

7. Proofs for the Large Deviations

7.1. The independent case 0 < θ ≤ π/4

Proof of Lemma 1. The statement follows from an application of the multivariate Cramér
theorem for empirical means of sequences of i.i.d. random variables that possess exponential
moments; see [7, Corollary 6.1.6]. In order to compute the exponential moments, we use polar
coordinates, i.e. consider U1 = (R, �) ∈R+ × [− π, π ). As already used earlier, the radius
follows a Rayleigh distribution, i.e.

P(R > r)= exp(−λθr2),

and we note that, due to the isotropy of the model, � is uniformly distributed in [− θ, θ ].
Hence,

E[exp(〈γ, U1〉)]=
∫ ∞

0
dr

1

2θ

∫ θ

−θ

dϕ exp(γ1r cos ϕ + γ2r sin ϕ − λθr2)λ2θr

= λ

∫ ∞

0
dr r exp(−λθr2)

∫ θ

−θ

dϕ exp(γ1r cos ϕ + γ2r sin ϕ),

(24)

as desired. In particular,

eJλ,θ (γ ) ≤ 2πλ

∫ ∞

0
dr r exp(−λθr2) exp(r(|γ1| + |γ2|)) <∞.

Since Jλ,θ is strictly convex and differentiable, by [14, Theorem 1], its Legendre transform
Jλ,θ is strictly convex and differentiable on {u ∈R

2 : Jλ,θ (u) <∞}.
Further note that, writing u= (ru, ϕu) in polar coordinates,

e−Jλ,θ (u) = inf
q≥0, α∈[−π,π ]

∫ ∞

0
dr

∫ θ

−θ

dϕ λr exp(−λθr2 + q[r cos (ϕ − α)− ru cos (ϕu − α)]),

and, if ϕu /∈ (−θ, θ ), then we can always choose α0 ∈ [− π, π ] such that, for all ϕ ∈ [− θ, θ ],
we have r cos (ϕ − α0)− ru cos (ϕu − α0)≤ 0. One choice of α0 for example is given by

α0 =
{

π/2+ θ if ϕu ∈ [θ, π ],

−π/2− θ if ϕu ∈ [− π,−θ ].
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Then, since ∫ ∞

0
dr

∫ θ

−θ

dϕ λr exp(−λθr2) <∞,

by the dominated-convergence theorem, we obtain

e−Jλ,θ (u) ≤ lim
q→∞

∫ ∞

0
dr

∫ θ

−θ

dϕ λr exp(−λθr2 + q[r cos (ϕ − α0)− ru cos (ϕu − α0)])

=
∫ ∞

0
dr

∫ θ

−θ

dϕ lim
q→∞ λr exp(−λθr2 + q[r cos (ϕ − α0)− ru cos (ϕu − α0)])

= 0.

Therefore, we get Jλ,θ (u)=∞ whenever ϕu /∈ (−θ, θ ). A similar calculation also gives us that
Jλ,θ (u)=∞ for ru = 0. This implies that Jλ,θ (u)=∞ for u /∈ Co

θ .
Now, we show that Jλ,θ (u) <∞ for u ∈ Co

θ . In this case, ru > 0 and ϕu ∈ (−θ, θ ). For this,
we pick 0 < η < π/16 small enough such that [ϕu − 4η, ϕu + 4η] ∈ (−θ, θ ) and define two
sets Aα , Bα as

Aα :=
{

(ru/( sin η),∞) if |α− ϕu| ≤ π/2+ η,

(0, ru sin η) if |α− ϕu|> π/2+ η,

and

Bα :=
{

[ϕu + 2η, ϕu + 3η] if α ∈ [ϕu, ϕu + π ],

[ϕu − 3η, ϕu − 2η] if α ∈ [ϕu − π, ϕu).

Here, we consider the range of α as [ϕu − π, ϕu + π ] instead of [− π, π ] for simplicity. Now,
for any α ∈ [ϕu − π, ϕu + π ], r ∈ Aα , and ϕ ∈ Bα , we have r cos (ϕ − α)− ru cos (ϕu − α)≥ 0.
Therefore,

e−Jλ,θ (u) ≥ inf
α∈[ϕu−π,ϕu+π ]

∫
Aα

dr
∫

Bα

dϕ λr exp(−λθr2)

= ηλ min

{ ∫ ru sin η

0
dr r exp(−λθr2),

∫ ∞

ru/( sin η)
dr r exp(−λθr2)

}

> 0,

which implies that, for all u ∈ Co
θ , we have Jλ,θ (u) <∞. This completes the proof.

In order to establish certain bounds, it will be convenient to also have a large-deviation
result for i.i.d. sequences of progress variables Ui = (Xi, |Yi|) at our disposal. For this, let Jλ,θ

denote the logarithmic moment-generating function of U1.

Lemma 10. The sequence of i.i.d. copies {Ui}i≥1 of the progress variable U1 ∈R×R+
satisfies the large-deviation principle with rate n and rate function

J λ,θ (u) := sup{〈γ, u〉 − Jλ,θ (γ ) : γ ∈R
2},

where Jλ,θ (γ ) <∞ for all γ ∈R
2.
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Proof of Lemma 10. Using the same arguments as in the proof of Lemma 1, we have

E[exp(〈γ, U1〉)]= 2λ

∫ ∞

0
dr r exp(−λθr2)

∫ θ

0
dϕ exp(γ1r cos ϕ + γ2r sin ϕ) <∞,

which, together with Cramér’s theorem, gives the result.

Proof of Theorem 2. The key observation is that the sequence of progress variables {Ui}i≥1
is i.i.d. for θ < π/4. Indeed, note that, for all i≥ 1, (Cθ (Vi)∩ B(Vi, |Ui+1|))∩Cθ (Vi+1)=∅.
Hence, in every step, the navigation discovers a previous undiscovered region in space and the
corresponding Poisson point clouds are stochastically independent. However, even though the
progress steps are i.i.d., the statement is not a direct application of, e.g. Cramér’s theorem,
since {Yt}t≥0 only tracks the vertical displacement; however, there is also a random horizon-
tal displacement. Let us write Ui = (Xi, Yi), where Xi is the first and Yi the second Cartesian
coordinate of Ui and recall that Kt := sup{n > 0:

∑n
i=1 Xi < t} denotes the number of steps

the navigation takes before reaching t along the x axis.
Step 1: Lower bound for upper tail. Let us start with the lower bound for the upper tail. It

suffices to consider a > 0. Then, for all 1 > b > 0, c > 0, and α > β > 0,

P(Yt > at)≥ P(Yt > at, �βt� ≤Kt < �αt�)

≥ P

( �βt�∑
i=1

Yi > at+
�αt�∑

j=�βt�+1

|Yj|, bt <

�βt�∑
i=1

Xi < t,
�αt�∑

j=�βt�+1

Xj > (1− b)t

)

≥ P

( �αt�∑
j=�βt�+1

|Yj|< ct,
�αt�∑

j=�βt�+1

Xj > (1− b)t

)
P

( �βt�∑
i=1

Yi > (a+ c)t, bt <

�βt�∑
i=1

Xi < t

)

by independence. Consequently, for δ= α− β,

lim inf
t↑∞ t−1 log P(Yt > at)≥−δ inf{J θ,λ(x, y) : x > (1− b)/δ, y < c/δ}

− β inf{Jθ,λ(x, y) : b/β < x < 1/β, y > (a+ c)/β}.
Sending b to 1 and fixing δ = δ(c) such that c/δ >E[|Y1|], the first summand vanishes and we
have

lim inf
t↑∞ t−1 log P(Yt > at)≥−βJθ,λ(1/β, (a+ c)/β).

Sending c to 0, we arrive at

lim inf
t↑∞ t−1 log P(Yt > at)≥− inf{βJθ,λ(1/β, a/β) : β > 0}.

This expression reflects that the process has to find the optimal compromise between making
the right number of steps for the displacement along the y axis to be not too unlikely as well as
hitting the time t along the x axis.

Step 2: Upper bound for upper tail. For the upper bound, we can proceed similarly. For all
α > 0, we can bound
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P(Yt ≥ at)≤ P

( Kt∑
i=1

Yi ≥ at− |YKt+1|, Kt ≤ �αt�
)
+ P(Kt > �αt�)

=
�αt�∑
m=0

P

(
m∑

i=1

Yi ≥ at− |Ym+1|, Kt =m

)
+ P(Kt > �αt�)

≤
�αt�∑
m=0

P

(
m∑

i=1

Yi ≥ t(a− ε), t(1− ε)≤
m∑

i=1

Xi < t

)
+ P(Bc

ε(t))+ P(Kt > �αt�),

where Bε(t)= {Xm+1 ≤ εt, |Ym+1| ≤ εt} with ε > 0. Note that

lim sup
t↑∞

t−1 log P(Bc
ε(t))=−∞,

since the upper tails of |Ui| are of order O(−t2) on the exponential level. Furthermore,

lim sup
α↑∞

lim sup
t↑∞

t−1 log P(Kt > �αt�)= lim sup
α↑∞

lim sup
t↑∞

t−1 log P

( �αt�∑
i=1

Xi < t

)
=−∞,

and hence, the error terms play no role on the exponential scale with rate t. Now, let (tn)n≥0 be
a subsequence such that

lim sup
t↑∞

t−1 log
�αt�∑
m=0

P

(
m∑

i=1

Yi ≥ t(a− ε), t(1− ε)≤
m∑

i=1

Xi < t

)

= lim
n↑∞ t−1

n log
�αtn�∑
m=0

P

(
m∑

i=1

Yi ≥ tn(a− ε), tn(1− ε)≤
m∑

i=1

Xi < tn

)

and define

βn,ε := argmax

{
P

( �βtn�∑
i=1

Yi ≥ tn(a− ε), tn(1− ε)≤
�βtn�∑
i=1

Xi < tn

)
: 0≤ β ≤ α

}
,

where we simply take βn,ε to be the smallest solution in case of ambiguity. Then, for a suitable
further sub-sequence (tnk )k≥0, we have

lim
n↑∞ t−1

n log
�αtn�∑
m=0

P

(
m∑

i=1

Yi ≥ tn(a− ε), tn(1− ε)≤
m∑

i=1

Xi < tn

)

≤ lim sup
n↑∞

t−1
n log P

( �βn,ε tn�∑
i=1

Yi ≥ tn(a− ε), tn(1− ε)≤
�βn,ε tn�∑

i=1

Xi < tn

)

= lim
k↑∞ t−1

nk
log P

( �βnk ,ε tnk �∑
i=1

Yi ≥ tnk (a− ε), tnk (1− ε)≤
�βnk ,ε tnk �∑

i=1

Xi < tnk

)
,
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and we note that (βnk,ε)k≥0 must contain a convergent sub-sequence (βnkl ,ε
)l≥0 with limit 0≤

β∗ε ≤ α. Hence,

lim
l↑∞ t−1

nkl
log P

( �βnkl
,ε tnkl

�∑
i=1

Yi ≥ tnkl
(a− ε), tnkl

(1− ε)≤
�βnkl

,ε tnkl
�∑

i=1

Xi < tnkl

)

≤− inf{βJθ,λ

(
1/β, a/β

)
: β > 0},

since lim supt↑∞ t−1 log�αt� = 0 and we could use continuity.
Step 3: General sets. Note that, by symmetry, P(Yt ≥ at)= P(Yt ≤−at) and, hence, for

O⊂R
2 open, we find that, for all z= (x, y) ∈O, there exists εz > 0 such that B̄εz (z)⊂O. In

particular, for all z ∈O,

P(t−1Yt ∈O)≥ P(z− εz < t−1Yt < z+ εz)= P(t−1Yt >−z− εz)− P(t−1Yt ≥−z+ εz),

where the rate to zero is dominated by the first summand. Taking an infimum over z ∈O gives
the desired result. The upper bound can be proved similarly.

Step 4: Scaling. If we denote by Yλ,t the vertical displacement at time t in the navigation
based on a Poisson point process with intensity λ > 0, then, by scaling both the coordinates by√

λ, we find that Yλ,t and Y1,
√

λt/
√

λ are equal in distribution. Therefore, for any x > 0,

Iλ,θ (x)=− lim
t↑∞ t−1 log P(t−1Yλ,t > x)

=− lim
t↑∞

√
λ(
√

λt)−1 log P((
√

λt)−1Y1,
√

λt > x)

=√λI1,θ (x).

By a similar calculation, we also find that, for any x < 0, Iλ,θ (x)=√λI1,θ (x). This proves the
theorem.

7.2. The dependent case π/4 < θ < π/2

Proof of Lemma 3. The proof follows again from an application of the multivariate Cramér
theorem for empirical means of sequences of i.i.d. random variables; see [7, Corollary 6.1.6].
We need to show existence of γ = (γ1, γ2) ∈R

2 \ {0}, such that J′λ,θ (γ ) <∞, but this is an
immediate consequence of Lemma 2.

Proof of Lemma 4. Observe that if, for all 1≤m≤ n, �m ∈ (π/2− θ, θ ] then, for all 1≤
m≤ n, Hm �= ∅, which then ensures that τ θ

1 > n. Therefore,

P(τ θ
1 > n)≥ P(�m ∈ (π/2− θ, θ ] for all 1≤m≤ n).

Note that, conditioned on Vm−1, Rm and Hm−1, �m is uniformly distributed on the set

{ϕ ∈ [− θ, θ ] : Vm−1 + (Rm, ϕ) /∈Hm−1}.
Hence, with � denoting the Lebesgue measure,

P(�m ∈ (π/2− θ, θ ]|Vm−1, Rm, Hm−1)= �({ϕ ∈ (π/2− θ, θ ] : Vm−1 + (Rm, ϕ) /∈Hm−1})
�({ϕ ∈ [− θ, θ ] : Vm−1 + (Rm, ϕ) /∈Hm−1}) .
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Also, note that if, for all 1≤ i < m, �i > 0 then Cu
θ (Vm−1)∩Hm−1 =∅. Therefore, in this case,

�({ϕ ∈ (π/2− θ, θ ] : Vm−1 + (Rm, ϕ) /∈Hm−1})
�({ϕ ∈ [− θ, θ ] : Vm−1 + (Rm, ϕ) /∈Hm−1}) ≥ �((π/2− θ, θ ])

�([− θ, θ ])
= 2θ − π/2

2θ
= 4θ − π

4θ
.

As a result, we find that

P(�m ∈ (π/2− θ, θ ]|�i ∈ (π/2− θ, θ ] for all 1≤ i < m)≥ (4θ − π )/(4θ ),

and thus,

P(τ > n)≥ P(�m ∈ (π/2− θ, θ ] for all 1≤m≤ n)

=
n∏

m=1

P(�m ∈ (π/2− θ, θ ]|�i ∈ (π/2− θ, θ ] for all 1≤ i < m)

≥ ((4θ − π )/(4θ ))n,

which completes the proof.

Proof of Theorem 3. We proceed via several steps. First, note that, for all δ > 0,

lim sup
t↑∞

t−1 log P
(|Yt − Ŷ ′t | ≥ δt

)=−∞,

where Ŷ ′t := ∑Kt
i=1 Yi, since

P
(|Yt − Ŷ ′t | ≥ δt

)≤ P(|YKt+1|> δt)

≤ P(Kt ≥ �t�2)+ P

( �t�2

max
i=1

|Yi|> δt

)

≤ P

( �t�2∑
i=1

Xi < t

)
+ P

( �t�2

max
i=1

|Yi|> δt

)

≤ P

( �t�2∑
i=1

Ri cos θ < t

)
+ P

( �t�2

max
i=1

Ri > δt

)

≤ et
E[e−R cos θ ]�t�2 + t2e−λ(θ∧(π/2−θ))δ2t2 ,

and hence, for the large deviations, we can focus on Ŷ ′t . For this, as in (3), we can further split
Ŷ ′t into

Ŷ ′t =
K′t∑

i=1

Y ′i +
Kt∑

j=τ θ

K′t
+1

Yj =: Y ′t + Ŷt.

The first summand is a sum of i.i.d. segments, but the second summand is a sum of dependent
random variables. The challenge comes from the fact that all the involved random variables
Y ′i , Ŷt have exponential tails and, therefore, contribute on the large-deviation scale t.
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Step 1: Upper bound for upper tail. For all α > 0, we can bound

P(Ŷ ′t ≥ at)≤ P

( K′t∑
i=1

Y ′i + Ŷt ≥ at, K′t ≤ �αt�
)
+ P(K′t > �αt�)

≤ sup0<β≤α αtP

( �βt�∑
i=1

Y ′i + Ŷt ≥ at, K′t = �βt�
)
+ P(K′t > �αt�),

where the second summand plays no role on the exponential scale with rate t since

lim sup
α↑∞

lim sup
t↑∞

t−1 log P(K′t > �αt�)= lim sup
α↑∞

lim sup
t↑∞

t−1 log P

( �αt�∑
i=1

X′i < t

)
=−∞.

Similarly, for all 0 < β ≤ α,

lim sup
γ↑∞

lim sup
t↑∞

t−1 log P

( �βt�∑
i=1

Y ′i > γ t

)
=−∞

and

lim sup
δ↑∞

lim sup
t↑∞

t−1 log P(τ θ
1 > δt)=−∞,

and hence, it suffices to further bound as

P

( �βt�∑
i=1

Y ′i + Ŷt ≥ at, K′t = �βt�
)

≤ sup|b|<γ, c<1 γ t2P

( �βt�∑
i=1

Y ′i =̂ bt,
�βt�∑
i=1

X′i =̂ ct

)

× supd≤δ δtP

( �dt�∑
i=1

Yi ≥ (a− b)t,
�dt�∑
i=1

Xi < (1− c)t,
�dt�+1∑

i=1

Xi ≥ (1− c)t, τ θ
1 > dt

)

+ P

( �βt�∑
i=1

Y ′i > γ t

)
+ P(τ θ

1 > δt),

where we write x =̂ y if and only if �x� = �y� and use independence. Now, we can combine
Assumption 1 and Lemma 3 to obtain

lim sup
t↑∞

t−1 log P(Ŷ ′t ≥ at)

≤− inf
b∈R, c∈(0,1)

{
inf{βJ ′λ,θ (c/β, b/β) : β > 0} + inf{dHλ,θ ((1− c)/d, (a− b)/d) : d > 0}},

as desired.
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Step 2: Lower bound for upper tail. Next, we consider the lower bound for the upper tail
with a > 0. Then, for b ∈R, 0 < c < 1 and β, d > 0,

P(Ŷ ′t > at)≥ P

( K′t∑
i=1

Y ′i > bt, K′t = �βt�, Ŷt > (a− b)t

)

≥ P

( �βt�∑
i=1

Y ′i > bt,
�βt�∑
i=1

X′i =̂ ct

)

× P

( �dt�∑
i=1

Yi > (a− b)t,
�dt�∑
i=1

Xi < (1− c)t,
�dt�+1∑

i=1

Xi ≥ (1− c)t, τ θ
1 > �dt�

)
,

where we used independence. Consequently,

lim inf
t↑∞ t−1 log P(Ŷ ′t > at)≥−βI ′λ,θ (c/β, b/β)− dHλ,θ ((1− c)/d, (a− b)/d).

Optimizing first with respect to β and d in the individual summands and then with respect to
b, c in the joint expression, we arrive at the desired lower bound that matches the upper bound.

Step 3: General sets. Using symmetry and the previous steps, we can follow the exact
same arguments as in the independent case, step 4 in the proof of Theorem 2, to arrive at the
large-deviation principle.

Step 4: Scaling. A scaling argument similar to that in the proof of Theorem 2 implies that
I ′λ,θ (x)=√λI ′1,θ (x) for all x ∈R.

Appendix A. Details for Remark 1

Let us finally present some more details for Remark 1. Let 0 < θ ≤ π/4 and note that γ �→
Jλ,θ is strictly convex and twice differentiable. Hence, fixing x, with |x|< tan θ , and writing
ζ = 1/β, for every ζ > 0, there exists a unique γ (ζ ) such that

J (ζ ) := Jλ,θ (ζ, ζx)= 〈γ (ζ ), (ζ, ζx)〉 − Jλ,θ (γ (ζ )),

where γ (ζ ) is twice differentiable, due to the explicit-function theorem, and satisfies

ζ = E[exp(〈γ (ζ ), U〉)X]

E[exp(〈γ (ζ ), U〉)] and ζx= E[exp(〈γ (ζ ), U〉)Y]

E[exp(〈γ (ζ ), U〉)] , (A.1)

where we suppressed the dependence on λ and θ in the notation and let U = (X, Y) represent
the random variable for the first step. In particular, the minimizing of ζ = ζ (x) in the definition
of Iλ,θ (x) satisfies

0=− 1

ζ 2
J (ζ )+ 1

ζ
J̇ (ζ )=− 1

ζ 2
J (ζ )+ 1

ζ
(γ1(ζ )+ xγ2(ζ )),

where we used (A.1). In other words, J (ζ )= ζγ1(ζ )+ ζxγ2(ζ )= 〈γ (ζ ), (ζ, ζx)〉, which
implies that E[exp(〈γ (ζ (x)), U〉)]= 1 and, moreover,

Iλ,θ (x)= �1(x)+ x�2(x),
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where we abbreviated �1(x) := γ1(ζ (x)) and �2(x) := γ2(ζ (x)). This in particular provides us
with a representation of the large-deviation rate function in terms of the unique solution to
(A.1). Hence,

Ïλ,θ (0)= �̈1(0)+ 2�̇2(0).

Now, in order to analyze this, note that, by symmetry, Iλ,θ (0)= 0 implies that
�1(0)= �2(0)= 0 and, hence, using the left-hand side of (A.1), ζ (0)=E[X]. Also, note that
İλ,θ (0)= 0 implies that �̇1(0)= 0. Considering the first derivative on the left-hand side of
(A.1), we have

ζ̇ (x)= E[exp(〈�(x), U〉)X〈�̇(x), U〉]
E[exp(〈�(x), U〉)] − E[exp(〈�(x), U〉)X]E[exp(〈�(x), U〉)〈�̇(x), U〉]

E[exp(〈�(x), U〉)]2
,

which implies that ζ̇ (0)=E[X〈�̇(0), U〉]−E[X]E[〈�̇(0), U〉]= �̇1(0)V[X]= 0. By symmetry,
it is immediate that, for the right-hand side of (A.1),

ζ̇ (x)x+ ζ (x)

= E[exp(〈�(x), U〉)Y〈�̇(x), U〉]
E[exp(〈�(x), U〉)] − E[exp(〈�(x), U〉)Y]E[exp(〈�(x), U〉)〈�̇(x), U〉]

E[exp(〈�(x), U〉)]2
,

and hence, E[X]= ζ (0)=E[Y〈�̇(0), U〉]−E[Y]E[〈�̇(0), U〉]= �̇2(0)V[Y], that is, �̇2(0)=
E[X]/E[Y2]. Furthermore, considering the left-hand side of (A.1), we have

ζ̈ (x)=E[exp(〈�(x), U〉)X〈�̇(x), U〉2]+E[exp(〈�(x), U〉)X〈�̈(x), U〉]
E[exp(〈�(x), U〉)]

− 2
E[exp(〈�(x), U〉)X〈�̇(x), U〉]E[exp(〈�(x), U〉)〈�̇(x), U〉]

E[exp(〈�(x), U〉)]2

− E[exp(〈�(x), U〉)X]
(
E[exp(〈�(x), U〉)〈�̇(x), U〉2]+E[exp(〈�(x), U〉)〈�̈(x), U〉])

E[exp(〈�(x), U〉)]2

+ 2
E[exp(〈�(x), U〉)X]E[exp(〈�(x), U〉)〈�̇(x), U〉]2

E[exp(〈�(x), U〉)]
E[exp(〈�(x), U〉)]4

,

which gives a representation of �̈1(0) in terms of mixed moments,

ζ̈ (0)=E[X〈�̇(0), U〉2]+E[X〈�̈(0), U〉]− 2E[X〈�̇(0), U〉]E[〈�̇(0), U〉]
−E[X]

(
E[〈�̇(0), U〉2]+E[〈�̈(0), U〉])+ 2E[X]E[〈�̇(0), U〉]2

= �̇2(0)2
E[XY2]+ �̈1(0)E[X2]−E[X]

(
�̇2(0)2

E[Y2]+ �̈1(0)E[X]
)

= �̇2(0)2(E[XY2]−E[X]E[Y2])+ �̈1(0)V[X].

Putting things together, we get the representation

Ïλ,θ (0)=
(

ζ̈ (0)− (E[XY2]−E[X]E[Y2])E[X]2

E[Y2]2

)
/V[X]+ 2E[X]/E[Y2].
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In order to see that indeed ρλ,θ �= Ïλ,θ (0)/2, first note that ζ̈ (0)≤ 0 since, for a deviation event
in the vertical direction, it is not beneficial to increase the number of horizontal steps. This
would increase the averaging effect and would make it harder to achieve the vertical deviation.
Hence,

Ïλ,θ (0)

2
≤ E[X]

E[Y2]
− (E[XY2]−E[X]E[Y2])E[X]2

2E[Y2]2V[X]

= ρλ,θ

(
2− (E[XY2]−E[X]E[Y2])E[X]

E[Y2]V[X]

)
,

and it suffices to show that

Cov(X, Y2)E[X] >E[Y2]V[X].

However, using the moment-generating function (24), we can compute the left- and right-hand
side of this, for example, for θ = π/4 and λ= 2, numerically to see that it can be satisfied.
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