
1

An Introduction to Tensor Calculus

1.1 Overall Context

We will be developing the laws of continuum physics throughout the first part of this book.
We will do so in an uncommon but pedagogic way by starting with the laws that describe
the discrete movement of individual atoms and then summing over the molecular dynamics.
The emergent continuum laws so obtained come in the form of partial-differential equations
(PDEs) that determine how fields are changing in time at each point in space based on how
the fields are varying in space in the immediate neighborhood of that point. The second part
of the book will treat, for the most part, mathematical techniques for analytically solving
the PDEs with a heavy dose of Fourier analysis and contour-integration methods. Students
learning this material from me over the years have reported that the first part where the
continuum rules are established is more difficult for them compared to the second part
where math problems are solved. Perhaps this is analogous to how building a toy model is
more challenging than playing with the toy once it is built.

In continuum mechanics in particular, the key field representing the underlying
molecular-force interactions is a tensor (the “stress tensor”) and across all of continuum
physics, the material properties and constitutive laws are often only describable using
tensors. In short, it is impossible to learn continuum physics properly without a solid
foundation in tensors and tensor calculus, and this is why we begin the book with this
foundational topic. What you learn in this first chapter, especially the tensor-calculus
product-rule identities of Section 1.7, will be used at every step throughout our devel-
opment of the rules of continuum physics. Fortunately, tensors and tensor calculus are a
natural, even effortless, extension from the concepts of vectors and vector calculus that
I assume you are familiar with. This chapter reviews the various types of spatial deriva-
tives employed in continuum physics (the gradient, divergence, and curl), while allowing
these spatial derivatives to act upon tensor fields, which is assumed to be new to the reader.
It is my experience that even more senior research scientists can benefit from this chapter’s
survey of tensor calculus in preparation for the derivations in all the chapters that follow.

Throughout the book, our focus is on analytical understanding of the physics and mathe-
matics and this involves pencil and paper work. You need to develop confidence in pushing
the symbols around the page as you handle and ultimately solve the PDEs we will be deriv-
ing. The goal is to build intuition and hands-on familiarity with the physical processes
being discussed. Simulating macroscopic experiments in the real world, often performed
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4 An Introduction to Tensor Calculus

in complicated heterogeneous bodies of matter with irregular boundaries, is called the for-
ward problem and usually needs to be performed numerically because analytical solutions
of the governing equations are not possible. Recording the material response at places
within a body during various types of experiments and minimizing the difference between
the recorded data and simulations of the data with the goal of determining the physical
properties throughout the body is called the inverse problem and is also a numerical exer-
cise in nearly all cases. But we will not be addressing in this book numerical aspects of
the forward and inverse problems posed in macroscopic bodies. Instead we content our-
selves with first developing the PDEs that control basic processes of interest across many
physical-science disciplines (Part I) and then solving simplified forms of the equations in
simple geometries where analytical results are possible so that your physical intuition about
the physics can be developed (Part II).

1.2 Some Actors

Any physical quantity continuously distributed over the space of some region is called a
field. Continuum physics involves the study of fields. Fields can be scalars, vectors, or
tensors.

Scalar Fields: A field quantity that has no intrinsic direction is called a scalar field. Exam-
ples include temperature, pressure, and various types of densities. In the nomenclature of
tensors, a scalar can be called a zeroth-order tensor.

Vector Fields: A field quantity that has a direction associated with it is called a vector field.
Examples include electric fields, fluid velocity, and gravitational acceleration. Vector fields
are represented at each point in space by an arrow whose length denotes the amplitude of
the vector field at that point. In the nomenclature of tensors, a vector can be called a first-
order tensor. Vector fields as depicted in Fig. 1.1 can be written analytically in different
ways:

r =̂ position vector used to identify points in space

= x1x̂1 + x2x̂2 + x3x̂3 = x x̂+ y ŷ+ z ẑ (1.1)

= (x1, x2, x3)= xix̂i (summation over repeated indices),

Figure 1.1 Points in space denoted by the vector r and a vector field a(r) at each point r.
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1.2 Some Actors 5

a(r)= a(x1, x2, x3) =̂ vector field defined at each point r

= a1x̂1 + a2x̂2 + a3x̂3 = axx̂+ ayŷ+ azẑ (1.2)

= (a1, a2, a3)= aix̂i.

The caret symbol ˆ placed above a vector means that vector is unitless and has an amplitude

of 1, that is, â =̂ a/|a|, where |a| =
√

(a21 + a22 + a23) denotes the amplitude of vector a.

IMPORTANT: Whenever an index appears twice in an expression, you always sum over that
index. The index that is summed over is sometimes called a dummy index because the index
does not survive the summation and could be given any name. For example, we have aibi =
ajbj = anbn =∑3

n=1 anbn =∑3
j=1 ajbj =

∑3
i=1 aibi = a1b1 + a2b2 + a3b3, where the i, j and n are

examples of the dummy indices that we sum over. The summation over repeated indices in
vectorial and tensorial expressions is called the Einstein summation convention and simply saves
us from having to write the summation sign over and over.

Another type of vector is the vector operator that we call the gradient operator that is
defined

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
=̂ gradient operator (a vector operator). (1.3)

For example, if ψ(r)=ψ(x, y, z) is some scalar field, then the gradient of ψ is

∇ψ = x̂
∂ψ

∂x
+ ŷ

∂ψ

∂y
+ ẑ

∂ψ

∂z
. (1.4)

and is a vector that we can also write ∇ψ = x̂i∂ψ/∂xi using the summation convention.
The gradient vector ∇ψ is oriented in the direction that the scalar field ψ is increasing the
most rapidly and the amplitude |∇ψ | gives the rate of that maximum increase.

For a vector field a= aix̂i, we call the ai the scalar components of the vector and call the
unit vectors x̂i in each direction i the base vectors. Note that a vector at some point in space
is an arrow with a length and is completely independent of the coordinate system we use
to describe it. So a happily exists as the same arrow and does not change if we rotate the
coordinate system. Note, however, that the scalar components of the vector ai will change
as we rotate our coordinate system (alter the orientations of the base vectors) or switch to
another coordinate system such as cylindrical coordinates.

Some authors put an arrow above a symbol to denote that it is a vector field, i.e., �a.
When working in typed text, we always use a bold-face symbol to denote a vector, i.e., a.
When writing by hand, we have elected not to use an arrow over a symbol but instead use
a squiggly underscore, i.e., a

˜

.

You are free to develop your own vectorial and tensorial notation when writing by hand
but using squiggly underscores for vectors and tensors has served me well over a long
career. Note that if you do not use some type of notation to denote that a symbol is a vector
or tensor, you will be in a constant state of confusion when manipulating the fields of
continuum physics.
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6 An Introduction to Tensor Calculus

Second-Order Tensor Fields: A field quantity that acts as the proportionality between
two vector fields that are related to each other at each point in space is called a second-
order tensor field (can equivalently be called a “second-rank” tensor). Another word that
is synonymous to second-order tensor is dyad or dyadic. We write a second-order tensor
field as

T(r) =̂ a second-order tensor field defined at each point r

= Txxx̂x̂+ Txyx̂ŷ+ Txzx̂ẑ

+ Tyxŷx̂+ Tyyŷŷ+ Tyzŷẑ (1.5)

+ Tzxẑx̂+ Tzyẑŷ+ Tzzẑẑ

= Tij x̂ix̂j (summation over repeated indices assumed). (1.6)

Just like the vector a= axx̂+ ayŷ+ azẑ is the sum of three vectors in the three coordinate
directions, so the second-order tensor T is the sum of nine second-order tensors as made
explicit in Eq. (1.5). The Tij are the scalar components of the second-order tensor and the
various base vector pairs x̂ix̂j for the various possible i and j are what we call second-order
tensors. And just like we can write a vector in the array format a= (ax, ay, az), so can we
write a second-order tensor as

T =
⎛

⎝

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

⎞

⎠ . (1.7)

So a second-order tensor can be represented as a matrix. Much of what you learned about
matrices in linear algebra applies to how we use second-order tensors. The main differ-
ence between a matrix and a second-order tensor is that although a matrix may have any
dimension (N ×M) and corresponds to any proportionality between an M and N dimen-
sioned vector (first-order) array, a second-order tensor is a field quantity distributed through
three-dimensional space and is always a (3× 3) matrix in three-dimensional space and is
a physical field that is always the proportionality between two vector fields that each have
clear physical meaning as will be demonstrated repeatedly throughout this book.

An example of a second-order tensor is two vector fields that sit side by side to each
other in an expression without a scalar or vector product (that are defined in an upcoming
section) between them:

ab= (

axx̂+ ayŷ+ azẑ
) (

bxx̂+ byŷ+ bzẑ
)

(1.8)

= axbx x̂x̂+ axby x̂ŷ+ axbz x̂ẑ

+ aybx ŷx̂+ ayby ŷŷ+ aybz ŷẑ (1.9)

+ azbx ẑx̂+ azby ẑŷ+ azbz ẑẑ

= aibjx̂ix̂j (summation over repeated indices as always). (1.10)

It is convenient to construct the 3× 3 matrix representing ab as the matrix product between
a written as a 3× 1 array and b written as a 1× 3 array, which corresponds to the
multiplications of Eq. (1.8):
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ab=
⎛

⎝

ax
ay
az

⎞

⎠

(

bx, by, bz
)=

⎛

⎝

axbx axby axbz
aybx ayby aybz
azbx azby azbz

⎞

⎠ . (1.11)

When two vectors sit next to each other to form a second-order tensor, it is common to
call that product the tensor product or dyadic product, even if we will not employ these
words outside of this paragraph. Some authors in the engineering literature introduce a
special symbol ⊗ to denote the tensor product, i.e., a⊗ b =̂ ab. So for the tensor product
between the base vectors in any second-order or higher-order tensorial expression, these
authors write, for example, x̂⊗ ŷ to represent what most authors write more simply as x̂ŷ.
The extra symbol ⊗ uses space on the page without providing any needed clarification,
which is why we do not use it.

Another example of a second-order tensor is the gradient of a vector field. Working in
Cartesian coordinates where derivatives of base vectors are zero, we have

∇a=
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)

(

axx̂+ ayŷ+ azẑ
)

(1.12)

= ∂ax
∂x

x̂x̂+ ∂ay
∂x

x̂ŷ+ . . .= ∂aj
∂xi

x̂ix̂j, (1.13)

which can again be written in array form as

∇a=
⎛

⎝

∂x

∂y

∂z

⎞

⎠

(

ax, ay, az
)=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂ax
∂x

∂ay
∂x

∂az
∂x

∂ax
∂y

∂ay
∂y

∂az
∂y

∂ax
∂z

∂ay
∂z

∂az
∂z

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (1.14)

We emphasize that we get these simple expressions for the components of∇a only in Carte-
sian coordinates where derivatives of the base vectors are zero because the base vectors in
Cartesians are spatially uniform. When the components of ∇a are written out in curvilinear
coordinates (cylindrical, spherical, etc.) in which the base vectors themselves vary with
position in space and thus have nonzero spatial derivatives, the result of performing ∇a is
more complicated. The expressions for ∇a in arbitrary orthogonal curvilinear coordinates,
cylindrical coordinates, and spherical coordinates are all given in Section 1.8.6.

Just like with a matrix, we can talk about the transpose of a second-order tensor T =
Tijx̂ix̂j and write

TT =̂ the transpose of T

= Tijx̂jx̂i = Tjix̂ix̂j. (1.15)

Thus to perform the transpose, we can either flip the indices on the scalar components
Tij → Tji of the tensor or flip the position of the two base vectors as they sit side by side.

Note that like with a vector, a tensor T exists at a point and is independent of the coor-
dinate system. If we rotate or change coordinate systems, T does not change. However, the
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8 An Introduction to Tensor Calculus

scalar components of the tensor Tij will change as we change the coordinates because the
base vectors x̂i are changing. When working in typed text, we always denote a second-order
tensor with bold type. When we write a second-order tensor by hand, we use two squiggly
underscores T = T

˜
˜

.

Higher-Order Tensor Fields: The generalization to higher-order tensors is straightfor-
ward. A third-order tensor is written

3P= Pijkx̂ix̂jx̂k (1.16)

a fourth-order tensor as

4Q=Qijklx̂ix̂jx̂kx̂l (1.17)

and so on for still higher-order tensors. Summation over each index is again assumed.
If, for example, a second-order tensor A happens to sit next to two vectors a and b we

would have the fourth-order tensor

Aab= Aijakblx̂ix̂jx̂kx̂l. (1.18)

In general, we haveAab �=Aba �= aAb �= bAa �= abA �= baA, so the order, from left to right,
in which tensorial expressions sit next to each other to form higher-order tensors is very
important.

The transpose of higher-order tensors must be specified by the way in which the base
vectors are moved around relative to each other in the desired transpose operation. So, for
example, for the fourth-order tensor 4Q=Qijklx̂ix̂jx̂kx̂l, we can define transpose operations
such as

4Q
T

2134 =Qijklx̂jx̂ix̂kx̂l =Qjiklx̂ix̂jx̂kx̂l (1.19)

4Q
T

1243 =Qijklx̂ix̂jx̂lx̂k =Qijlkx̂ix̂jx̂kx̂l (1.20)

4Q
T

3412 =Qijklx̂kx̂lx̂ix̂j =Qklijx̂ix̂jx̂kx̂l (1.21)

and so on. There are 4! − 1= 23 such transposes for a fourth-order tensor, that is, there are
4! − 1 different ways of placing the four base vectors next to each other that are different
than in the nontransposed form. Similarly, an nth-order tensor would have n! − 1 differ-
ent possible transpose operations; so a second-order tensor has only one way to write the
transpose.

We write an nth-order tensor nQ by hand as nQ
˜

for n> 2.
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1.3 Some Acts

In tensor calculus, just like in vector calculus, we define two commonly employed types of
products between vectors and tensors called the scalar product and the vector product.

Scalar Products: A scalar product between two vector fields a and b that have an angle θ
between them at each point as depicted in Fig. 1.2 is the product of the amplitude of the
two vectors after one of the two vectors is projected into the direction of the other vector.
The scalar product a · b between two vectors is a scalar and is denoted with a dot sitting
between the vectors and is defined by the following rule

a · b= |a||b| cos θ, where |a| =
√

a2x + a2y + a2z . (1.22)

So a · b= 0 if a⊥ b, which means that x̂ · ŷ= 0 and x̂ · ẑ= 0, but x̂ · x̂= 1, etc. Using these
rules, we thus have

a · b= [

axx̂+ ayŷ+ azẑ
] · [bxx̂+ byŷ+ bzẑ

]

= axbx + ayby + azbz (1.23)

= aibi.

The scalar product is also called the dot product or the inner product.
What if vector field a is related to vector field b at some point in space? How do you

obtain a given b? That is what a second-order tensor such as T = Tijx̂ix̂j does for us once
we introduce the scalar product:

a= T · b

=
⎛

⎝

Txxx̂x̂ + Txyx̂ŷ + Txzx̂ẑ
+ Tyxŷx̂ + Tyyŷŷ + Tyzŷẑ
+ Tzxẑx̂ + Tzyẑŷ + Tzzẑẑ

⎞

⎠ · (bxx̂+ byŷ+ bzẑ
)

(1.24)

= (

Txx bx + Txy by + Txz bz
)

x̂+ (

Tyx bx + Tyy by + Tyz bz
)

ŷ

+ (

Tzx bx + Tzy by + Tzz bz
)

ẑ (1.25)

= (

Tijx̂ix̂j
) · (bkx̂k

)= Tijbkx̂i
(

x̂j · x̂k
)= Tijbjx̂i, (1.26)

Figure 1.2 Two vectors a and b with an angle θ between them.
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10 An Introduction to Tensor Calculus

where in the last line we used that x̂j · x̂k requires k= j. Using the familiar matrix
multiplication for the scalar product, this can be written

⎡

⎣

ax
ay
az

⎤

⎦=
⎡

⎣

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

⎤

⎦

⎡

⎣

bx
by
bz

⎤

⎦ . (1.27)

IMPORTANT: Second-order tensor fields are always maps between two vectors that are phys-
ically related to each other at a point r. You cannot visualize directly a second-order tensor (or
higher-order tensors) using your 3D sense of perception. But you can picture in your mind’s
eye the two vectors (arrows) that are related to each other at a point and thus imagine there is a
mapping (second-order tensor) that takes the one vector to the other.

Note that throughout this entire book, we work exclusively in orthogonal coordinates where
dot products are zero between the different base vectors of a coordinate system. It is pos-
sible, for example, in crystallography, to want to work in skew coordinate systems where
the base vectors are not orthogonal to each other. Complicating ideas such as covariant
and contravariant base vectors arise and the reader interested in tensor calculus in skew
coordinates is directed toward specialized texts (e.g., Lebedev et al., 2010).

We can also speak of the double-dot product : between tensors, that in this book is
defined

ab : cd= (a · d)(b · c) (1.28)

= (

aix̂i · djx̂j
) (

bkx̂k · clx̂l
)

(1.29)

= aidjbkcl
(

x̂i · x̂j
) (

x̂k · x̂l
)

. (1.30)

Other authors define the double-dot product as (a · c)(b · d). Either definition works if used
consistently. We choose the convention of Eq. (1.28) so that when you see the : between
vectors or base vectors, you perform the first dot product between the vectors that reside
immediately on either side of the dot symbol and once that is done, perform the second
dot product between the remaining vectors. This convention is the easiest to remember and
is highly recommended. In writing out a tensorial expression such as given in Eq. (1.29),
always use a different index for each base vector and associated coefficient. Because of the
nature of the scalar product in orthogonal coordinate systems, we thus have l= k and j= i
in Eq. (1.30) or

ab : cd= aibkckdi with summation over repeated indices (1.31)

= a1b1c1d1 + a2b1c1d2 + a1b2c2d1 + a2b2c2d2 in 2D. (1.32)

Note that for two second-order tensors S and T, we have S · T = (

TT · ST)T and that S · T �=
T · S in general. For the double-dot product, however, we do have S : T = T : S for any S
and T, where
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S : T = Sij x̂ix̂j : Tkl x̂kx̂l (1.33)

= SijTkl
(

x̂j · x̂k
) (

x̂i · x̂l
)

which requires l= i and k= j (1.34)

= SijTji with summation over repeated indices. (1.35)

Renaming the dummy indices gives S : T = SijTji = SjiTij = TijSji = T : S.
The second-order identity tensor I is defined I= δij x̂ix̂j, where the δij are called the

Kronecker coefficients and are defined

δij =
{

0 if i �= j

1 if i= j
so that I=

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ . (1.36)

Upon summing over the indices, we have I= x̂1x̂1 + x̂2x̂2 + x̂3x̂3 = x̂x̂+ ŷŷ+ ẑẑ. The
identity tensor works as follows: A · I= I ·A=A for any second-order tensor A. We
further have that if the position vector is written r= xjx̂j in Cartesian coordinates, then
I= ∇r= (∂xj/∂xi)x̂ix̂j = δijx̂ix̂j.

A double-dot product with the identity tensor results in A : I= Aij δji = Aii = tr {A} =
A11 + A22 + A33, which is called the trace of second-order tensor A. The trace is the sum
of the second-order tensor components along the diagonal, for example, I : I= 3 (in 3D).
The double-dot product between two second-order tensors is the trace of the scalar (matrix)
product of the two tensors, that is, A :B= AijBji = tr {A ·B} = tr {B ·A}.

We can extend the number of dot products we take between two higher-order tensors to
as many as desired. So the triple-dot product 3. between, say, two third-order tensors 3S and

3T can be defined

3S 3. 3T = Sijkx̂ix̂jx̂k 3. Tlmnx̂lx̂mx̂n
= SijkTlmn(x̂k · x̂l)(x̂j · x̂m)(x̂i · x̂n),

which tells us that n= i, m= j and l= k so that the triple-dot product between two third-
order tensors comes out to be

3S 3. 3T = SijkTkji = tr {3S : 3T} (1.37)

with summation over repeated indices. We can extend such notation and definition to still
higher-order dot products between still higher-order tensors.

Note that each dot product removes two base vectors from a tensorial expression. So
without writing anything out, we know that a tensorial expression like 8A 5. 6B is a fourth-
order tensor, that is, the eighth-order tensor 8A contributes 8 base vectors to this expression
and the sixth-order tensor 6B contributes 6 more base vectors but the 5 dot products remove
10 of those base vectors so that the result is a fourth-order tensor. As practice, we can write
this lengthy example out to give

8A 5. 6B=
AijklmnopBqrstuv x̂ix̂jx̂k(x̂p · x̂q)(x̂o · x̂r)(x̂n · x̂s)(x̂m · x̂t)(x̂l · x̂u)x̂v, (1.38)

https://doi.org/10.1017/9781108951982.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108951982.003


12 An Introduction to Tensor Calculus

which tells us that q= p, r= o, s= n, t=m, and u= l so that we obtain the fourth-order
tensor

8A 5. 6B= AijklmnopBponmlv x̂ix̂jx̂kx̂v (1.39)

with summation implied over all the dummy (i.e., repeated) indices. In our development
of continuum physics, we will not need to work with tensors higher than the sixth order or
with more than three dot products between two tensors.

Vector Products: A vector product between two vectors a and b is a vector that is perpen-
dicular to the two vectors as depicted in Fig. 1.3 and that has an amplitude equal to the area
of the parallelogram formed with the two vectors as sides. We have

c= a× b; c⊥ to both a and b (1.40)

|c| = |a||b| sin θ (1.41)

a× b= 0 if a || b. (1.42)

Use the right-hand rule to determine the sense of a× b. Note that a× b= −b× a. We can
thus obtain

x̂× ŷ= ẑ; x̂× ẑ= −ŷ; x̂× x̂= 0 (1.43)

and so forth for all the vector products between all base vectors. Using these rules, we can
write

a× b= (

axx̂+ ayŷ+ azẑ
)× (

bxx̂+ byŷ+ bzẑ
)

= axby ẑ− axbz ŷ− aybx ẑ+ aybz x̂+ azbx ŷ− azby x̂

= (

aybz − azby
)

x̂− (axbz − azbx) ŷ+ (

axby − aybx
)

ẑ. (1.44)

Figure 1.3 The vector product c= a× b is a vector perpendicular to a and b as determined
by the right-hand rule.
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We can thus write the vector product using the matrix determinant in the following way:

a× b=
∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
ax ay az
bx by bz

∣

∣

∣

∣

∣

∣

, where | · · · | denotes taking the determinant. (1.45)

Note that the vector product is also called the cross product.

Doing Vector (Cross) Products with Scalar (Dot) Products: It is convenient for proving
identities involving the cross product to write a cross product in a way that only involves
dot products. To do so, we introduce the alternating or permutation or antisymmetric or
Levi–Civita (these are all synonyms) third-order tensor 3ε that is defined

3ε = εijk x̂ix̂jx̂k (1.46)

with scalar components called the Levi–Civita coefficients given by

εijk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+1 for counterclockwise index positions: 123, 231, 312

−1 for clockwise positions: 132, 321, 213

0 for every other index combination,

(1.47)

where this cyclic ordering of the indices can be remembered using the mnemonic device of
Fig. 1.4. To perform the cross product with the Levi–Civita tensor, we do the following

a× b= 3ε : ba= −3ε : ab= −εijk x̂i x̂j x̂k : al x̂l bm x̂m
= −εijk albm x̂i

(

x̂k · x̂l
) (

x̂j · x̂m
)

= −εijk akbj x̂i (1.48)

= x̂1 [a2b3 − a3b2]+ x̂2 [a3b1 − a1b3]+ x̂3 [a1b2 − a2b1] (1.49)

which is identical to Eq. (1.44). Note that the double-dot product with the Levi–Civita
tensor uses our double-dot convention of Eq. (1.28), which explains the minus sign in Eq.
(1.48) in comparison to other authors who use the alternative but less-intuitive definition
of the double-dot product.

If the Levi–Civita tensor is double dotted into the second-order tensor A, we obtain the
vector

3ε :A= x̂1 (A32 − A23)+ x̂2 (A13 − A31)+ x̂3 (A21 − A12) . (1.50)

Figure 1.4 Mnemonic triangle showing the counterclockwise ordering of the three Levi–
Civita indices
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14 An Introduction to Tensor Calculus

So if the tensor A is symmetric, then 3ε :A= 0. Any second-order tensor can be separated
into symmetric and antisymmetric portions A=A(s) +A(a), where

A(s) = 1

2

(

A+AT
)

, (1.51)

A(a) = 1

2

(

A−AT
)

. (1.52)

So the antisymmetric portion of any second-order tensor has zeroes along the diagonal and
off-diagonal components that are “antisymmetric” A(a)ij = −A(a)ji . So the operation 3ε :A=
3ε :A(a) given by Eq. (1.50) involves only the antisymmetric portion of A. This is because
the Levi–Civita coefficients are anti-symmetric, that is, εijk = −εikj = −εjik. You can prove
as an end-of-chapter exercise that the double-dot product of any tensor that is antisymmetric
in the last two base vectors with any tensor that is symmetric in the first two base vectors
gives zero.

The antisymmetric nature of 3ε can further be seen by dotting it into any vector a to
obtain the second-order tensor

3ε · a= εijkakx̂ix̂j =
⎛

⎝

0 a3 −a2
−a3 0 a1
a2 −a1 0

⎞

⎠ , (1.53)

which is the definition of an antisymmetric second-order tensor. So the dot product of the
third-order Levi–Civita tensor with any vector always produces an antisymmetric second-
order tensor.

There is a useful identity involving the Levi–Civita coefficients

εijkεilm = δjlδkm − δjmδkl, (1.54)

where the δij are the Kronecker coefficients. For the left-hand side to be nonzero, we need
j, k, l,m �= i as well as both j �= k and l �=m. If we take j= l and k=m, then εijkεilm =
εijkεijk = 1. If we take j=m and k= l, then εijkεilm = εijkεjik = −1. This suite of conditions
is exactly satisfied by the right-hand side of Eq. (1.54). The identity of Eq. (1.54) allows us
to prove relations that involve two cross products.

As an example, express the double-cross product between three vectors as

a× b× c= −a× (3ε : bc)= 3ε : a (3ε : bc) , (1.55)

= εijkakεjlmbmclx̂i. (1.56)

Exchanging the dummy indices i and j and noting that εjik = −εijk gives

a× b× c= −εijkεilmakbmclx̂j. (1.57)
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1.4 The Integral Theorems 15

The identity of Eq. (1.54) then results in

a× b× c= (

δjmδkl − δjlδkm
)

akbmclx̂j, (1.58)

= (

akbjck − akbkcj
)

x̂j, (1.59)

= (a · c) b− (a · b) c. (1.60)

The Levi–Civita third-order tensor allows us to rewrite cross products in terms of dot
products, which simplifies obtaining vectorial and tensorial identities that involve the cross
product.

1.4 The Integral Theorems

There are a variety of extremely useful theorems that involve the combined operations of
differentiation and integration (the derivative and antiderivative). We will use these theo-
rems over and over again in our development and manipulation of the rules of continuum
physics.

Fundamental Theorem of 3D Calculus: For some volumetric region � bounded by the
closed surface ∂� that has an outward normal n at each point of ∂� as depicted in Fig. 1.5,
we have

∫

�

∇ψ(r) d3r=
∫

∂�

nψ(r) d2r,
fundamental theorem

of 3D calculus
(1.61)

where ψ is a scalar, vector, or tensor field of any order. If ψ is either a vector or tensor, it is
necessary that it appears in the position given within the integrand on the right-hand side of
Eq. (1.61). Although this theorem is used repeatedly in physics, for some peculiar reason
it is rarely presented in vector calculus texts intended for the undergraduate level. As a
guided exercise at the end of the chapter, you can prove Eq. (1.61) rather easily. Equation
(1.61) is the 3D generalization of the fundamental theorem of 1D calculus

Figure 1.5 An arbitrary region � bounded by the closed surface ∂�.
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16 An Introduction to Tensor Calculus

∫ b

a

dψ(x)

dx
dx=ψ(b)−ψ(a).

fundamental theorem
of 1D calculus

(1.62)

In the above volume and surface integrals, we have employed the notation that d3r=
dx dy dz= dV denotes a volume element and d2r= dS denotes a surface element. With
ψ → a in the fundamental theorem of 3D calculus, where a is a vector or tensor field of
any order, taking the trace over the two base vectors gives

∫

�

∇ · a d3r=
∫

∂�

n · a d2r divergence theorem (1.63)

that is also called Gauss’ theorem.
One may similarly obtain

∫

�

∇ × a d3r=
∫

∂�

n× a d2r curl theorem (1.64)

which is not Stokes’ theorem even if it involves the curl operation ∇ × a defined in
Section 1.6.

Stokes’ Theorem: For some finite open (possibly curved) surface S having normal n at
each point on S and bounded by a closed contour � as depicted in Fig. 1.6, we have

∫

S
n · (∇ × a) dS=

∮

�

a · dl Stokes’ theorem (1.65)

where dl is the infinitesimal length vector tangent to points on � and
∮

�
means that

we start the integral on the closed contour � at one point, go around the contour in the
counterclockwise direction and finish the integral at that same point.

When applied to a plane, Stokes’ theorem is equivalent to a theorem that is usually called
Green’s theorem. So taking the open surface S to reside in the x, y plane and bounded by
the closed curve � and considering two functions of (x, y) that we call P(x, y) and Q(x, y),
Green’s theorem states

Figure 1.6 An open surface S with a normal vector n at each point and bounded by the
closed contour �.
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1.4 The Integral Theorems 17
∫

S

(

∂Q(x, y)

∂x
− ∂P(x, y)

∂y

)

dxdy=
∮

�

[

P(x, y) dx+Q(x, y) dy
]

. (1.66)

By substituting P(x, y)= ax(x, y) andQ(x, y)= ay(x, y), Green’s theorem becomes Stokes’
theorem. You can prove Green’s theorem as an easy guided, end-of-chapter exercise.
Green’s theorem will also be used in Chapter 11 to prove Cauchy’s theorem, which is
the foundation for all contour-integration methods.

Differentiating under the Integral Sign: Another class of integral theorems involves time
differentiation of spatial integrals when the limits of the integral domain are themselves
variable in time.

In 3D, let’s imagine a spatial integral domain �(t) whose enclosing boundary ∂�(t)
is changing through time t because each point of the boundary is moving with a velocity
v(r, t). In this scenario, the time derivative of a volume integral over the time-variable
domain �(t) is given by

d

dt

∫

�(t)
ψ(r, t) d3r=

∫

�(t)

∂ψ(r, t)
∂t

d3r+
∫

∂�(t)
n · v(r, t)ψ(r, t) d2r, (1.67)

which is called the Reynolds transport theorem. Here, ψ can be a scalar, vector, or ten-
sor field of any order. Applying the divergence theorem to the surface integral gives the
alternative expression

d

dt

∫

�(t)
ψ(r, t) d3r=

∫

�(t)

{

∂ψ(r, t)
∂t

+ ∇ · [v(r, t)ψ(r, t)]
}

d3r. (1.68)

If the field ψ is a vector or tensor, it is very important that it is placed after the velocity
field in the tensorial expression that the divergence operates on. If the boundary ∂� is not
moving with a velocity v, then the time derivative passes through the volume integral and
acts directly on the integrand ψ and there is no surface integral term or divergence term. If
ψ = 1, then V(t)= ∫

�(t) d
3r is the evolving volume of the domain �(t) and the Reynolds

transport theorem gives dV(t)/dt= ∫

∂�(t) n · v d2r, which is a self-evident fact and a result
we will use in Chapter 4.

The Reynolds transport theorem of Eq. (1.67) is the 3D generalization of the rule for
time differentiating 1D spatial integrals over a time-variable domain

d

dt

∫ b(t)

a(t)
ψ(x, t) dx=

∫ b(t)

a(t)

∂ψ(x, t)

∂t
dx+ db(t)

dt
ψ(b(t), t)− da(t)

dt
ψ(a(t), t), (1.69)

which is called the Leibniz rule. Note that db(t)/dt is the velocity at which the domain limit
x= b is moving in the +x direction and similarly for da(t)/dt.
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18 An Introduction to Tensor Calculus

1.5 Divergence of Vector (and Tensor) Fields

The divergence operation is the dot product between the gradient operator and either a
vector or tensor

∇ · a=
[

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]

· [axx̂+ ayŷ+ azẑ
]

. (1.70)

In carrying out the products and derivatives, note that in Cartesian coordinates the base
vectors are uniform constants and have the property that ∂ x̂j/∂xi = 0. But this is not true
for other base vectors in curvilinear coordinates (e.g., cylindrical and spherical). Since the
derivatives of the base vectors are zero in Cartesian coordinates, we have

∇ · a= ∂ax
∂x

+ ∂ay
∂y

+ ∂az
∂z

= ∂ai
∂xi

(1.71)

with summation over the index i as always. In Section 1.8.6, we will investigate how this
and other tensor-calculus operations involving the ∇ operator are different in orthogonal
curvilinear coordinates. Our goal in the present section is specifically to provide physical
understanding about what the divergence of vector (and tensor) fields is telling us about
the field.

To do so, construct a region � around the point r that has a tiny volume δV = ∫

�
dV ,

where the δ means “tiny.” The region is surrounded by the closed surface ∂�. The
divergence theorem says that:

1

δV

∫

�

∇ · a dV = 1

δV

∫

∂�

n · a dS. (1.72)

In the limit as δV → 0, ∇ · a≈ constant in �, so

∇ · a= lim
δV→0

1

δV

∫

�

∇ · a dV

= lim
δV→0

1

δV

∫

∂�

n · a dS, (1.73)

which represents the accumulation of the physical quantity carried by a. Imagine the vector
a as a flux of some type carrying a physical quantity with it. If the flux into a small volume
element is different than the flux out of the element, which is what the surface integral
of Eq. (1.73) quantifies, then the divergence of this flux is nonzero. The divergence of a
vector field is thus associated with the idea of accumulation (if the divergence is negative)
or depletion (if the divergence is positive) in a tiny region surrounding the point in question.

To conclude: If |n · a| is larger on one side of the small element� compared to the other,
the divergence is nonzero. If the divergence is positive, the physical quantity carried by a
is depleting in�, while if the divergence is negative, the physical quantity is accumulating.
This is shown in Fig. 1.7.

There are two ways we commonly use to visualize a vector field as depicted in Fig. 1.8.
In the first, we place a vector at each point in space. In the second, called current lines
(or flow lines), the direction of the field at a point is tangent to the current line at that point
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1.5 Divergence of Vector (and Tensor) Fields 19

More entering than leaving As much entering as leaving
Figure 1.7 Figure showing that ∇ · a< 0 quantifies the accumulation of the physical quan-
tity carried by the “flux” a due to more of the quantity fluxing into a volume than fluxing
out. If the flux arrows leaving the volume are greater than those entering, the quantity is
depleting and ∇ · a> 0. If the flux in equals the flux out, then there is no accumulation or
depletion and ∇ · a= 0.

and the amplitude is given by the density of current lines in the neighborhood surrounding
the point.

In the current line approach, the places where ∇ · a �= 0 are always associated with the
start of a new line as shown in Fig. 1.9. In particular, if we imagine the electric field E(r)
around a point charge q, all field lines start at the charge location where ∇ ·E �= 0 but at all
other points where there is no point charge, field lines are not being created and ∇ ·E= 0.

2. Current lines1. Vectors at each point

Figure 1.8 Two approaches that are commonly employed for picturing a vector field.

Figure 1.9 Places where ∇ · a �= 0 are associated with the start of a current line.
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20 An Introduction to Tensor Calculus

What about the divergence of a second-order tensor T? Working in Cartesian coordi-
nates where derivatives of the base vectors are zero (the curvilinear-coordinate expression
is given later), we obtain ∇ · T as

∇ · T =
[

∂

∂x
,
∂

∂y
,
∂

∂z

]

⎡

⎣

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

⎤

⎦

=
(

∂Txx
∂x

+ ∂Tyx
∂y

+ ∂Tzx
∂z

︸ ︷︷ ︸

x component

,
∂Txy
∂x

+ ∂Tyy
∂y

+ ∂Tzy
∂z

︸ ︷︷ ︸

y component

,
∂Txz
∂x

+ ∂Tyz
∂y

+ ∂Tzz
∂z

)

︸ ︷︷ ︸

z component

(1.74)

=
(

x̂i
∂

∂xi

)

· (Tjk x̂jx̂k
)= ∂Tjk

∂xi

(

x̂i · x̂j
)

x̂k = ∂Tik
∂xi

x̂k =̂ ∇ · T. (1.75)

To visualize or intuit the meaning of the divergence of a second-order tensor, we can use
our same device of considering a tiny element� of volume δV surrounding the point where
the vector ∇ · T is being evaluated and obtain (because δV is so small that ∇ · T is uniform
inside of �)

∇ · T = lim
δV→0

1

δV

∫

�

∇ · T dV = lim
δV→0

1

δV

∫

∂�

n · T dS. (1.76)

Regardless of what the second-order tensor T actually represents, think of the vector n ·
T dS as being a force acting on all points on ∂� so that if the force acting on one side of the
element is larger than the force acting on the other side (which is what the surface integral
allows for), there is a net force acting on the element characterized by ∇ · T �= 0.

1.6 Curl of Vector (and Tensor) Fields

The curl is the vector product between the gradient operator and a vector (or tensor). In
Cartesian coordinates, in which the derivatives of the base vectors are zero, we can calculate
the curl of a vector field using the determinant rule

∇ × a=

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

ax ay az

∣

∣

∣

∣

∣

∣

∣

= x̂
(

∂az
∂y

− ∂ay
∂z

)

− ŷ
(

∂az
∂x

− ∂ax
∂z

)

+ ẑ
(

∂ay
∂x

− ∂ax
∂y

)

. (1.77)

The curl is also sometimes called the rotation for reasons explained next.
For the physical meaning of the curl operation, we use Stokes’ theorem in the limit that

the open surface S at a point, which has a normal n, has a tiny area δA sufficiently small
that ∇ × a can be taken as a constant over S

n · ∇ × a= lim
δA→0

1

δA

∫

S
n · (∇ × a) dS= lim

δA→0

1

δA

∮

�

a · dl. (1.78)
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1.6 Curl of Vector (and Tensor) Fields 21

Figure 1.10 A waterwheel with flat blades and an axle in the n direction.

Thus, if the vector field a is tangent in places to the curve � and if this tangential component
is larger on one side of S compared to the other so that integral over the closed line � is
nonzero, then we will have ∇ × a �= 0. We can associate this with the idea that the field has
a rotation on S.

To visualize the curl, we use a water wheel consisting of an axle oriented in the direction
n and having flat blades coming off the axle perpendicularly as depicted in Fig. 1.10. We
immerse this wheel in our vector field a that we imagine to be the flow of water regardless
of what a really corresponds to. We change the orientation of the axle of the wheel and
observe how fast the wheel is moving if at all. The direction n of the axle at which the
wheel turns the fastest in the counterclockwise direction gives the direction of ∇ × a, while
the rate of rotation gives |∇ × a|. The right-hand rule corresponds to the wheel rotating in
the counterclockwise direction.

So to mentally investigate the curl (or rotation) associated with some field, we imagine
the vector field to be a flow field and probe the field with our water wheel to see in what
orientation the wheel turns the fastest if, indeed, it can turn at all, cf., Fig. 1.11. Note that

Figure 1.11 Use a water wheel to probe a field and see whether the wheel can turn: (a) a
uniform vector field or a field with only longitudinal variation in the direction of the field
cannot make a water wheel turn so that∇ × a= 0; (b) a vector field that has spatial variation
in a direction transverse to the field direction will always make a water wheel turn resulting
in nonzero ∇ × a.

https://doi.org/10.1017/9781108951982.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108951982.003


22 An Introduction to Tensor Calculus

a water wheel is not the same as a propellar. A propellar would turn even in case (a) of
Fig. 1.11 corresponding to a uniform field.

CONCLUSIONS: To conclude these discussions of how to understand and visualize nonzero
values of the divergence and curl of a vector field, we can define longitudinal and transverse
spatial variations of a vector field. Longitudinal variations are those in the same direction of the
vector field and transverse variations are those in a direction perpendicular to the vector field.
Longitudinal variations (the directional derivative â · ∇a in the direction of the vector field) lead
to a nonzero divergence (unless the longitudinal variations in each direction sum to zero) but
do not contribute to the curl. Similarly, transverse variations always lead to a nonzero curl but
do not contribute to the divergence. The decomposition of a vector field into longitudinal and
transverse variations will correspond to P-waves and S-waves, respectively, when we discuss
elastic-wave propagation.

We can also perform the curl differential operation using the Levi–Civita tensor in the
following way:

∇ × a= −3ε : ∇a= −εijk x̂ix̂jx̂k : x̂l ∂
∂xl

amx̂m = −εijk ∂aj
∂xk

x̂i (1.79)

= x̂1

(

∂a3
∂x2

− ∂a2
∂x3

)

+ x̂2

(

∂a1
∂x3

− ∂a3
∂x1

)

+ x̂3

(

∂a2
∂x1

− ∂a1
∂x2

)

.

Note that if we had let the Levi–Civita tensor act on the transpose tensor (∇a)T we obtain

3ε : (∇a)T = ∇ × a, (1.80)

which shows that

3ε : [∇a+ (∇a)T]= ∇ × a− ∇ × a= 0. (1.81)

This fact will be used later in the proof of Curie’s principle as given in Section 1.8.5.
If the curl operator acts on a second-order tensor field A= Amnx̂mx̂n, the result is a

second-order tensor

∇ ×A= −3ε : ∇A= −εijk ∂Ajn
∂xk

x̂ix̂n (1.82)

=
[

x̂1

(

∂A3n

∂x2
− ∂A2n

∂x3

)

+ x̂2

(

∂A1n

∂x3
− ∂A3n

∂x1

)

+ x̂3

(

∂A2n

∂x1
− ∂A1n

∂x2

)]

x̂n. (1.83)

Being able to do curl operations using the dot product makes it possible to prove many
useful things about curl operations.
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1.7 Tensor-Calculus Product Rules 23

For example, in both fluid mechanics and electromagnetism, frequent use is made of the
identity

∇ × ∇ × u= ∇(∇ · u)− ∇2u. (1.84)

We can prove this identity using the Levi–Civita tensor as follows:

∇ × ∇ × u= εijk x̂ix̂jx̂k : ∂
∂xl

x̂l

[

εmno x̂mx̂nx̂o : x̂p ∂
∂xp

uqx̂q

]

(1.85)

= εijk εmno
∂2 uq
∂xl ∂xp

x̂i
(

x̂k · x̂l
) (

x̂j · x̂m
) (

x̂o · x̂p
) (

x̂n · x̂q
)

.

So l= k, m= j, p= o, and q= n, to give

∇ × ∇ × u= εijk εjno
∂2un
∂xk ∂xo

x̂i. (1.86)

As shown earlier, we have the identity that εijkεino = δjnδko − δjoδkn. If we exchange the
indices i and j and use that εjik = −εijk we then have the identity

εijk εjno = δioδkn − δinδko. (1.87)

Using this in Eq. (1.86) gives the sought after result

∇ × ∇ × u= x̂i
∂

∂xi

(

∂uk
∂xk

)

− ∂2ui
∂x2k

x̂i (1.88)

= ∇(∇ · u)− ∇2u. (1.89)

Using 3ε, it is also straightforward to show

∇ × ∇α = 0 (1.90)

∇ · (∇ × a)= 0 (1.91)

both of which are used throughout continuum physics.

1.7 Tensor-Calculus Product Rules

What if the gradient operator ∇ in an expression acts on several vectorial or tensorial terms
with, possibly, various scalar products present between the vectors and tensors? What is the
equivalent of the scalar “product rule” ∂(αβ)/∂x= β∂α/∂x+ α∂β/∂x for various types of
products involving vectors and tensors?

As an example, let’s consider the specific expression

∇ · (ab · T), (1.92)

where a and b are both vectors and T is a second-order tensor, all of which vary in space.
In this expression, ab is a second-order tensor and so is ab · T so that ∇ · (ab · T) is a
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24 An Introduction to Tensor Calculus

vector. To distribute the derivative in this expression, we work in Cartesian coordinates in
which the base vectors x̂i are uniform so that ∂ x̂j/∂xi = 0 for all base vectors and coordinate
directions. But after we distribute the derivatives in Cartesians, we will write the resulting
expression in the general bold-face notation that then applies to even curvilinear coordi-
nates in which some of the base vectors can have nonzero derivatives. Any tensor identity
expressed in bold-face notation is valid for any coordinate system and is the preferred way
to express tensor-calculus product rules.

For each vectorial or tensorial term in the expression, we use a different set of Cartesian-
coordinate indices to write out

∇ · (ab · T)= x̂i
∂

∂xi
︸ ︷︷ ︸

∇

·
⎛

⎝ajx̂j bkx̂k
︸ ︷︷ ︸

ab

· Tlmx̂lx̂m
︸ ︷︷ ︸

T

⎞

⎠ (1.93)

= ∂

∂xi

(

ajbkTlm
) (

x̂i · x̂j
) (

x̂k · x̂l
)

x̂m. (1.94)

In passing from the first line to the second, we pulled out the scalar components and deriva-
tive while preserving the position of the base vectors and scalar products between the base
vectors. Next, because of the nature of the scalar product in orthogonal coordinates, we
have that j= i and l= k. This allows us to write

∇ · (ab · T)= ∂

∂xi
(aibkTkm) x̂m (1.95)

=
[(

∂ai
∂xi

)

bkTkm + ai

(

∂bk
∂xi

)

Tkm + aibk
∂Tkm
∂xi

]

x̂m. (1.96)

In going from the first to second expression, we just employed the usual derivative product
rule for scalar fields.

The final step is what students often find the most difficult. One must look at Eq. (1.96)
and identify the equivalent expression in bold face. So you have to make identifications
like ∂ai/∂xi = ∇ · a and bkTkmx̂m = b · T. Carrying this out, we obtain at last

∇ · (ab · T)= (∇ · a) b · T + a · (∇b) · T + b · (a · ∇T) . (1.97)

Once we type the final expression in bold face (or write by hand the expression with squig-
gly underscores), it applies to any orthogonal curvilinear coordinates and is a generally
valid identity not limited to Cartesian coordinates. Note that ∇T is an example of a third-
order tensor. We have thus determined how to distribute the ∇ operator onto the vectors
and tensors in a multi-term expression involving scalar products. By using the earlier Levi–
Civita alternating tensor, we can do the same for multi-term expressions involving vector
products.

Using this ability, it is now straightforward to derive a long list of useful tensor-calculus
product rules. In the following list, α is a scalar field, a and b are again vector fields, A and
B are second-order tensor fields and 4C is a fourth-order tensor field:
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1.7 Tensor-Calculus Product Rules 25

∇ × (αa)= α∇ × a+ (∇α)× a

∇ × (a× b)= ∇ · (ba− ab)

∇ · (ab)= (∇ · a)b+ a · ∇b
∇ · (a× b)= b · (∇ × a)− a · (∇ × b)

∇ · (AB)= (∇ ·A)B+AT · ∇B
∇ · (A ·B)= (∇ ·A) ·B+AT : ∇B

∇(a · b)= (∇a) · b+ (∇b) · a
= a · (∇b)+ b · (∇a)+ a× (∇ × b)+ b× (∇ × a)

∇[(∇α) · ∇α] = 2(∇α) · ∇∇α = 2(∇∇α) · ∇α
∇ (A ·B)= (∇A) ·B+ [(∇B) ·A]

T
132

∇(A · a)= (∇A) · a+ (∇a) ·AT
∇(a ·A)= [∇ (

AT
)] · a+ (∇a) ·A

∇ · (αA)= ∇α ·A+ α∇ ·A
∇ · (a ·A)= ∇a :A+ (∇ ·AT) · a
∇ · (A · a)=A : (∇a)T + (∇ ·A) · a

∇ · (aA)= (∇ · a)A+ a · ∇A
∇ · (Aa)= (∇ ·A) a+AT · ∇a

∇ · (4C :A)= (∇ · 4C) :A+ 4C
T

2341 3.∇A

(1.98)

(1.99)

(1.100)

(1.101)

(1.102)

(1.103)

(1.104)

(1.105)

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)

(1.111)

(1.112)

(1.113)

(1.114)

(1.115)

Note that in the last identity, the symbol 3. means “the triple dot product” as defined ear-
lier. Having the above types of tensor-calculus product rules available to us for arbitrary
curvilinear coordinates allows many results in continuum physics to be developed in the
chapters that follow.

It may not seem obvious that tensor-calculus product rules proven in Cartesian coordi-
nates, in which derivatives of the base vectors are zero, but written in bold-face notation
after distributing the derivatives are in fact generally valid for all orthogonal curvilin-
ear coordinate systems. To demonstrate this fact using an example, consider the identity
∇ · (A · a)=A : (∇a)T + (∇ ·A) · a given in the above list as derived, for convenience, in
Cartesian coordinates. To prove this identity is valid in say cylindrical coordinates, we sim-
ply carry out all the given operations using that ∂ r̂/∂φ = φ̂ and ∂φ̂/∂φ = −r̂ with all other
derivatives of the base vectors equal to zero. In cylindrical coordinates, the various terms
are

∇a=
⎛

⎝

∂ar/∂r ∂aφ/∂r ∂az/∂r
(∂ar/∂φ − aφ)/r (∂aφ/∂φ + ar)/r ∂az/∂φ

∂ar/∂z ∂aφ/∂z ∂az/∂z

⎞

⎠ , (1.116)
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26 An Introduction to Tensor Calculus

a result that will be obtained more formally in the upcoming Section 1.8.6 on orthogonal
curvilinear coordinates. We then have that

A : (∇a)T = tr
{

A · (∇a)T}

= Arr
∂ar
∂r

+ Arφ
∂aφ
∂r

+ Arz
∂az
∂r

+ Aφr
r

(

∂ar
∂φ

− aφ

)

+ Aφφ
r

(

∂aφ
∂φ

+ ar

)

+ Aφz
∂az
∂φ

+ Azr
∂ar
∂z

+ Azφ
∂aφ
∂z

+ Azz
∂az
∂z
, (1.117)

∇ ·A= r̂
(

1

r

∂(rArr)

∂r
+ 1

r

∂Aφr
∂φ

− Aφφ
r

+ Azr
∂z

)

+ φ̂

(

1

r

∂(rArφ)

∂r
+ 1

r

∂Aφφ
∂φ

+ Aφr
r

+ Azφ
∂z

)

+ ẑ
(

1

r

∂(rArz)

∂r
+ 1

r

∂Aφz
∂φ

+ Azz
∂z

)

, (1.118)

and

∇ · (A · a)= 1

r

∂

∂r

[

r
(

Arrar + Arφaφ + Arzaz
)]

+ 1

r

∂

∂φ

(

Aφrar + Aφφaφ + Aφzaz
)

+ ∂

∂z

(

Azrar + Azφaφ + Azzaz
)

. (1.119)

Using these expressions, a final bit of algebra demonstrates that ∇ · (A · a)=A : (∇a)T +
(∇ ·A) · a is valid in cylindrical coordinates despite having been derived initially in
Cartesian coordinates.

1.8 Additional Topics Involving Tensors

Each topic treated in this section is important because it will be used in our development of
the rules of continuum physics. However, at this point, you have been exposed to enough
tensor calculus that after first working through Section 1.9 on the Dirac delta function
and working some end-of-chapter exercises to sharpen your skills, you can move ahead
to Chapter 2 on continuum mechanics if you so choose. The topics treated in this section
will be referred to each time they are needed in the chapters to follow. On the other hand,
working through this section now will make you more proficient with tensors and tensor
calculus, will show you some interesting uses and facts of tensors, and will better prepare
you for the chapters that follow.
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1.8 Additional Topics Involving Tensors 27

1.8.1 Taylor Series of Fields in Three-Dimensional Space

It is useful in various physics contexts to represent a scalar, vector, or tensor field near a
particular point as a power series in the local coordinates adjacent to that point if the field
and its spatial derivatives are known at that point. This is what the Taylor-series expansion
does for us and, in three-dimensional space, requires the use of higher-order tensors and
dot products, even for the representation of scalar fields.

But let’s begin with the well-known example of a scalar function ψ(x) in just one spatial
dimension x that does not require the use of tensors. We expand ψ(x) about a particular
point x0 as a power series that is called the Taylor series

ψ(x)=
∞
∑

n=0

(x− x0)
nan. (1.120)

Because (x− x0)0 = 1, the first coefficient a0 is found by simply evaluating this series at
x= x0

ψ(x0)= a0. (1.121)

Each successive coefficient is found by taking successive derivatives and evaluating at
x= x0

dψ

dx

∣

∣

∣

∣

x0

= a1,
d2ψ

dx2

∣

∣

∣

∣

x0

= (2)(1)a2, and
d3ψ

dx3

∣

∣

∣

∣

x0

= (3)(2)(1)a3 (1.122)

so that each coefficient in the Taylor series is given by the derivatives of the function at the
point x0 as

an = 1

n!
dnψ

dxn

∣

∣

∣

∣

x0

for n= 1, 2 . . .∞ (1.123)

and where, again, a0 =ψ(x0).
Next, for the Taylor series of any field (scalar, vector, or tensor) that is distributed in

three-dimensional space, we again expand this field in a power series of the local coordi-
nates about a particular point r0 but now each term n in the series involves coefficients that
are tensors of (at least) order n. For a field written as tψ(r), where t denotes the tensorial
order of the field (so t= 0 is a scalar field, t= 1 a vector field and so on), the Taylor series
expansion for this field is written
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28 An Introduction to Tensor Calculus

tψ(r)=
∞
∑

n=0

(r− r0)n n. {n+t}A, (1.124)

where the notation is made clear by writing out the first few terms of the series

tψ(r)= tA+ (r− r0) · {1+t}A
+ (r− r0) (r− r0) : {2+t}A
+ (r− r0) (r− r0) (r− r0) 3. {3+t}A+ . . . . (1.125)

So for a field of tensorial order t in three-dimensional space, the Taylor-series coefficients
at each n are tensors {n+t}A of tensorial order n+ t (i.e., that have n+ t base vectors).

To find these tensorial coefficients, begin by evaluating the tensorial power series at
r= r0 to give the first tensorial coefficient as

tψ(r0)= tA. (1.126)

The subsequent tensorial coefficients are obtained by taking successive gradients of the
series and evaluating at r= r0 beginning with

∇ (tψ)|r0 = ∇r · {t+1}A= {1+t}A, (1.127)

∇∇ (tψ)|r0 = ∇∇ (rr) : {2+t}A, (1.128)

where the tensorial coefficients {n+t}A are constants (the ∇ acting on them gives zero)
and where in Eq. (1.127) we used the earlier result that ∇r= I is the second-order iden-
tity tensor. It is a straightforward exercise to show that ∇∇ (rr)= x̂ix̂jx̂jx̂i + x̂ix̂jx̂ix̂j with
summation over the repeated indices as always, which is a type of fourth-order identity-
transpose tensor. To work with it, we double dot it into the tensorial coefficient {2+t}A=
Akl...α x̂kx̂l . . . x̂α , where how many base vectors this tensorial coefficient has beyond the
first two depends on the tensorial order t of the field being expanded. A scalar field (t= 0)
has no additional base vectors, a vector field (t= 1) one additional base vector and so on.
We have

∇∇ (rr) : {2+t}A= (

x̂ix̂jx̂jx̂i + x̂ix̂jx̂ix̂j
) : Akl...α x̂kx̂l . . . x̂α (1.129)

= (

Aij...α + Aji...α
)

x̂ix̂j . . . x̂α. (1.130)

Because ∇∇(rr) is symmetric in the last two base vectors, Eq. (1.128) requires the tensorial
coefficient {2+t}A to be symmetric in the first two base vectors, so that

∇∇ (tψ)|r0 = (2){2+t}A. (1.131)

An identical analysis for the third-order coefficient that exploits the symmetry of∇∇∇(rrr)
yields

∇∇∇ (tψ)|r0 = (3)(2){3+t}A (1.132)
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with {3+t}A having complete symmetry between the first three base vectors. Thus, the nth
tensorial coefficient in the Taylor series of a tensorial field is given as

{n+t}A= 1

n! n∇ (tψ)|r0 for n= 1, 2 . . .∞, (1.133)

where n∇ = ∇∇ . . .∇ means n successive applications of the gradient operator acting on
the tensor field tψ of order t before evaluating at the particular point in 3D space r= r0.
The leading n= 0 coefficient is again tA= tψ(r0).

So as an example from Chapter 2, we may wish to represent the electric field E(r)within
a molecule whose center is located at r0 as an explicit function in the local coordinates
r− r0 within the molecule. We thus perform a Taylor-series expansion of the electric field
about r0 to give

E(r)=E(r0)+ (r− r0) · ∇E|r0 +
+ 1

2! (r− r0) (r− r0) : ∇∇E|r0 +O
(|r− r0|3

)

. (1.134)

The notation O
(|r− r0|3

)

is called the “big-O” notation and is used to represent the part of
the series that is being truncated in a certain limit such as r− r0 → 0. In this limit for this
particular example, the amplitude |r− r0|3 is the largest part of what is being truncated in
Eq. (1.134), which is what the notation O

(|r− r0|3
)

is saying. Let’s write a power series
in the parameter ε as f (ε)= a0 + a1ε + a2ε2 + a3ε3 + . . .. If in the limit of ε→ 0, we
truncate the series after the first two terms, we use the big-O notation to write f (ε)=
a0 + a1ε +O(ε2), where the argument of O(ε2) represents the size or “order” of what is
being neglected in the limit, which in this case is O(ε2)= a2ε2[1+ (a3/a2)ε + (a4/a2)ε2

+ . . .] → a2ε2 as ε→ 0.

1.8.2 Functions of Second-Order Tensors

It will arise that we want to consider a function whose argument is a second-order tensor,
that is, f (A) where both A and f (A) are second-order tensors. What do we mean by this?

If f (α) is some function of a scalar α, we expand f (α) as a Taylor series about α = 0 as

f (α)= f (0)+ 1

1!
df (α)

dα

∣

∣

∣

∣

α=0

α

+ 1

2!
d2f (α)

dα2

∣

∣

∣

∣

α=0

α2 + 1

3!
d3f (α)

dα3

∣

∣

∣

∣

α=0

α3 + . . . . (1.135)
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30 An Introduction to Tensor Calculus

Because α is a scalar, so is f (α). We now define the second-order tensor f (A) as the
operation or rule

f (A)= f (0)I+ 1

1!
df (α)

dα

∣

∣

∣

∣

α=0

A

+ 1

2!
d2f (α)

dα2

∣

∣

∣

∣

α=0

A ·A+ 1

3!
d3f (α)

dα3

∣

∣

∣

∣

α=0

A ·A ·A+ . . . , (1.136)

where A is a second-order tensor, I is the second-order identity tensor, and each term in the
series is a second-order tensor.

Let’s give some examples. Consider the specific scalar function f1(α)= (1− α)−1 =
1+ α + α2 + . . .. We then can define the second-order tensor f1(A) operation as f1(A)=
(I−A)−1, where I is again the second-order identity tensor. The operation (I−A)−1 is
understood, through Eq. (1.136), to mean the expansion

(I−A)−1 = I+A+A ·A+A ·A ·A+ . . . . (1.137)

We then expect that (I−A) · (I−A)−1 = I, which can be verified through explicit
multiplication

(I−A) · (I−A)−1 = (I−A) · (I+A+A ·A+A ·A ·A+ . . .)= I. (1.138)

So a function of a second-order tensor, that is itself a second-order tensor, is coherently
defined through the expansion of Eq. (1.136).

As another specific example, define a second-order tensor B as the function of another
second-order tensor A through the operations

B= − ln (I−A)=A+ 1

2
A ·A+ 1

3
A ·A ·A+ . . . . (1.139)

We can then take the exponential of −B by which we mean the expansion

exp(−B)= I− 1

1!B+ 1

2!B ·B− 1

3!B ·B ·B+ . . .

= exp (ln(I−A))= I−A. (1.140)

This last relation then gives

A= I− exp(−B)= 1

1!B− 1

2!B ·B+ 1

3!B ·B ·B+ . . . . (1.141)

If we then substitute the original definition of B from Eq. (1.139), we obtain

A= 1

1!
(

A+ 1

2
A ·A+ 1

3
A ·A ·A+ . . .

)

− 1

2! (A ·A+A ·A ·A+ . . .)+ 1

3! (A ·A ·A+ . . .)+ . . . (1.142)

=A. (1.143)
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So these operations are internally consistent.
To conclude, the function of a second-order tensor is defined here to be another second-

tensor tensor as calculated by the expansion of Eq. (1.136). We can also define the inverse
function of a second-order tensor as we have shown in the above examples that we will see
again later in the book.

1.8.3 Rotation of the Cartesian Coordinates

As we have emphasized, a tensor of any order, including a first-order tensor or vector, is a
field that exists at each point in space independently of whatever coordinates we choose to
work in. But it can arise that we want to work in a Cartesian coordinate system x̂′

i that has
been rotated from an initial system x̂i as shown in Fig. 1.12. We would like to know how
the scalar components of the vectors and tensors change when we rotate the base vectors
to have new orientations. It is sometimes stated that a tensor is defined by the rules derived
below for how the Cartesian components of the tensor change with the changing orientation
of the base vectors. However, we have already seen that tensors of any order are coherently
defined without first having in place such “coordinate-rotation rules.” The fundamental
nature (and need) of tensors as used in continuum physics is again that they map, using dot
products, one tensor (including vectors) into another tensor and such tensorial mappings
exist independently of knowing how the Cartesian coefficients of a tensor change with the
orientation of the coordinates.

A rotation of angle θ1 about the x̂1 axis is allowed for by the matrix operation (θ1 positive
is in a counterclockwise sense when x̂1 is oriented toward the observer)

⎡

⎣

x′
1

x′
2

x′
3

⎤

⎦=
⎡

⎣

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎤

⎦

⎡

⎣

x1
x2
x3

⎤

⎦ , (1.144)

which is easily confirmed by doing the trigonometry in Fig. 1.13.
We define the “rotation matrix” for rotations around the x1 axis as

R(1)ij (θ1)=
⎡

⎣

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎤

⎦ . (1.145)

Figure 1.12 Two Cartesian-coordinate systems that are rotated relative to each other.
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Figure 1.13 Rotating the coordinates counterclockwise by an angle θ1 around the x1 axis.

The components of a vector a= a1 x̂1 + a2 x̂2 + a3 x̂3 transform in the rotated coordinate
system to a′

i = R(1)ij (θ1) aj with summation over the repeated index j being performed as the
operation

⎡

⎣

a′
1

a′
2

a′
3

⎤

⎦=
⎡

⎣

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎤

⎦

⎡

⎣

a1
a2
a3

⎤

⎦ . (1.146)

We just have to carry out the matrix multiplication.
Similarly, a second-order tensor T = Tij x̂i x̂j has Cartesian components Tij that transform

as

T ′
ij = R(1)ik (θ1) R

(1)
jl (θ1) Tkl (sum over repeated indices), (1.147)

where we have to apply the rotation matrix to each base vector. If we write the sums over
repeated indices using matrix multiplication (the inner product), we must rearrange this

expression as T ′
ij = R(1)ik Tkl

(

R(1)jl

)T
so that the position of the indices correspond to the

inner product and the matrix operation

⎡

⎣

T ′
11 T ′

12 T ′
13

T ′
21 T ′

22 T ′
23

T ′
31 T ′

32 T ′
33

⎤

⎦=
⎡

⎣

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎤

⎦

⎡

⎣

T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤

⎦

⎡

⎣

1 0 0
0 cos θ1 −sin θ1
0 sin θ1 cos θ1

⎤

⎦ .

(1.148)

Note that if T is proportional to the second-order identity tensor T = Tδijx̂ix̂j, we have

⎡

⎣

T ′
11 T ′

12 T ′
13

T ′
21 T ′

22 T ′
23

T ′
31 T ′

32 T ′
33

⎤

⎦= T

⎡

⎣

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎤

⎦

⎡

⎣

1 0 0
0 cos θ1 −sin θ1
0 sin θ1 cos θ1

⎤

⎦ (1.149)

= T

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ . (1.150)
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So the second-order identity tensor satisfies T ′
ij = Tδ′

ij = Tij = Tδij or δ′
ij = δij for any

rotation of the coordinates about the x1 axis.
Similarly, a fourth-order tensor has components that transform with coordinate rotations

about the x1 axis as

C′
ijkl = R(1)im (θ1) R

(1)
jn (θ1) R

(1)
ko (θ1) R

(1)
lp (θ1)Cmnop (1.151)

with summation over the repeated indices m, n, o, and p. Higher-order tensors are handled
in an analogous manner, using one rotation matrix for each base vector.

A rotation about the x2 axis is accomplished using (θ2 is again in the counterclockwise
sense when x̂2 is oriented toward the observer but note the sign change on the sin θ2 relative
to the other rotations)

R(2)ij (θ2)=
⎡

⎣

cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

⎤

⎦ (1.152)

and about the x3 axis using

R(3)ij (θ3)=
⎡

⎣

cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎤

⎦ . (1.153)

Now, any conceivable rotation (θ1, θ2, θ3) is accomplished using the rotation matrix

Rij(θ1, θ2, θ3)= R(1)ik (θ1) R
(2)
kl (θ2) R

(3)
lj (θ3), (1.154)

that is, just matrix multiply the three rotation matrices together, which you can do as an end-
of-chapter exercise. Tensors of any order again have Cartesian components that transform
according to the above rules using Rij(θ1, θ2, θ3) as the rotation matrix, using one rotation
matrix for each base vector.

As an example, the second-order identity-tensor coefficients δij transform as

Rik(θ1, θ2, θ3)Rjl(θ1, θ2, θ3)δkl = Rik(θ1, θ2, θ3)
[

Rjk(θ1, θ2, θ3)
]T = δij, which you can con-

firm through direct matrix multiplication as an end-of-chapter exercise. This means that the
second-order identity tensor is isotropic, which means that δ′

ij = δij for arbitrary coordinate
rotations.

It can be convenient for proving transformation identities involving higher-order ten-
sors if we consider small rotations δθi around each axis so that cos δθi = 1+O(δθ2i ) and
sin δθi = δθi

[

1+O(δθ2i )
]

. Upon ignoring the O(δθ2i ) terms in what follows, the rotation
matrix becomes
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Rij(δθ1, δθ2, δθ3)=
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠+ δθ1

⎛

⎝

0 0 0
0 0 1
0 −1 0

⎞

⎠

+ δθ2

⎛

⎝

0 0 −1
0 0 0
1 0 0

⎞

⎠+ δθ3

⎛

⎝

0 1 0
−1 0 0
0 0 0

⎞

⎠ . (1.155)

This can also be written as

Rij = δij + δθmεmij, (1.156)

where the εmij are the Levi–Civita coefficients. So, for example, if we want to find the
isotropic second-order tensor that, by definition, has coefficients that satisfy T ′

ij = Tij, we
write

T ′
ij = Tij = RikRjlTkl, (1.157)

= (δik + δθmεmik)
(

δjl + δθmεmjl
)

Tkl, (1.158)

= [

δikδjl + δθm
(

εmikδjl + εmjlδik
)]

Tkl, (1.159)

= Tij + δθm
(

εmikTkj + εmjkTik
)

. (1.160)

This equation is satisfied if

εmikTkj = −εmjkTik, (1.161)

which has the solution Tij = Tδij, where T is any scalar, as can be shown through direct
substitution. Thus we have that T = Tδijx̂ix̂j = TI is the form of the one and only isotropic
second-order tensor.

If we want to find the isotropic third-order tensor that, by definition, has coefficients
that satisfy T ′

ijk = Tijk, we write

T ′
ijk = Tijk = RilRjmRknTlmn, (1.162)

= (

δil + δθpεpil
) (

δjm + δθpεpjm
) (

δkn + δθpεpkn
)

Tlmn, (1.163)

= [

δilδjmδkn + δθp
(

εpilδjmδkn + εpjmδilδkn + εpknδilδjm
)]

Tlmn (1.164)

= Tijk + δθp
(

εpilTljk + εpjmTimk + εpknTijn
)

, (1.165)

where terms of O(δθ2i ) are again ignored. This equation is satisfied if

εpilTljk + εpjmTimk + εpknTijn = 0. (1.166)

The solution of this equation is Tijk = Tεijk, where again T is any scalar, as can be seen
through substitution

εpilεljk + εpjlεilk + εpklεijl = 0. (1.167)
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Rewrite this as

εlpiεljk − εlpjεlik + εlpkεlij = 0. (1.168)

The identity of Eq. (1.54) can then be used to write each term on the left-hand side as

εlpiεljk = δpjδik − δpkδij, (1.169)

−εlpjεlik = −δpiδjk + δpkδij, (1.170)

εlpkεlji = −δpjδik + δpiδjk, (1.171)

which sum to zero when substituted into Eq. (1.168). Thus, we have shown that 3T =
Tεijkx̂ix̂jx̂k = (T) (3ε) is the form of the one and only third-order isotropic tensor with T
some arbitrary scalar.

1.8.4 Isotropic Tensors of Any Order

As just seen, isotropic tensors are those tensors whose components do not change when we
change the orientation of the Cartesian coordinates. Specifically, the second-order coeffi-
cients δij and third-order coefficients εijk do not change when changing the orientation of
the coordinates. As such, even-ordered isotropic tensors have coefficients that are multi-
ples of the Kronecker coefficients δij and odd-ordered isotropic tensors have coefficients
that involve the single presence of the Levi–Civita coefficients εijk and additional multiples
of the Kronecker coefficients that get to the desired (odd) tensorial order. So higher-order
isotropic tensors involve multiples of Kronecker and Levi–Civita coefficients with numbers
of indices that add up to the tensorial order (or rank) of interest.

We call a zeroth-order tensor a scalar and all scalars are, by definition, independent of
the orientation of the axes. So all scalars are isotropic.

We call a first-order tensor a vector and all vectors of finite length have components that
change when the axes are rotated. So an “isotropic vector” has zero length and does not
exist.

As proven above, there is one fundamental second-order isotropic tensor 2I, which is
the second-order identity tensor I,

2I= I= δijx̂ix̂j. (1.172)

Similarly, we showed there is one fundamental third-order isotropic tensor 3I, which is the
third-order Levi–Civita alternating (or “antisymmetric” or “permutation”) tensor,

3I= 3ε = εijkx̂ix̂jx̂k. (1.173)

We can multiply these fundamental second-order and third-order isotropic tensors by
scalars, and the result will also be an isotropic tensor.

Higher-order isotropic tensors have coefficients that involve additional multiples of
the Kronecker coefficients. So, for example, there are multiple fundamental fourth-order
isotropic tensors 4I(m). If we define the first dummy index of these coefficients to always
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be i, there are three unique ways to place the remaining j, k, and l indices across the a, b,
and c positions of δiaδbc, that is,

4I(1) = δilδjkx̂ix̂jx̂kx̂l, (1.174)

4I(2) = δikδjlx̂ix̂jx̂kx̂l, (1.175)

4I(3) = δijδklx̂ix̂jx̂kx̂l = II. (1.176)

There are not more than these three fundamental fourth-order isotropic tensors due to the
symmetry δij = δji. The rule for the numberM of fundamental even-ordered n= 4, 6, 8, . . .
isotropic tensors involving only the Kronecker coefficients is

M=
n/2
∏

i=1

(n− 2i+ 1) for even n. (1.177)

So for n= 4, we have M = (n− 1)(n− 3)= (3)(1)= 3 as seen in Eq. (1.177).
The fundamental fifth-order isotropic tensors 5I(m) have coefficients that involve a sin-

gle multiplication between the Levi–Civita coefficients and the Kronecker coefficients. If
we define the first dummy index of these fifth-order coefficients as i, there are six unique
nonzero ways to place the remaining j, k, l,m indices across the a, b, c, d positions of
εiabδcd and four unique nonzero way to place the j, k, l,m across the a, b, c, d positions
of δiaεbcd to give

5I(1) = εijkδlmx̂ix̂jx̂kx̂lx̂m = (3ε) I, (1.178)

5I(2) = εijlδkmx̂ix̂jx̂kx̂lx̂m, (1.179)

5I(3) = εijmδklx̂ix̂jx̂kx̂lx̂m, (1.180)

5I(4) = εiklδjmx̂ix̂jx̂kx̂lx̂m, (1.181)

5I(5) = εikmδjlx̂ix̂jx̂kx̂lx̂m, (1.182)

5I(6) = εilmδjkx̂ix̂jx̂kx̂lx̂m, (1.183)

5I(7) = δijεklmx̂ix̂jx̂kx̂lx̂m = I (3ε), (1.184)

5I(8) = δikεjlmx̂ix̂jx̂kx̂lx̂m, (1.185)

5I(9) = δilεjkmx̂ix̂jx̂kx̂lx̂m, (1.186)

5I(10) = δimεjklx̂ix̂jx̂kx̂lx̂m, (1.187)

There are not more than these 10 fundamental fifth-order isotropic tensors because δij = δji

and εijk = −εikj = −εkij, that is, multiplying by −1 does not create a distinct fundamental
isotropic tensor.
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Proceeding like above gives the 15 sixth-order isotropic tensors 6I(m) involving the
Kronecker coefficients:

6I(1) = δinδmlδjkx̂ix̂jx̂kx̂lx̂mx̂n, (1.188)

6I(2) = δinδmkδjlx̂ix̂jx̂kx̂lx̂mx̂n, (1.189)

6I(3) = δinδmjδklx̂ix̂jx̂kx̂lx̂mx̂n, (1.190)

6I(4) = δimδnlδjkx̂ix̂jx̂kx̂lx̂mx̂n, (1.191)

6I(5) = δimδnkδjlx̂ix̂jx̂kx̂lx̂mx̂n, (1.192)

6I(6) = δimδnjδklx̂ix̂jx̂kx̂lx̂mx̂n, (1.193)

6I(7) = δilδnmδjkx̂ix̂jx̂kx̂lx̂mx̂n = (

4I(1)
)

I, (1.194)

6I(8) = δilδnkδjmx̂ix̂jx̂kx̂lx̂mx̂n, (1.195)

6I(9) = δilδnjδkmx̂ix̂jx̂kx̂lx̂mx̂n, (1.196)

6I(10) = δikδnmδjlx̂ix̂jx̂kx̂lx̂mx̂n = (

4I(2)
)

I (1.197)

6I(11) = δikδnlδjmx̂ix̂jx̂kx̂lx̂mx̂n, (1.198)

6I(12) = δikδnjδlmx̂ix̂jx̂kx̂lx̂mx̂n, (1.199)

6I(13) = δijδnmδklx̂ix̂jx̂kx̂lx̂mx̂n = (

4I(3)
)

I= I
(

4I(3)
)= III, (1.200)

6I(14) = δijδnlδkmx̂ix̂jx̂kx̂lx̂mx̂n = I
(

4I(2)
)

, (1.201)

6I(15) = δijδnkδlmx̂ix̂jx̂kx̂lx̂mx̂n = I
(

4I(1)
)

. (1.202)

Using the rule of Eq. (1.177) for this case of order n= 6, we have M = (n− 1)(n− 3)
(n− 5)= (5)(3)(1)= 15 as the number of fundamental sixth-order isotropic tensors
involving only the Kronecker coefficients. To these can be added the sixteenth and final
sixth-order isotropic tensor

6I(16) = εijkεlmnx̂ix̂jx̂kx̂lx̂mx̂n = (3ε) (3ε) (1.203)

with the εijk the Levi–Civita coefficients.
If you want to determine the seventh-order isotropic tensors, arrange the j, k, l,m, n, o

indices in the a, b, c, d, e, f positions of the following coefficients: εiabδcdδef , then δiaεbcdδef
and finally δiaδbcεdef . However, we will not carry out this exercise because the highest-order
isotropic tensor we will encounter in our treatment of constitutive laws in this book is the
sixth order as given in Section 4.1.5.

1.8.5 Curie’s Principle for the Constitutive Laws of Isotropic Media

Curie’s principle (Curie, 1894), as named after physicist Pierre Curie, has been a source
of controversy over the years but will be taken here to be the noncontroversial statement
(theorem, in fact, as will be demonstrated below) that says: “in a constitutive law of an
isotropic material, a generalized response has the same tensorial order as the generalized
forces that create it.” Curie’s (1894) main point is actually the corollary statement that if a
response and a force in a constitutive law are to have different tensorial orders, the material
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must possess anisotropy, that is, cannot be purely isotropic. Although we are getting ahead
of ourselves in terms of the physics, we will clarify the meaning of these various words
and prove the above italicized statement now, rather than in later applications, because
the demonstration comes directly from the nature of the isotropic tensors that were just
determined in Sections 1.8.3 and 1.8.4.

We focus here on constitutive laws associated with reversible processes, but Curie’s
principle also applies to irreversible processes for which the constitutive laws are called
transport laws (Chapter 7). If a “force” (or “cause”) is applied to an element of matter
to create some “response” (or “effect”), the process is called reversible if when the force
is returned to its initial value, the response returns to its initial value. Elastic deforma-
tion and electric and magnetic polarization are examples of reversible processes as will be
developed from first principles in Chapters 3 and 4. For reversible processes, the consti-
tutive laws are always temporal differential equations and, as developed in Chapter 6 on
the thermodynamics of reversible processes, are derived by taking total time derivatives of
a scalar “fundamental function” that we define here in generic form to be u= u(α, a,A).
This scalar function depends on time-variable forces that we represent here as a scalar α(t),
a vector a(t), and a second-order tensor A(t) that is always symmetric. When we develop
the physical nature of such a fundamental function in the chapters that follow, the func-
tion u will be seen to represent the internal energy of an element (defined later), while the
scalar α can be representing entropy (defined later), the vector a can be representing the
dielectric displacement or applied electric field (defined later) and the second-order ten-
sor A is representing the elastic deformation or strain tensor (defined later) with A being
symmetric. However, such physical interpretations are not required in our proof of Curie’s
principle that only requires a function u= u(α, a,A) with A symmetric and knowledge
about isotropic tensors.

Begin the proof by taking a total time derivative of the given fundamental function
u= u(α, a,A) to obtain

du

dt
=
(

∂u

∂α

)

dα

dt
+
(

∂u

∂a

)

· da
dt

+
(

∂u

∂A

)

: da
dt
. (1.204)

The partial derivatives in brackets are called the “responses” to which we give the symbolic
names

β = ∂u

∂α
(1.205)

b= ∂u

∂a
=̂ ∂u

∂ai
x̂i, (1.206)

B= ∂u

∂A
=̂ ∂u

∂Aij
x̂ix̂j. (1.207)

The second statements for both b and B define what it means to take a partial derivative
when the independent variable is a vector or tensor. In later development, we will see
that β is representing temperature if α is entropy, b is the total electric field that includes
polarization if a is the applied electric field (dielectric displacement), B is the stress tensor
if A is the strain tensor and Eq. (1.204) is the first law of thermodynamics. But again, such
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physical identifications are not required in this proof of Curie’s principle, that simply posits
the existence of a fundamental function u= u(α, a,A) with A being symmetric.

The “constitutive laws” are the total time derivatives of the generalized responses β, b,
and B:

dβ

dt
=
(

∂2u

∂α2

)

dα

dt
+
(

∂2u

∂a∂α

)

· da
dt

+
(

∂2u

∂A∂α

)

: dA
dt
, (1.208)

db
dt

=
(

∂2u

∂α∂a

)

dα

dt
+
(

∂2u

∂a∂a

)

· da
dt

+
(

∂2u

∂A∂a

)

: dA
dt
, (1.209)

dB
dt

=
(

∂2u

∂α∂A

)

dα

dt
+
(

∂2u

∂a∂A

)

· da
dt

+
(

∂2u

∂A∂A

)

: dA
dt
, (1.210)

where the various double derivatives of the fundamental function having different tensorial
orders are called “material properties” and can be given the symbolic names that possess
the following symmetries:

γ = ∂β

∂α
= ∂2u

∂α2
, (1.211)

c= ∂β

∂a
= ∂2u

∂a∂α
= ∂2u

∂α∂a
= ∂b
∂α
, (1.212)

D= ∂β

∂A
= ∂2u

∂A∂α
= ∂2u

∂α∂A
= ∂B
∂α

=DT, (1.213)

E= ∂b
∂a

= ∂2u

∂a∂a
=ET , (1.214)

3F= ∂b
∂A

= ∂2u

∂A∂a
=
(

∂2u

∂a∂A

) T
231 = 3F

T
213, (1.215)

3F
T
312 = ∂B

∂a
= ∂2u

∂a∂A
=
(

∂2u

∂A∂a

) T
312 = 3F

T
321, (1.216)

4G= ∂B
∂A

= ∂2u

∂A∂A
= 4G

T
3412 = 4G

T
2134 = 4G

T
1243. (1.217)

So in terms of the material properties γ (a scalar), c (a vector), D (a second-order tensor),
E (a second-order tensor), 3F (a third-order tensor), and 4G (a fourth-order tensor), the
constitutive laws can be written

dβ

dt
= γ

dα

dt
+ c · da

dt
+D : dA

dt
, (1.218)

db
dt

= c
dα

dt
+E · da

dt
+ 3F : dA

dt
, (1.219)

dB
dt

=D
dα

dt
+ 3F

T
312 · da

dt
+ 4G : dA

dt
. (1.220)

Because such total differentials can be integrated reversibly, these laws correspond to
“reversible processes.” So a response of a given tensorial order can, in general, be generated
by a force of different tensorial order.
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For the material to be called “isotropic,” the coefficients of each tensorial material prop-
erty must be invariant to rotations of the coordinates, that is, each material property must
involve a scalar times the fundamental isotropic tensor(s) having the same tensorial order
as the material property. So in an isotropic material, we must have

c= 0 (because there are no isotropic vectors), (1.221)

D= d δijx̂ix̂j = dI (with d a scalar), (1.222)

E= e δijx̂ix̂j = eI (with e a scalar), (1.223)

3F= f εijkx̂ix̂jx̂k = (f ) (3ε) (with f a scalar), (1.224)

3F
T
312 = 3F (because εkij = εijk), (1.225)

4G= g1
(

4I(1) + 4I(2)
)+ (g2) 4I(3) (with g1 and g2 scalars). (1.226)

The three fundamental fourth-order isotropic tensors 4I(1), 4I(2), and 4I(3) are given in Eqs
(1.174)–(1.176). As shown in an end-of-chapter exercise, we have 4I(1) : dA/dt= dA/dt,

4I(2) : dA/dt= dAT/dt= dA/dt, and 4I(3) : dA/dt=
[

d(I :A)/dt] I, where I is the second-
order identity tensor.

Because 3F is proportional to the Levi–Civita tensor, when it is double dotted into the
symmetric tensor dA/dt we get zero as proven earlier. When this same 3F is dotted into the
vector da/dt, we obtain an antisymmetric tensor, also as proven earlier. However, dB/dt is
a symmetric tensor because A is symmetric, which tells us that the scalar material property
f must be zero. Last, we can decompose the second-order tensor A into so-called isotropic
and deviatoric portions as

A=
(

I :A
I : I

)

I

Isotropic portion

+ A−
(

I :A
I : I

)

I

Deviatoric portion AD

, (1.227)

and similarly for B= (I :B/I : I) I+BD. The deviatoric or “true-tensorial” portion of a
second-order tensor has zero trace, that is, I :AD = 0= I :BD and continues to be symmet-
ric if the second-order tensor being decomposed is symmetric. Note that if B is the stress
tensor, as defined in Chapter 2, then −(I :B)/(I : I) is the scalar pressure.

Thus, in an isotropic material, the constitutive laws contained within u= u(α, a,A) are

dβ

dt
= γ

dα

dt
+ d

d(I :A)
dt

,

d

dt

(

I :B
I : I

)

= d
dα

dt
+
(

g2 + 2g1
I : I

)

d(I :A)
dt

,

db
dt

= e
da
dt
,

dBD

dt
= g1

dAD

dt
.

(1.228)

(1.229)

(1.230)

(1.231)
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We see that the time rate of each “response” in these isotropic laws (the left-hand side)
has the same tensorial order as the time rate of the conjugate “forces” that are creating it
(the right-hand side) and that all the material properties are now simple scalars (γ , d, e, g1,
and g2 with f = 0). This is the content of Curie’s principle of constitutive laws in isotropic
media that we have now demonstrated to be a theorem for the constitutive laws contained in
the fundamental function u= u(α, a,A) with A symmetric. So, for example, if a vectorial
response b is created by a second-order tensor A as controlled by the third-order material
property 3F (piezoelectricity is a classic example), the material cannot be isotropic, that
is, it must possess anisotropy so that 3F is not isotropic, which is the main message Curie
(1894) was conveying.

1.8.6 Tensor Calculus in Orthogonal Curvilinear Coordinates

We now present the detailed expressions for various common tensor-calculus operations
involving the gradient operator in orthogonal curvilinear coordinates. The various tensor-
calculus operations are also given explicitly in both cylindrical and spherical coordinates,
which are the two most commonly employed curvilinear coordinates you will encounter
and the only curvilinear coordinates used in this book. The treatment that follows is inspired
by the fabulous treatment of orthogonal curvilinear coordinates in Appendix A of the fluid-
mechanics text by Happel and Brenner (1983).

To begin, consider the differences between Cartesian coordinates and some arbitrary
orthogonal curvilinear coordinate system as shown in Fig. 1.14. The distance vector in
Cartesian coordinates is written in array format as r= (x1, x2, x3). Because each coordinate
in Cartesians measures linear distance along that coordinate, we have that the infinitesimal
distance vector dr between two positions in space dr= x̂1 d
1 + x̂2 d
2 + x̂3 d
3 is written

dr= x̂1 dx1 + x̂2 dx2 + x̂3 dx3 (1.232)

because d
i = dxi in each direction i. Thus, the gradient operator is simply

∇ = x̂1
∂

∂x1
+ x̂2

∂

∂x2
+ x̂3

∂

∂x3
, (1.233)

Figure 1.14 Cartesian coordinates on the left and some orthogonal curvilinear coordinate
system on the right.
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where we can employ the notation, if we so choose, that ∇ = ∂/∂r with the Eq. (1.233)
interpretation of what ∂/∂r means to do.

The situation is different in orthogonal curvilinear coordinates because the coordinates
in each orthogonal direction do not necessarily represent distance but instead can be rep-
resented by angles and because the base vectors vary their orientation, in general, as we
move along a given coordinate. Although some point in space can again be represented
in array format as r= (q1, q2, q3), the infinitesimal distance between two points in space
dr= q̂1 d
1 + q̂2 d
2 + q̂3 d
3 is now

dr= q̂1
dq1
h1

+ q̂2
dq2
h2

+ q̂3
dq3
h3
, (1.234)

that is, infinitesimal distance in each coordinate direction is given by

d
i = dqi
hi(q1, q2, q3)

, (1.235)

where the coefficients hi are called the metrical coefficients for the particular orthogo-
nal curvilinear coordinate system under consideration. These metrical coefficients convert
change along a coordinate direction to change in distance along that coordinate and them-
selves will vary through space in general. Specifying a curvilinear coordinate system
amounts to specifying the functional dependence of the three metrical coefficients on the
coordinates q1, q2, and q3.

The gradient operator in orthogonal curvilinear coordinates is then

∇ = q̂1 h1
∂

∂q1
+ q̂2 h2

∂

∂q2
+ q̂3 h3

∂

∂q3
. (1.236)

A useful definition for the base vectors comes from combining dr= q̂1 d
1 + q̂2 d
2 +
q̂3 d
3 with Eq. (1.235)

q̂i = hi
∂r
∂qi

where i= 1, 2, or 3 (1.237)

and where there is no summation here over the repeated index on the right-hand side. Note
that ∂qi/∂qj = 1 when i= j but ∂qi/∂qj = 0 when i �= j. Cartesian coordinates are defined
by taking hi = 1.

With this introduction to the metrical coefficients hi(q1, q2, q3), we next use that the
coordinates (q1, q2, q3), though curvilinear, are also orthogonal to each other at each point.
This means q̂i · q̂j = 0 when i �= j. Similarly, q̂i = q̂j × q̂k where the indices are ordered
here in the right-handed sense of [ijk] = [123], [231], or [312]. Introducing Eq. (1.237)
into these statements of orthogonality and taking the partial derivative with respect to each
coordinate qi, one arrives, eventually, at the following results for the derivatives of the base
vectors in an orthogonal curvilinear coordinate system

https://doi.org/10.1017/9781108951982.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108951982.003


1.8 Additional Topics Involving Tensors 43

∂ q̂j
∂qi

= q̂ihj
∂

∂qj

(

1

hi

)

where j �= i

∂ q̂i
∂qi

= −q̂jhj
∂

∂qj

(

1

hi

)

− q̂khk
∂

∂qk

(

1

hi

)

where j �= k �= i

(1.238)

(1.239)

and where there is no summation over repeated indices in these expressions. Again, in
Cartesian coordinates, all of these derivatives are zero.

The second-order identity tensor I in orthogonal curvilinear coordinates is defined

I= ∇r= q̂1 h1
∂r
∂q1

+ q̂2 h2
∂r
∂q2

+ q̂3 h3
∂r
∂q3

. (1.240)

which from Eq. (1.237) is simply

I= q̂1q̂1 + q̂2q̂2 + q̂3q̂3 = δijq̂iq̂j, (1.241)

just like in Cartesian coordinates.
We also have that infinitesimal surface elements dSi having a normal in the q̂i direction

are given by

dS1 = d
2d
3 = dq2dq3
h2h3

(1.242)

dS2 = d
1d
3 = dq1dq3
h1h3

(1.243)

dS3 = d
1d
2 = dq1dq2
h1h2

. (1.244)

Similarly, the infinitesimal volume element is

dV = d
1d
2d
3 = dq1dq2dq3
h1h2h3

. (1.245)

So given the metrical coefficients for an orthogonal curvilinear coordinate system, we can
now calculate spatial derivatives of vectors and set up surface and volume integrals in those
coordinates.

For example, to perform the divergence of a vector field ∇ · a, we write

∇ · a= q̂i hi
∂

∂qi
· (q̂jaj

)

(1.246)

= hiq̂i ·
[(

∂ q̂j
∂qi

)

aj + q̂j
∂aj
∂qi

]

(1.247)

where now there is summation assumed over repeated indices and, as earlier, we use a
different index for each vector in the tensor-calculus expression to be evaluated prior to
performing any scalar products. We perform the explicit sum over repeated indices, insert
Eqs (1.238) and (1.239) for the various derivatives of the base vectors and use the
orthogonality condition that q̂i · q̂j = δij, which is nonzero only if j= i, to obtain

https://doi.org/10.1017/9781108951982.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108951982.003


44 An Introduction to Tensor Calculus

∇ · a= h1h2h3

[

∂

∂q1

(

a1
h2h3

)

+ ∂

∂q2

(

a2
h1h3

)

+ ∂

∂q3

(

a3
h1h2

)]

. (1.248)

This then yields the Laplacian ∇2ψ =̂ ∇ · ∇ψ of any scalar field ψ to be

∇2ψ = h1h2h3

×
[

∂

∂q1

(

h1∂ψ/∂q1
h2h3

)

+ ∂

∂q2

(

h2∂ψ/∂q2
h1h3

)

+ ∂

∂q3

(

h3∂ψ/∂q3
h1h2

)]

. (1.249)

Similar operations yield the curl in the form

∇ × a= q̂1h2h3

[

∂

∂q2

(

a3
h3

)

− ∂

∂q3

(

a2
h2

)]

+ q̂2h1h3

[

∂

∂q3

(

a1
h1

)

− ∂

∂q1

(

a3
h3

)]

+ q̂3h1h2

[

∂

∂q1

(

a2
h2

)

− ∂

∂q2

(

a1
h1

)]

. (1.250)

The second-order tensor ∇a in orthogonal curvilinear coordinates is defined (again with
summation over repeated indices)

∇a= q̂i hi
∂

∂qi

(

q̂jaj
)= q̂i hi

[(

∂ q̂j
∂qi

)

aj + q̂j
∂aj
∂ai

]

. (1.251)

So performing the explicit sum over repeated indices and employing Eqs (1.238) and
(1.239) for the derivatives of the base vectors, we obtain the nine components of ∇a as

∇a= q̂1q̂1h1

[

∂a1
∂q1

+ h2a2
∂

∂q2

(

1

h1

)

+ h3a3
∂

∂q3

(

1

h1

)]

+ q̂1q̂2h1

[

∂a2
∂q1

− h2a1
∂

∂q2

(

1

h1

)]

+ q̂1q̂3h1

[

∂a3
∂q1

− h3a1
∂

∂q3

(

1

h1

)]

+ q̂2q̂1h2

[

∂a1
∂q2

− h1a2
∂

∂q1

(

1

h2

)]

+ q̂2q̂2h2

[

∂a2
∂q2

+ h3a3
∂

∂q3

(

1

h2

)

+ h1a1
∂

∂q1

(

1

h2

)]

+ q̂2q̂3h2

[

∂a3
∂q2

− h3a2
∂

∂q3

(

1

h2

)]

+ q̂3q̂1h3

[

∂a1
∂q3

− h1a3
∂

∂q1

(

1

h3

)]

+ q̂3q̂2h3

[

∂a2
∂q3

− h2a3
∂

∂q2

(

1

h3

)]

+ q̂3q̂3h3

[

∂a3
∂q3

+ h1a1
∂

∂q1

(

1

h3

)

+ h2a2
∂

∂q2

(

1

h3

)]

. (1.252)
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Last, the divergence of a second-order tensor A is then

∇ ·A= q̂1

{

h1h2h3

[

∂

∂q1

(

A11

h2h3

)

+ ∂

∂q2

(

A21

h1h3

)

+ ∂

∂q3

(

A31

h1h2

)]

+
��������
h1h1A11

∂

∂q1

(

1

h1

)

+ h1h2A12
∂

∂q2

(

1

h1

)

+ h1h3A13
∂

∂q3

(

1

h1

)

−
��������
h1h1A11

∂

∂q1

(

1

h1

)

− h1h2A22
∂

∂q1

(

1

h2

)

− h1h3A33
∂

∂q1

(

1

h3

)}

+ q̂2

{

h1h2h3

[

∂

∂q1

(

A12

h2h3

)

+ ∂

∂q2

(

A22

h1h3

)

+ ∂

∂q3

(

A32

h1h2

)]

+ h2h1A21
∂

∂q1

(

1

h2

)

+
��������
h2h2A22

∂

∂q2

(

1

h2

)

+ h2h3A23
∂

∂q3

(

1

h2

)

−h2h1A11
∂

∂q2

(

1

h1

)

−
��������
h2h2A22

∂

∂q2

(

1

h2

)

− h2h3A33
∂

∂q2

(

1

h3

)}

+ q̂3

{

h1h2h3

[

∂

∂q1

(

A13

h2h3

)

+ ∂

∂q2

(

A23

h1h3

)

+ ∂

∂q3

(

A33

h1h2

)]

+ h3h1A31
∂

∂q1

(

1

h3

)

+ h3h2A32
∂

∂q2

(

1

h3

)

+
��������
h3h3A33

∂

∂q3

(

1

h3

)

−h3h1A11
∂

∂q3

(

1

h1

)

− h3h2A22
∂

∂q3

(

1

h2

)

−
��������
h3h3A33

∂

∂q3

(

1

h3

)}

. (1.253)

This can be compared to the same expression given in Cartesian coordinates

∇ ·A= x̂1

(

∂A11

∂x1
+ ∂A21

∂x2
+ ∂A31

∂x3

)

+ x̂2

(

∂A12

∂x1
+ ∂A22

∂x2
+ ∂A32

∂x3

)

+ x̂3

(

∂A13

∂x1
+ ∂A23

∂x2
+ ∂A33

∂x3

)

. (1.254)

Using the above, the most pertinent expressions for the special cases of cylindrical and
spherical coordinates follow.

Cylindrical Coordinates

In cylindrical coordinates (q1, q2, q3) =̂ (r, θ, z) with unit vectors r̂ (radial direction), θ̂
(circumferential direction around the z axis), and ẑ (axial direction) that are orthogonal to
each other at each point in space, the metrical coefficients are

1

h1
= 1,

1

h2
= r and

1

h3
= 1. (1.255)

This simply says that distance in the θ direction goes as θr. The mapping of the Cartesian
base vectors into the cylindrical-coordinate base vectors is performed using the matrix
multiplication

⎡

⎣

r̂
θ̂

ẑ

⎤

⎦=
⎡

⎣

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣

x̂
ŷ
ẑ

⎤

⎦ . (1.256)
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Some further trigonometry gives r=√

x2 + y2, θ = tan−1(y/x), and z= z as well as x=
r cos θ and y= r sin θ .

The nonzero derivatives of the base vectors are given by Eqs (1.238) and (1.239) to be

∂ r̂
∂θ

= θ̂ and
∂ θ̂

∂θ
= −r̂. (1.257)

Consider three fields: ψ(r) a scalar, a(r)= (ar, aθ , az) a vector, and

A(r)=
⎛

⎝

Arr Arθ Arz
Aθr Aθθ Aθz
Azr Azθ Azz

⎞

⎠ (1.258)

a second-order tensor. The various standard operations in cylindrical coordinates involving
∇ acting on the scalar and vector fields are

∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ ẑ

∂ψ

∂z
(1.259)

∇2ψ = 1

r

∂

∂r

(

r
∂ψ

∂r

)

+ 1

r2
∂2

∂θ2
+ ∂2ψ

∂z2
(1.260)

and

∇ · a= 1

r

∂

∂r
(rar)+ 1

r

∂aθ
∂θ

+ ∂az
∂z

(1.261)

∇ × a= r̂
(

1

r

∂az
∂θ

− ∂aθ
∂z

)

+ θ̂

(

∂ar
∂z

− ∂az
∂r

)

+ ẑ
(

1

r

∂

∂r
(raθ )− 1

r

∂ar
∂θ

)

(1.262)

∇2a= r̂
(

∇2ar − 2

r2
∂aθ
∂θ

− ar
r2

)

+ θ̂

(

∇2aθ + 2

r2
∂ar
∂θ

− aθ
r2

)

+ ẑ∇2uz. (1.263)

In this last expression, the Laplacian operator ∇2 acting on the three scalar components of
the vector a is given by Eq. (1.260). The two most common tensorial operations we will
encounter are

∇a= r̂r̂
∂ar
∂r

+ r̂θ̂
∂aθ
∂r

+ r̂ẑ
∂az
∂r

+ θ̂ r̂
1

r

(

∂ar
∂θ

− aθ

)

+ θ̂ θ̂
1

r

(

∂aθ
∂θ

+ ar

)

+ θ̂ ẑ
1

r

∂az
∂θ

+ ẑr̂
∂ar
∂z

+ ẑθ̂
∂aθ
∂z

+ ẑẑ
∂az
∂z

(1.264)

and

∇ ·A= r̂
[

1

r

∂

∂r
(rArr)+ 1

r

∂Aθr
∂θ

+ ∂Azr
∂z

− Aθθ
r

]

+ θ̂

[

1

r

∂

∂r
(rArθ )+ 1

r

∂Aθθ
∂θ

+ ∂Azθ
∂z

+ Aθr
r

]

+ ẑ
[

1

r

∂

∂r
(rArz)+ 1

r

∂Aθz
∂θ

+ ∂Azz
∂z

]

. (1.265)
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Spherical Coordinates

In spherical coordinates (r, θ, φ), with θ now measuring latitude down from a “z axis” of
revolution and φ measuring longitude around the z axis and with unit vectors r̂, θ̂ , and φ̂
that are orthogonal to each other at each point in space, the metrical coefficients are

1

h1
= 1,

1

h2
= r, and

1

h3
= r sin θ. (1.266)

This says that at each latitude θ coming down from the z axis, distance in the longitudinal
direction around the z axis goes as φr sin θ . The mapping of the Cartesian base vectors into
the spherical-coordinate base vectors is performed using the matrix multiplication

⎡

⎢

⎣

r̂
θ̂

φ̂

⎤

⎥

⎦=
⎡

⎣

sin θ cos φ sin θ sin φ cos θ
cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎤

⎦

⎡

⎣

x̂
ŷ
ẑ

⎤

⎦ . (1.267)

Some further trigonometry gives r=√

x2 + y2 + z2, θ = cos−1
(

z/
√

x2 + y2 + z2
)

, and

φ = tan−1(y/x) as well as x= r sin θ cos φ, y= r sin θ sin φ, and z= r cos θ .
Of the nine possible derivatives of the base vectors, Eqs (1.238) and (1.239) give that

five are nonzero

∂ r̂
∂θ

= θ̂ and
∂ θ̂

∂θ
= −r̂ (1.268)

as well as

∂ r̂
∂φ

= φ̂ sin θ,
∂ θ̂

∂φ
= φ̂ cos θ, and

∂φ̂

∂φ
= −r̂ sin θ − θ̂ cos θ. (1.269)

Again consider three fields: ψ(r) a scalar, a(r)= (ar, aθ , aφ) a vector, and

A(r)=
⎛

⎝

Arr Arθ Arφ
Aθr Aθθ Aθφ
Aφr Aφθ Aφφ

⎞

⎠ (1.270)

a second-order tensor. The standard operations in spherical coordinates involving ∇ and
the scalar and vector fields are

∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ φ̂

1

r sin θ

∂ψ

∂φ
(1.271)

∇2ψ = 1

r2

[

∂

∂r

(

r2
∂ψ

∂r

)

+ 1

sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+ 1

sin2 θ

∂2ψ

∂φ2

]

(1.272)
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and

∇ · a= 1

r2
∂

∂r

(

r2ar
)+ 1

r sin θ

∂

∂θ
(sin θaθ )+ 1

r sin θ

∂aφ
∂φ

(1.273)

∇ × a= r̂
1

r sin θ

(

∂

∂θ

(

sin θaφ
)− ∂aθ

∂φ

)

+ θ̂
1

r

(

1

sin θ

∂ar
∂φ

− ∂

∂r

(

raφ
)

)

+ φ̂
1

r

(

∂

∂r
(raθ )− ∂ar

∂θ

)

(1.274)

∇2a= r̂
[

∇2ar − 2

r2

(

ar + ∂aθ
∂θ

+ cos θ

sin θ
aθ − 1

sin θ

∂aφ
∂φ

)]

+ θ̂

[

∇2aθ + 1

r2

(

2
∂ar
∂θ

− aθ
sin2 θ

− 2 cos θ

sin2 θ

∂aφ
∂φ

)]

+ φ̂

[

∇2aφ + 1

r2

(

2

sin θ

∂ar
∂φ

+ 2 cos θ

sin2 θ

∂aθ
∂φ

− aφ
sin2 θ

)]

. (1.275)

In this last expression, the Laplacian operator ∇2 acting on the three scalar components of
the vector a is given by Eq. (1.272). The two most common tensorial operations involving
∇ are

∇a= r̂r̂
∂ar
∂r

+ r̂θ̂
∂aθ
∂r

+ r̂φ̂
∂aφ
∂r

+ θ̂ r̂
1

r

(

∂ar
∂θ

− aθ

)

+ θ̂ θ̂
1

r

(

∂aθ
∂θ

+ ar

)

+ θ̂ φ̂
1

r

∂aφ
∂θ

+ φ̂r̂
1

r

(

1

sin θ

∂ar
∂φ

− aφ

)

+ φ̂θ̂
1

r

(

1

sin θ

∂aθ
∂φ

− cos θ

sin θ
aφ

)

+ φ̂φ̂
1

r

(

1

sin θ

∂aφ
∂φ

+ ar + cos θ

sin θ
aθ

)

(1.276)

and

∇ ·A= r̂

[

1

r2
∂

∂r

(

r2Arr
)+ 1

r sin θ

(

∂

∂θ
(sin θAθr)+ ∂Aφr

∂φ

)

−
(

Aθθ + Aφφ
)

r

]

+ θ̂

[

1

r2
∂

∂r

(

r2Arθ
)+ 1

r sin θ

(

∂

∂θ
(sin θAθθ )+ ∂Aφθ

∂φ

)

+ Aθr
r

− cos θ

r sin θ
Aφφ

]

+ φ̂

[

1

r2
∂

∂r

(

r2Arφ
)+ 1

r sin θ

(

∂

∂θ

(

sin θAθφ
)+ ∂Aφφ

∂φ

)

+ Aφr
r

− cos θ

r sin θ
Aθφ

]

.

(1.277)

1.9 The Dirac Delta Function

Throughout our development and implementation of continuum physics, we need to rep-
resent fields that are highly concentrated at a single point in space (or time, if considering
time functions). The Dirac delta function δ(x− x1) is used to represent a field highly
concentrated at the point x= x1 and is loosely, though insufficiently, defined as
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δ(x− x1)=
{

∞ if x= x1

0 if x �= x1
(1.278)

and in such a way that if a< x1 < b, then

∫ b

a
δ(x− x1) dx= 1 (no units). (1.279)

In some sense, we have that when x= x1, then δ(0)= dx−1 so that the integral property of
the Dirac delta function of Eq. (1.279) is satisfied (indeed, when working numerically on
discretized domains, this is one way to define the Dirac delta). Due to this integral property,
we also have

∫ b

a
f (x) δ(x− x1) dx= f (x1), (1.280)

which is called the sifting property. In the integration process, the Dirac delta function sam-
ples f , where the argument of the Dirac goes to zero. Note as well that from Eq. (1.279) (or
equivalently the sifting property), we necessarily have that δ(x) has physical of units of x−1

whatever the physical units of x are. This is important to remember in physics applications.
Because Eq. (1.278) is not a sufficient definition for a well-behaved differentiable

function, we better define the Dirac delta function δ(x− x1) as the limit of well-defined
functions such as

δ(x− x1)= lim
σ→0

S(x− x1 + σ)− S(x− x1 − σ)

2σ
(1.281)

= lim
σ→0

sin
[

(x− x1)/σ
]

π(x− x1)
(1.282)

= lim
σ→0

1

σπ
[

1+ (x− x1)2/σ 2
] (1.283)

= lim
σ→0

1

σ
√
2π

exp

(−(x− x1)2

2σ 2

)

, (1.284)

where in the first example here, S(x) is the unit step function defined to be 0 for x< 0
and 1 for x> 0. Each of these expressions for δ(x− x1) satisfies the integral constraint of
Eq. (1.279) for any value of σ . In the limit as the parameter σ (which has the same units
as x and characterizes the width of the function) goes to zero, these also satisfy the sifting
property of Eq. (1.280). The second example here is the scaled “sinc” function and will be
shown to satisfy the required integral properties in Chapter 11 on contour integration. The
last example is the familiar Gaussian function with standard deviation σ and will be shown
to satisfy the required integral properties in Chapter 10 on Fourier analysis. We will use
the Dirac to represent highly concentrated fields in nature; however, in each application
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Figure 1.15 The Dirac delta and its derivative for small σ in Eqs (1.284) and (1.285).

to a physics problem, the Dirac delta function will be integrated over. Due to the defining
integrals of Eqs (1.279) and (1.280), such integration leads to well-behaved finite results
despite the fact that the Dirac function becomes very large when its argument is zero and
as σ → 0 (small but finite) in Eqs (1.281)–(1.284).

By representing the Dirac as a limit of a well-behaved function, one can take derivatives
of δ(x− x1). For example, for the Gaussian representation of δ(x− x1), we have

d δ(x− x1)

dx
= lim
σ→0

− (x− x1)

σ 3
√
2π

exp

(−(x− x1)2

2σ 2

)

. (1.285)

Visually, one can see the effect of taking the derivative of a Dirac delta by using Eqs (1.284)
and (1.285) as shown in Fig. 1.15. One can also understand the derivative of the Dirac delta
through the usual definition of the derivative, which is equivalent to taking the derivative
of Eq. (1.281)

dδ(x− x1)

dx
= lim
σ→0

δ(x− x1 + σ)− δ(x− x1 − σ)

2σ
, (1.286)

that is, as the sum of two Dirac functions of opposite sign that approach each other, also as
depicted in Fig. 1.15.

To use the derivative of the Dirac delta function, note that if a< x1 < b,

∫ b

a
f (x)

d δ(x− x1)

dx
dx=

∫ b

a

{

d

dx

[

f (x) δ(x− x1)
]

− d f (x)

dx
δ(x− x1)

}

dx (1.287)

= −d f (x)

dx

∣

∣

∣

∣

x=x1
(1.288)

https://doi.org/10.1017/9781108951982.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108951982.003


1.9 The Dirac Delta Function 51

because δ(a− x1)= 0 and δ(b− x1)= 0. Equation (1.288) is called the derivative-sifting
property and generalizes to an arbitrary number of derivatives n as

∫ b

a
f (x)

dnδ(x− x1)

dxn
dx= (−1)n

dnf (x)

dxn

∣

∣

∣

∣

x=x1
. (1.289)

So taking the derivative of a Dirac delta function is legitimate at least when one then inte-
grates with it, which you will see is always done in all applications. In Chapter 2, the Dirac
delta is used to represent the position of single atoms. In this same context, the derivative of
the Dirac is used to represent electric dipoles, in which a concentration of discrete positive
charge is located a small distance σ away from a concentration of discrete negative charge.

We can define the unit step function S(x− x1) as the integral of the Dirac delta function

S(x− x1)=
∫ x

−∞
δ(x0 − x1) dx0 =̂

{

1 x≥ x1

0 x< x1
. (1.290)

Note that the 1 here is unitless regardless of the physical units of x. The ramp function
R(x− x1) is similarly defined as the integral of the step function

R(x− x1)= (x− x1)S(x− x1)=
∫ x

−∞
dx0

∫ x0

−∞
δ(x2 − x1) dx2

=
∫ x

−∞
dx0 S(x0 − x1) =̂

{

x− x1 x≥ x1

0 x< x1
. (1.291)

Thus we also have that

δ(x− x1)= d

dx
S(x− x1)= d2

dx2
R(x− x1). (1.292)

We will use these results for the step and ramp functions in the development of our
elastodynamic Green’s tensor in Chapter 12.

If we make the substitution of variables that x→ ax′ where a is some scalar, then dx=
adx′ and

∫ ∞

−∞
δ(x) dx= 1=

∫ ∞

−∞
δ(ax′) adx′. (1.293)

If a is negative, the integral would be from +∞ to −∞ which, upon using that
∫ −∞
+∞ dx′ =

− ∫ +∞
−∞ dx′, yields the same result of 1. So we can conclude that

δ(ax)= δ(x)

|a| , (1.294)

which is important to remember in some applications. For example, if a Dirac function is
moving about as a wave response with wave speed c, this can be expressed δ(t− r/c)=
δ(r/c− t)= δ((r− ct)/c)= cδ(r− ct), which is good to know when comparing solutions
of the wave equation obtained using different approaches.
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One can further generalize to consider a Dirac delta function that is a function of another
function, say g(x), that has zeroes and ask about the nature of the integral

I =
∫ ∞

−∞
dx δ[g(x)] f (x). (1.295)

To treat this integral, we note that where g(x) �= 0 the Dirac function is zero. So there is
only contribution to the integral at the places where x→ xi where the xi are the zeroes of
g(x) (i.e., the places where g(xi)= 0). As x→ xi we can represent g(x) as the lead term of
the Taylor expansion of g(x), which is (x− xi)g′(xi) where g′(xi) =̂ dg(x)/dx|x=xi . Thus,
we can write

δ[g(x)] =
∑

i

δ[(x− xi)g
′(xi)] =

∑

i

δ(x− xi)

|g′(xi)| (1.296)

so that we have

I =
∫ ∞

−∞
dx δ[g(x)] f (x)=

∑

i

f (xi)

|g′(xi)| (1.297)

where the sum is over all the zeroes xi of g(x) found within the domain of integration.
To represent a field concentrated at a point r1 in 3D space using Cartesian coordinates,

we use the notation

δ(r− r1) =̂ δ(x− x1) δ(y− y1) δ(z− z1). (1.298)

Note that δ(r− r1) has units of inverse length cubed, because δ(ψ)with ψ some scalar, has
units of ψ−1 as Eq. (1.279) or Eq. (1.294) makes clear. In cylindrical coordinates (r, θ, z),
we employ the notation

δ(r− r1)= δ(r− r1)δ[r(θ − θ1)]δ(z− z1)= δ(r− r1)
δ(θ − θ1)

r
δ(z− z1), (1.299)

where we used the scaling property of Eq. (1.294). In this cylindrical-coordinate notation,
the integrated result over the 3D whole space �∞ is

∫

�∞
δ(r− r1) dV =

∫ ∞

0
dr
∫ 2π

0
rdθ

∫ ∞

−∞
dz δ(r− r1)

δ(θ − θ1)

r
δ(z− z1)= 1, (1.300)

where we used that dV = (dr)(rdθ)(dz) in cylindrical coordinates. Similarly, in spherical
coordinates (r, θ, φ), we use

δ(r− r1)= δ(r− r1)δ[r(θ − θ1)]δ[r sin θ(φ − φ1)] = δ(r− r1)δ(θ − θ1)δ(φ − φ1)

r2 sin θ
(1.301)
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to represent a field concentrated at a point. Employing dV = (dr)(rdθ)(r sin θdφ) then
gives again

∫

�∞
δ(r− r1) dV =

∫ ∞

0
dr
∫ π

0
rdθ

∫ 2π

0
r sin θdφ

δ(r− r1)δ(θ − θ1)δ(φ − φ1)

r2 sin θ
= 1

(1.302)
as required.

In 3D space, we then have the sifting property for a point r1 lying within a volumetric
region �

∫

�

δ(r− r1)ψ(r) dV =ψ(r1), (1.303)

where the field ψ can be a scalar, vector, or tensor of any order. We also have the 3D
version of the derivative sifting property

∫

�

[∇δ(r− r1)]ψ(r) dV = − ∇ψ |r=r1 (1.304)

and for multiple applications of the gradient operator
∫

�

[n∇δ(r− r1)]ψ(r) dV = (−1)n n∇ψ |r=r1, (1.305)

where n∇ = ∇∇ . . .∇ represents n successive ∇ operations.

1.10 Exercises

1. Through direct calculation of the derivatives, demonstrate that

∇ · (∇ × a)= 0 (1.306)

∇ × (∇ψ)= 0. (1.307)

Now, prove these same identities, again through direct calculation, using the Levi–
Civita alternating third-order tensor.

2. Using the method demonstrated in Section 1.7, in which the tensorial expressions are
first expressed in Cartesian coordinates, derivatives between the scalar components
carried out using the usual product rule and dot products performed between base vec-
tors prior to returning to the bold-face representation valid for all coordinate systems,
prove all eleven of the identities in the list of Eqs (1.98)–(1.115) that do not involve
a curl operation. For an even greater challenge, also prove the identities involving the
curl by using the Levi–Civita tensor.

3. With I= δijx̂ix̂j being the identity tensor and r= xix̂i the position vector in Cartesian
coordinates, prove

∇r= I (1.308)

∇ · r= 3. (1.309)
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4. If a is some spatially variable vector field in a region � and n is the outward normal
to the closed surface ∂� that surrounds �, show that

∫

∂�

an dS=
∫

�

(∇a)T dV. (1.310)

5. Prove the fundamental theorem of 3D calculus: If a is any spatially variable and
differentiable vector field a(x, y, z)= ax(x, y, z)x̂+ ay(x, y, z)ŷ+ az(x, y, z)ẑ, use the
fundamental theorem of 1D calculus to show that if region � is a cube with sides of
length L then

∫

�

∇a d3r =̂
∫ L

0
dx
∫ L

0
dy
∫ L

0
dz∇a(x, y, z) (1.311)

=
∫ L

0
dy
∫ L

0
dz x̂a(L, y, z)−

∫ L

0
dy
∫ L

0
dz x̂a(0, y, z)

+
∫ L

0
dx
∫ L

0
dz ŷa(x, L, z)−

∫ L

0
dx
∫ L

0
dz ŷa(x, 0, z)

+
∫ L

0
dx
∫ L

0
dy ẑa(x, y, L)−

∫ L

0
dx
∫ L

0
dy ẑa(x, y, 0). (1.312)

Then show that the six surface integrals on the right-hand side here are the contribu-
tions from each of the six cube faces coming from the surface integral

∫

∂�

na d2r. (1.313)

You thus obtain the fundamental theorem of 3D calculus
∫

�
∇a d3r= ∫

∂�
na d2r using

the fundamental theorem of 1D calculus for the case of a cubic integration domain. For
an arbitrarily shaped region�, you fill the region with tiny (approaching infinitesimal)
cubes in a cubic packing. The sum of the volume integrals of ∇a for each tiny cube
adds up to the volume integral of ∇a over all of �. For adjacent tiny cubes that share
the same surface, the normal for each cube is oppositely directed and have surface
integrals of na that cancel when summing over the cubes except for the surfaces that
are coincident with ∂�. The fundamental theorem of 3D calculus is thus proven for
arbitrarily shaped regions.

6. Starting from each of the nine components represented by the second-order tensor
integral identity

∫

�

∇a d3r=
∫

∂�

na d2r, (1.314)

where a is some spatially variable vector field, work in Cartesian coordinates to
demonstrate the divergence theorem

∫

�

∇ · a d3r=
∫

∂�

n · a d2r. (1.315)
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7. Prove Green’s theorem: Green’s theorem is the statement that on the (x, y) plane, two
differentiable functions P(x, y) and Q(x, y) satisfy

∫

S

(

∂Q(x, y)

∂x
− ∂P(x, y)

∂y

)

dx dy=
∮

�

[

P(x, y) dx+Q(x, y) dy
]

, (1.316)

where S is any surface on the (x, y) plane that is bounded by the closed contour �
and with the sense of the contour integral being counterclockwise. This can be proven
rather trivially for the case of the rectangular surface shown in Fig. 1.16. To do so,
simply integrate the left-hand side of Eq. (1.316) over the rectangle and use the 1D
fundamental theorem of calculus to obtain

∫ y2

y1

dy
∫ x2

x1

dx
∂Q(x, y)

∂x
=
∫ y2

y1

dy
[

Q(x2, y)−Q(x1, y)
]

(1.317)

−
∫ x2

x1

dx
∫ y2

y1

dy
∂P(x, y)

∂y
=
∫ x2

x1

dx
[

P(x, y1)− P(x, y2)
]

. (1.318)

Adding these together and identifying the right-hand side as the right-hand side of
Eq. (1.316) proves Green’s theorem for any rectangle.

To prove this for an arbitrary surface S bounded by the contour � such as depicted
in Fig. 1.17, you fill the surface S with small squares as shown in Fig. 1.17 and apply
Green’s theorem as just proven to each such small square. The surface integral over

Figure 1.16 Simple rectangle used for proving Green’s theorem.

Figure 1.17 Surface S bounded by some contour � and filled with small squares made
arbitrarily small.
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any arbitrary S in Eq. (1.316) (the left-hand side) is obtained by adding the surface
integrals over all the small squares together. After applying Green’s theorem as proven
above for each small square, adjacent squares have line integrals on their shared side
that cancel such that the only contribution of the line integrals from the sum of small
squares is the integral along the heavy jagged line shown in Fig. 1.17. In the limit as
the small squares become quite small, the heavy jagged line becomes indistinguishable
from the closed contour � and the theorem is proven for any S and not just rectangles.

8. Prove the following tensor identity involving the scalar field ρ(r) (this identity is
needed in Chapter 7 for the development of the differential rules that control how
fluid density varies across a meniscus separating two distinct fluids)

∇ ·
[

−1

2
|∇ρ|2I+ (∇ρ)(∇ρ)

]

= (∇2ρ)(∇ρ), (1.319)

where I is again the identity tensor and |∇ρ|2 = (∇ρ) · (∇ρ). Do this using the method
given in Section 1.7. With E= ∇ρ, this is also an identity developed in the proof of
the Maxwell stress tensor of Chapter 3.

9. On a surface ∂� that surrounds some region of space � and has a normal vector n,
show that

n× ∇ ×E= n · [I(∇ ·E)− ∇E] (1.320)

for some vector (or tensor) field E distributed throughout � and on ∂�.

10. With r being radial distance from the origin, demonstrate that

∇∇
(

1

r

)

= − 1

r3
(

I− 3r̂r̂
)

, (1.321)

where you will need to know that ∇r= r̂, r= rr̂ and ∇r= I (the second-order identity
tensor). Note that you do not need to work in spherical coordinates to prove this. This
is a needed result once we treat the elastostatic response of a solid.

11. In spherical coordinates, with the position vector defined as r= rr̂, demonstrate that

∇r= r̂r̂+ θ̂ θ̂ + φ̂φ̂ = I. (1.322)

12. For the three fourth-order identity tensors defined by

4I(1) = δilδjkx̂ix̂jx̂kx̂l = x̂ix̂jx̂jx̂i (1.323)

4I(2) = δikδjlx̂ix̂jx̂kx̂l = x̂ix̂jx̂ix̂j (1.324)

4I(3) = δijδklx̂ix̂jx̂kx̂l = x̂ix̂ix̂kx̂k = II (1.325)

demonstrate that for any second-order tensor A

4I(1) :A=A (1.326)

4I(2) :A=AT (1.327)

4I(3) :A= tr {A} I. (1.328)
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These three fourth-order identity tensors have components that are entirely indepen-
dent of the coordinates being used and can also be called the fourth-order isotropic
tensors. Of the 4! possible ways of distributing the indices i, j, k, and l over two
Kronecker delta functions, there are only three unique ways as given in Eqs (1.323)–
(1.325). So there are three and only three fourth-order isotropic tensors, and we will
use them later when we derive the laws of elasticity in an isotropic solid.

13. Derive the fourth-order tensor identity

∇∇ (rr)= x̂ix̂jx̂ix̂j + x̂ix̂jx̂jx̂i = 4I(2) + 4I(1). (1.329)

To do so, write each∇ = x̂i∂/∂xi and r= xix̂i in Cartesian coordinates with each vector
having its own index and use the fact that ∂xi/∂xj = δij. Similarly derive the sixth-order
tensor identity

∇∇∇ (rrr)= x̂ix̂jx̂kx̂ix̂jx̂k + x̂ix̂jx̂kx̂ix̂kx̂j

+ x̂ix̂jx̂kx̂jx̂ix̂k + x̂ix̂jx̂kx̂jx̂kx̂i

+ x̂ix̂jx̂kx̂kx̂ix̂j + x̂ix̂jx̂kx̂kx̂jx̂i (1.330)

by again writing each ∇ and r in Cartesian coordinates. Then show that for some
third-order tensor 3A= Almnx̂lx̂mx̂n that

[∇∇∇ (rrr)] 3. 3A= (

Aijk + Aikj + Ajik + Ajki + Akij + Akji
)

x̂ix̂jx̂k (1.331)

=A+A
T
132 +A

T
213 +A

T
231 +A

T
312 +A

T
321. (1.332)

Such transpose identities are used in the derivation of the Taylor series coefficients
for Taylor series of fields (scalars, vectors, or tensors) in three-dimensional space as
described in Section 1.8.1.

14. Demonstrate through matrix multiplication that the Cartesian-coordinate rotation
matrix for counterclockwise rotations θ1, θ2, and θ3 about the Cartesian axes x1, x2,
and x3 is given by

Rij(θ1, θ2, θ3)= Rik(θ1)Rkl(θ2)Rlj(θ3)

=
⎡

⎣

cos θ2 cos θ3 cos θ2 sin θ3 − sin θ2
sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 sin θ1 sin θ2 sin θ3 + cos θ1 cos θ3 sin θ1 cos θ2
cos θ1 cos θ3 sin θ2 − sin θ1 sin θ3 cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3 cos θ1 cos θ2

⎤

⎦

where Rik(θ1), Rkl(θ2), and Rlj(θ3) are given by Eqs (1.145), (1.152), and (1.153). Then
show by direct matrix multiplication that for any rotation of the Cartesian coordi-
nates, the identity tensor in the rotated coordinates is Rik(θ1, θ2, θ3)Rjl(θ1, θ2, θ3)δkl =
Rik(θ1, θ2, θ3)

[

Rjk(θ1, θ2, θ3)
]T = δij. So the second-order identity tensor is an

isotropic second-order tensor, that is, a second-order tensor whose components do not
change when we make arbitrary changes to the orientation of the axes.

15. For arbitrary orthogonal-curvilinear coordinates having metrical coefficients
h1(q1, q2, q3), h2(q1, q2, q3), and h3(q1, q2, q3) as well as unit base vectors q̂1, q̂2,
and q̂3, demonstrate that
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∇∇ (rr)= q̂iq̂jq̂iq̂j + q̂iq̂jq̂jq̂i (1.333)

using the ideas developed in Section 1.8.6.

16. Using the well-known definite integral
∫∞
−∞ e−u2 du= √

π that we will prove in
Chapter 10, demonstrate that the representation of the Dirac delta function given by

δ(x− x1)= lim
σ→0

e−(x−x1)2/(2σ 2)

σ
√
2π

(1.334)

indeed possesses the required property of the Dirac delta that
∫ ∞

−∞
e−(x−x1)2/(2σ 2)

σ
√
2π

dx= 1 (1.335)

for any σ . Taking σ → 0 is what allows us to obtain the other key property of the Dirac
delta that

∫∞
−∞ f (x)δ(x− x1) dx= f (x1), which is called the sifting property.

If we now define the Dirac delta to be some arbitrary power n of the above bell-
shaped curve

δ(x− x1)= lim
σ→0

e−n(x−x1)2/(2σ 2)

cσ
, (1.336)

show that the normalization constant cσ that allows this representation to possess the
required property

∫∞
−∞ δ(x− x1) dx= 1 is

cσ = σ

√

2π

n
. (1.337)

17. Given, say, a second-order tensor field A(r) (but this could also be a scalar or vector
field) and a point rs located somewhere within a volumetric region � and not on the
boundary ∂�, demonstrate the 3D gradient-sifting property of the 3D Dirac delta that
states

∇A(r)|r=rs = −
∫

�

dr3 [∇δ(r− rs)] A(r). (1.338)

To do so, you will need to use the fundamental theorem of 3D calculus and the sifting
property of the 3D Dirac delta function.

18. Show that if you represent the 3D Dirac delta function using the Gaussian function in
the limit as the standard of deviation becomes small, you can represent its gradient as

∇δ(r− rs)= lim
σ→0

− (r− rs)
σ 5(2π)3/2

exp

(−|r− rs|2
2σ 2

)

. (1.339)

19. For the integral I = ∫∞
−∞ dx δ[g(x)] f (x), when g(x)= sin(πx/L) and f (x)= e−x/L,

show that

I = eL

π(e− 1)
. (1.340)
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HINT: it will prove useful to remember the binomial expansion (1− u)−1 =∑∞
n=0 u

n

for |u|< 1.

20. Demonstrate that for a> 0,

δ(x2 − a2)= 1

2a
[δ(x+ a)+ δ(x− a)] . (1.341)

21. For a symmetric second-order tensor given by S= ab+ ba and a so called anti-
symmetric second-order tensor given by A= cd− dc, where a, b, c, and d are vectors,
show that S :A= 0.
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