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AN EXTENSION-RESTRICTION THEOREM FOR WEIGHTED BESOV SPACES
DALIAN JIN, LIGUANG LIU, AND SUQING WU*

ABSTRACT. In this paper, the authors establish an extension-restriction theorem between homo-
geneous weighted Besov spaces and weighted mixed-Riesz potential spaces. This general frame
covers both the classical Besov spaces and their logarithmic analogues.

1. INTRODUCTION AND MAIN RESULTS

1.1. A.brief historical background. For s € (0, o) and p, g € [1, 00), the homogeneous Besov
space A, (R") is defined to be the set of all locally integrable functions f on R" such that

q/p dh 1/q
£l = [ f ( f DL fn)| dx) ] < oo,
P4 R~ Rn |h| 4

where | s] denotes the largest integer no more than s and for any k € N the symbol D f repre-
sents the k-th difference of f, that is,

k
(1.1) Df f(x) := Z(—l)k_m(k)f(x+mh).
m=0 m
The inhomogeneous Besov space A q(R”) is the intersection of L”(R") and AIS,’ q(R”), endowed
with the norm
1A @m = I1fllLr@e + ||f||A,§’q(Rn)-

When p = g, the space A) (R") is known as the fractional Sobolev space and also called
Aronszajn, Gagliardo or Slobodeckij spaces in literature. We refer the readers to [38, 45] and
[14]] for detailed expositions of Besov spaces.

Besov spaces arise naturally as the trace of the Bessel potential function spaces. For an
integrable function f on R”, its Fourier transform f is defined by setting

f©& =] f(xeF*dx forall &eR"
Rn
Recall that, for s € (0, 00) and p € [1, o), the Bessel potential space L!(R") is defined by
LYRY) ={Gy = f: fe PR},
where G; is the kernel of the Bessel potential whose Fourier transform is
Gy(x) == (1 +[x*)"2 forall xeR".
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If u = G, = f for some f € LP(R"), then define
el 2y == W 1oy
In particular, if p € (1,00) and k € N, then L] (R") coincides to the classical Sobolev space
Wk P(R") and
s regey = N0 ullncery = Nl g ey
lal<k
Note that Aiz(R") = L2(R") (see [41]). For p € (1,00), the Besov space A, ,(R") coincides
with the trace (restriction to R") of the Bessel potential function spaces Lf . /p(R”“) (see, for
example, [23, Theorem 11.1] or [45, p. 138, (46)]).

The well-known extension-restriction theorem of Stein (see [42] or [43, p. 193]) says that,
under s € (0, 00), p € (1, 00) and m > n, there exist a bounded linear extension operator
. N n P m
&: A, ,R") > LH(m_n)/p(R )
and a bounded linear restriction operator
R: LP

s+(m-n)/p

R™) — A, ,R")
such that
Ro&E=id.

This extension-restriction result was proved by Gagliardo [25] when s = 1 and p € (1, o), and
by Aronszajn—Smith [4]] when s € (0, o) and p = 2.

Adams [1] established an analogous extension-restriction theorem for general Besov spaces
by terms of the mixed-Riesz potential spaces. For § € R and p,q € (1, 00), the mixed-norm
Lebesgue space LI(L”)(R?") is consisting of all locally integrable functions f on R?" such that

q/p 1/q
||f||Lq(LP)(R2") = [f (f |f(x, )IP dx) dy
R \JR~

< 0
and the mixed-Riesz potential space ig’q(RZ”) is defined by

L@ = () PP f 2 f € LR,

b

where Adg» = Z?Zl 63 is the Laplace operator on R*". Adams [[I, Theorem 5.2] (see also [2,
Theorem A]) show that there exist a bounded linear extension operator

E: Ay RY - L0 (R

s+n/q

and a bounded linear restriction operator
R: L0 R - A (R

s+n/q

such that
Ro&E =1id.

It should be remarked that the study of the mixed-norm Lebesgue spaces can be traced back
to [S, 32] and has attracted lots of attention recently (see [8, 9} 10, 33]]). Moreover, the afore-
mentioned extension-restriction theorem on Besov spaces can further be applied to establish
capacitary inequalities and embedding properties of Besov spaces (see [} 2]).

Note that functions in the Besov space A;, ,R") enjoy a polynomial smoothness |A|*, but func-
tion spaces with generalized smoothness have also attracted lots of attention since Gol’dman
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[26] 27] and Kalyabin [34, 35]]. We refer the reader to [22] for a review on the earlier develop-
ment on this topic. In particular, Edmunds and Haroske [[19} 20, 30, 31] introduced and investi-
gated the logarithmic Besov spaces with both polynomial smoothness and logarithmic smooth-
ness (see also [6, [7, 21} 36]). Recently, Cobos-Dominguez-Triebel-Tikhonov [11} 12, [13} 16]]
focus on the limiting case of the logarithmic Besov spaces which has polynomial smoothness
zZero.

Motivated by the above discussion, our main goal in this paper is to extend the extension-
restriction theorem of Stein [42] and Adams [1] to Besov type spaces with generalized smooth-
ness. We will consider a general Besov space with a radial weight w acting on the variable |A]
(see Definition [T.1] below), so that to cover both classical Besov spaces and logarithmic Besov
spaces. Upon introducing a weighted mixed-Riesz potential space (see Definition [I.4] below),
we are aiming to establish an extension-restriction theorem between homogeneous weighted
Besov spaces and weighted mixed-Riesz potential spaces, which can recover Stein [42, 43] and
Adams [[1] (see also Adams and Xiao [2]]). Such an extension-restriction theorem is supposed to
be useful in the further study of capacitary inequalities involving the weighted Besov capacity.

1.2. Weighted Besov spaces and weighted mixed-Riesz potential spaces. A weight is a pos-
itive locally integrable function on R”. For a weight w and a number p € (0, o), the weighted
Lebesgue space LI (R™) is defined to be the set of all Lebesgue-measurable functions f on R”

such that
1/p
W1l r ey 2= ( [ F(x)” w(x) dx) < oo,
Rll
If w = 1, then we simply write L”(R") and || - ||z»®». The weighted Besov space is defined as
below.

Definition 1.1. Let p, g € [1,), s € (0,00), k € N and w be a weight on R". For any
Lebesgue-measurable function f on R”", set

1/q
DS £1L, e
1l qan 1= ( f |h|"—+LW()W(h) dn| .
o R~

s, k

.q,w(R") is defined to be the collection of all func-

The inhomogeneous weighted Besov space A
tions f € LP(R") such that

”f”A;’,];.W(R”) = ”f“LP(R") + ”f”/\;,l;’w(]gn) < o0,

The homogeneous weighted Besov space A;,';,W(R”) is defined to be the completion of C"(R")
under the semi-norm || - || ASE @) where C°(R") is the space of all infinitely differentiable

functions on R" with compact support. In particular, if k¢ = |s] + 1, then we simply write
A;,, q’W(R”) and A;’ q’w(R”), respectively.
Remark 1.2. The reasonability of Definition[I.1|can be seen from Lemma[2.2]below. Moreover,
we present here a four-fold comment on Definition .1}
(i) If w = 1 and k = |s| + 1, then Definition[I.T|defines ‘the classical inhomogeneous Besov
space A}, ,(R") and the homogeneous Besov space A} (R").
(1) If w(h) = (log(e + 1/]h]))” with h € R" and y € R, then AIS,’ q,w(R”) is the logarithmic
Besov space that has been systematically studied in [30, 31} 19,20, 16, [7, 21} 36].
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(iii) The spaces A‘;, aw®Dand Aj | (R") are known as Besov spaces of generalized smooth-
ness in literature; see Section [2.3] below for more details. Let p, g € [1, ), k € N and
A:(0,1) — [0, c0) be a non-decreasing, continuous function satisfying lim,_,o A(¢) = 0.
Recall that Farkas and Leopold [22] introduced the Besov space Bf,’ ,R") with general-

ized soomthness A, which is defined to be the set of all f € L”(R") such that

fl (Suplhkt ||D];,f||U(R"))q dA() " < 00
0 A1) A1)

It is worth noting that when A is differentiable and

A'(1)
/l(t)l+q

w(t) = 1'% for all ¢ € (0, 1),
then the space B, ,(R") falls into the scope of Deﬁnition

(iv) Recall that, for p, g € [1,00] and a weight 4 : R, — R,, Ansorena-Blasco [3] define
the space A" “(R") to be the set of all measurable functions f on R”" such that

1fC+R) = fOlNL@n dh
q —_ P(R")
”f”A/Il)’q(Rn) — f /l(lhl)q |h|n < 00,

with a usual modification made when g = co. Note that if s € (0, 1) and

_ AP 0
ﬂ(lhl) = W forall 1 € R ,

then AP (R") = A3L L (R").

Definition 1.3. Let p, g € [1, o) and w be a weight on R”. Then the weighted mixed Lebesgue
space LL(L?)(R?*") is defined to be the collection of all measurable functions f on R** satisfying

qlp g
e orymany == (f ( [f(x, I dx) w(y) d)’) < 0o,
R}’l R’l
Let S(R?") be the space of Schwartz functions on R?", consisting of all functions f € C*(R>")
such that

Puma(f) = sup (1 + |x)M|0* f(x)| < 0o forany M € Z, and a € Z2".

xeR2n

Denote by S’(R?") the dual space of S(R?"), equipped with the weak-* topology. Let S.,(R*")
be the space of all Schwartz functions ¢ with the property

f X’p(x)dx =0
RZn

for all multi-indices y € Z2". Denote by S’ (R*") the dual space of S.,(R*") under the topology
inherited from S(R>*), and it is known that (see [39, §2.4.1.4] or [29, Proposition 1.1.3])

SLERM) = S'R™)/PR™),

where P(R?") is the polynomial space on R?".
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For the moment, we adopt the notation * and V' to denote the Fourier transform and its inverse
on R?". Given any 8 € R, the fractional Laplace operator (—4z2:)?/> can be defined on S(R*") as
follows: for any ¢ € S(R*"),

~ \%
(=def¢ = (2l - 1P 3()) -
Of course, (—Ag2)?¢ € S (R?) when ¢ € So.(R?"). Moreover, if f € S’ (R?"), then we have
by duality that

(1.2) <(—AR2n)ﬁ/2 f, ¢> = < 1, (—ARzn)ﬁﬂqs) for all ¢ € S (R™).
Definition 1.4. Let p € [1, o), g € (1, o), 8 € R and w be a weight on R”. Then the weighted
mixed-Riesz potential space is defined by setting
Ly R = f 1 f = (~d)PP¢ with ¢ € LI(LN)R™),
equipped with the norm
||f||[§*‘1'“’(R2n) = ||¢”L?V(LP)(R2")'
If 8 = 0, then we take it for granted that £"*"(R*") = L (L")(R™).

Remark 1.5. Let p € [1, o) and ¢ € (1, o0). For general functions ¢ € LI (L")(R*"), the
element (—4g2)#/?¢ is understood as in (I.2). This is reasonable because of the continuous
embedding L{(L7)(R*") — S'(R?") (see Lemma2.1]below). If 8 € (0, 2n), then (—Ag2) /% is
known as the Riesz potential operator on R?" and it has an integration kernel (see [43] p. 117])

8—2n
e ] BY
$rr(E)
thereby leading to that for all ¢ € S(R*") and for all x € R*",

1—-( 2n2—ﬂ)

Aoy P2 — 7@ _ L B-2n
(13) (=2 2g) (x) = 15" % () (—yfﬂnr(g)] fR =y dy.

I (x) := (

Clearly, if ¢ € C(R?"), then Iéf") x¢ e .Eg %" (R?"), which induces (see Corollarybelow)

-1l g g w g2my

Ly @ =1 ¢ pe @)

To ensure the validity of the integral expression ((1.3)) for general locally integrable functions ¢,
one needs to require that

f f 1[(32")(x = Moyl dxdy < oo

RZ" Rz"

for all ¥ € S(R*), so that the Fubini theorem can be applied to derived that
<(_AR2,,)_/5/2¢’ l//> = <¢, (_ARZH)_ﬁ/zl//>

- [ ot ( | 1,?")<x—y)w<y>dy) dx
R2n R2n

= f ( f Ig”)(y—X)fﬁ(x) dX) Y(y)dy
RZn RZn
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=" 0. 0)

and, hence, the integral definition of (—4g2)#/?¢ in (T.3)) coincides with the one in (T.2)) as a
distribution in S’ (R*").

1.3. Main results. We first recall the classical Muckenhoupt weight class (see [28, Chapter 7]).
A weight w is said to be an A, weight if

p-1
[Wla, ::Cubiug‘lw(mlﬂf W(x)dx)(|Q|f el pldx) <o aspee

and

1 -1

(Wla, ;= sup |— | wx)dx]lw |li=) <o as p=1.
cube QcR" |Q| [0}
Denote
Ao= | ] 4,
Pell,)

Throughout the whole paper, for a radial weight w, we simply write w(x) as w(f) whenever
|x| = t.

The main result of this paper is the following extension-restriction theorem between homo-
geneous weighted Besov spaces and weighted mixed-Riesz potential spaces.

Theorem 1.6. Let p € [1,00), g € (1,00), s € (0,00), B =5+n/q € (0,00) and w € A, (R") be a
radial weight on R" satisfying

(1.4) f 174 (p V:V((Z))))d—t < oo forsomeo <|s|]+1—-s
€(0, oo)
and
(1.5) foo 1% (ys V:V((Z)))) dt < oo forsomed > —s.
1 (0, oo)

Then, the following hold:
(i) there exists a bounded linear extension operator

&: Ay, R — LETR™,

p.q,w

such that, for any g € Ap g R,
||88||L'Z’W"(R2n) < C1||g||/\;_qu(Rn),

where C| is a positive constant independent of g;
(i1) there exists a bounded linear restriction operator

R: Lp EYERM™) = AS
such that, for any f € £g’ VR,
IR Uy, oy < CallFllggoeony

where C, is a positive constant independent of f. Moreover, RE = id.

R,

p.qw
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The paper is organized as follows. In Section [2 we establish several auxiliary lemmas,
including the continuous embeddings of the Schwartz function spaces into the weighted mixed
Lebesgue spaces and then into the Schwartz distribution spaces, the density of C.°(R") in both
the inhomogeneous weighted Besov spaces and the weighted mixed-Riesz potential spaces, as
well as the Fourier analytic equivalent characterizations of the weighted Besov spaces. Section
focuses on the proof of Theorem by considering the case 8 € (0,2n) and S € [2n, o),
respectively. Finally, in Section |4, we consider the homogeneous logarithmic Besov spaces as
an example.

Notation. In the previous and forthcoming discussions, we adopt the following notion:

e Suppose N ={1,2,...},Z=1{0,+1,+2,...}and Z, = {0, 1,2,...}.

e Forany a,b € R, leta A b := min{a, b} and a V b := max{a, b}.

e For any p € [1, 0o], denote by p’ its conjugate index, namely, 1/p+ 1/p’ = 1.

e The symbol 0 may denote the real number zero, or the origin of the Euclidean space R”,
depending on the context in which it is used.

o If E is a subset of R”, then |E| denotes the Lebesgue measure of E, and 1 is the charac-
teristic function of E.

e We always use |x| to denote the Euclidean norm of a vector x, no matter it is in R” or
R?", The reader can distinguish what it really means from the context.

e A multi-index a can be an n-tuple or a 2n-tuple of nonnegative integers. For example,
if o is an n-tuple multi-index, then & = (@, ..., @,) € Z} and 0° f := 8" - - - 8," f, where
0;=0,fori=1,2,...,n

e For m = n or 2n, the symbol C*(R™) denotes the set of infinitely differentiable functions
on R™, while C°(R™) denotes the set of C*(R™)-functions with compact support.

e The letters C and c are used to denote positive constants that are independent of the
variables in question, but may vary at each occurrence. The relation u < v (resp., u 2 v)
between functions u and v means that u < Cv (resp., u > Cv) for a positive constant C
and for a specified range of the variables. We write u = vifu <v < u.

2. PRELIMINARIES

2.1. Embeddings. Now we establish the following continuous embedding results, so that Def-
inition [[.4l makes sense.

Lemma 2.1. Let p € [1,00), ¢ € (1,0) and w € A,R"). Then SR*) — LI(L\)(R™) —
S/(RZn)’

Proof. We first show S(R?") — LI (LP)(R*"). To this end, for any Lebesgue measurable set

E c R”", define
w(E) = fwdx.
E

By [28, Proposition 7.1.5(9)], we know that if w € A,(R") then w is doubling and satisfies
(21) W(/IB) < /lnq[W]Aq(Rn)W(B)

uniformly for all 4 € (1,00) and all balls B ¢ R”, where AB denotes the ball with the same
center as that of B but of radius A times of B. Then, for any f € S(R*"), we have

eyl < (14 VREDE) " prolf)
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for all x,y € R" and for some large constant N to be determined later. So,

q/p

1/q
22 [l < pN,o<f)( fR n ( fR I |x|2+|y|2>—Nf’dx) w(y)dy)

1/q

1/p
SpN,()(f)( <1+|x|>-NP/2dx) ( f <1+|y|>-Nq/2w<y>dy)
N

R}’l
If N > 2n/p, then ﬁ%n(l + [x)™MP2 dx < oco. Moreover, if N > 2n, then by (2.1)) we have
23) (1+ )™ w(y) dy = [ f £y f | )(1 + )N w(y) dy
R” bi<t o7 J2rshi<2i
< w(B(0, 1)) + Z 2-U=DNal2y,(B(0, 27))
j=1
< w(B(0, 1)) (1 + Z 2-f<N/2—"M] < oo.
=1

Altogether, we obtain f € LL(LP)(R**) and || f|| L@ S Pno(f), which implies
SR™) — LI(LP)(R™).
Now, we show LI (LP)(R?*") — S'(R*"). For any f € LL(L”)(R*") and ¢ € S(R*"), from the

Holder inequality, we deduce

Q4 1o < f G Y )l dx dy
s

I/p 1p
= f ( |f<X»y>I”dx) W) ( f (e I dx) w1 dy
R? Rnr n
1/q’

q/p
< S Nzerryman) (f ( lo(x, I dx) w(y)' ™ d)’]
Rﬂ Rﬂ

When g € (1, o), by the fact that w € A,(R") if and only if w7 ¢ A, (R") (see, for instance,
[17, Proposition 7.2(2)]), and the already obtained result S(R?") < L{(LP)(R*"), we find that

I<f> @) | < ||f||L(L(Lp)(R2n)||‘;0||Lq’l WHEM) S 1122 Lry2ny PNO(P)
w4

holds when N € N is sufficiently large, thereby leading to f € S'(R?"). Thus, we obtain the
continuous embedding

LI(LPYR™) — S'(R™")
and, hence, complete the proof of Lemma [2.1 O

IConsider the case g =1 and p € [1, o). For a general weight w, by (2.4), if we assume in addition that for all
@ € S(R™) there is
’ l/p,
esssup (f lp(x, )IP dx) w(y)™! < oo,
yeR" R
then the embedding L{(L”)(R*") — S'(R?") remains valid. For example, this is the case when w = 1 or w(y) =
(log |y|L;\1 Y with b > 0.
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2.2. Density lemmas. The forthcoming lemma shows the density of C;°(R") in the inhomoge-
neous Welghted Besov space Ap 2, w(R"). This explains the reason of defining the homogeneous
space A, W(R”) as the completion of C;”(R") under || - || ALK @)

Lemma 2.2. Let p, g € [1,0), s € (0,00) and k > |s] + 1. Assume that w is a radial weight
satisfying (1.4) and (1.5)). Then, the following hold:

(i) any function in CX(R") has finite semi-norm || - || A @y

(1) forany f € Ap 7.wR"), there exists a sequence {@} jox C CZ(R") such that
2.5) tim 19~ fllygt ey = 0.

Proof. We first show (i). Suppose that f € C°(R"). From (.1, it follows that

k
k
D} fllrny < (m)llf(- + mllen = 29 fllepeny < 1.
m=0

Moreover, by the fact that

(2.6) D}, f(x) = f Z Z hj, - 0j, 0, ) x+ (1 + -+ p)h)dty -+~ diy
[0, 1]k

Jrk=1
and the Minkowski inequahty, we have
D} fllzrny < 1Al
Therefore,

min{1, Ihlkq
Rn |h|n+ sq

”fHA;’; (R

N

w(h) dh)q

min{1, Ay dt)q

(o)

Q

I}
1 00 é
f =99 () dr + f 5 w(r) dt) .
0 1
Note thatk > |s]+ 1,0 <|s]+ 1 — s and § > —s. On the one hand, condition (1.4) implies

1 1
(2.7) f 10 (r) dr < f fBI0 () di

0 0

_ (T e (WD) d_’
= t w(l)
(1)
f - (ﬂ w(tp)) dt o
(0, oo) W(,D)
On the other hand, condition (1.5)) yields
(2.8) f 5wt dt < f 227 (1) dt
1 1

(7 w(t-1) di
‘flt( (1))()
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f p (17 w(tp)) dt c o
(0, oo) w(p)
This shows that any f € C°(R") satisfies || f]| ASE L@

Next, we show (ii). Fix f € Ay qW(R”). Choose a function 0 < ¢ € CZ(R") such that
ﬁ%n ¢(x)dx = 1. For any € € (0, o), set

¢e() i= €"p(e7 ).

< 00,

and

fs = e * f
Clearly f. € C*(R"). From f € A‘;;’I;,W(R”) C LP(R™), it follows that
(2.9) ll_r)% I fe = fllr@n = 0.

From the Young inequality and the fact fw d(x)dx =1, we deduce

D5 /e ge * (Dff)

Lr@®") ‘ LR = ||D§f”Lﬁ(R")

and, hence,

ID4Ce = Pllseery < IDLS
Also, note that (2.9) and (I.1)) imply

v+ [P ey < 2IP0f e -

k
tim [[D} (/e = /)], g, < lim Z( )ll(fe—fx' + m)ll e

m=0

k

hm fe = f ”LI’(R"

m=0 m

Thus, by the Lebesgue dominated convergence theorem, we have

lim

e—0

f IDACS. = e
Rn

lime_ IID}(fe = AU, g 7
f ‘ YE) vy dh| = 0.
|h|n+‘sq Rn |h|n+sq

w(h) dh) q =

This proves
1133 Ife = fllast @nm =0
So, we have find a sequence {¢;} e in C*(R") such that @ holds.

Now, we are left to show that C;°(R") is dense in Ap ow@®R"D) N CP(R") under || - | AL @)
Fix f € A;,q,w(R”) NCT[R"). Letn € CX(R") satisfy n = 1 on B(0, 1), suppn c B(0,2) and
0 <np < 1. Forany N € (0, c0), define

nv() == n(N") and v =nnf.

It is obvious that fy € C°(R") and fy — f in LP(R") as N — oco. To validate that {fy}yen
converges to f with respect to the semi-norm || - || ASE @y by (I.1)), we write that for all x, & €
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R",

bl

k
Di(fy = Fx) = Z(—l)"—’"( ) [ (Cx + mh) = 1] fCx + mh)
m=0

3

b

k
= Z(—l)"‘"’(m) [ + mh) = (0] £Cx + mh) + [(x) = 1] Dy f(0),
m=0

which implies

d h
(2.10) D} (fv — 0] < Z min {%”VUHL“(R’I), ||77||L°°(R")} |f(x + mh)| + |D} f(x)|
m=0

k
< minflhl, 1} Y] 1f(x+mh)| + D} £(2)

m=0

by terms of the mean value theorem. Note that (1.4]) implies that (see (2.7))

1
f {1797 y(1) dt < 0.

0
Meanwhile, by the fact that (I.5]) leads to (see (2.8))

f 57 w(r) dt < .
1

With these last two estimates and (2.10), we then derive

1

Lw(h) dh]

f [l min{lAl, 1} X5 1 + mh)| + 1D} I} e
Rn |h|n+sq

3 ( f Al Spco 1F G+ mIG e,
|h|<1

e w(h) dh)

N ( f Il Xm0 LF G+ mmIII,
|h|>1

q
)
|h|n+SfI W(h) dh] + ”fll/\;,I;w(R")

< 1 fllr@n ( f Ihl"””w(h)dh) + | f e @) ( f Ihl“"f"w(h)dh) I NlAsk @
[hl<1 [hI>1 "

1
1 q 00 q
1-s5)g-1 —sqg—1
<t [ 2w at) Wl [ @] 1
0 1 o

< 00.

Meanwhile, we also know that for all 4 € R”,

(k
lim ID5(fy = Pllereen < Z‘a (m)||[771v(') ~ £ Ol = 0.
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From these and the Lebesgue dominated convergence theorem, we conclude that

Dk _ q ., i li e Dk _ IIP . é
lim (f Il h(fN f)”Lp(R )W(h) dh] _ [f 1my I h(fN f)”L (R )w(h) dn| =o,
R}’l Rl‘l

N—oo |h|tsa |h|rtsa
as desired. Altogether, we conclude the proof of Lemma[2.2] O
Next, we show the density of C>°(R*") in weighted mixed-norm Lebesgue spaces.
Lemma 2.3. Let p, g € [1,00) and w € A,(R"). Then C(R?) is dense in LL(LP)(R™).
Proof. It is obvious that C;’ (R>") € LI(LP)(R*"). Since w is locally integrable, we know that
du(x,y) := w(y)dxdy

defines a o-finite Radon-measure on R?". Given any f € L{(L)(R*"), we have by [, p. 313]
that, for any € > 0, there exists a simple function

N
e(x,y) = ) Cilg () 15(),
i=1

where |E;| < oo and w(F;) < oo foralli € {1,2,..., N}, such that
(2.11) If = @l ryreny < €.

We claim that there exists a function g € C2°(R?") such that

(2.12) llp = gllra Lryrany < €.
Once we have (2.12), then applying (2.11)) gives
N = gllia @y < If = @l wmmey + llo — &llsr@e < €+ € = 2¢,

which indicates that any f € L,(LP)(R*") can be approximated by functions in C?’(RZ”).

To show (2.12), it suffices to consider the case when ¢(x,y) = 1g(x)1z(y), where E, F are
measurable subsets in R” with |E| < co and w(F) < oo. To see this, by the fact that C°(R") is
dense in LP(R"), for any n > 0, there exists a function ¢, € C°(R") such that

Iz = Yillpen < qw(F)~.

Since w(x) dx is a doubling measure, by an argument similar to the unweighted case, we obtain
that if

¢ € CZR");

Jer 2OIWG) dy = 1;

¢.(-) = 17"t~ +) for all ¢ € (0, 00),
then any h € LL(R") satisfies that

¢:(- = V(Y po,n (MW dy = h in L{R")
Rt’l

as R — oo and ¢t — 0. In other words, C2°(R") is dense in L (R"). Consequently, for any n > 0,
there exists a function ¥, € C°(R"), such that

-1
ILF = ¥allrg @y < Yl n)-
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Let g(x,y) := ¢1(x)¢2(y). Then,

q/p 1/q
M exr — gHLfv(LP)(RZ”) = (f (f 1e()1r(y) — g1 (O dx) w(y) d)’)
R" \JR"

a/p 1/q
< ( f ( 1e(C)1r(y) — Y1 ()L dX) w(y) a’y)
R \JR»

n

q/p 1/q
+ ( [ ( U1 OTFO) = g ()P dx) W) dy)
R \JRr
< 2n.
This proves (2.12). O
Corollary 2.4. For any p € [1,00), g € (1,00), B € R andw € A, (R"), the space
{(~dp)?P¢ ¢ € CZR™))
is dense in Lg TYERm,
Proof. Let f € Lg “"(R?"). By Definition there exists a function ¢y € LL(LP)(R*") such
that
f= (—AR%)_B/Z% and ”f”L'Z“"W(]RZ") = ||¢0||L3,(Lp)(R2n)-
From Lemma 2.3 for any € > 0, we can find a function ¢ € C>°(R?") such that
lgo — Bllra(1ryr2ry < €,
which implies
—B/2 -B/2
1 = AP0 v g, = (=427 B0 = D) v gy, = 10 = Blugaryeon) < €
This ends the proof. O

Now, we are at the point to show the density of CZ(R*") in weighted mixed-Riesz potential
spaces.

Lemma 2.5. Let p € [1,00), g € (1,00), w € Ay(R") and B € (0, 0). Then Cﬁ"(RZ") is dense in
£§ q, W(RZn).

Proof. Let ® € S(R?") satisfy supp&; c{xeR»: ¢! <|x| < ¢} for some constant ¢ > 1 and

D@26 =1 forall £+0.
JEZ
For any j € Z and x € R*, let ®;(x) := 2%"®(2/x). For any ¢ € C*(R*") and N € N,
PN = Z (I)] *@P € SOO(RZH).
[N

Moreover, the sequence {¢y} converges to ¢ uniformly on R*" (and, hence, in L(LP)(R*")) as
N — co. From this and Corollary it follows that {(=4g21)#/%¢ : ¢ € So(R*")} is dense in
Ly “"(R?"). Thus, to show the density of C>°(R*") in Ly “"(R?"), we may as well assume that

f = (~dg) g
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for some g € S.,(R*"), then our aim is to find a sequence {¢;}iez in CZ(R*") such that
(2.13) 111_{110 llor — f||£'gv‘fvw(R2n) = %l_)fg ||(_AR2")B/2‘PI< - g||L3,(U)(R2n) =0.

Choose 7 € C(R?") satisfying 0 < < 1,5 = 1 if |x| < 1 and 7 = 0 if |x| > 2. For any k € N,
set
Q1 = mi(—dg) P,
where ni(x) = n(x/k) for all x € R*". Clearly, each ¢, € Cf’(RZ”). In order to show that such
{@r}rez satisfies (2.13)), we write 8 = 2m + s, where m € N and s € [0, 2). Notice that

(=AY or — g = (=Agan) > (= Agan)" (Uk(—ARzn)_ﬁ/zg) -8
and, if m # 0, then

(=dz2n)" (m(=Ag)P2g [ 282) (me(=4z2)*"g)

= (=" > 6 ((—d) Pg)

lal=m

= =52 (= Az2) P2) + > Cay (10) 7 (=) P1g),
lal=m

0<lyl<2m

where a, y are 2n-tuples of multi-indices and ¢,, ., are constants. By the Minkowski inequality,
we find that the norm || - |4z g2n in (213) can be controlled by the || - ||z () @2r-norm of

gk = (—Ag2)* P (u(—Apan)?" PP g) — g = (=Apan) (= Ap2n)?g) — g

and a finite linear combination of the || - ||,4(.»)g2-norm of the following type of functions

Iy = (=) (@ )b,

where h € S..(R*") is of the form §>*7Y((—4z2)P/?g) and v is a non-zero multi-index. Thus, to
obtain (2.13)), we are left to prove that the LI(LP)(R*")-norms of g; and Ay tend to 0 as k — oo.

If s = 0, then g; = mg — g and || < k™M107 7|2 |hl, whose LI(LP)(R*")-norms obviously
go to 0 as k — oo. Next, we consider the case when s € (0, 2).

Part 1: estimate of the LL(LP)(R*")-norm of g;. To simplify the notation, we set
u= (_ARZH)(Zm—/j)ﬂg — (_ARzn)—s/Zg’

which belongs to S(R?") by using the Fourier transform and the fact that g € S(R*"). By [40,
Section 2], we have
Me(D)u(x) — m(uly)

|X _ y|2n+s

(_ARZ”)S/z(nku) = Cn,s p.-v. fz dy’
R n

with C, ; being a positive constant depending only on n and s. Via writing

M(Xu(x) — m()u(y) = m(0)[u(x) — u(y)] + [m(x) — O 1[u(y) — u(x)] + w(x)[m(x) — m)],
we then have

(2.14) 0 = [Coumopv. [ T ED) 4
R2n |X _ y|2n+s
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+Cpv. f .| (1) = mO[uG) =~ u(0)]
[x— y|<l+l

|X y|2n+s

" o |x— y|<l+"‘I |x )’|2"+Y

+ C,.,p-V. f ) [7(x) = mc () u(y) dy
|x )|>l+x

|X _ y|2n+S
=: G,(x) + G{(x) + G (%) + G;(x).

When k — oo, it is obvious that

(2.15) ||G ”L?V(LP)(RZ") = |l (=Agn)* Py — g||L3(Lp)(R2n) = |lmg - g”LZ(LP)(Rz”) — 0.
For G,%, note that the mean value theorem implies that

() = eI < ko = YVl s ey

and
lu(y) — u(x)| < |x = yl[Vu(x + 0(y — x))|

hold for some constant 6 € (0, 1). If |x — y| < 1, then 1 + |x + 8(y — x)| ~ 1 + |x|, which, along
with the fact that u € S, implies that

IVu(x + 60y = )| < (1 + |x))™ 2.

Thus, we obtain

IG2(x)| < C f () = ) - u)l
k = L, e y|<1+\x\ |x y|2n+s
< k_l(] + |x|)—(2n+2)f " Ix — y|2—s—2n dy
|x }/|< +|x|

~ kN ()T,

According to the arguments in (2.2)) and (2.3)) (by taking N therein to be 2n + s), we see that

(2.16) I+ 1+ D™ yamy < 00
and, hence,
(2.17) gw@mmwfa

Next, we consider G;. From the Taylor expansion formula,

0 - m0) = (2)- vn(3) + 0(

L B v/
ov. C Vi) o,
Jx—yl< L2 lx — )’|2"+S

IGL)| S k2 lu(x) =Py S K+ L o),
r—yl< 5

X =y

|

Observe that

which induces
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thereby leading to

(2.18) lim 1G4 yon) < lim K2ICL+ 1 D uC)ll g 1oygeny = 0

Next, observe that the integrand of Gi can be controlled by [[7]| e ggan)l|4| oo g2 x — y[~@"+9) and
f lx =y ®"*Vdy < (1 + |x])™° < oo,
|X )|> 1+|x|

which, together with the Lebesgue dominated convergence theorem, shows that

lim G*(x) = lim [76(x) — () ]u(y) dy = 0.
k—o0 k he—yl> 1+2|.x\ k—o0 |_x y|2n+Y

Moreover, note that

)l RO e
o s ——==—dy < (1 + [x)™ " lull 1 oy
oyl 2l X =y oyl i (1 [x])2ees

which, combined with (2.16)) and the Lebesgue dominated convergence theorem, again yields
=0.
Li,(LP)(R?)

Substituting (2.13)-2.17)-2.18)-(2.19) into (2.14) yields that gl L)@y = O as k — oo.
Part 2: estimate of the LL(LP)(R*")-norm of ;. Just like (2.14)), we now write

h(x)—h
hk(x) = Cn,saynk(x)p'v'f Lz(y) d
R X =y

+Cypy f [0m(x) = P OIhG) —h)]
mE |x— y|<1+\xl

|.X y|2n+v

(219) llm ||Gk||Lq(Lp)(R2”) — llm G

—)OO

O ni(x) — "mu(y)

+ C, sh(x)p.v. f

oyl [ — P
+Cyppy f [0"ni(x) = O m(P)] h(y) dy
n,spP-Vv. |x_y|21+2"‘| |X y|2n+s

= H}(x) + H(x) + H; (x) + H}(x).

For i = 2,3,4, the estimate of G, also implies that (with 7, and u therein replaced by ", and
h, respectively)

1}1_{?0 ”H]i(”L?V(LP)(RZ") = O
For H, it follows from h € S, that (—4g21)"?h € S, thereby leading to

-0

< KM 9l Lo any LI(LP) (R

(—A R2n ) h

1 _ y _ s/2
||Hk||L3a(Lp)(R2n) = H(a nk) (( ARZn) h) L?V(LP)(RZ”)

as k — oo. This induces that ||/i||(r) g2y — O when k — oo, as desired.
Altogether, we conclude the proof of Lemma [2.5] O
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2.3. Fourier analytic characterizations.

Deﬁnition 2.6. Let p, g € [1,00), s € (0,00) and w be a radial weight on R". Denote by

A} 4w o(R") the space of all f € S (R") satisfying

o) 1/q
IAlss ... o@m = (fo llr * f||(ip(Rn)f_sq_lW(t) dt) < 0o,
where ¢ € S, (R") such that supp® C {x € R : ¢! <|x| < ¢} for some constant ¢ € (1, o) and
@(1) = t7p(t™!+) for all ¢ € (0, 00).

Remark 2.7. Note that /\;’ o.w.o(R") contains equivalence classes of tempered distributions

modulo all polynomials. If we define Af;,’;’W(R”) as the space of locally integrable functions
f satistying || f]| Ak @n < then such homogeneous weighted Besov spaces are equivalence

classes of locally integrable functions modulo polynomials of degree at most k. Let us remark
that this definition is different from the one we adopted in Definition |1.1} in which the space
A;,’,';,W(R") is defined to be the completion of C°(R") under || - || ASE @y We will take care of
this difference in our arguments below. N

Lemma 2.8. Let p, g € [1,0), s € (0, 00) and ¢,y € So(R") such that
{supp@ c{xeR": c]l <|xl < al;

supp C{x e R": ;' < || < el
where cy,c; € (1,00). If wis a radial weight satisfying (1.4) and (1.5)), then
(R") = A R"

A S s
Ap, q,w, ¢ 1282

with equivalent norms.
Proof. By symmetry, it suffices to show that
IAlAs, ey S IfllAS ey
Based on the argument in [37, Proposition 2.3], there exists a function ¢ € S(R") such that
supp¢ C {x € R" : cal < |x| < ¢o}
for some constant ¢y € (1, o) and, moreover,

fow@&(@? = 1 forall £ € R" \ {0}.
Consequently, for any f € S (R"), we know from [24, p.122, Theorem 3] that
(2.20) f= f:’ & % Y, * det in S._(R").
Given any r € (0, ), since ¢, € S, (R"), it follows from this last equality that
o= [Cotoune

holds pointwisely. Consequently, by the Young inequality and the Holder inequality,

0 dt
llor * fller@ny < f llor * @y * Yy * fllomn 7
0
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* dt
f llo * @e/rll L crmyltfrs * f”U’(R”) —
0

00 d[ 1/q dt 1/q
< [l * ¢t/r||L1(R") 7 ||90 * ¢z/r||L1(Rn)||l//t * f||Lp(Rn) p .
0

Given any K, M € Z,, we derive from [24, p.121, Lemma 2; p.122, Lemma 4] that

t
—(1+|x)7™, 0<t<r

-
| * ¢y (X)| < (r)n+l+K(1 rixl\”

+T) S(;) (1+|X|)_M, 0<r£t,

t
where N=n+1+ K- M. If wechoose M >nand K > M —n—1, then N > 0 and

[ r\V

(221) e % dplueny < minf 2, (5)4,
thereby leading to

dl‘ t dt N dt

||‘,0 * ¢z/r||L1(Rn - " <1

Thus, we obtain

* dr\'"

lor * fllrgn < (f(; ll * Desrllr i * fllZp(Rn) 7) )

which further implies

1/q

—sg—1
1 llss o = fo ey 11 ™ w(r)dr)

00 d d 1/q
fo (f ||90*¢t/r||L'(Rn)||l/’z f”Lp(Rn t)W(i’) _r)
s oy (r) dr\ dt
- fo r q||w,*f||;’w)w<t)( fo (5) "t Bl g ) )

We may choose K sufficiently large such that
N=n+1+K-M>(s+1)g.

This implies 0q < N — sq due to o < 1. Further, by (2.21)), (1.4) and (1.5), together with a
change of variables u = r/t, we deduce

L rr\sa w(r) dr LTSN w(r) dr
fo (;) llp = ¢t/r”L1(R”)m - < ‘[0 (;) W -
1
—-sqg+N W(up))
Sf ! (peS£Eo> w(p)
f (" w(up)) du “ o
e(Ooo) w(p)

N
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®(r\™s w(r) dr < r\w(r) dr
f; (;) e * &uyrllr @) WD) - < f; (;) m -
~ —sq—1 W(up))
< J e
f’ (p w(up)) du < oo,
e(Ooo) w(p)

where we used N > (0 + s)q and 6 > —s — 1/¢q. Altogether, we obtain

and

00 1/q
—_sg—1
1l o = ( f ey 5 AL ™ () dr)

1/q
-1
s( f s ™ w(r)dr) = fllss , e
as desired. O

Next, we introduce a technical lemma, whose proof is essentially given in [44, Lemma (2.1)].

Lemma 2.9. Let g € [1,0), w be a radial weight, and K be a nonnegative function defined on
(0, 00) X (0, o) which is homogeneous of degree —n and satisfies

00 -1 %
222 7= | k@, e Wi p)) dt < oo
( ) I) (1,0t (ﬂsup ) t <

c00) W

Then, for any f € LL(R"), the function

TF) = fR K(l, bDf ) dy

satisfies
T flls @y < J Opall fllLg @y
where w,_, denotes the surface area of the unit ball in R".

Proof. Observe that T f is radial, which implies

1/q

1/q
T fllg gy =( § IT f(O)*w(x) dX) =w, ( f ITFRIWRR"™" dR

Upon writing
TfR) = f ) f KR, 0 frpr"~" do(n) dr
0 gn-1

= f ) f RK(1, 1) f(tRy) (tR)""'R do(n) dt
Sn- 1

f ( f K(1,t) f(tRp) "~ ldr) do(n)
Sn- 1

= fs  TufR)do().
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we then apply the Minkowski inequality and deduce

q

°© 1/q
2.23) IT flligieey = @, ( fo fs TR do()| WRR" dR)

00 1/q
<w/] f ( f T, f(R)I'W(R)R""' dR) do(n).
s=1\Jo

By duality, there exists a function 4 such that

f ) IWR)Y w(R)R" dR =1
0

and

oo l/q 00
220 (f Tt R EOR™ dR) - [ myran@warr dr.
0 0

Notice that (2.22)), the Fubini theorem and the Holder inequality imply

f ) T,f(Rh(R)WR)R"" dR
0
< f ) ( f ) K(1,0)|f(tRp)| ™! dt) IL(R)W(R)R"™" dR
0 0
= f ) K1, 0! ( f ) |f(tRn) h(R)|w(R)R"! dR) dt
0 0
) 00 1/q
< f K(1,1) z"—l( f | f(tRn)Iqw(R)R”‘ldR) dt
0 0
) . 0o 1/q
= f K101 ( f If(pn)IqW(t“p)p"“dp) dt
0 0

0 -1 1/q o0 /g
< f K(1, 087" (ﬂSUP il p)) dl( f | o)l iw(p)p" ™! dp)
0 e0.00) W(P) 0

00 1/q
=J ( f | eml*w(p)p"! dp) :
0
This, together with (2.23), (2.24), and the Holder inequality, further implies

oo 1/q
1T fllzs ey < J 0% f ( fo Flomtwp)e™ dp) dor(n)

Sn—l

00 1/q
<Jw’ ( f f fomlfw(p)p"™! dpda(n)) ]
st Jo

= an—l”f”L?v(]R”)-

Thus, we complete the proof of Lemma[2.9

Theorem 2.10. Let p, g € [1, ), s € (0, ). Suppose that ¢ € So.(R") such that

supp @ C {x: ¢ <|x < ¢}
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for some constant ¢ € (1,00). Assume that w € A,(R") is a radial weight satisfying (1.4) and
(L.5). Then, there exists a positive constant C such that the following hold:

() for any f € A;’,’ o, o(R"), there exists a Lebesgue measurable function f, € A;’,, @R
such that fy = f in S_(R") and

||fO||A;,q,w(Rn) < C”f”/'\;qq.ww(ﬂgn);
(1) forany f € AIS% 2R
||f||A;‘,,q,W,w(Rn) < C||f||A;‘,,q’w(Rn)~
Proof. We first prove (i). As in (2.20), there exists a function ¢ € S(R") such that
supp¢ C {x e R" : cal < x| £ ¢p}

and
> a . o .,
(2.25) f= f Gox g f— i SLRY,
0

where ¢y € (1, 00) is a constant. Set

© d
fo:f ¢t*‘:0t*f7t'
0

Clearly, f, is a Lebesgue measurable function, but may be infinite on a set of positive Lebesgue
measure.
Let us calculate the semi-norm || fy|| AS, W (RY): To this end, let k = | s] + 1. Then, we have

0 dt
D];lf():f DZ(¢:*Q01*f)7,
0

which implies

k R dt
(2.26) IID;, follLr@ny < Dy, (¢ * @ * llrn e
0

On the one hand, by (1.1]) and the Young inequality, we obtain

k
2.27)  IDj(¢: * @1 % Pl = m

k
Z(_l)k_m( )(¢t * @ % f)(- +mh)
m=0

LP(RM)
S e * @0 % fllorwny < @dloi@enmlle: * fllreny < e * fllr@e-
On the other hand, by

Digto) = \f[;l]k Z o Z hj -+ h; (0, -+ 0;,)(x + (11 + -+ - + t)h) dity - - - diy
=l

Ji=1
and the Minkowski inequality, we have

DA * @1 Pl S VD > 1105, -+ 03 (b % 0 % Pllireen)

i1=1 ir=1

n

=D e D @ - 080 * (6% Pl

i1=1 ir=1
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SWIZ} }]nf-%@mmﬂ%*ﬂmwy

ir=1

Since

—k —k
10;, - - - 0i @il ey = N5y -+ - 03 ) (O ieny S 177,

it follows that

(2.28) IDL(&: * @, % Plln S A, * flliogn.
Inserting (2.27)) and (2.28)) into (2.26)) yields
> (" dt
(2.29) 1D foll ey Sf mln{l,T} ller * fllzr@n e
0
thereby leading to
l/q
D} folle(Rn
Ifollss.,, ey = f s w(h) dh
& ¢ ary wiy )
< leﬁ mm{L-?}H%*fmuwy7)Im;§d4
00 h k p s+n/q .
_ f f min l,u r t_,,||90t *f”LP(R)tn_] dr
A\ Jo t |A| s+nlq
If we set | Al
Py * J e
Fl(y) L |y|5+n/q
and )
Ky (|Al,[yl) := min { i |} (| |) ql ™"
Ivl) \lAl
then

q 1/q
) w(h) dh) .

0o h k ¢ s+n/q brn 1
anlu ﬁ@ﬂﬁﬁww:—ifmmmm@@
; I = Wt Jgo

and, hence,

1 q
(230) |w%wﬁghufmmmmwﬁmw)
n n— Rn
Clearly, K; is homogeneous of degree —n. Moreover, by (1.4) and (I.5)), we have

. . w(r )\
Ki(1,0) 17 l(psu ) dt
L ! e(OPo)o) W(p)

—flts(psu w(t™ p)) dt f Sk(p w(t
0 (0,000 W(P) e(Ooo)

B f‘x’ t_s(psu w(tp)) dt f (p
- 1 €(0.00) W(P) E(Ooo
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https://doi.org/10.4153/S0008414X25101041

AN EXTENSION-RESTRICTION THEOREM FOR WEIGHTED BESOV SPACES 23

(f 6q(ﬂ W(lp)) )Ll] (fw (s+0) ﬂ)ql/
<, oo) w(p) 1 t

1

(f Uq(y W(tp)) )q (fl - dt)
<0, oo) w(p) 0 t

which, together with Lemma implies

ey % SN gz e
@30 lfollag, e S IFllggn = ( f |le,,”w@) dy
R}‘l

1/q
-1
~ (fo llepr * f”Lp(Rn T w(n) dl‘) = 1Al ... 2y

We still need to show that f, € A;, 4. wR"). To achieve this, we only need to validate that f,

can be approximated by C.°(R")-functions under || - || AL,y (RY)- Indeed, for any € € (0, 1), define
lje dt
Je = ¢t*‘pt*f7'
After arevisit of the above proof of || fo|| AS, g (Br) < 00, We derive from (2.26)-(2.29)-(2.30)-(2.31)
that
([T, * @1 llrn L)
q 0 t
I/ f T w(h) dh < oo,
which directly gives
1/e dt\q
(LD (@ @0 % Pllen L)
q € t

Meanwhile, observing that

dt dt
||D (fo = fllr@ny < f ||le1(¢: * (g % f)”Ll’(R”) —+ f ||D (P * @ * f)”LI’(R") —

and applying the Lebesgue dominated convergence theorem to

w(h) dh,

f (Jy Dk * @0 * Pllon %+ [ IDF(B * @ * Pllioeny 2!
Rn |h|n+sq

we arrive at
(2.33) lel_r)% Ilfo — fEHA;,q’W(R”) =0.

Moreover, by the Young inequality and the Holder inequality, we have

1/€ dt
fellrrmy < f p: * @ * fllrr@n) "
€

1/e dt
< f el @mlleer * fllLr@n) "
€
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1/e 1/q 1/e l/q
—sq-1 ’ -1 1-¢
s( f [ w(t)dt) ( f (AR th)
€ €

1/e 1/q
S /_1 1_/
<Mfllas . ol ( f £ (o) th) .
€

Note that w € A,(R") means w7 e Ay (R"). This, together with the radial property of w,
implies

1/€
f £ ) dt f X" " w(x) 74 dx < oo
€ eslxlsé

and, hence,

fe € LP(R").
By this and (2.32)), we see that f, € A; . w(R"). Further, it follows from Lemma that there
exists a sequence {f; ;}; C C.°(R") such that
(2.34) }l_glo Wfej = Jellas,, em < jh_{g e — fellas, . .en = 0.

Combining (2.33) and (2.34), we deduce that f; can be approximated by C;°(R")-functions
{fe.jle.j under the semi-norm || - || A g (BY)- This finishes the proof of (1).

Next, we show (ii). To this end, we choose a radial function ¢ € S.,(R") satisfying supp ¢ C
{(xeR": c(_)1 < |x] < ¢¢} for some constant ¢y € (1, o). For any z € R”, define

W) = i(—l)k‘M(Z)m‘"w(%).
m=1

Clearly, ¥ € S..(R") and supp‘i’ c{xeR": (kcy)™' < x| < cp}. Due to Lemma , it suffices

to show that for any f € A;’ 4 w(R") there is

1Al e S U lAs -

Indeed, by the cancellation condition of i, we write

W f(x) = f fx—=2)¥(2) dz
Rn
: -m k -n Z
= f f(x—z);(—l)k (m)m %(E) dz
k k
= f Z(—l)k"”( )f(X+ my),(y) dy
n o m

k k
= f Z(—l)""”(m)f (x + my)(y) dy
4 m=0

_ fR D fu(y) dy.
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which, together with the Minkowski inequality, further implies

P q/p
[ [ ptroworaf o)
R | JRe

1/p q
f ( f D AP ()P dx) dy]

= f 1) IDS £l ey d)’)-

I, 11

IA

Thus,

1/q
-1
||f||A;,q,w,‘l’(Rﬂ) = f I, = f”L,,(Rn S h(r) dt)

q l/q
f ( f e IS 1l ey dy) t‘“”1W(t)dt)

1/q
“\oo f ( f WO IDS fllzr e dy) |x|~*~ ”W(X)dX)

3 IDi ey ) .
f( 1 (y )|(|y|) $ y) w(x)dx] .
R” R” || |y| q

Since ¥ € S (R"), it follows that for all x,y € R”,

s+n/q s+n/q -N
|w|x|<y>|(' ') < r"(' ') (1+M) ,
|x] |x]

where N > s+ n + 0. For any x, y € R", upon setting

IA

Q

1D £l o ey

Fy(y) := —|y|s+n/q
" b\
K> (|xl, [yD) == |x |_"(| |) (1 +m) ,

we then arrive at the estimate

q 1/q
1flas., ey ( fR ,1 ( fR Kol BDF20) dy) w(x) dx) .

Clearly, K, is homogeneous of degree —n. Moreover, from (I.4) and (1.5)), it follows that

00 _1 é
[ sz 2
i o W) dr f"" N(p w(flm)"’if
f (ve(om w(p) ) I : S(%Eo) w(p) t
f (ﬂ w(tp))q dt fﬂv_sn(p w(zp))ig
€(0, 00) W(P) <(0, oo) W(p) 1
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l 00
. ( f p ( sup w(tp)) dr)q ( f J— df)
e(0.00) W(O) 1 t
1
(f o-q([ W(tp)) dt)q (f I(N s—n— O')q’dt)
€(0, 00) w(p) 0 t

where in the last step we used N > s + n + o and § > —s. We then have by Lemma [2.9] that

l
ID§ A7,
. Y IPRY
”f”/\;.q,w,‘P(Rn) S (‘[Rn | |n+sq (Y) dy ”f”AV q»(R"

This finishes the proof of (i1) and, hence, Theorem [2.10 O

Remark 2.11. In Theorem 1), if f € L' (R") for some r € [1, c0), then we know that the
Calderén reproducing formula (2.25)) holds almost everywhere on R” (see, for example, [24]]),
so that fy = f almost everywhere on R".

3. PROOF OF THEOREM 1.6

The main goal of this section is to show Theorem[I.6] In Sections [3.1]and [3.2] we restrict 8
to (0, 2n) and deal with the extension and restriction part, respectively. The case 8 € [2n, o) is
proved in Section[3.3]

3.1. Extension part: the case 8 € (0,2n). We begin with the following estimate associated
with the Bessel kernel.

Lemma 3.1. For a € (0, ), let G, be the Bessel kernel on R", that is, for all x € R",

Go() = (1 + )72
If k € N satisfying k > n — a, then for all ¢ € R" the integral

2mih-é k dh
[ Gutmey (e 1)t

absolutely converges to the same constant c,, independent of €.

Proof. Lete; :=(1,0,...,0) be the unit vector in R”. After a rotation, we then have
k dh . k dh
Gallhlé) (" = - f Gallhlen) (e = 1) oo,
fR, & ( ) | - 1 ( ) |

which is independent of ¢ if the integral converges. For all 4 € R”", observe that
‘ 2rih-eq k . k
(et = 1)| < ming1, ).

Note that G, is radial, so does G,. Due to this reason, we may write G,(x) as G,(r) whenever

|x| = r. Thus,
: k dh dh
Ga(|h|€ ) eth~el -1
>[]R;’ 1 ( ) |h|n

A"

< f (Gu(lhler)| min{ 1, 4
Rll

< f Go(r) min{1, 1y &
0 r
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According to [29, (1.2.11) and (1.2.12)], we know that when |£| < 1,

%7+ 1+ O(E1" ™) ~ g1 if @€ (0,n);
Go(&) ~{loglel™ + 1+ 0(€P) s loglél™  if @ =n;
1+03"™ <1 if € (n,o),

and when |£] > 1,
Go(é) < e

From these, we deduce that
1
f A dr < 1 if @€ (0,n);
0

! . i dr S|
fGa(r)mm{l,r}—s flog—rkldrsl if a=n;
0 r 0 r

1
f *ldr <1 if @€ (n,c),
0
and
a d « d
f G, (r)min{1, *} = < f e <.
1 r 1 r
Combining the last two formulae derives that fRn Go(|h|é) (el — 1)k % converges to a constant
which independent of £. This constant will be denoted by c,. O

Next, we prove Theorem[I.6(i) under 3 € (0, 2n).

Proof of Theorem|[I.6i) under 3 € (0,2n). Since Aj,’ . w([®R") is defined as the completeness of
C2(R") under the semi-norm || - s s> We may as well assume that g € C°(R") NAS  (R").

Prgsw
Letk :=|s] + 1. For any x,y € R”, define

(3.1) f(x.y) == y*Dig(x)
and

B-2n
(3.2) F(x,y) = f f (Ix =2 + Iy = hP?) * |h#D}g(z) dzdh.

R)l Rll
Before going further, we are about to show that for all ¢ € S(R>"),
(33) [ iFesletidxdy <
n Rll

Because ¢ € S(R?"), the integral in (3.3) is bounded by a constant multiple of
o+ ly =AY W PDfg(x - 2
j::fff (2l + |y = Al NII | hi( )ldzdhdxdy,
R JRr SR JR2 (1 + XDV + [yD
where N € N can be any large integer. To obtain (3.3)), it suffices to prove that J < oo holds for
sufficiently large N.

Since g € C(R"), we take a large number R € (1, o0) such that suppg € B(0,R). Via
splitting the integral domain of J into annulus, we find that

+y — A" |hPIDkg(x —
T< ff f Izl + 1y — Al N| e hi(x 2)| dzdhdxdy
I+ bl<R JRr2 JR2 (L + DV + |yD)
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+ [y = W’ |h|P|DF g (x -
+fo f (2l + ly = AlY~ NI I i( 2)| dzdhdxdy
21 R<|x|+]y|<2/R JR? JR2 (L + XDV + [y

= Ip+ le.
=1

If 2/-'R < |x| + |y| for some j > 1, then either |x| > 2/72R or |y| > 2/72R, whatever the cases we
always have

, 2+ ly =AY W PIDkg(x - 2
I, < 2R ff f (12 + [y — A" |h[#|D} g(x — 2)| dzdhdxdy.
|xl+]y|<2/R JR" JR"

(1 + [xDN72(1 + [y])V/2

Fix j €{0,1,2,...}. We now consider the cases |h| > 2/"'R and |h| < 2/*'R, respectively.

o If |x| + [y| < 2/R and |h| > 2/*'R, then |y — h| ~ |h|, which, together with (T.I) and
g € CZ(R"), implies that

(3.4) Z, = f (I + 1y — AP~ |h{# [Dlg(x — )| dzdh
[h[>2/*1R JR"

k
k
<> ( ) f f B g(x — z + mh)| dz dh
—o 1) Jih>2i+1R JRn

-2
< 18l ey f || dh
|h|>2/+1R

< L.

o If [x| + |yl < 2/R and |h| < 2/*'R, then by (1)), we have supp (Dfg) C B(0,k2/*?R),
which implies that D} g(x—z) # 0 only if |x—z| < k2/*2R, thereby leading to |z] < k2/**R.
Moreover, by (2.6) and g € CX(R"), we see that

[Pl < Z Z'hl f (@), -+ 0,8)(x + (11 + -+~ + 1)) dy -+ dny

1=1 Jik=1
< Ihl"

holds uniformly in x € R". Thus, we obtain

Z, = f | f (Il + 1y — AP~ |h# [DhgCx — )| dzdh
|h|<2/+1R

Sf (f (el + |h|)5_2"|h|k_ﬂdh+f el + |y—h|)5‘2”|h|k‘ﬁdh) dz.
|z|<k2/+3R lhl<2/* R Ih<2/+1R

[y=h|=>|hl/2 [y=hi<|hl/2

Denote these last two double-integrals by Z, ; and Z,», respectively. Clearly,

2/*1R k2/+3R
7y, < f ( f (s + 1P~ 2"k =P1 g | dt.
0 0

Considering the integrals over the domain s < ¢ and s > ¢, we then get

2/*1R t 2/*1R k2/*3R
Z21 S f ( f s ds) dt + f ( f R A ds] dt
0 0 0 t
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S fOZJ:R 1 dt as0<B<n
< j(; #ldr + fozj K (log @l) 1 dt asB=n
(KSRP 7 B dr asn < B < 2n

S 2R,
where for the case n < 8 < 2n the integral converges because of the fact

k+n—ﬁ:LsJ+1+n—(s+g)>O.

Concerning Z, ,, observe that if |y — h| < |h|/2 then |y|/2 < |h| < 2[y|, which induces

Zy5 5 Iyl"‘ﬁf f (Izl + ly — A > dhdz
lel<k2i3R Jly-hi<py

~ |)’|k_ﬁf f (2l + W’ dw dz
lel<k2/3R Jiwi<lyl

2/+1R k2/+3R
2 Iylk_ﬁf f (s + P21 ds | dr.
0 0

In a way similar to the estimate of Z, ,, it holds that
Zra < WIP2RY.
A combination of the estimates of Z,; and Z,, gives
(3.5) Zy s Q'R + y[FQ'RY.
Next, upon taking N > 2(n + k + 3), we utilize and to derive

2 e (2'R)* + [y P(2/'R)’ ) i pVB-N/2
I < (22R)N7? f f dydx < (2/RYN? + QRPN
! w<2R Jpyi<2ir (1 + IXDN2(1 + |[ypN/2

Note that this last estimate is still true when j = 0. Summing in j, we arrive at the conclusion

J < i I < i (@R} + 2RF™?) 5 1.
J=0 j

J=0

Thus, we obtain the desired estimate in (3.3).

Next, we continue with the proof of Theorem [I.6(i). Observe that the proof of (espe-
cially the estimate of I) also implies that the restricted function F(-,0) is locally integrable on
R". Given any ¢ € CZ(R"), it follows from the Fubini theorem that

B=2n
w%ﬁxw>=j"(f~f(u—a2+mﬁz W%D%@ukmgwﬁdx
Rn Rn n

:Lnf“ﬁﬁﬁéd ;

2 =
) + 1] |h| "D g(z) ¥(x) dz dx
Let G, be the kernel of the Bessel potential on R" as in Lemma For any x € R”, set

dh
|l

$(x) = Gayp() = (1 + ()7
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Via using the dilation ¢,(x) = t™"¢(¢t""' x) for all t € (0, ) and x € R", we then have
p-2n

2 2
fn {( |x|h|Z|) + 1} |h|_nDl;zg(Z) dZ = (¢|hl * Dl;lg) (x)

and, hence,

) ﬁ'—22n
L [fR |(|x|;| Zl) ' 1} A" Dig 2 dz] W) dx
= (¢ * Dl v)
<(¢|h|*Dhg : V>
:<¢|h|Dhg, >
= (0 (0 1) 0. 0°0)

= fR ) Gaonp(|h(E) (62"”"5 - l)k 26y (&) de,

where the last step is due to ¢(&) = Ga,_p(—€) so that ¢(|hl¢) = Gaup(=IhlE) = Ganp(lhlé).
Further, an application of Lemma [3.1] yields

(F(-,0), ¥) = f ( f GonplE) (7 1) (&) 0" (§)d§) ;
AW |

- [ ( | Gaatiie) (= 1) 20r07@ W)ds

- fR O v @ de
= Cou-p <g’ '70> 5

where ¢,,_g is the constant determined in Lemma 3.1} Thus,
3.6) F(x,0) = ¢y, 5 8(x) fora.e. x e R".

Define the extension operator & via

2n—- -1
F( ) ) ) 1(2,,) " f
nT (B B ’
26 ()

which is an element in S’ (R*") by using (3.3) and (I.3) in Remark Applying (3.1)-(3.2)
and (3.6)-(3.7) yields that for a.e. x € R”,

(3.7) E(g) 1= (czn_ﬁ)‘l[

S TEB ) o -
(3.8) 8@Q)(x,0) = (canp) |=—75| U5 *x0)=(camp) F(x,0) =g
g (c20p) (zﬁnnl"(g) «f (c2n-s) g
Since g € CZ(R"), it follows that f in (3.1)) belongs to L{(L”)(R*"), which implies both
Sg e ‘Zg’q’W(RZn)
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and
n=By \~! -
A T L T
I8l rogony = (canp) | =5~ | W llzan@en = (canp) | === | llgllas, -
8ll 0w gony (2 ﬁ) ¥t ) Fligwrzn = (canop) $rr ) 8llzs,..em
Summarizing all, we conclude that Theorem [I.6{i) holds under S € (0, 2n). |

3.2. Restriction part: the case S € (0,2n). The aim of this subsection is to show Theorem
[1.6(ii) under the case 8 € (0,2n). To this end, we need the following proposition.

Proposition 3.2. Let p € [1, o) and B € (0,2n). Given any measurable function ¢ : R** — R,
define for all ¢, x € R" that
ge(x) = | ¢ O (x-z,8)dz
Rn

If k € N such that k > B — n, then the following hold:
(1) when g € (0,n),

n |Al
”D g§||Lp(Rn) < CllgC, Ollrenlél™ mln{l |§_|}

(i) when 8 = n,

I\ (1Al
D% el ey < CllBC f>”L"<R">mm{l°g( |§|) (Ifl)}

(i11)) when B € (n,2n),

| | n+k—
ID5gel ey < CllGC Moo~ nmm{l E} ’

where C in (i)-(ii)-(iii) is a positive constant independent of &, h and ¢.
Proof. Assume without loss of generality that the norm ||¢(-, £)||»rn) 1s finite; otherwise items
(1)-(i1)-(ii1) hold trivially. s

Given a locally integrable function f on R*, we denote by Df f the k-order difference for the
first n variables of f, that is, for all x,y, h € R”,

k
~k —-m k
(3.9) Dif(x,y) = » (-1)f ( )f(x + mh,y).
m=0 m
With this notation, we apply the Minkowski inequality to write
— P 1/p
(3.10) ||D g§||u,(Rn) ( . 1;32”))()6 -z,8)dz dx)
R
— p I/p
= ( f ¢(x — 2,6 Dj(I")(z. ) dz dx)
n R’l

l/p, __
< f ( |¢<x—z,§>|f’dx) [DES) 2, )| dz
n Rn

= WOl [ [Pl 0) d
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In order to obtain the desired estimates in (i)-(ii)-(iii), we only need to deal with

= f ‘Dﬁ‘l(léz"))(z, §)| dz.
Before further continuation, observe that for all z,&,h € R” the identities (3.9) and (2.6) imply

not only
(3.11) 1D’<<1<2">><z,§)i ( D '"( )1<2”)(z+mh Gk Z(|z+mh|+|f|>ﬁ &
but also
(3.12) \Dku@"))(z,f)i
< |nff f A -0, I RO dty - d
||Z jZl o0 ) @ s b di

< Ihlt f (z+ (1 + -+ 0)hl + )P dty - - diy.
[0,1]F
Next, upon utilizing (3.11]) and (3.12), we estimate G.

o If || > k|h|, then the integrand in (3.12)) satisfies

P2k as fe] < 20€;
2% as el > 20,

Gslhl"( f £8P dz + f |z|ﬁ—2"—’<dz)
|z]<2/é] z]>2/é|

(Iz+ (ty + -+ + th] + €2 F ~ {

and, hence,

~ | ep*
&P min {1, 1) as B € (0, n):
« ninflog(e+ ). (2} ssp=n
o min {1, B as g e (n,2m).

From this and (3.10), it follows that (i)-(ii)-(iii) hold when || > k|A.
e If B € (0,n) and |¢| < k|h|, then applying (3.11) yields

k
G Y | (z+mhl+1€)y " ds
m=0 VR'

k

S I e
m=0 \Vlz+mh|<|g] |z+mh|>|€|
~ |

~ mm{ :6:}
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This, together with (3.10), induces (i) under the situation |¢| < k|A|.

e Now, let 8 € [n,2n) and |£] < k|h|. On the one hand, if we assume further that |z| > 2k|A],
then for ¢4, ..., € [0, 1], we have

|2+ (t + -+ - + 1Al + €] = 2] + €] = [z,
which, along with (3.12)) and the fact 8 — n — k < 0, implies

(3.13) f DLz, )] dz < 1t o> d
z|>2klh| z>2k|A|
1 as S =n.

If |z| < 2k|h|, then for all m € {0, 1,...,k} we have |z + mh| < 3k|h|, so that applying
(3.11) and a change of variables u = (z + mh)/|£| derives

(3.14) f 'Dk(l(2"))(z, f)‘ dz < Zf (Iz + mh| + &) dz
|z|<2kl|h|

|z]<2kl|h|

3 {|h|ﬂ-" as f € (n, 2n);

< P f (ol + 177" du
<2
{lcﬂﬁ ngg:,%'l) as B € (n,2n);
log( X ) as B =n.
From (3.13) and (3.14), we deduce that (ii) and (iii) hold when |£| < kl|A|.

Altogether, we conclude the proof of Proposition[3.2] O
Proof of Theorem[I.6{ii) under B € (0,2n). Let f € L‘ﬁ”q’w(RZ”), where p € [1,00) and g €

(1,0). Since B € (0,2n), we consider first the case f = (-4)75°¢ for some ¢ € LL(L")(R>)
such that

I % ¢ € L}, (R N SLR™)

loc
and

(Do =1"+¢ inSLER™.
By modifying f at a null set, we may assume that f is pointwisely defined on R?". In this case,
we can write

£(x,0) = IT" x ¢(x, 0) = f f ¢z OI."(x - 2,€)dzdé  forall x € R".
R JRr
Assume for the moment that we have proved
(3.15) IFC O, ey S A1z oy

After we have obtained (3.13), then we immediately have f(-,0) € A} (R"). Indeed, by
Lemma 2.5} there exists a sequence {¢;} ey in C2(R*) such that ¢; — f in _[:p (R, which,

together with (3:13), implies that ¢;(-,0) — f(-,0) in A R"). Then, upon defining the
restriction operator R via

(3.16) RfC) = £, 0) = 17"+ ¢(, 0),

P‘IW(

https://doi.org/10.4153/S0008414X25101041 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101041

34 DALIAN JIN, LIGUANG LIU, AND SUQING WU*

we find that
(3.17) ”Rf“[\;',,q’w(R”) = ||f(',0)||A;;,q,w(R") < ||f||[£>‘1~"’(R2n)-
For a general f € Ijg’ *"(R*), by Corollary [2.4| there exists a sequence {¢;},ar C CX(R?™)
such that {Iﬁ(f") % ¢} e converges to f in jjg’ ©"(R?"). For any j € N and x € R”, let
g(x) == (1" % ¢,)(x,0).
For any k, j € N, by (3.16) and (3.17)), we have
lg; = &kllag , ceny = 1™ * (85 = SNC Ol , oy S W™ 5 (85 = Bl ey

which tends to 0 as k, j — oo since {Iéz’l) * ¢} e converges to f in [g’ “"(R*). Thus {g;} jav is

s
p.q,w

(3.18) Rf:=limg; in A, [R".
Jj—oo

p.q,w

a Cauchy sequence in A (R™). So, it is reasonable to define

We need to explain that Rf in (3.18)) is a uniquely defined element in A;, 4R, Indeed, if
(¥ ;}jew © CX(R*) is another sequence such that {I[(f”) * i} e converges to f in Lg LR,
then we use (3.17) to deduce

. (2n) 2n)
]11_{({10 ”(IB Yk ), 0) — (Iﬁ "% i, O)HA;,%W(R”)
< m |1 % ¢ — I 5 || poao .
pS) j_}oo” B ¢j B %Hg;;q (R2n)
. (2n) ) i _ 72 . )

< lim (577 565 = Fll g + 1 = 1 5 ll goeon)

=0.
Moreover, for Rf in (3.18]), we have

. —Ti 1. — 1 (@n) Y .
”RfHAIS,,q,W(R”) = jh_)n; ”gj“Af,qq,W(R”) = 111_210 ||(Iﬁ * ¢, O)HAIS,,%W(R")
. (2n) . _ o
< }1_{2) ||Iﬂ * ¢j||£§~q""(R2n) = ||f||£/§"1~”(R2n)-

Further, by (3.2) and (3.8), we see that RS = id on A}, (R").
To finish the proof of Theorem [I.6[ii) under 8 € (0,2n), we still need to validate (3.15). To
simplify the notation, for any &, x € R”, set g(x) = f(x,0) and

g(x) = f ¢, OIF" (x - 2,6) dz.
o

Let k := [s] + 1. Then, for any 4 € R", by the expression of g and the Minkowski inequality, we

have
p 1/p
IID’;gllLP(Rnf( fR n fR ,, D’;gg<x)d§\ dx) < fR 1Dl ey 2.
Consequently,
l/q
(3.19) lgllas , om = ( fR Lo/ N Rl B dh)
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<( ([ toted U
(f (f 7 [Digell e dg) w(h) dh) ‘1,

where in the last step we used the fact 8 = s + n/q. Observe that the integrand |h| ™ ||D’;l gellrrwny
can be estimated by utilizing Proposition [3.2] Indeed, upon setting

1/q
) |h|7" " w(h) dh)

LP(R™)

Ky kgl == 1 ()" min {1, 2)° as f € (0,n);
Ko 1) = " min {log (e + 1), ()} asp=n
Ka(hL D) == hl min {1, )" as B € (n,2n),

we apply Proposition [3.2] and find that the last line of (3.19) can be controlled by a constant
multiple of

q 1/q
(f (f Ki(1hl, IED 116C, Ol oy df) w(h) dh) forie{1,2,3}.
R? R?
Thus, the proof of (3.15)) falls into validating that for i € {1,2, 3},

q 1/q
(3.20) ( f ,, ( f KGHLIE 190 Ol e df) w(h) dh)

1/q
( ||¢( f)”Lp(Rn W(f) d‘f) = ||¢||L3V(U’)(R2")-
Below we prove (3.20) for i = 1,2, 3, respectively.

e Proof of (3.20) for i = 1. Since K, is homogeneous of degree —n, it follows from
Lemma [2.9|that (3.20) holds provided that K; satisfies (2.22).
Let us show that K satisfies (2.22)). Note that8 = s+ g. So, after a change of variables

r = ¢!, we find that

°° 0 w(tp)\¢
K (1,087 l(psu ) dt
j(: : e(OPo)o) W(P)
* Flo)\e d
:f tsmin{l,t_l}k (psup w p)) —
0 €(0,00) W(p) t
1
:f r~ min {1, r}* (psup w(rp)) a
(0.00) W(P) r

f (p w(rp)) dr f (p w(rp))‘lf dr
€0, oo) w(p) <0, oo) wp) ) r’

By (1.4) and (1.5)), together with o < |s] + 1 — s = k — s and § > —s, we obtain

3.21 ks W(rp))" dr
62D for (pf$i> wp) )
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(f (p w(rp)) dr); (fl pk=s=0)q’ d_r)ql’ < 00
(0, oo) w(p) 0 r
and

w(rp))‘]’ dr
3.22 =
( ) f (pe(() w) W(p) r
(f (ﬂ W(rp)) dr)q (fm (40 ﬂ)q < oo,
E(Ooo) w(p) 1 r

This proves that K; satisfies (2.22)) and, hence, (3.20) holds.

e Proof of (3.20) for i = 2. The proof is similar to the case i = 1. Indeed, observing that
K, is homogeneous of degree —n, we only need to validate that K, satisfies (2.22)), so
that Lemma [2.9| can be applied to show that (3.20) holds. To this end, using 8 = n and

&L =p- g = 5, we then write

.
fo T k(Lo QES(‘SEO : Wv(:(_;ll)[))); a
:fow; min {log(e + ™), 1~ }(,,e(%ﬂ) Wv(:;;))); %
- foo ¥~* min {log(e +7), Vk} (,/e(OIO)O) v:,((}:)))q d_rr

w(rp) ] dr L w(rp) i dr
f (pG(O o) W(,O)) 7 +j; rlogle ) (pes(légo) w(p)) r

Clearly, (3.21) remains valid. Instead of (3.22)), we now also have
1
« w(rp)\? dr
1o (e+r)(”su ) —
f s e(olzo) w(p) r

W)\ dr\ [ o dr\ _
(f (ﬁE(ODO) W(P)) ) (fl o sl ) r) =%

by terms of (1.5]) and the fact § > —s. Thus, K, satisfies (2.22). We obtain (3.20).

e Proof of (3.20) for i = 3. In this case, write the left hand side of (3.20) as

1 q 1/q
( f (_n f |I¢(-,§)IIU(Rn>d§) w(h)dh)
e \IA" Jigr<pn
| | n+k— q 1/q
+[ f [ f AT ( ) ||¢<-,§)||Lp<Rn)dg) w(h)dh) ST
re \Jig> I €]
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Let ®(¢) := ||¢(, )llr@ny and M be the classical Hardy-Littlewood maximal function
on R”, that is,

M®D(z) = sup — fld)(x)l dx forallz e R".

B>z I |
Then, using ¢ € (1, o), w € A,(R") and the boundedness of M on L!(R"), we derive

1/q l/q
S ( f [MO(R)]w(h) dh) S ( f (D) w(h) dh) = 181129 2oymn)-
n R’l

For II, upon setting

|h| n+k—
K3(1Al, 1€1) = Al min{l, If_l} Lo

and using 8 = s + ’é, we find that

* n_ w(t'p) i
Ki(1, )17 l(psu ) di
ﬁ : E(OEO) w(p)
— foo n—,8+s —(n+k—f3) (psup W(t_lp))q ﬂ
€(0,00) W(P) t
f (p W(rp))
€0, oo) w(p) 7

which is finite by terms of (3.21)). From this, the fact that K} is homogeneous of degree
—n and Lemma[2.9] it follows that

l/q
( pC, Oy W (&) d&) = 18l e )@
Combining the estimates of I and II shows that (3.20) holds for i = 3.
Summarizing all, we conclude the proof of Theorem [[.6[ii) under S € (0, 2n). O

3.3. The case B € [2n, ). In order to prove Theorem [[.6] under 8 € [2n, c0), we need the
following two lemmas.

Lemma 3.3. Let p € [1,00),q € (1, ), B € R and w be a weight on R". Then, for any y € R,
feLy TY(R?) if and only if (=Agan)? f € Lg’_’]y’W(Rz”). Moreover, for any f € Lg’q’W(Rz”),

1Al g0 oy = l[(=dg2n)"? £ L0 (g2
Proof. For any f € [Z’ “Y(R™M), by Deﬁnition there exists a function ¢ € LY (LP)(R*") such
that f = (=4g2)?/?¢. From this and
(—dz )P f = (=dp2)? (=d52) 1% ¢ = (=dgn) P79,
we derive
(=) f € L9 (R
and

2
||(—AR2n)Y/ f”[g-_‘i;w(RZn) = ||¢||L?‘,(LP)(R2") = ||f||_£'gv‘1~W(R2n),
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as desired. O

Lemma 3.4. Let p, g € [1,00), 5 € (0,00), v € (0, s) and w be a radial weight satisfying (1.4)
and (1.5). Suppose that ¢ € SO_O(R”) such that suppp C {x € R" : c‘_1 < |x| < ¢} for some
constant ¢ € (1,00). Then, g € A* (R™) if and only if (=Apn)?g € A3),, J(R™). Moreover

p.qg,w,¢ p-q,W, ¥

forallg e A’ (R™), it holds that

Pq.w.¢
. ~ (- YI2Zg| -
IIgIIA;,qw(Rn) ~ |I(=Agn) gIIA;_;’W’w(Rn)
with implicit constants independent of g.

Proof. Associated to the function ¢, define a function ¢ via
W) = 27 @(¢) forall € € R”.
Clearly, ¥ € S(R") and suppzﬁ c {x e R": ¢! < |x| < ¢}. Note that the Fourier transform
gives
A —_ A T A —
(1 % ((=42:7"8)) (€) = @u(&) mIEN 2(&) = 17 Y(€) 3E) = 17 (Y % )" (©),
which implies
o ((~dee)?g) = (W * ©).
By this and Lemma[2.8] we obtain

2
(=AY llnrr oy = ( fo |

00 1/q
—-sq—1
=(f % 212 ™ w(r)dt) = lgll, e ~ gl
0 NATS

P-qw, ¢

q

1/q
901‘ k ((_ARH)'}//Zg) t_(s_y)q_lW(t) dt)

LP(RM)

(Rll)-
This ends the proof. O
Now, we prove Theorem [I.6|under S8 € [2n, ).

Proof of Theorem|[I.6lunder B € [2n, ). If B > 2n, then there exists a unique k € N such that
2n+k—1<B < 2n+k, which implies 8 — k € [2n — 1, 2n). Moreover, the facts 8 —k > 2n — 1
and 8 = s + n/q imply that s > k.

First, we show (i). Suppose that g € AIS,’ 4. w(R"). By Definiton , we may as well assume
that g € C°(R"). From Lemma 3.4]and Theorem [2.10{ii), it follows that

_ k12,00, ~ . -
(3-23) ||( AR") g”Al]gjg’W’w(Rn) ||g||Al,’q7w‘¢(Rn) < ”g”A'p,,,,w(R")’

where ¢ is as in Lemma[3.4]
If k is even, say k = 2m for some m € N, then we have

(=Ap)%g = (=4p2)"g € CZ(R"),
so that Theorem [2.10(i) and Remark [2.TT]imply

(3.24) =) gllas s @y S I=A2)gllass
and, hence, (-dg:)"?g € AS (RY).

If £ is odd, then we write k = 2m + 1 and, hence,

(=dz)?g = (=Agn)'* (=Aza)"g) € (=Azn)'* (CT(R™)).
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For any f € S(R"), it is known that (see [40, Section 2]) the function (=4g.)'/?f satisfies
(=dz)'? FOI S (1 + |x)~ Y

uniformly in x € R”. This in turn gives that (—4g.)*?g € LP(R"), which, along with Remark
2.11|and Theorem 1), again implies

(3.25) =AY gllasx  rey S W=Ar)ellzss gy
From this and Lemma2.2} we deduce that (~4z)"'>g can be approximated by C2°(R")-functions

under the semi-norm || - [|3s+  zn, Which induces (—dp)?g € ASE (RM).

Moreover, since 8 — k € (0, 2n), it follows from the already proved argument of Theorem[I.6|
in Section 3.1l that

&((~dw)g) € L4 ®™,
where & is the extension operator defined in Section Thus, it makes sense to define the
extension operator & by

&g 1= (—z) 2E ((~ 4 ) g).
By this, together with Lemma and (3:23)-(3:24)-(3.23), we derive Eg € jjg’ Y (R2") with

188l g gany = (=) 28 (= d5)"%g)

‘Cg qw (RZn)

= HS ((—AR")kﬂg)‘ 2@ = ||(—AR'1)k/2g||A;T§_W(Rn) < llgllas,, . @n)-

This proves that (1) holds for 8 € [2n, o).
Now, we show (ii). Let f € Lg’q’W(Rz"). Then f = (—dg2n)P/?¢ for some ¢ € LL(LP)(R?™).
Moreover, it follows from Lemma [3.3] that

(=Agan) POPG = (~dga) P f € L4 @),
Since B — k € (0,2n), by the already proved argument of Theorem [I.6{ii) in Section we

obtain

R((—dz2n) 2 f) = R((~dz2) #920) € Ak (R
and
(3.26) HR ((~4z2)2f) 'M_k = qu ((=Agary 002 ¢)‘ e

< -2y ]
= [ =) fl| g g, ~ Wz
Further, from Lemma [3.4]and Theorem [2.10(ii), we derive
(3.27) =22 (=152 ) < |R(4e221)

< [[R(=am02p)

A g o R A how R

At w®™)
and, hence,
(=de) PR (=422 f) € A, J(RD).

p.q,W,¢
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(R™) such

pqw

Next, by Theorem ul) there exists a Lebesgue measurable function gy € A’
that

g0 = (~d) PR ((~dz2)f) in SLR")

and

(3.28) Igollag o S [[(~AR) PR (=520 )

A; q,w, np(R”)

Thus, when 8 € [2n + k — 1,2n + k), it makes sense to define the restriction operator R on
£§ q,W(RZn) by

ﬁf = fo.
By (3.26)-(3.27)-(3.28)), we know that Rf € Ap 4wR") and
”Rf“/\‘ @) S Sl o g

Furthermore, by the fact that RE = id under 8 € (0, 2n), we deduce that, for any g € A* paw®")
with2n+k—-1<p6<2n+k,
REG = R ((=d52) 26 ((~42)"%g)) = (=dp) M2 RE (~4) g = g,
where all the equalities hold in S/ (R").
Altogether, we conclude the proof of Theorem [I.6|under 8 € [2n, ). m|

4. AN EXAMPLE: LOGARITHMIC BESOV SPACE

In this section, we show that logarithmic Besov spaces from [30, 31} [19} 20, [15] (see also
[6, 17,121} 136]]) fall into the scope of weighted Besov spaces in the present article and, hence, the
results in Theorem |1.6]are valid for these spaces.

Definition 4.1. Let p, g € [1,00), s € (0,00) and b € R. For any f € L! (R"), set

loc

1/q
dh
. DLkt ||
e Y I T A

The logarithmic Besov space A(S b>(R”) is defined to be the completion of C°(R") under the
semi-norm || - || ACD @)

Lemma 4.2. Suppose that g € [1,0) and b € R. For anyy € R", let

e\
w(y) :=(lo ) .
0 ( Al
Then, w € A,(R") whenever r € (1, 00) and, moreover, w satisfies (I.4) and (1.5)).

Proof. For any t,p € (0, o), observe that

pA1L

log Gim _ log 7 + log iy <1+'log P8l <1+ llogt
log 75 log 25 ) ot
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Since w is a radial function, we write w(y) as w(t) whenever |y| = t. Given any o > 0, we have

1 blg
f (74 (" W(IP)) dt f (Tq—l (1 + log l) dt < o,
e(Ooo) w(p) t

which shows that w satisfies (1.4]). Moreover, given any ¢ < 0, we also have

f M(ﬂ w(tp))ﬂgf 171 (1 +log )™ dt < o,
e(Ooo) w(p) ) t 1

thereby leading to (1.5))
It remains to Vahdate that w € A,(R"), where r € (1, 00). To this end, for any ball B c R", we
need to show that

1 e \M 1 e - '
4.1) (ﬁf;(log A 1) dx) (Eﬁ(log A 1) dx] <C

holds for some positive constant C independent of B.
Suppose that B = B(xg,R) for some x, € R" and R € (0,c0). Then, we show (4.1)) by
considering the following two cases:

e Case I: |xo| = 2R. In this case, for any x € B, we have
x| = |xo| = |xo = x| > [xo| = R = |x0[/2
and
x| < |xol + |xo — x| < [xol + R < 2|x0l,

which in turn gives

~

~1
Al B Al

log

and, hence, (4.1) holds.
e Case 2: |xo| < 2R. For any x € B, we now have

|x] < |xo|l + |x0 — x| < |xo| + R < 3R,

so that B c B(0, 3R). Consequently,

log

1)

e 1
— (log ) dx < — (
|B| Jg x| A1 |B] B(OSR) x| A
_n
=

~1 —e
“2Gry A1)

where the last step follows from a direct calculation (see also [18, Proposition 3.4.33]
and [15, Lemma 2.4]). In a similar manner,

1 e = 1 e \ T
— lo dx < — lo dx
1B| B( g|x|A1) 1| Bw)( g|x|A1)

3R o
n r—
= — lo o d
R Jo ( s ) P

pAl
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e Tl
~log —2—| .
(Og GR) A 1)

Combining the last two formulae yields (#.1).

Summarizing the arguments in the above two cases, we arrived at the conclusion that w € A,(R")
for all r € (1, 00). O

For p € [1,00), g € (1,00) and b € R, we denote by L") (R?") the collection of all measur-
able functions f on R*" satisfying

alp e\ /q
1l ason = ( f ( f If(x,y)l”dx) (log ) dy) < oo,
re \JRrr A1

The corresponding mixed-Riesz potential space is defined by
Lo R = (f 1 f = (~dga) PP with ¢ € LM PR™).
Then, an application of Lemma[.2]and Theorem [1.6] yields the following result.

Theorem 4.3. Let p € [1,0), g € (1,0), s € (0,00), B:= s+ n/q € (0,0) and b € R. Then,
the following hold:

(i) there exists a bounded linear extension operator

&: AGPRY - LT R™),

such that, for any g € Af,,sqb (R,
||8g||££vqwb(Rzn) < Cillgllzen gy

where C| is a positive constant independent of g;
(1) there exists a bounded linear restriction operator

R: LETPR™) - ASDRY),
such that, for any f € Lg bR,
IRAN oD@y < C2||f||[g-q~h(R2n)’

where C, is a positive constant independent of f. Moreover, RE = id.
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