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This paper considers the propagation, arrest and recession of a planar hydraulic fracture
in a porous elastic medium whose footprint is constrained to a growing or shrinking
rectangular region with a constant height. Hydraulic fractures with large aspect ratio
rectangular footprints are frequently referred to as PKN fractures in recognition of the
original researchers (Perkins & Kern 1961 J. Petrol. Tech. 13, 937–949) and (Nordgren
1972 J. Petrol Technol. 1972, 306–314) who first analyzed models of such fracture
geometries. We investigate the one-dimensional non-local PKN approximation to a fully
planar rectangular hydraulic fracture model in a three-dimensional elastic medium. By
analysing the tip behaviour of the non-local PKN model, a transformation procedure
is established to render the asymptotic equations for the dynamics of the steady semi-
infinite PKN and plane strain models formally identical, which implies that all the existing
multiscale plane strain asymptotes can be converted directly to the PKN case by making
use of this transformation. Using this transformation, it is shown that the appropriate
PKN asymptotes for the average aperture w̄ with distance x̂ to the fracture front are
w̄ ∼ x̂1/2, x̂5/8 and x̂2/3 in the toughness, leak-off and viscous modes of propagation,
respectively; as well as the linear elastic fracture mechanics tip asymptote w̄ ∼ x̂1/2 for
arrest, which transitions to the linear asymptote tip w̄ ∼ x̂ for a fracture driven to recede
due to fluid leak-off. Both the arrest and recession tip asymptotes share the intermediate
leak-off asymptote w̄ ∼ x̂3/4. A scaling analysis yields the arrest time, length and aperture
as functions of a dimensionless injection-cessation time ω. An asymptotic analysis of the
non-local PKN model is used to establish the fundamental decoupling between dynamics
and kinematics, which leads to the emergence of a similarity solution – termed the sunset
solution – close to the time of collapse of the fracture. The multiscale PKN numerical
solutions agree well with those for a fully planar multiscale rectangular hydraulic fracture
model in a three-dimensional elastic medium. The scaling laws and the emergence of
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the sunset solution are confirmed by the PKN numerical model. The sunset solution also
emerges in the fully planar numerical model and persists beyond the collapse time of
the PKN model, by which time its footprints have separated from the upper and lower
constraining sedimentary layer boundaries and have assumed self-similar elliptic shapes
that shrink as they approach collapse.

Key words: lubrication theory, boundary layer structure, boundary integral methods

1. Introduction
Hydraulic fractures (HFs) are a class of fractures driven to propagate in a brittle solid
medium by the injection of a viscous fluid. Hydraulic fractures occur naturally when:
magma driven by buoyancy forces forms dykes and sills, see (Lister 1990; Roper & Lister
2007) for example; gravity and buoyancy-driven fluid flow within crevasses leads to ice
calving events on ice shelves (Zarrinderakht et al. 2022, 2024); turbulent flow drives
crack-like growth of subglacial lakes (Tsai & Rice 2010); and fluid driven cracks also
lead to the failure of dams (Penman 1977; Bolzon & Cochetti 2003). Hydraulic fractures
are also deliberately engineered in a variety of applications, including: the enhanced
extraction of hydrocarbons (Economides & Nolte 2000); cave inducement in mining
operations (van As & Jeffrey 2000); the measurement of the leak-off coefficient of the rock
(Nolte 1979) and the in situ geological stresses (Haimson 1989); the enhanced recovery of
geothermal energy; and, more recently, for the generation of lens-shaped fractures for the
geomechanical storage of energy (Bunger et al. 2023).

For the last five decades there has been considerable effort dedicated to the modelling
of propagating HFs while fluid is still being injected, however, until very recently, there
has been very little research into the post-injection dynamics of HFs. There is, however,
considerable importance in gaining a fundamental understanding of the post-shut-in
dynamics in order to be able to obtain more rigorous ways to estimate the leak-off
coefficient (Nolte 1979) and in situ stress (Haimson 1989; Hayashi & Haimson 1991;
Lakirouhani et al. 2016). By shut-in we imply that injection is halted and the inlet
conduit is capped. In contrast to the assumption, commonly made in these post-injection
analyses, that the fracture footprint remains fixed at its maximal extent, recent research
has demonstrated that the post-shut-in dynamics is much more complex. Indeed, regarding
post-shut-in arrest, Mori & Lecampion (2021) demonstrated that the fracture may in fact
continue to propagate after shut-in until it ultimately arrests at an expanded footprint or
it may, as assumed, arrest almost immediately after shut-in, depending on the mode of
propagation (storage or leak-off) at the time injection ceases. The post-arrest deflation
dynamics is even richer (see Peirce & Detournay (2022b)), exhibiting a waiting period
during which the fracture deflates in situ while the stress intensity factor decays to zero, at
which instant there is an exchange of asymptotic behaviour of the fracture aperture w with
distance x from the tip from the linear elastic fracture mechanics asymptote w ∼ x1/2 to
a novel linear asymptote w ∼ x associated with recession, while both asymptotes share a
common intermediate asymptote w ∼ x3/4. Moreover, close to the point of collapse of the
fracture there is a fundamental decoupling of dynamics from kinematics, which gives rise
to a similarity solution known as the sunset solution (Peirce & Detournay 2022a). This
analytic work has thus far been restricted to plane strain and radially symmetric fractures
(Peirce 2022; Peirce & Detournay 2022a,c). Another application of receding fracture
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solutions based on rigorous tip asymptotes has been to calibrate traditional numerical
models of HF recession, which make use of a minimum aperture constraint (Talebkeikhah
et al. 2025).

Subsequent to this calibration of the minimum width constraint approach, there has been
a recent focus on HFs driven to recede by fluid leak-off in more complex environments –
beyond the simplifying assumptions such as radial symmetry. These include fractures, in
which symmetry is broken by jump discontinuities in the in situ stress field, the elastic
moduli, the toughness and/or the leak-off coefficient across sedimentary layers leading to
large topological changes in the fracture footprint (Talebkeikhah et al. 2025). Moreover,
as an extension to the recession models involving closure to a constant minimum aperture
constraint, there has recently been a study on recession in the context of closure on leaking
proppant (Peirce et al. 2024, 2025). One of the conclusions of these studies has been
that the emergence of the sunset solution close to collapse is more ubiquitous than the
quite restrictive simplifying assumptions required to establish its origin and existence
analytically. Much of this symmetry breaking is induced by the sedimentary layers through
which the HFs need to pass during their evolution. Despite the significant symmetry-
breaking induced by the layering, it frequently occurs that, close to the point of collapse,
the fracture recession within the injection layer ultimately reverts to a receding rectangular
fracture. A rectangular fracture contained between two sedimentary layers (see figure 1)
is precisely the geometry that leads to the so-called PKN model (Perkins & Kern 1961;
Nordgren 1972). Nolte (1991) and Sarvaramini & Garagash (2015) have introduced a
toughness correction to the PKN model in the form of a pressure boundary condition
applied at the fracture tip. Since the development of the non-local formulation of the
PKN model (Adachi & Peirce 2008), it has been possible to incorporate more physical
effects such as the effect of the fracture toughness rigorously (Dontsov & Peirce 2015a,
2016). However, surprisingly, to our knowledge, a rigorous analysis of the multiscale tip
asymptotes for propagating PKN fractures has not been developed.

Given that it is amenable to analysis and the importance of the PKN geometry as a
model for contained HFs as well as the limiting shape of fractures in layered materials
that have had more complex footprints, this paper explores the recession of PKN fractures.
Tip vertex and multiscale asymptotes have proven extremely useful in the development of
efficient and accurate numerical algorithms able to capture all the multiscale behaviour
typically encountered during the evolution of a HF on a relatively coarse mesh (Peirce &
Detournay 2008; Lecampion et al. 2013; Peirce 2015, 2016; Dontsov & Peirce 2017).
To establish the required asymptotes for PKN fractures, in this paper we perform a
detailed study of the multiscale PKN tip asymptotes for propagating fractures, the PKN
tip and intermediate asymptotes to capture deflation due to leak-off while the fracture
remains arrested, and the PKN tip and intermediate asymptotes for the transition to
the recession asymptote. We establish a simple identification procedure that eliminates
the necessity for a complete re-analysis for the PKN case, as it renders the governing
equations for the semi-infinite PKN and plane strain equations formally identical. Using
this transformation procedure, it is trivial to establish the PKN vertex asymptotes from the
corresponding plane strain asymptotes. For these vertex asymptotes the pre-factors of the
PKN asymptotes may differ from those of the equivalent plane strain asymptotes, but the
power laws are all the same. However, the real benefit of this transformation procedure is
in the determination of the edge and multiscale asymptotes as the capacity to transform the
plane strain asymptotes to the corresponding PKN asymptotes makes it possible to deploy
the same code segments that were developed for implementing the plane strain asymptotes
directly for the PKN case.
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Figure 1. Schematic showing the PKN fracture geometry along with the coordinate systems used in the
model. Within the rectangular fracture, fluid is being transported with a flux q while the leading edge is moving
with a velocity V , and fluid is being lost to the porous rock at a velocity g.

In order to investigate the emergence of the sunset solution as a characteristic of the PKN
model equations close to the point of collapse, we make use of the asymptotic analysis
of the non-local PKN elasticity operator performed in Adachi & Peirce (2008), which
established the near-field and far-field behaviour for points within and remote from the tip
region. Other than the inner near-to-tip and outer remote-from-tip decomposition required
for the analysis of the PKN fracture, the methodology is very similar to that of the plane
strain and radial cases considered in Peirce & Detournay (2022a).

In § 2, we present the governing equations for the model of a planar rectangular fracture
in a three-dimensional (3-D) elastic medium and its relation to the non-local PKN model;
in § 3, we perform an asymptotic analysis of the non-local elasticity operator for the PKN
model and determine the vertex and multiscale asymptotes associated with a propagating,
deflating while arrested, and receding PKN fracture; in § 4, we test these asymptotes by
comparing the numerical solutions of the rectangular planar 3-D fracture model with the
corresponding numerical solutions of the PKN model, which is endowed with all the
propagation, arrest, and recession asymptotes; in § 5, we use a scaling analysis to determine
the characteristic power laws for arrest, which are verified by performing a parametric
sweep using the PKN numerical solution; in § 6, we present the analysis to establish the
emergence of the sunset similarity solution for receding PKN fractures as they approach
the time of collapse tc.

2. Mathematical model
The mathematical model describing the dynamics of a fluid driven fracture needs to
account for the dominant physical processes involved, namely: the deformation of the
rock due to the fracture opening; a mechanism for fracture growth; a description of the
fluid flow within the fracture; and the leak-off of fluid to the surrounding porous medium.
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In order that the model is tractable we make the following simplifying assumptions: the
fracture propagates in a linear elastic solid characterised by the Young’s modulus E and
Poisson’s ratio ν; growth of the fracture is assumed to be mode I according to linear elastic
fracture mechanics (LEFM) and is modulated by fracture toughness KI c; fluid flow within
the fracture is assumed to be laminar, follows lubrication theory, and the fluid is assumed
to be incompressible and Newtonian with a dynamic viscosity μ; we restrict ourselves
to leak-off of fluid that is governed by Carter’s model (Carter 1957) characterised by the
leak-off coefficient CL ; we assume that the fluid and fracture fronts coalesce; and the solid
medium is assumed to be homogeneous so that E , ν, KI c and CL are all constant.

The fracture plane is assumed to develop along the path of least resistance, which is
typically normal to the minimum principal component σ0 of the far-field compressive
stress tensor. The above assumption that the fluid and fracture fronts coalesce, is based
on the result, established by Garagash & Detournay (2000), that when subjected to large
far-field stress conditions, the lag between the fracture front and the fluid front becomes
negligible. As a result of large jump discontinuities in KI c and/or σ0 across the interfaces
between sedimentary layers, it is possible for a HF to be contained within a rectangular
subregion of the fracture plane. In this paper, we consider situations in which such jump
discontinuities have restricted growth of the fracture to a horizontal channel within the
fracture plane between two sedimentary layers, see figure 1. The Carter (1957) model
assumes fluid leak-off is independent of the pressure and proportional to the inverse square
root of the elapsed time since first exposure of the rock to the fracturing fluid at a given
point. This inverse square root relationship represents a lumped model (see Adachi 2001)
combining two fluid leak-off processes – both of which involve an inverse square root of
the time lag: one captures the build-up of a filter cake by particle deposition on the walls
of the fracture and the other represents the 1-D diffusion of fluid into the porous reservoir.
The pre-factors for both of these component processes depend on �p = p f − p0, where
p f is the fluid pressure within the fracture and p0 is the pore pressure within the reservoir.
The justification for the assumption that this pre-factor is independent of pressure is as
follows: we assume that the net pressure p f − σ0, which drives the fracture to propagate, is
small compared with σ0 − p0. Thus p f − p0 = (p f − σ0) + (σ0 − p0) ≈ σ0 − p0, which
is constant so that the almost constant pre-factor is referred to as the leak-off coefficient
CL . The study of pressure-dependent leak-off is an active area of recent research (Kanin
Garagash & Osiptsovet 2020; Kanin et al. 2020) and beyond the scope of this paper.

2.1. Governing equations for a PKN hydraulic fracture in a permeable medium
Since the solid medium is assumed to be homogeneous, the fracture will grow
symmetrically about the injection point. We choose to locate the origin of the x, y
coordinate system at this point (see figure 1). The primary unknowns in a HF problem
are the field variables comprising the fracture aperture w(x, y, t): z = ±w(x, y, t)/2
and the fluid pressure p f (x, y, t) within the fracture (or the net pressure p(x, y, t) =
p f (x, t) − σ0), both functions of x , y and t , and the fracture half-length �(t), which,
along with the constant fracture height H , define the evolving fracture geometry F(t) =
[−�(t), �(t)] × [−H/2, H/2]. The solution depends on the volumetric injection rate Q(t)
and four alternate material parameters defined in order to keep subsequent formulae
uncluttered, namely: the plane strain modulus E ′, the alternate viscosity μ′, the alternate
fracture toughness K ′, and alternate Carter leak-off coefficient C ′, which are defined as
follows:

E ′ = E

1 − ν2 , μ′ = 12μ, K ′ =
(

32
π

)1/2

K I c, C ′ = 2CL . (2.1)
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2.1.1. Elasticity
The equations relating the aperture w to the net pressure p on the walls of a planar
fracture occupying the rectangular region (x, y) ∈ [−�, �] × [−H/2, H/2] in an infinite,
homogeneous, elastic solid can be condensed into a hypersingular integral equation of the
form (see Appendix A.2 and Crouch & Starfield 1983; Hills et al. 1996)

p(x, y, t) = − E ′

8π

∫ �

−�

∫ H/2

−H/2

w(x ′, y′, t)dx ′dy′[
(x ′ − x)2 + (y′ − y)2

]3/2 . (2.2)

If the aspect ratio of the rectangular fracture is large, i.e. � � H , the typical assumption
that is made in the PKN approximation (Perkins & Kern 1961; Nordgren 1972) is that
a state of plane strain prevails for vertical cross-sections. In a state of plane strain w is
independent of x ′ and (2.2), in the limit � → ∞, is reduced (see A.3.1 of Appendix A) to
that of a plane strain fracture in the vertical direction with semi-height H/2. Now, under
the assumption that the pressure in such vertical cross-sections is constant, (Adachi &
Peirce 2008) used the elliptic shape of the Sneddon solution for a plane strain fracture
subject to a constant pressure (Sneddon 1995) (see also A.4) to motivate the following
ansatz for the fracture aperture w(x, y, t) in which the x and y variables are assumed to
be separated into the following product:

w(x, y, t) = w(x, 0, t)
√

1 − (2y/H)2. (2.3)

Now applying the vertical averaging operator A(·) := 1
H

∫ H/2
−H/2 dy to (2.3) and defining

w̄ :=A(w) we obtain

w(x, 0, t) = 4
π

w̄(x, t). (2.4)

Substituting the ansatz (2.3) into (2.2) and evaluating the inner iterated integral
explicitly, makes it possible to reduce the planar integral equation to a 1-D integral
equation (Adachi & Peirce 2008) as follows:

p(x, t) = − E ′

2π2

∫ �

−�

w̄(x ′, t)

[∫ H/2

−H/2

√
1 − (2y′/H)2dy′[

(x ′ − x)2 + y′2]3/2

]
dx ′, (2.5)

= Ē

πH

∫ �

−�

w̄(x ′, t)
dG(2(x ′ − x)/H)

dx ′ dx ′, (2.6)

where

Ē = (2/π)E ′, G(s) =
√

1 + s2

s
E

(
1

1 + s2

)
(2.7)

and

E(m) =
π/2∫
0

√
1 − m sin2 θdθ (2.8)

is the complete elliptic integral of the second kind. This non-local approximation to the
PKN geometry has also been extended (Dontsov & Peirce 2015a) to include slender
geometries such as the so-called P3D geometry (Adachi et al. 2010). We observe that
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the kernel G of the integral equation (2.6) has the following asymptotic behaviour
(Adachi & Peirce 2008):

G(ρ)
ρ→0=

(
1
ρ

− 1
2
ρ ln ρ + O(ρ)

)
, G(ρ)

ρ�1→ π

2

(
sign(ρ) + 1

4ρ2 + O(ρ−4)

)
and

G ′(ρ)
ρ�1→ πδ(ρ). (2.9)

Using the scaling property of the delta function δ(cs) = (δ(s)/|c|) and the asymptotic
behaviour (2.9)c, we observe that, for points |x − �| � H/2 away from the tip region,
which we define as |x − �| < H/2, the non-local elasticity equation (2.6) reduces to the
classic local pressure-width equation

p = Ē
w̄

H
. (2.10)

We will revisit this formal calculation in § 3.2.2, in which we consider the asymptotic
behaviour of the pressure within and away from the tip region.

2.1.2. Lubrication
The Reynolds lubrication equation is obtained by combining Poiseuille’s law and the
continuity equation to yield

∂w

∂t
= 1

μ′ ∇ · (w3∇ p) − g(x, y, t) + Q(t)δ(x, y). (2.11)

We assume that the velocity of fluid leak-off to the porous medium g(x, y, t) is captured
by Carter’s leak-off model g(x, y, t) = (C ′/

√
t − t0(x, y)), where t0(x, y) denotes the

time of first exposure of point (x, y) to the fracturing fluid (Carter 1957). The point source
is represented by the δ-function in (2.11) and we will be considering a propagation phase
during which the fluid is injected at a constant volumetric rate Q0 followed by a shut-in
phase initiated at time ts , after which time there is no further fluid injected into the fracture.
Thus the source function Q(t) can be expressed as

Q(t) =
{

Q0 0 < t < ts
0 t � ts .

(2.12)

Applying the vertical averaging operator A(·) to (2.11) we obtain

∂w̄

∂t
= 1

μ̄

∂

∂x

(
w̄3 ∂p

∂x

)
− g(x, t) + Q(t)

δ(x)

H
, (2.13)

where μ̄ = (π2/12)μ′ = π2μ and g(x, t) = C ′/(
√

t − t0(x)). We note that, in contrast to
(2.11), the δ-function here implicitly represents a uniformly distributed line source over
the full height of the channel, i.e. covering the interval y ∈ [−H/2, H/2], but with an area
injection rate Q(t)/H scaled to be equivalent to the volumetric injection rate of the point
source given in (2.11).

Combining the averaged lubrication equation (2.13) with the local elasticity equation
(2.10), we obtain the classical porous medium partial differential equation (PDE) that
governs the evolution of the PKN fracture (Kemp 1989; Kovalyshen & Detournay 2010)

∂w̄

∂t
= Ē

4μ̄H

∂2w̄4

∂x2 − g(x, t) + Q(t)
δ(x)

H
. (2.14)
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2.1.3. Initial, boundary and propagation conditions at the moving front �(t)
Initial conditions: the initial conditions are formally given by

� = 0, w̄ = 0, p = 0, at t = 0. (2.15)

Boundary conditions: for coalescent fluid and fracture fronts the boundary conditions
at the crack tips x = ±� are given by zero fracture aperture and zero flux conditions
(Detournay & Peirce 2014)

w̄ = 0, w̄3 ∂p

∂x
= 0, at x = ±�. (2.16)

For a symmetric fracture the δ-function source can be replaced by an equivalent flux
boundary condition at x = 0

1
μ̄

w̄3 ∂p

∂x
(0+, t) = Q(t)

2H
, (2.17)

so that only half the fracture needs to be modelled.
Given these initial and boundary conditions, the lubrication equation, assuming Carter

leak-off (2.13), can, after integrating both in time and space and exploiting symmetry, be
expressed alternatively as the following global continuity equation:

2
∫ �(t)

0
w̄(x, t) dx + 4C ′

∫ �(t)

0

√
t − to(x) dx = V f (t), (2.18)

where

V f =
{

Qot/H 0 < t < ts
Vo = Qots/H t � ts .

(2.19)

This equation simply establishes that the total volume of fluid injected at time t is equal
to the volume of fluid contained in the crack plus the total volume of fluid lost to the
permeable rock.

Propagation condition: since the fracture is assumed to propagate in limit equilibrium,
LEFM (Rice 1968; Spence & Sharp 1985) implies that the alternate mode-I stress intensity
factor K satisfies the following inequality constraint:

K := Ē lim
x→±�

w̄(x)√
(� ∓ x)

� K̄ , (2.20)

where K̄ = (8/π)1/2K I c. Equality in (2.20) occurs when the fracture is propagating,
i.e. V > 0, while strict inequality in (2.20) is associated with arrest characterised by
V = 0, 0 � K < K̄ , and recession is characterised by V < 0 and K = 0.

We note that in the PKN formulation we have introduced the barred quantities Ē, μ̄,
and K̄ to keep the PKN equations uncluttered by numerical factors. For convenience, the
alternate PKN parameters are summarised

Ē = 2
π

E ′ = 2
π

E

1 − ν2 , μ̄ = π2

12
μ′ = π2μ, K̄ =

(
8
π

)1/2

K I c. (2.21)

3. Asymptotic analysis

3.1. Stretched coordinate system
In the analysis that follows, it is convenient to introduce a stretched coordinate system
s(t) = x/�(t). The unknown functions in this coordinate system will be represented by
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w̄(s, t) and p(s, t). It is also convenient to introduce a coordinate x̂ located at the tip and
pointing inwards toward the centre of the HF (see figure 1). The corresponding stretched
coordinate located at the tip s = 1 is represented by ŝ = 1 − s and the unknown functions
in this case are ŵ(ŝ, t) and p̂(ŝ, t).

After integration by parts, the elasticity equation (2.6), in the tip-based stretched
coordinate system ŝ, can be written in the form

p̂(ŝ, t) = − Ē

πH

2∫
0

dŵ(ŝ′, t)

dŝ′ G

(
ŝ′ − ŝ

ε

)
dŝ′ = IA + IB, (3.1)

where ε = H/(2�) � 1. For the purposes of the subsequent asymptotic analysis, it is
convenient to decompose the domain of integration in (3.1) into the union of two disjoint
subsets as follows: (0, 2) =A∪B. The set A is used to denote the set of points ŝ remote
from the source point ŝ′, i.e. |ŝ′ − ŝ| > ε, and the contribution from this region to the
integral on the right of (3.1) is denoted by IA. The set B is used to denote the set of points
within an ε-neighbourhood of the source point, i.e. |ŝ′ − ŝ| < ε, and the contribution from
this region to the integral on the right of (3.1) is denoted by IB.

The lubrication equation (2.13) in the stretched tip coordinate system becomes

∂ŵ

∂t
+ (1 − ŝ)

�̇

�

∂ŵ

∂ ŝ
= 1

μ̄�2
∂

∂ ŝ

(
ŵ3 ∂ p̂

∂ ŝ

)
− ĝ(ŝ, t) + Q(t)

δ(ŝ − 1)

H
, (3.2)

where ĝ(ŝ, t) = C ′/(
√

t − t0(�(1 − ŝ))) and 0 � ŝ � 1.

3.2. Asymptotic analysis of the elasticity operator
In this subsection we investigate the impact that the distinct far- and near-field asymptotic
behaviours of the elasticity kernel G(s), provided in (2.9), have on the action of the non-
local integral operator when the receiving point ŝ is remote from as well as near to the tip
region. Although the aperture and pressure are functions of both ŝ and t , for brevity, in
this subsection we will suppress the explicit dependence on t .

3.2.1. Asymptotic expansions for the elasticity operator
Assuming A= {ŝ′ ∈ (0, 2) : |ŝ′ − ŝ| > ε} and B = {ŝ′ ∈ (0, 2) : |ŝ′ − ŝ| < ε}, we decom-
pose the crack region (0, 2) =A∪B into the union of a set A within which the far-field
expansion (2.9)b holds

IA ∼ − Ē

2H

∫
A

dŵ(ŝ′)
dŝ′

[
sign

(
ŝ′ − ŝ

ε

)
+ ε2

4(ŝ′ − ŝ)2 + . . .

]
dŝ′, (3.3)

and a set B within which the near-field expansion (2.9)a holds

IB ∼ − Ē

πH

∫
−
B

dŵ(ŝ′)
dŝ′

[
ε

ŝ′ − ŝ
− 1

2
(ŝ′ − ŝ)

ε
ln

|ŝ′ − ŝ|
ε

+ . . .

]
dŝ′, (3.4)

where the
∫− symbol implies that the integral should be interpreted in a Cauchy principal

value sense, which is necessary because of the Cauchy behaviour of the leading term in
the asymptotic expansion of the kernel.
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3.2.2. Outer expansion
To investigate the asymptotic behaviour of p̂ for receiving points ŝ away from the
tip region, i.e. ŝ > ε, we choose A= (0, ŝ − ε) ∪ (ŝ + ε, 2) and B = (ŝ − ε, ŝ + ε).
Integrating the first term in (3.3) directly and evaluating the subsequent terms in the
expansion as in (Adachi & Peirce 2008), we obtain

IA ∼ Ē

H

⎧⎨
⎩1

2

[
ŵ(ŝ − ε) + ŵ(ŝ + ε)

] −
∫
A

dŵ(ŝ′)
dŝ′

[
ε2

8(ŝ′ − ŝ)2 + . . .

]
dŝ′

⎫⎬
⎭

∼ Ē

H

{
ŵ(ŝ) − 1

4
ε2 ln ε

d2ŵ(ŝ)

dŝ2 + . . .

}
, (3.5)

and the leading behaviour of (3.4) can be shown to be (Adachi & Peirce 2008)

IB ∼ − Ē

πH

{
ε2

(
41
18

+ 2
3

ln 2
)

d2ŵ(ŝ)

dŝ2 + . . .

}
. (3.6)

Combining these two asymptotic expansions we observe that the asymptotic expansion
for the pressure at receiving points away from the tip region is dominated by the far-field
behaviour within the set A and is given by

p̂(ŝ) = Ē

H

[
ŵ(ŝ) − 1

4
ε2 ln ε

d2ŵ(ŝ)

dŝ2 + O(ε2)

]
. (3.7)

We note that the leading behaviour of this so-called outer expansion for the pressure is the
same as that for the local elasticity operator (2.10), which was derived formally using the
properties of the δ-function.

3.2.3. Inner expansion
For receiving points ŝ within the tip region ŝ < ε, we choose A= (ŝ + ε, 2) and B =
(0, ŝ + ε) and assume that ŵ(ŝ) = Â(t) ŝλ. From the analysis in (Adachi & Peirce 2008),
it follows that the leading behaviour of IA is given by

IA ∼ O(ε2), (3.8)

and, defining the transformation ξ̂ = ŝ/ε as in (Adachi & Peirce 2008), the expression for
IB becomes

IB ∼ − Ē Âλελ

πH

1+ξ̂∫
−
0

ξ̂ ′(λ−1)

[
1

ξ̂ ′ − ξ̂
− 1

2
(ξ̂ ′ − ξ̂ ) ln |ξ̂ ′ − ξ̂ | + . . .

]
dξ̂ ′

∼ − Ē Âλελ

πH

⎧⎨
⎩−π cot(πλ)ξ̂λ−1 for

1
2
� λ< 1

− ln |ξ̂ | for λ= 1

⎫⎬
⎭ + C. (3.9)

Thus for receiving points within the tip region, the leading behaviour for the pressure
corresponding to the aperture power law is of the form

p̂(ŝ) ∼ Ē Â

2�

⎧⎪⎨
⎪⎩
λ cot (πλ) ŝλ−1 for

1
2
� λ< 1

1
π

ln |ŝ| for λ= 1

⎫⎪⎬
⎪⎭ + C. (3.10)
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We note that (3.10) is the PKN equivalent of the plane strain eigenfunction presented in
appendix C of Spence & Sharp (1985) and derived in Appendix A (see (A35)).

3.3. Vertex asymptotes for the coupled equations
Throughout this section we will assume that the leading behaviour for the aperture is a

power law ŵ(ŝ, t)
ŝ→0∼ Â(t)ŝλ. Substituting this aperture power law and the corresponding

leading behaviour for the tip pressure (3.10) into the tip lubrication equation (3.2) leads to
the following asymptotic relations:

1
2
� λ< 1 : ˙̂Aŝλ + �̇

�
λ Âŝλ−1 ∼ Â4 Ē

μ̄�3 λ(λ− 1)(2λ− 1) cot(πλ)ŝ4λ−3 − ĝ, (3.11)

λ= 1 : ˙̂Aŝ + �̇

�
Â ∼ Â4 Ē

πμ̄�3 ŝ − ĝ. (3.12)

We note that if λ> 1 the aperture power law and the corresponding tip pressure cannot
satisfy the lubrication equation and the elasticity equation simultaneously. The plain strain
state plays a fundamental role in the tip asymptotics of any planar fracture with a smooth
boundary in a 3-D elastic medium. Indeed, in the limit as the receiving point approaches
the fracture boundary (see Peirce & Detournay (2008) and Appendix A.2), the planar
elasticity integral equation (A27) reduces to that of a semi-infinite fracture in a state plane
strain (A33). Comparing (3.10)a with (A35), we observe that the non-local PKN asymptote
(3.10)a can be made formally identical to the plane strain asymptote (A35), by replacing
Ē in (3.10) by E ′/2. Moreover, if we replace μ̄ in the PKN lubrication equation (2.13)
by μ′ then we obtain the plane strain lubrication equation – but for the difference in the
source term, which is of no consequence in this asymptotic analysis. Thus by making the
substitutions

Ē → E ′

2
and μ̄ → μ′, (3.13)

the non-local PKN asymptotic relations (3.11)–(3.12) become precisely those for a HF
in a state of plane strain (see for example (Peirce & Detournay 2022c)). Conversely, to
transition from the plane strain asymptotic relations to those of the non-local PKN model,
the following substitutions are required:

E ′ → 2Ē and μ′ → μ̄. (3.14)

The ability to transition from the plane strain asymptotic relations to those of the non-
local PKN fracture, makes it possible to use the established plane strain propagation
asymptotes (Detournay 2004, Dontsov & Peirce, 2015b; Detournay 2016) to determine
the corresponding PKN asymptotes by making the substitutions (3.14). Not only do these
substitutions make it possible to obtain the so-called vertex asymptotes for the PKN from
those for plane strain, but they can also be used to determine the corresponding PKN edge
and tri-process multiscale asymptotes. Indeed, the multiscale asymptotes (Garagash et al.
2011; Dontsov & Peirce 2015b), established for the plane strain case, can be used directly
to obtain the PKN asymptotes by making use of the substitutions (3.14).

3.3.1. Propagation asymptotes (K = K̄ , V > 0)
Viscous asymptote: in the absence of leak-off and in an elastic medium with close to
zero toughness, the dominant balance occurs between the second and third terms in (3.11).
Matching these terms, we find λ= 2/3 and, solving for Â, we obtain the viscous asymptote
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w̄m(x) = β̄m

(
μ̄V

Ē

)1/3

(� − x)2/3, (3.15)

where β̄m = 35/6. Note that applying the substitutions (3.14) to the plane strain viscous
asymptote wm(x) = βm(μ′V /E ′)1/3(� − x)2/3, where βm = 21/335/6 (see Spence & Sharp
1985; Desroches et al. 1994), we recover (3.15).

Now if we combine the expression for the average width w̄ defined in (2.4) with the
viscous asymptote wm , we find that w̄ = (π/4)wm = (3/4)1/3w̄m(x), which amounts to
a 9 % difference between these two estimates for the average asymptote w̄. This is not
surprising considering the exchange of limits implied by that taking the asymptotic limit of
the averaged equations to obtain w̄m , compared with the latter evaluation of w̄ by applying
the averaging factor (π/4) to the plane strain viscous asymptote.

Leak-off asymptote: if leak-off is dominant, we replace ĝ by the asymptotic behaviour
in the tip region ĝ ∼ (C ′�̇1/2)/�1/2ŝ1/2, and find that the dominant balance is between the
third and last terms in (3.11). It follows that λ= 5/8 and, solving for Â, we obtain

w̄m̃(x) = βm̃

(
μ̄C ′V 1/2

Ē

)1/4

(� − x)5/8, (3.16)

where βm̃ = 4/[15(
√

2 − 1)]1/4. Note that if we apply the substitutions (3.14) to the classic
Lenoach tip asymptote wm̃(x) = βm̃(2μ′C ′V 1/2/E ′)1/4(� − x)5/8 see (Lenoach 1995), we
obtain (3.16). If we combine the expression for the average width w̄ defined in (2.4)
and the Lenoach tip asymptote wm̃ , we find that w̄ = (π/4)wm̃ = (3π/8)1/4w̄m̃(x), which
amounts to a 4 % difference between these two estimates for the average asymptote w̄.

Toughness asymptote: the toughness asymptote follows from the propagation condition
(2.20)

w̄k̄(x) = K̄

Ē
(� − x)1/2. (3.17)

Note that if we apply the substitutions (3.14) to the plane strain tip asymptote wk′(x) =
(K ′/E ′)(� − x)1/2, we obtain (3.17). Alternatively, if we combine the expression for the
average width w̄ defined in (2.4) and the plane strain tip asymptote wk′(x), we recover the
toughness asymptote (3.17), i.e. w̄ = (π/4)wk′(x) = w̄k̄(x).

3.3.2. Arrest asymptotes (0 � K < K̄ , V = 0)
The arrest phase is characterised by V = 0 while the stress intensity factor K steadily
decreases from K̄ to 0 as fluid continues to leak from the fracture into the porous medium.
During propagation ĝ is singular, however, after the fracture has come to rest ĝ is no longer
singular, and, in fact, becomes more spatially uniform in the tip region as time progresses.
In this case, it is appropriate to assume that ĝ(ŝ, t) ∼ ĝ0(t).

Arrest-k-asymptote (K > 0, V = 0): during arrest (V = 0) so the near-tip asymptote is
thus given by LEFM

w̄k = K

Ē
(� − x)1/2, (3.18)

where K is a decreasing function of time. We refer to w̄k as the k-asymptote.
Arrest-recession transition-g-asymptote (K = 0, V = 0): at the end of the arrest phase,

both K and V vanish. Although the passage from arrest to recession is ephemeral,
the transition is accompanied by a switch in the near-field asymptote. To construct the
intermediate asymptote that applies at this transition point, we proceed as above and
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assume a power law for the aperture, replace ĝ(ŝ, t) in (3.11) by ĝ0(t), and match the
third and fourth terms in (3.11) to find λ= (3/4) and, solving for Â, we obtain

w̄g = βḡ

(
μ̄ĝ0

Ē

)1/4

(� − x)3/4, (3.19)

where βḡ = (32/3)1/4 
 1.807 and we refer to w̄g as the ḡ-asymptote. We note that making
the substitutions (3.14) for the g-asymptote derived in (Peirce & Detournay 2022b) we
recover (3.19).

3.3.3. The recession asymptote- r -asymptote (K = 0, V < 0)
If V < 0, the g-asymptote λ= 3/4 is no longer admissible as the second term in (3.11)
would become infinite and violate the dominant balance. Thus the only possibility is that
λ= 1, and matching the second and fourth terms in (3.12), we obtain the r -asymptote

w̄ = −ĝ0(t)
�

�̇
ŝ or w̄r (x) = ĝ0(t)

(� − x)

|V | . (3.20)

We observe that the first and third terms in (3.12) match at the next order.

3.4. The connection problem to establish multiscale solutions
Vertex and multiscale tip asymptotic solutions (Garagash et al. 2011; Dontsov & Peirce
2015b; Detournay 2016) have proven to be extremely useful in the development of
numerical algorithms to model propagating fractures (Adachi & Detournay 2008; Peirce &
Detournay 2008; Lecampion et al. 2012; Peirce 2015, 2016; Dontsov & Peirce 2017),
and, more recently, for the development of models for receding HFs in which fluid
loss to the porous elastic medium causes the fracture to deflate and close (Peirce 2022;
Peirce & Detournay 2022b,c). These algorithms can achieve solutions with a high degree
of precision, able to account for the vertex and multiscale behaviour at the finest length
scale, while using a relatively coarse mesh. The fundamental idea for propagating and
receding HFs alike (Peirce & Detournay 2008; Peirce 2015; Dontsov & Peirce 2017;
Peirce 2022; Peirce & Detournay 2022c) is to use a trial value for the fracture aperture
ŵ, sampled at computational points within and adjacent to the fracture front, along with
the applicable tip asymptote to estimate the fracture front location (or equivalently the
local front velocity) at the current step. The front position for propagating or receding
fractures is then adjusted iteratively and the aperture updated until both are consistent
with the applicable asymptote. The efficacy of this approach was clearly demonstrated in
a collaborative study that evaluated a number of numerical algorithms (Lecampion et al.
2012) and benchmarked their relative accuracy against an analytic solution and compared
their relative efficiency.

The non-singular approach introduced in (Dontsov & Peirce 2015b) provides an
effective way to determine these multiscale asymptotes, namely: the viscous-toughness-
leak-off multi-scale asymptotes for propagating fractures. (Peirce & Detournay 2022b)
used the non-singular approach to determine the k−g edge solution to capture the deflation
of an arrested HF while the stress intensity factor decays to zero and the r−g edge solution
to capture the acceleration of the receding fracture from the arrested state �̇ = 0 till the
r -asymptote fully occupies the tip region.

The starting point for the non-singular approach (Dontsov & Peirce 2015b) is the
governing integral equation over the tip region that relates the fluid pressure to the fracture
aperture. For the PKN fracture this integral equation is obtained by integrating (2.6) by
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parts, transforming to the tip coordinate x̂ , zooming into the tip region, and making use of
the leading-order expansion for G, to yield

p(x̂, t) ∼ − Ē

2π

∫ ∞

0

dw̄(x̂ ′)
dx̂ ′

dx̂ ′

x̂ ′ − x̂
. (3.21)

The corresponding lubrication equation for the PKN fracture that expresses fluid
conservation in the tip region is

w̄3

μ̄

dp

dx̂
= V w̄ +

x̂∫
0

ĝ(ŝ)dŝ, (3.22)

where the boundary conditions (2.16) have been used and

ĝ(x̂) =
⎧⎨
⎩

C ′V 1/2

x̂1/2 for V > 0

ĝ0 for V � 0.

(3.23)

We observe that the substitution (3.13) reduces (3.21) to the plane strain equation (A33)
derived in Appendix A, while (3.22) is rendered formally identical to the corresponding
lubrication equation for propagating and deflating fractures analysed in Dontsov & Peirce,
(2015b) and Peirce & Detournay, (2022b), respectively. The consequence of this formal
equivalence is profound as the plane strain multiscale asymptotes can be used directly
provided the appropriate transformations are made.

4. Comparison between PKN model with asymptotes and a fully planar 3-D model
Having established the multiscale vertex, edge, and tri-process asymptotes for a PKN
fracture, in this section we provide numerical results comparing numerical solutions to
the PKN model equations (2.6) and (2.13) subject to the initial (2.15) and boundary (2.16)
conditions to the solutions to a planar fracture model in a 3-D elastic medium (PL3D)
governed by (2.2) and (2.11) also subject to zero aperture and flux boundary conditions.
The PKN equations are solved using an implicit moving mesh algorithm (IMMA), similar
to that described in Dontsov & Peirce (2015a) and Dontsov (2016), in which all the
multiscale tip asymptotes for propagation, arrest and recession, described in § 3, are
used to determine the location of the moving front. The planar 3-D equations are solved
using the implicit level set algorithm (ILSA) (Peirce & Detournay 2008; Peirce 2015;
Dontsov & Peirce 2017; Zia & Lecampion 2020), which uses the viscous-toughness-leak-
off multiscale asymptotes (Dontsov & Peirce 2015b, 2017) to model fracture propagation,
while recession of the fracture boundary is captured using a minimum width constraint
(Zia & Lecampion 2020; Talebkeikhah et al. 2025) for points at which the fracture was
previously open but ultimately close due to fluid leak-off. We will refer to the former
procedure as the IMMA-PKN algorithm and the latter as the ILSA-PL3D algorithm.
We provide two numerical examples, the first example compares the IMMA-PKN and
the ILSA-PL3D results for a parameter set that one might expect in the field. This
example focusses on the pre- and post-shut-in propagation up till the time of arrest and
enables us to compare the IMMA-PKN and ILSA-PL3D algorithms when their respective
viscous-toughness-leak-off multiscale propagation asymptotes are used. For this example a
specialised version of the ILSA-PL3D code was used in which the fracture boundary was
not permitted to propagate beyond the channel |y| < H/2. The second example enables
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us to compare the IMMA-PKN and ILSA-PL3D solutions for propagation pre- and post-
shut-in, arrest and deflation during arrest, and recession. The IMMA-PKN model uses
the PKN viscous-toughness-leak-off multiscale propagation asymptotes up to the point of
arrest, the k−g and r−g edge solutions to model the transition from arrest to recession
as well the r− asymptote to capture recession. The ILSA-PL3D algorithm uses the
viscous-toughness-leak-off multiscale asymptote for propagation and a width constraint
to model the HF closing on itself and the recession of the free boundary. In this model,
the fracture was restricted to evolve within the channel |y| < H/2 by a tenfold increase in
the fracture toughness between the channel and the region |y| > H/2. A study has been
conducted (Talebkeikhah et al. 2025) to calibrate the minimum width constraint used by
the ILSA-PL3D algorithm against a radial solution (Peirce 2022), which uses an IMMA
scheme endowed with the viscous-toughness-leak-off, arrest, and recession asymptotes. A
width constraint strategy, shown to yield accurate results in that study, was used in this
comparison.

4.1. Propagation, shut-in and arrest
We consider a HF that propagates under the continuous injection of a viscous fluid until the
shut-in time ts = 1500 s, after which injection is discontinued and the injection conduit is
capped. The field-like parameters are: E = 9.5 GPa, ν = 0.2, μ = 0.1 Pa s, C = 8.2431 ×
10−6 ms−1/2, K I C = 1.0 MPa m1/2, Q0 = 10−3 m3 s−1 and H = 20 m.

This parameter set corresponds to the dimensionless shut-in time ω ∼ 2.0 × 10−3 and
arrest regime parameter φ̄V ∼ 2.49 × 102. The dimensionless shut-in time is defined to
be ω = ts/t̄mm̃ , where ts is the actual shut-in time and t̄mm̃ is the time scale at which
propagation transitions from being viscosity dominated to being dominated by leak-off.
The arrest regime parameter is defined to be the ratio of two time scales φ̄V = (t̄ V

mk)/(t̄
V
mm̃),

where t̄ V
mk is the time (assuming a fixed injected volume, which is appropriate post shut-

in) at which propagation transitions from viscosity to toughness dominated propagation,
while t̄ V

mm̃ again represents the transition time between viscosity dominated and leak-off
dominated propagation – but now assuming a fixed injected volume. The V superscript
indicates fixed volume propagation.

If the time of arrest ta ∼ t̄ V
mk � t̄ V

mm̃ then φV � 1, and the fracture is propagating in the
toughness regime at the time of arrest but still contains a significant amount of fluid that
needs to leak-off before recession can start. Conversely, if ta ∼ t̄ V

mm̃ � t V
mk then φ̄V � 1,

and the fracture is propagating in the leak-off regime at the time of arrest and has lost suffi-
cient fluid to preclude significant further propagation of the fracture. In this case recession
will start almost immediately after a very short arrest period. See § 5 for more detail.

In the top plot in figure 2, we compare the first quadrant projections of the pre- and post-
shut-in fracture footprints obtained using the ILSA-PL3D and IMMA-PKN algorithms.
In the middle plot we compare the corresponding pre-shut-in fracture apertures, and in
the bottom plot we compare the post-shut-in fracture apertures that correspond to the
remaining fracture footprints shown in the top figure. As the fracture approaches arrest,
the density of the footprints increases and the successive fracture apertures become much
closer together. The PKN and PL3D solutions show very close agreement. The slight
discrepancy for the first fracture footprint shown is to be expected as the initially radial
planar fracture has just touched the upper boundary at which point the aspect ratio is close
to unity so one would not expect the PKN solution to be particularly close to the PL3D
solution.

In figure 3, we compare time evolution plots of the ILSA-PL3D (dashed red) and IMMA-
PKN (solid black) solutions for the: aspect ratio 2�/H , the fracture aperture at the injection
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Figure 2. (a) The pre- and post-shut-in ILSA-PL3D fracture footprints (dashed red) and the corresponding
IMMA-PKN fracture front positions (solid black), (b) the pre-shut-in fracture apertures that correspond to
the fracture footprints in the top figure, (c) the post-shut-in fracture apertures that correspond to the fracture
footprints in the top figure.

point, the fluid pressure at the injection point and the efficiency, which is defined to be

η = 2
∫ �(t)

0
w̄(x, t) dx/V f , (4.1)

The shut-in time is indicated on the aspect ratio plot by the solid black square , which
corresponds to the points at which the curvatures in the other plots in this figure change
abruptly. As was the case with the solutions provided in figure 2, the ILSA-PL3D and
IMMA-PKN solutions show close agreement. The only noticeable discrepancy is in the
fluid pressure at the injection point near the start of injection, which is again due to the
transition from a radial fracture (for the ILSA-PL3D algorithm) to a rectangular fracture
during the initial stages of growth of the fracture.

The close agreement between the two sets of results, even in this environment in which
multiple physical processes compete to determine the evolution of the fracture boundary,
demonstrates the utility of the PKN asymptotes established by the analysis in § 3. Having
established the efficacy of the PKN asymptotes in determining the post-shut-in dynamics
of the HF propagation and the clear identification of the time of arrest, the IMMA-PKN
algorithm is used to confirm the scaling analysis performed in § 5.

4.2. Propagation, shut-in, arrest and recession
We now provide IMMA-PKN and ILSA-PL3D solutions for a HF that evolves within a
rectangular region of constant height H and growing length 2�. In the case of the ILSA-
PL3D algorithm the HF is constrained to propagate between two sedimentary layers by
introducing a tenfold jump in the fracture toughness KI c across layer interfaces located at
y = ±H/2. Naturally, the rectangular footprint is a fundamental assumption of the PKN
model. After shut-in, when the injection of fluid is discontinued, the fracture continues to
propagate but gradually slows until it arrests when the stress intensity factor at the leading
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Figure 3. (a) the ILSA-PL3D (dashed red) and the IMMA-PKN (solid black) aspect ratios as a function of
time, (b) the efficiencies η as functions of time, (c) the fracture apertures at the injection point as functions of
time, (d) the fluid pressures at the injection point as functions of time.

front of the fracture drops below the fracture toughness. This deceleration is not only due
to the spreading of the fracture as the pressure gradients reduce but also due to the leak-off
of fluid to the porous elastic medium. After arrest, the fracture continues to deflate due to
fluid leak-off until the stress intensity factor is reduced to zero. Thereafter, with further
loss of fluid due to leak off to the porous medium, the fracture tip starts to recede as the
open parts of the fracture resume contact. This recession process is modelled by the ILSA-
PL3D algorithm by the introduction of a minimum width constraint upon closure, while
the IMMA-PKN algorithm uses the recession asymptote.

Rather than a selection of a set of parameters that might be encountered in the field, the
following parameter set was chosen in order be able to accurately model the rectangular
fracture evolution and recession process using the ILSA-PL3D algorithm: E = 0.0096
GPa, ν = 0.2, μ = 300 Pa s, C = 1.9758 × 10−3 ms−1/2, K I C = 0.01 MPa m1/2, ts = 108

s, Q0 = 1 m3s −1 and H = 216.8614 m. This choice of elastic moduli and fracture height
H leads to large fracture apertures so the minimum width is set to wmin = 10−8 to avoid
convergence issues that a smaller width constraint would entail due to round-off errors.
Containment to a rectangular footprint is also ensured by the appropriate choice of layered
fracture toughness (Mori et al. 2024). This parameter set corresponds to the dimensionless
shut-in time ω ∼ 5.9 × 10−3 and arrest regime parameter φ̄V ∼ 1.9571 × 103 (see § 5 for
the definition and interpretation of these parameters).

In the top plot in figure 4, we compare the first quadrant projections of the ILSA-PL3D
(dashed red) and IMMA-PKN (solid black) pre-arrest footprints. Because both x and
y axes are scaled to the factor H/2, the sequence of footprints represent the evolving
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Figure 4. (a) pre- and post-shut-in IMMA-PKN (solid black) and ILSA-PL3D (dashed red) fracture footprints
before arrest. (b) receding IMMA-PKN (solid black) and ILSA-PL3D (dashed blue) fracture footprints up till
the point of collapse of the PKN solution, (c) ILSA-PL3D (solid blue) fracture footprints subsequent to the
PKN collapse.

aspect ratio 2�/H . The aspect ratio at shut-in is approximately 2�s/H ∼ 11.44, while
after shut-in the fracture continues to propagate until arrest when the aspect ratio is
approximately 2�a/H ∼ 13.74. In the middle plot in figure 4, we compare the receding
fracture fronts of the ILSA-PL3D (dashed blue) and IMMA-PKN (solid black) algorithms.
In contrast to the nearly vertical fronts of the propagating ILSA-PL3D fracture footprints
shown in the top plot, the receding ILSA-PL3D fracture fonts become more curved as
recession progresses. These receding ILSA-PL3D fracture footprints eventually separate
from the original containment rectangle when 2�/H ∼ 8.5 and ultimately assume a
more elliptic shape. While the IMMA-PKN fracture fronts initially follow the maximum
points of the corresponding fracture fronts for the ILSA-PL3D model, they ultimately
approximate an averaged front position such that the fracture volume matches that of the
fully planar model. The red vertical line in the middle plot when 2�/H ∼ 4.5 represents
the last recession front of the PKN model before collapse. In the numerical IMMA-
PKN simulations, an efficiency threshold η < 0.5 % was used as an objective criterion
to identify the collapse time. It is typically not possible for the IMMA-PKN model to
remain stable beyond the efficiency threshold.

In the bottom plot in figure 4, we render the ILSA-PL3D fracture footprints (solid blue)
as well as the last recession front of the PKN model, which is the same red vertical line
shown in the middle figure. Since the width constraint logic used in the ILSA-PL3D
model has been carefully calibrated, we assume that it provides an accurate capture of
the dynamics of the receding fracture. Given that the PKN model is constrained to a
rectangular geometry, and cannot faithfully capture the significant topological changes of
the ILSA-PL3D model once it separates from the containment layer boundaries, it is to be
expected that the two models deviate beyond this point. Indeed, the PKN front location
tries to capture an average position, whose location is set to match the PKN fracture
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Figure 5. (a) pre-shut-in IMMA-PKN (solid black) and ILSA-PL3D (dashed red) scaled fracture apertures
w/ws plotted as functions of the scaled distance 2x/H from the injection point. Here ws = w(0, ts) is the
aperture at the well-bore at the time of shut-in ts . (b) post-shut-in scaled fracture apertures. (c) scaled receding
fracture apertures for the IMMA-PKN (solid black) and ILSA-PL3D (dashed blue) algorithms sampled up to
the point of collapse of the PKN model.

volume to that of the fully curved fracture ILSA-PL3D model. Since the PKN model
significantly over-estimates the fracture footprint, to maintain volume balance it is forced
to under-estimate the fracture aperture, which, in turn, leads to an earlier estimate of the
collapse time. In contrast, the PL3D model has the freedom to model the non-rectangular
post-separation fracture footprints and is, therefore, able to capture the dynamics of the
HF much closer to the point of collapse.

We see that these PL3D recession fronts, which persist beyond the collapse of the
PKN solution, approach an approximately elliptic shape. For the last five such elliptical
fracture footprints, we also represent by solid red curves the ellipses whose semi-major
axes correspond to the fracture lengths and whose semi-minor axes correspond to the
fracture heights. We observe that these red ellipses are almost indistinguishable from the
PL3D fracture footprints, which are represented by the solid blue lines.

In the top plot in figure 5, we compare the pre-shut-in fracture apertures for the IMMA-
PKN (solid black) and ILSA-PL3D (dashed red) solutions. In the middle plot, we compare
the post-shut-in fracture apertures representing the propagation up to the point of arrest.
In the bottom plot, the dashed magenta curve represents the ILSA-PL3D solution during
the brief period during which the fracture continues to deflate while arrested, while the
corresponding IMMA-PKN solution is represented by a solid black curve. The dashed blue
curves represent the ILSA-PL3D fracture apertures while the corresponding IMMA-PKN
fracture apertures are represented by the solid black curves. The last of these receding
fracture aperture comparisons is sampled just before the collapse of the IMMA-PKN
model. We observe that the IMMA-PKN and ILSA-PL3D fracture apertures represented
in figure 5 show close agreement.

In the top left plot in figure 6, we compare the scaled fracture dimensions for the
IMMA-PKN and ILSA-PL3D solutions as functions of the scaled time t/ts . The horizontal
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Figure 6. The IMMA-PKN solution is represented by (solid) curves and the ILSA-PL3D solution by (dashed)
curves. Here �s , ws , ps , are the fracture half-length, and aperture and pressure at the injection point all sampled
at the time of shut-in ts . Moreover, h represents the vertical dimension of the fracture at the injection point: for
the PKN model h = H , while for the PL3D model h � H . Before the PL3D fracture reaches the constraining
layers h < H briefly, followed by h = H , and finally the PL3D fracture retreats from the constraining layers
and h < H once again (designated by the red dashes). (a) scaled fracture dimensions, (b) fracture efficiency η,
(c) scaled fracture aperture at the injection point w/ws , (d) scaled fluid pressure at the injection point p/ps , all
plotted as functions of the scaled time t/ts .

dimension is determined by the scaled fracture length �/�s , which is represented by the
solid black curve for the PKN model and the dashed black curve for the PL3D model. On
the �/�s vs t/ts plot, the shut-in time is represented by the solid black square , the arrest
point is represented by the solid black circle •, while the point of initiation of recession
is represented by the solid black triangle �. The vertical dimension is determined by the
scaled fracture height h/H , which is represented by the solid red curve for the PKN model
and the dashed red curve for the PL3D model. The separation time t/ts ∼ 4.5 at which the
dashed red curve deviates from the solid red curve, represents the time at which the PL3D
fracture footprint first loses contact with the confining layers y = ±H/2. The fracture
efficiency η as a function of time is plotted in the top right figure. The scaled fracture
aperture at the injection point w/ws is plotted as a function of time in the bottom left plot,
while the scaled fluid pressure p/ps at the injection point is plotted as a function of time
in the bottom right plot.

5. Scaling analysis

5.1. Scaling for a PKN fracture subject to a constant injection rate Q0

Following Detournay (2004, 2016) we introduce a length scale l∗, time scale t∗, and
characteristic aperture w∗ and net pressure p∗ such that x = l∗ξ , t = t∗τ , w̄ = w∗Ω ,
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and p = p∗Π into the governing equations (2.6) and (2.13), enabling us to identify the
following five dimensionless groups:

Gs = l∗Hw∗
Q0t∗

, Gm = l∗μ̄Q0

w3∗ p∗H
, Gc = C ′l∗H

t1/2∗ Q0
, Ge = Ēw∗

H p∗
, and Gk = K̄√

H p∗
. (5.1)

The storage-viscosity m-scaling can be identified by requiring Gs = Gm = Ge = 1, from
which it follows that the length lm , aperture wm and pressure pm scales are respectively
given by

lm =
(

Ē Q3
0t4

μ̄H4

)1/5

wm =
(

μ̄Q2
0t

Ē H

)1/5

and pm =
(

Ē4μ̄Q2
0t

H6

)1/5

, (5.2)

while the dimensionless toughness and leak-off coefficients become

Gk :=Km(t) =
(

t̄km

t

)1/5

and Gc := Cm(t) =
(

t

t̄mm̃

)3/10

, (5.3)

where t̄km = (K̄ 5 H7/2)/(Ē4μ̄Q2
0) and t̄mm̃ = (μ̄Q2

0/ĒC ′5 H)2/3 are the k−m and
m − m̃ transition time scales, respectively.

We define the propagation mode parameter to be the ratio of these two characteristic
time scales

φ̄ = t̄km

t̄mm̃
=

(
K̄ 6 H5C ′4

μ̄2 Ē4 Q4
0

)5/6

. (5.4)

The leak-off (m̃-scaling) can be obtained by requiring Gc = 1 instead of Gs

lm̃ = Q0t1/2

HC ′ wm̃ =
(

μ̄Q2
0

Ē HC ′

)1/4

t1/8 and pm̃ =
(

Ē3μ̄Q2
0

H5C ′

)1/4

t1/8, (5.5)

while the dimensionless toughness and storage coefficients become

Gk :=Km̃(t) =
(

t̄km̃

t

)1/8

and Gs := Sm̃(t) =
(

t̄mm̃

t

)3/8

, (5.6)

where t̄km̃ = (K̄ 8 H6C ′2)/(Ē6μ̄2 Q4
0). The toughness (k-scaling) can be obtained by

requiring Gk = 1 instead of Gm , and the toughness-leak-off (k̃-scaling) can be obtained
by requiring Gk = 1 and Gc = 1 see (Dontsov 2022).

5.2. Characteristic power laws for arrest
In this paper we consider the injection of fluid at a constant flux Q0 followed by shut-in at a
certain time ts . Propagation of the HF, initiated at the beginning of the injection phase, may
continue after shut-in depending on the regime of propagation. A propagating fracture in
a permeable medium will ultimately come to rest either due to excessive leak-off if K̄ = 0
or because the stress intensity factor K has dropped below the fracture toughness when
K̄ > 0. There is an arrest period during which K decreases as the fracture continues to
lose fluid to the porous medium so that ẇ < 0, until transition to the recession asymptote
is initiated when K = 0 and the fracture starts to recede. However, if the HF is already in
the leak-off regime at the time of shut-in, then recession can be expected to start almost
immediately after arrest.
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The appropriate scaling for the dynamics with a fixed injected volume V0 can be
obtained Mori & Lecampion (2021) directly from those of a fracture driven by a constant
flux Q0 given in (5.2) by making the simple substitution Q0 = V0/t . In this case the length
lV
m (t) and aperture wV

m (t) scales are given by

lV
m (t) =

(
ĒV 3

0 t

μ̄H4

)1/5

and wV
m (t) =

(
μ̄V 2

0

Ē Ht

)1/5

, (5.7)

while the dimensionless toughness KV
m (t) and leak-off CV

m (t) parameters become

KV
m (t) =

(
t

t̄ V
mk

)1/5

and CV
m (t) =

(
t

t̄ V
mm̃

)7/10

, (5.8)

where t̄ V
mk = (Ē4μ̄V 2

0 )/(K̄ 5 H7/2) and t̄ V
mm̃ = ((μ̄2V 4

0 )/(Ē2C ′10 H2))1/7 are the m−k and
m − m̃ transition time scales associated with the post-shut-in dynamics of a PKN HF,
respectively.

In order to characterise the modes of arrest, we define the following arrest regime
parameter φ̄V for a fixed injected volume PKN HF to be:

φ̄V = t̄ V
mk

t̄ V
mm̃

=
(

μ̄2 Ē12C ′4V 4
0

K̄ 14 H9

) 5
14

. (5.9)

Once shut-in has occurred the two transition times defined in (5.8) identify two different
ways the fracture behaves after the time of arrest ta , which, if K̄ > 0, is characterised by the
stress intensity factor dropping below the critical fracture toughness and, as a result, the
velocity of the fracture going to zero. If ta ∼ t̄ V

mk � t̄ V
mm̃ , so that φ̄V � 1, then at the time of

arrest, the fracture is propagating in the toughness regime and still contains a significant
amount of fluid that needs to leak-off before recession can start. In this case, there will
be a significant period during which the fracture deflates while it is in a state of arrest
after which recession will begin. Conversely, if ta ∼ t̄ V

mm̃ � t V
mk , so that φ̄V � 1, then at

the time of arrest the fracture is propagating in the leak-off regime and has lost sufficient
fluid to preclude significant further propagation of the fracture. In this case, recession can
be expected to start almost immediately and there will be a very short arrest period. We
observe that the parameter φ̄V defined in (5.9) has no meaning in the zero toughness case
since t̄ V

mk = ∞.
In the analysis that follows we consider a given shut-in time ts , which we define with

respect to the constant injection rate storage-leak-off transition time t̄mm̃ in terms of the
parameter ω defined by

ω = ts
t̄mm̃

. (5.10)

At shut-in, the injected volume is Vs = Q0ts , the dimensionless leak-off coefficient
Cm(ts) := Cs = ω3/10, while the dimensionless toughness Km(ts) :=Ks = (

φ̄
)1/5

ω−1/5.
The fixed injected volume transition times, at which KV

m (t) = 1 and CV
m (t) = 1, can be

expressed in terms of Ks and Cs as follows:

t̄ V
mk := tsK−5

s and t̄ V
mm̃ := tsC−10/7

s . (5.11)

Now, making use of the transition times defined in (5.3) and (5.8) as well as the
definition (5.9) of the arrest regime parameter φ̄V , the following relationship can be
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established between the fixed injected volume transition times t̄ V
mm̃ and t̄ V

mk and the
dimensionless shut-in parameter ω:

t̄ V
mm̃ = tsω

− 3
7 and t̄ V

mk = φ̄V tsω
− 3

7 . (5.12)

Naturally, because of the definition of the regime parameter φ̄V in (5.9), both the transition
times t̄ V

mm̃ and t̄ V
mk have the same power law dependence on ω. If ω � 1, then, at the time

of shut-in ts, the fracture is still propagating in the viscous-storage regime well away from
the leak-off regime, so the arrest time ta is determined by the transition times t̄ V

mk if K̄ > 0
or by t̄ V

mm̃ in the zero toughness case. The corresponding asymptotic dependence of the
arrest length and arrest aperture can be obtained by substituting these transition times into
(5.7). If ω � 1, then, at the time of shut-in ts, the fracture is well into the leak-off regime
so arrest occurs almost immediately, i.e. ta ∼ ts . Defining ls := lm(ts) and ws := wm(ts),
and combining (5.12)b with (5.7), we obtain

ta/ts ∼
{

φ̄V ω− 3
7 if ω � 1

1 if ω � 1
,

(5.13)

la/ ls ∼
{

(φ̄V )1/5ω−3/35 if ω � 1

1 if ω � 1
,

(5.14)

wa/ws ∼
{

(φV )−1/5ω3/35 if ω � 1

1 if ω � 1
.

(5.15)

For the zero toughness case K̄ = 0 the arrest time ta will be determined by the transition
time t̄ V

mm̃, which has the same power law as t̄ V
mk, without the factor involving the regime

parameter φ̄V . Thus the power law asymptotes for the zero toughness case are identical to
those in (5.13)–(5.15) without the factor involving the regime parameter φ̄V .

The IMMA-PKN results for the non-zero toughness case K ′ > 0 are presented in
figure 7. The arrest time to shut-in time (a) and arrest length to shut-in length (b) ratios
are plotted as functions of the dimensionless shut-in time ω for different values of the
regime parameter φ̄V . Here the dashed red line represents the power law Aωα for the
particular case φ̄V = 1957.1, with A and α computed by a log linear regression of the first
few data points. The regression yields α = −0.42 for ta/ts , which is consistent with the
power law (5.13), and α = −0.0842 for �a/�s , again consistent with the power law (5.14).
In both figures (a) and (b) the • symbol is used to indicate the curve corresponding to the
regime parameter φ̄V = 100, and the curve with the � symbol corresponds to the regime
parameter φ̄V = 1957.1.

5.3. Solution landscape represented by the evolving fracture length �

In table 1, the ratio of the fracture length scaled to the shut-in length �(t)/�s is plotted as
a function of the scaled time t/ts for a range of different φ̄V and ω values. The value of
the arrest regime parameter φ̄V is constant for each column of the table while the value
of the dimensionless shut-in parameter ω is constant for each row. Fracture lengths are
plotted for φ̄V = 102 and 103.29 ≈ 1957.1 and ω = 10−8 and 10−2. The initially black parts
of the curve represent the dynamics driven by injection up to the shut-in time ts , which is
designated by a red asterisk ∗. The subsequent red part of the curve, between the red shut-
in point ∗ and the magenta arrest point •, represents the length increase as the fracture
continues to propagate between the time fluid injection ceases and the point of arrest.
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Figure 7. The solid black lines indicate the numerical solutions for (a) the arrest time to shut-in time
ratios and (b) the arrest length to shut-in length ratios, both plotted as functions of ω for the values of the
regime parameter φ̄V ∈ {100 (•), 1957.1(�)}. The red • symbols in each plot correspond to the parameter set
(ω, φ̄V ) = (0.0059, 1957.1) used in the PyFrac calibration runs in § 4.2. The dashed red lines represent linear
regressions of the data set (�) corresponding to φ̄V = 1957.1, assuming ta/ts and �a/�s are power laws of the
form Aωα .

The magenta part of the curve, between the arrest point • and the recession initiation point
�, represents the period during which the fracture continues to lose fluid while at arrest,
so that V = 0 and ∂w/∂t < 0. The subsequent black part of the curve, starting with �,
represents the decreasing fracture length � while the fracture recedes. Scanning down the
first column φ̄V = 102, we observe that the collapse time occurs a factor of 1150 times
later than the shut-in time for the case ω = 10−8, which is reduced to 4.4 times for the
case ω = 10−2. Indeed, as ω increases, the post shut-in propagation time, arrest period and
recession time till collapse all decrease.

6. Self-similarity close to closure – the sunset solution

6.1. Evidence of self-similarity
In order to motivate the analysis performed in this section we re-plot the data presented in
§ 4.2 in a form that reveals the self-similar nature of the solution as the fracture approaches
the time of collapse tc. We recall the dimensionless parameters that characterise this set of
data are given by the pair (ω, φ̄V ) = (0.0059, 1957.1).

In figure 8(a), we plot the scaled fracture length �/�r for the PKN (solid black) and
PL3D (solid blue) solutions and the scaled fracture height h/H for the PL3D solution
(solid magenta) vs the scaled reverse time (tc − t)/tr . Here �r and tr are the fracture
length and time at which the fracture starts to recede, respectively. The linear trend in
the asymptotic limit t → tc indicates that � behaves like a power law in this limit, i.e.
� ∼ A(tc − t)γ . A linear regression on the first few points of each of these curves yields
(represented by the dashed red lines) that for the PKN case γ ≈ 0.506 and for the PL3D
case γ ≈ 0.502. The exponent for the magenta curve representing the PL3D fracture
height is 0.42, which is close to 0.5, indicating that the successive elliptic footprints
are close to self-similar as the fracture recedes. In figure 8(b), we plot the PL3D scaled
fracture aperture w/wr at the injection point (blue curve) as a function of the scaled
reverse time (tc − t)/tr . A plot of the PKN aperture is similar, except that the collapse
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Table 1. Scaled length �(t)/�s vs t/ts plotted for different φ̄V and ω values. In each of these plots: propagation
under injection is represented by the black portion of the curve terminating with the ∗ symbol; the red portion
of the curve, between the ∗ and the • symbols, represents post shut-in propagation; the magenta portion of the
curve, between the • and the � symbols, represent post shut-in propagation; the black portion of the curve,
starting with the � symbol, represents recession.

time of the PKN fracture occurs earlier (and at a larger aperture value) than that of the
PL3D fracture. To keep the figure uncluttered this plot is not provided. Due to the PKN
model being constrained to a rectangular geometry, it is not able to capture the recession
process once the closure boundary retreats from the containment layers. We observe that
as t → tc the fracture aperture tends a linear function of time, so that w ∼ g × (tc − t).
A linear regression on the first few points of the PL3D curve shown in figure 8(b)
yields the gradient g ≈ 1.73 × 10−7 ms−1, while from a similar a linear regression of the
corresponding PKN curve we obtain the estimate g ≈ 2.54 × 10−7 ms−1.

In figure 9, for a sequence of sample times, starting with the recession initiation time
tr , we plot the dynamically scaled fracture aperture w(x, t)/w(0, t) against the scaled
distance from the injection point x/�(t) for: (a) the PL3D model (blue), and (b) the PKN
model (black). We observe that in both cases the fracture apertures approach a universal
function of the scaled distance x/�(t), which is represented by the dashed red curve. Since
these dynamic scale factors are precisely the fracture length �(t) for the abscissae and the
injection aperture w(0, t) for the ordinates, both of which exhibit power law behaviour
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Figure 8. In each of these plots the dashed red lines represent the lines obtained a linear regression on the first
few points of each of the curves. (a) Log–log plot of the scaled fracture length �/�r for the PKN (solid black)
and PL3D (solid blue) solutions and the scaled fracture height h/H (solid magenta) vs the scaled reverse time
(tc − t)/tr . (b) The solid blue curve represents the PL3D scaled fracture aperture at the injection point w/wr
vs the scaled reverse time (tc − t)/tr .
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Figure 9. (a) Scaled PL3D fracture aperture w(x, t)/w(0, t) vs the scaled distance from the injection point
x/�(t). (b) Scaled PKN fracture aperture w(x, t)/w(0, t) vs the scaled distance from the injection point x/�(t).
The dashed red curve represents the universal aperture to which the scaled numerical solutions tend as t → tc.

according to figure 8, there is strong evidence of the existence of a similarity solution for
both the PL3D model and the PKN model.

6.2. Reverse-time equations and the similarity ansatz
The evidence presented in § 6.1 indicates that the both the PL3D and PKN models for
receding rectangular fractures ultimately tend to a self-similar structure. Though the PL3D
equations are much more complex and not amenable to analysis, it is possible to analyse
the PKN equations to investigate the nature of this self-similar behaviour, which is what we
explore in the remainder of this section. Given the focus on the behaviour of the solution
close to the closure time tc, to simplify the analysis we rewrite the governing equations
in terms of the reverse time t ′ = tc − t . In this case, �̇(t ′) > 0 for recession, the elasticity
equation (3.1) remains unchanged, while the signs are changed in the last two terms in
(3.2). As the HF approaches collapse, the current time t is assumed to be sufficiently more
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advanced than the initiation times active in the collapsing fracture, i.e. t � t0(s, t), that
the leak-off term has the following asymptotic behaviour:

ĝ(ŝ, t) = C ′√
t − t0(�(1 − ŝ))

t�t0∼ C ′
√

t
. (6.1)

Thus for sufficiently advanced times t , the leak-off function ĝ(ŝ, t) is slowly varying in
time and approximately independent of ŝ, so that the leak-off function ĝ may be considered
to be approximately constant. Thus, in what follows, ĝ is replaced by the constant ĝ0. The
lubrication equation (3.2), expressed in terms of the reverse time t ′, becomes

∂ŵ

∂t ′
+ (1 − ŝ)

�̇

�

∂ŵ

∂ ŝ
= − 1

μ̄�2
∂

∂ ŝ

(
ŵ3 ∂ p̂

∂ ŝ

)
+ ĝ0. (6.2)

We observe that these reverse-time equations are equivalent to those of an inflating fracture
subjected to a constant source distributed throughout its growing length.

Motivated by the evidence presented in figures 8 and 9, and the accompanying
observations made in § 6.1, we look for a similarity solution to this ‘growing’ HF driven
by an influx of fluid from a constant distributed source in terms of s = x/�(t ′) and by
assuming a solution of the form

w̄(s, t ′) = t ′αW (s) p(s, t ′) = t ′β P(s) �(t ′) = Λt ′γ . (6.3)

Note that for the reverse time, t ′ = 0 represents the time of closure.

6.3. Fracture volume
Define the average fracture aperture W to be

W =
1∫

0

w̄(s, t ′)ds = t ′α
1∫

0

W (s)ds = t ′αW . (6.4)

The crack volume Vc can be expressed in terms of the similarity variables as follows:

Vc(t) =W� = Λt ′α+γ W . (6.5)

Since the rate of change of volume should match the rate of efflux of fluid, it follows that

V̇c = Λ(α + γ )t ′α+γ−1W = g0� = g0Λt ′γ . (6.6)

Matching powers we obtain the following:

α = 1 and W = g0

1 + γ
. (6.7)

6.4. Tip asymptotics and Taylor expansion
Now w̄(s, t ′) = ŵ(ŝ, t ′) = t ′W (s) = t ′W (1 − ŝ) and, motivated by the linear asymptote in
(3.20), we assume a Taylor expansion for W about s = 1 in powers of ŝ of the form

ŵ(ŝ, t ′) = t ′
∞∑

n=1

(−1)nwn

n! ŝn, (6.8)

where wn = (dnW/dsn)|s=1 and w0 = W (1) = 0.
Taking time and space derivatives of (6.8), the left side of (6.2) can be written in the

form
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∂ŵ

∂t ′
+ (1 − ŝ)

�̇

�

∂ŵ

∂ ŝ
= −γw1 +

∞∑
n=1

(−1)n (1 − nγ )wn − γwn+1

n! ŝn. (6.9)

Now because the asymptotic behaviour of the non-local kernel function G((ŝ′ − ŝ)/ε)
changes depending on the distance between the sending point ŝ′ and the receiving point ŝ,
in order to determine the asymptotic behaviour of the pressure p̂, it is necessary to split
the action of integral operator into an inner region in which the receiving point is close
to the tip ŝ < ε, and an outer region for which the receiving point is remote from the tip
ŝ > ε.

Inner region: using (3.10) to determine the leading behaviour for the pressure p̂ from
the action of the Cauchy operator on the leading term in (6.8), it follows that

p̂
ŝ�ε∼ − Ē t ′1−γ

2πΛ
w1 ln ŝ. (6.10)

Comparing (6.3) and (6.10) it follows that the time exponent of the pressure β is given by

β = 1 − γ. (6.11)

Using the expansion (6.10) for the pressure, the leading behaviour of the flux gradient
in the tip region ŝ < ε can be shown to be of the form

1
�2

∂

∂ ŝ

(
ŵ3

μ̄

∂ p̂

∂ ŝ

)
∼ Ē t ′4−3γ

πμ̄Λ3 w4
1 ŝ. (6.12)

Outer region: away from the tip ŝ > ε, the leading behaviour for the pressure p̂ is given by

p̂(ŝ, t) ∼ Ē

H
ŵ(ŝ, t), (6.13)

so the leading behaviour of the flux gradient away from the tip can be shown to be of the
form

1
�2

∂

∂ ŝ

(
ŵ3

μ̄

∂ p̂

∂ ŝ

)
∼ Ē t ′4−2γ

μ̄Λ2 H
3w4

1 ŝ2. (6.14)

Numerical evidence suggests that, as the fracture approaches closure it accelerates rather
than slowing down, which implies that γ < 1. Thus, in the small time limit t ′ � 1, it
follows that t ′4−3γ � 1 and, a fortiori, t ′4−2γ � 1, so we can neglect the flux term on
the right of (6.2). The significance of the emerging subdominance of the pressure gradient
terms in (6.2) in the limit t ′ � 1 is profound as it signifies a decoupling of the elastic force
balance equation from the fluid conservation equation, so that the remaining dominant
terms in (6.2) essentially enforce a local kinematic condition between the fluid leak-off
velocity and the rate of decrease of the aperture and length of the receding fracture.

Now matching the powers of ŝ in (6.9) to the only non-zero term ĝ0 on the right side
of (6.2) (assuming that the flux terms are negligible on this time scale), we obtain the
following value for w1 and recursion for wn, n > 1:

w1 = −ĝ0/γ, and wn+1 = (1 − nγ )

γ
wn. (6.15)

From this recursion it follows that

wn = −(1 − γ )(1 − 2γ ) . . . (1 − (n − 1)γ )ĝ0/γ
n. (6.16)
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Substituting these values for wn into (6.8) we obtain the following expansion for ŵ(ŝ, t ′):

ŵ(ŝ, t ′) = ĝ0t ′
[

1
γ

ŝ +
∞∑

n=2

(−1)n+1(1 − γ )(1 − 2γ ) . . . (1 − (n − 1)γ )

n!γ n
ŝn

]
. (6.17)

Note that the power series (6.17) provides a local solution centred on the fracture tip,
which only converges for ŝ < 1 and will not yield a global solution valid at the centre of
the fracture ŝ = 1. However, we observe from (6.17) that, for γ < 1, there are a countable
infinity of global solutions valid for 0 � ŝ � 1, each corresponding to the reciprocals
γ = 1/2, 1/3, . . . 1/N . . . of the integers greater than or equal to 2, which terminate for
finite N to polynomial solutions. Indeed, for γ = 1/N , N � 2 the series solution (6.17)
terminates after N terms to yield the globally valid solution of degree N

ŵ(ŝ, t ′) = ĝ0t ′(−1)N [1 − (1 − ŝ)N ]. (6.18)

From (6.18) we observe that the solutions for N odd are a-physical since, if this were the
case ŵ(x̂, t) < 0, so only solutions with even powers of N are admissible. Furthermore,
from (6.18) we also see that the spatial derivative for all these polynomial solutions satisfy
the symmetry condition (∂ŵ/∂ ŝ)(1, t) = 0 and have N − 1 derivatives that vanish at the
centre of the fracture ŝ = 1. The gradient at the fracture tip (∂ŵ/∂ ŝ)(0, t ′) = ĝ0t ′(−1)N N
increases with N so, of these even polynomials, the solution corresponding to γ = 1/2
is the last remaining admissible shape as the fracture approaches closure. Thus the
polynomial associated with γ = 1/2 forms an attractor for the receding fracture solution,
which we call the sunset solution.

6.5. The sunset solution

6.5.1. Closed form expression for the sunset solution
The similarity solution corresponding to γ = 1/2, when expressed as a function of s, is
given by

w̄(s, t ′) = ĝ0t ′(1 − s2), s = x/�, � = Λt ′1/2. (6.19)

It is interesting to note that slowly draining gravity currents through a layered porous
medium also exhibit similarity solutions with a parabolic structure (Prichard et al. 2001) .

The asymptotic behaviour of the pressure p can be determined by substituting (6.19)
into (2.6) and using the asymptotic behaviour of the kernel G given in (2.9)

pPKN(s, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t ′ Ē ĝ0

H
(1 − s2) for |1 − s| > ε

t ′ Ē
2πΛt ′1/2

ĝ0

|V | ln |1 − s| for |1 − s| < ε.

(6.20)

Since γ = 1/2 for the sunset solution, it follows from (6.11) that the time exponent
for the pressure β = 1 − γ = 1/2, which is consistent with (6.20)b, in which the similarity
solution for the fracture half-length � = Λt ′1/2 has been used. In order to close the solution
to the forward problem for a receding HF with initial conditions (2.15), the only remaining
parameter to specify is the prefactor Λ in the power law for � defined in (6.3).

In figure 10, we plot the scaled fracture apertures w/ws against the scaled distance from
the injection point x/�s for (a) the PL3D solution coloured blue and (b) the PKN solutions
coloured black compared with the corresponding sunset solutions, which are designated
by the dashed red curves. In both plots (a) and (b) the different symbols labelling each
curve correspond to the times indicated by the corresponding symbols in figure 8(a).
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Figure 10. Comparison of the receding (a) PL3D and (b) PKN solutions and the sunset solution for different
sample times.

6.5.2. Estimation of the leak-off coefficient C ′
In the analysis to establish the sunset solution for plane strain and radial fractures (Peirce &
Detournay 2022a), it was recognised that by determining the time derivative ∂w̄/∂t ′ at the
injection point as the fracture approaches collapse, i.e. t ′ → 0, we can obtain an estimate
of ĝ0, which, according to (6.19), is given by the coefficient of the aperture profile that
can be determined by linear regression of the aperture vs t ′ function. Thus as the fracture
approaches collapse, t → tc � t0(x̂) and (6.1) yields the following estimate for the leak-off
coefficient C ′:

C ′ ∼ ĝ0 × √
tc. (6.21)

Using (6.21) and the estimate of ĝ0 obtained from the linear regression in figure 8(b),
we obtain the estimate C ′ ≈ 3.97 × 10−3 ms−1/2, whereas the value actually used in the
simulation was C ′ ≈ 3.9516 × 10−3 ms−1/2.

7. Conclusions
The plane strain, radially symmetric, and PKN HF models are much more amenable to
analysis than their fully planar counterparts with arbitrary fracture footprints, because of
they involve only one spatial dimension. Previous work has established the full set of plane
strain asymptotes for HF propagation (Detournay 2004; Garagash et al. 2011; Dontsov &
Peirce 2015b; Detournay 2016), while (Peirce & Detournay 2022b) established the
asymptotes for deflation during arrest and recession. An important result is that these plain
strain asymptotes also hold within the tip of any planar fracture with a smooth fracture
boundary (Peirce & Detournay 2008). The relatively recent (Adachi & Peirce 2008)
formulation of the non-local elasticity equation for the PKN model, has enabled the PKN
formulation to be extended to toughness dominated propagation. However, hitherto, there
has not been a comprehensive analysis of the full range of asymptotes for the PKN model.
In this paper, we have identified an appropriate procedure to transform the governing
equations for a steady semi-infinite PKN fracture to be formally identical to those for a
steady semi-infinite plane strain fracture. This transformation procedure makes it possible
to use the plane strain asymptotes to directly determine the following PKN asymptotes
for the average aperture w̄ with distance x̂ from the fracture boundary: for propagation
w̄ ∼ x̂1/2, x̂5/8 and x̂2/3 corresponding to toughness, leak-off and viscosity dominated
asymptotes, respectively; while for arrest w̄ ∼ x̂1/2, and recession w̄ ∼ x̂ . The latter two
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asymptotes share an intermediate leak-off asymptote w̄ ∼ x̂3/4 through the transition from
arrest to recession. Moreover, using this transformation procedure we have converted
the bi- and tri-process multiscale plane strain asymptotes (Detournay 2004; Garagash
et al. 2011; Dontsov & Peirce 2015b; Detournay 2016; Peirce & Detournay 2022b) into
a complete set of bi- and tri-process multiscale PKN asymptotes for propagation, arrest,
and recession. These new PKN multiscale asymptotes were then used to locate the fracture
free boundary in an IMMA algorithm, which was shown to provide good agrement with
the solutions obtained from a multiscale planar 3-D HF model. A scaling analysis of the
PKN model was used to establish the power law behaviour for the post-shut-in arrest time,
length and aperture as functions of the dimensionless shut-in time ω. These power laws
were confirmed numerically using the IMMA-PKN algorithm.

Apart from its intrinsic theoretical interest, a receding PKN fracture is important to
understand the dynamics of fractures with complex boundaries that have evolved in
multiple sedimentary layers, but which, close to collapse, revert to receding PKN fractures
confined to the injection layer (Peirce et al. 2024; Talebkeikhah et al. 2025). Thus, we have
analysed the non-local PKN model to investigate the emergence of a sunset solution for
receding rectangular fractures. Indeed, using a detailed asymptotic analysis of the non-
local PKN model within the tip region and for points away from the tip, we established
the clear sub-dominance of the dynamic terms compared with the kinematic terms in the
lubrication equation. This sub-dominance leads to the fundamental dynamic-kinematic
decoupling in the model equations required to establish the emergence of the sunset
solution. Because of the linear tip asymptote for the aperture, a Taylor series expansion
for the fracture aperture about the tip is appropriate. This series is parameterised by
the decay exponent γ of the fracture length �. By choosing γ to be the reciprocal of
the integers N � 2, we obtain a countable infinity of polynomial solutions of degree N .
The odd integers are inadmissible as the aperture has to remain positive and, of all the even
integers, the solution corresponding to smallest admissible integer N = 2 is an attractor.
Thus the sunset solution assumes the form

w̄(s, t ′) = ĝ0t ′(1 − s2), s = x/�, � = Λt ′1/2. (7.1)

Now close to collapse t � t0(x̂) so that ĝ0 ≈ (C ′/√tc). The dependence of the sunset
solution on only the leak-off coefficient CL is a result of the fundamental dynamic–
kinematic decoupling in the model equations, which eliminates the dependence of the
solution on the other parameters E , ν, μ and KI c. This isolation of the leak-off coefficient
CL in the signature of the aperture decay rate, provides an opportunity to estimate CL
from aperture measurements in laboratory experiments and in the field. Thus if one were
able to measure the time derivative of w̄ at the injection point to yield an estimate of ĝ0,
we have the following estimate for C ′: C ′ ≈ ĝ0 × √

tc. As an illustration, an estimate of ĝ0
from the time derivative of one of the numerical solutions was shown to yield an estimate
of C ′ that has an error of less than 1 %.

In this paper, numerical solutions to the non-local PKN model, which use an IMMA
scheme endowed with the multiscale propagation and recession asymptotes are compared
with those of a fully planar 3-D model (ILSA-PL3D), which uses the multiscale
asymptotes for propagation and a minimum width constraint for recession. Since the
implementation of a minimum width constraint requires the computationally intensive
solution of a variational inequality at each time step, it would naturally be more efficient to
model retreat of the fracture front using the recession asymptote. The recession asymptote
can be used (Peirce & Detournay 2022b) for situations in which the aperture w is bounded
below by a constant minimum aperture w0, i.e. w �w0, where the recession asymptote
holds for the difference w − w0. However, the recession asymptote was not derived for,
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and has not yet been applied to, more general situations in which w0 is not likely to be
constant such as closure on proppant (see Peirce et al. 2025).

For propagation, the non-local IMMA-PKN approximation and the ILSA-PL3D
algorithm show close agreement. Indeed, despite the fact that the non-local PKN model
and the ILSA-PL3D model use very different procedures to capture the fracture recession,
they achieve remarkably similar results (within the constraints of the PKN geometry)
essentailly until the closure boundary of the ILSA-PL3D model retreats from the
containment boundaries y = ±H/2. Beyond this point of separation, the closure boundary
of the ILSA-PL3D model retreats to successively shrinking ellipses that are self-similar.
Cross-sections of the fracture aperture of these planar 3-D solutions also tend toward the
parabolic shape characteristic of the sunset solution.
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Appendix A. Planar elasticity equations and reduction to plane strain

A.1. Navier’s equilibrium equation and solution in terms of Papkovich–Neuber potentials
Consider the body force free equilibrium equations for a solid medium

σi j, j = 0, where i, j ∈ {1, 2, 3}, (A1)

where σi j are the components of the Cauchy stress tensor and we adopt the Einstein
summation convention over repeated indices, use the notation f,k = ∂ f /∂xk, and use the
numbered coordinates to represent the cartesian coordinates x, y and z, i.e. (x1, x2, x3) =
(x, y, z). We further assume that the solid medium is isotropic and linear elastic and
governed by Hooke’s law

σi j = 2Gεi j + 2Gν

1 − 2ν
εkkδi j , (A2)

where G = E/(2(1 + ν)) is the shear modulus, E is the Young’s modulus and ν the
Poisson’s ratio of the elastic medium, and the strain εi j is defined in terms of the
displacement gradients to be

εi j = 1
2(ui, j + u j,i ). (A3)

Here, ui is the component of the displacement field in the i th coordinate direction and ui, j
represents the derivative of ui in the j th coordinate direction. Combining Hooke’s law
(A2) and the strain–displacement gradient relation (A3) to eliminate the stress tensor σi j
from the equilibrium equations (A1), we obtain the Navier equations for the displacement
field

∇2ui + 1
1 − 2ν

u j,i j = 0, (A4)

where, consistent with ,k representing a partial derivative with respect to xk , u j,i j =
∂2u j/(∂xi∂x j ). Note that summation is assumed over repeated indices. Papkovich (1932)
and Neuber (1934) obtained a general solution to the Navier equations that can be

1017 A42-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
47

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10473


Journal of Fluid Mechanics

x (m)

y (n)

(m, n)

θ

k

r

θr

z

Figure 11. A point vertical displacement discontinuity in an infinite elastic medium represented by two
opposing arrows indicating a point jump in the displacement component uz at the origin (x, y, z) = (0, 0, 0).
The alternate m and n labels along the x and y axes, respectively, represent the corresponding wave numbers
used in the definition of the Fourier Transform (A18). The wavenumber vector (m, n) of length k in the m−n
plane is used to convert the inverse transform (A23) to the Laplace transform (A24).

expressed (Crouch 1976; Kaya 1984) in terms harmonic functions Bi and β

ui = Bi − 1
4(1 − ν)

(xk Bk + β),i , (A5)

where ∇2 Bi = 0 and ∇2β = 0. The corresponding stress components are

σi j = G

2(1 − ν)
[(1 − 2ν)(Bi, j + B j,i ) − xk Bk,i j − β,i j +2νBk,kδi j ]. (A6)

It can be verified that the stress field (A6) does indeed satisfy the equilibrium
equation (A1).

A.2. Solution for a point dislocation dipole in an infinite elastic medium
We now use the general solution (A5) to determine the solution to a unit dislocation dipole
oriented in the z direction (see figure 11). Since z = 0 is a plane of symmetry for the point
dislocation dipole problem, the shear stresses along this plane must vanish, i.e. σxz = 0 and
σyz = 0. Since these shear stress-free conditions should hold for all points (x1, x2) = (x, y)

within the z = 0 plane, it follows that B1 = 0 = B2 and that β,3 = (1 − 2ν)B3. Thus β and
B3 can be expressed in terms of a single harmonic function φ(x, y, z) as follows:

B3 = −4(1 − ν)φ,3 and β = −4(1 − ν)(1 − 2ν)φ. (A7)

The displacement and stress components uz and σzz that we shall require can now be
expressed as follows:

ux = (1 − 2ν)φ,x +zφ,xz, (A8)
uy = (1 − 2ν)φ,y +zφ,yz, (A9)
uz = −2(1 − ν)φ,z +zφ,zz, (A10)

σxx = 2G[φ,xx +2νφ,yy +zφ,xxz], (A11)
σyy = 2G[φ,yy +2νφ,xx +zφ,yyz], (A12)
σzz = 2G[−φ,zz +zφ,zzz], (A13)
σxy = 2G[(1 − 2ν)φ,xy +zφ,xyz], (A14)
σyz = 2Gzφ,yzz, (A15)
σxz = 2Gzφ,xzz . (A16)

In order to determine the φ field for a unit point dislocation dipole, in addition to the
symmetry conditions σxz = 0 = σyz , we require that there be a unit point dislocation dipole
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oriented normal to the z = 0 plane

[uz] = uz(x, y, 0+) − uz(x, y, 0−) = δ(x)δ(y)δ(z). (A17)

Making use of the double Fourier transform

ĝ(m, n, z) =
∞∫

−∞

∞∫
−∞

ei(mx+ny)g(x, y, z)dxdy, (A18)

Laplace’s equation ∇2φ = φ,xx +φ,yy +φ,zz = 0 can be reduced to the ordinary
differential equation

d2φ̂

dz2 − k2φ̂ = 0, (A19)

where k = √
m2 + n2. The general solution to this equation is

φ̂(m, n, z) = a(k)e−kz + b(k)e+kz, (A20)

and, excluding exponentially growing solutions, we obtain

φ̂(m, n, z) =
{

a+(k)e−kz for z > 0

a−(k)e+kz for z < 0.
(A21)

Requiring that the displacement components, ux and uy are continuous across the plane
z = 0, it follows that a+(k) = a−(k) so that φ̂(m, n, z) = a+(k)e−k|z|. Now taking the
Fourier transform of (A17) and matching this to the jump in the Fourier transform ûz

of uz given in (A10), we obtain the following expression for φ̂

φ̂(m, n, z) = 1
4(1 − ν)

e−k|z|

k
. (A22)

Inverting the Fourier transform we obtain

φ(x, y, z) = 1
4(1 − ν)

1
(2π)2

∞∫
−∞

∞∫
−∞

e−i(mx+ny) e−k|z|

k
dmdn. (A23)

Now introducing the polar representation x = r cos θr and y = r sin θr and m = k cos θ

and n = k sin θ (see figure 11), we obtain

φ(x, y, z) = 1
8π(1 − ν)

∞∫
0

e−k|z|

k

1
2π

π∫
−π

e−ikr cos(θ−θr )dθkdk. (A24)

Introducing the transformation θ − θr = t + π/2, the inner integral becomes
1/2π

∫ π

−π
eikr sin t dt = J0(kr), and the Laplace transform of the zeroth-order Bessel

function yields

φ(x, y, z) = 1
8π(1 − ν)

1√
r2 + z2

. (A25)

Using the expression for σzz from (A13) and taking the limit z → 0, we obtain the stress
σzz(x, y, 0) induced at a receiving point (x, y) within the plane z = 0 due to a unit
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x̂ŷ

ρ

Ω

∂Ω

Figure 12. Plain strain limit of the planar elasticity equation: this limiting process assumes that the boundary
∂Ω of the cracked region is sufficiently smooth (i.e. has no cusps) that a tangent circle of finite radius ρ can
constructed at any point of the boundary. At the point of contact of the circle, a local coordinate system (x̂, ŷ)

is constructed such that the centre of the circle falls on the x̂ axis, while the ŷ axis is tangent to the boundary.
In the limiting process the receiving point x̂ is taken to the boundary in such a way that ρ/x̂ → ∞, which is
possible because ρ is finite, and the contribution to the integral (A27) from the shaded region is estimated in
order to determine the dominant behaviour of the pressure field.

dislocation dipole normal to the plane

σzz = E

8π(1 − ν2)

1
[x2 + y2]3/2 . (A26)

We note that if we interpreted the solution (A25) to Laplace’s equation in terms
of electrostatics, then φ would represent the potential due to a point ‘charge’ in
three dimensions in a medium with permittivity ε = 2(1 − ν), and the corresponding
displacement uz given in (A10) represents the unit dipole field oriented in the z direction.

A.3. Plane strain limits of the planar elasticity equation
Having established the stress σzz (A26) due to a unit point opening discontinuity in the
displacement uz across the plane z = 0 and located at the origin, we are able, using
the shifted coordinates (x ′ − x, y′ − y), to write down the integral equation relating the
compressive pressure p(x, y) field at a receiving point (x, y) within the fracture consistent
with the fracture aperture w(x, y) distributed within an arbitrarily shaped (including
radially symmetric) planar cracked region Ω such as that shown in 12:

p(x, y) = − E ′

8π

∫
Ω

w(x ′, y′)dx ′dy′[
(x ′ − x)2 + (y′ − y)2

]3/2 . (A27)

Equations (A1)–(A3) are consistent with tensile stresses being positive, thus, according
to (A26), the point opening dislocation shown in figure 11 induces tensile stresses at all
points within the plane z = 0 excluding the origin. Since the pressure in (A27) is positive
in compression, the negative sign is required in (A27) because the integral equation is
formulated in terms of pressure rather than stress, which is positive in tension.
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A.3.1. An infinitely long rectangular fracture
If we assume that in (2.2) � � H/2 – to the extent that the fracture aperture in every
vertical cross-section is the same, so that the elastic medium can be considered to be in a
state of plane strain, then we may assume that w(x ′, y′) = w(y′) so that

p(x, y) = − E ′

8π

∫ H/2

−H/2
w(y′)

∫ �

−�

dx ′[
(x ′ − x)2 + (y′ − y)2

]3/2 dy′. (A28)

The inner integral, in this limit, becomes lim�→∞
∫ �

−�
(dx ′/[(x ′ − x)2 + (y′ − y)2]3/2) =

2/(y′ − y)2, so that (A28) is reduced to

p(y) = − E ′

4π

H/2∫
−H/2

w(y′)
(y′ − y)2 dy′ = − E ′

4π

H/2∫
−H/2

dw(y′)
dy′

dy′

(y′ − y)
, (A29)

where the second integral results from an integration by parts and imposing the boundary
conditions w(±H/2) = 0. We note that (A29) is equivalent to (A.7) given in (Spence &
Sharp 1985).

A.3.2. Limiting behaviour near the tip of a planar fracture with a smooth boundary
In this sub-section we outline the limiting procedure used by (Peirce & Detournay 2008)
to determine the behaviour as the receiving point approaches the boundary ∂Ω of the
fractured region Ω . We assume that ∂Ω is sufficiently smooth that at each boundary point
it is possible to define an inscribing circle of radius ρ that is tangent to ∂Ω at the point of
contact. We construct a local coordinate system (x̂, ŷ) so that x̂ passes through the centre
of the circle and ŷ is tangent to the boundary (see figure 12). Locally ∂Ω coincides with the
circle (x̂ − ρ)2 + ŷ2 = ρ2, which, for small x̂, can be approximated by ŷ(x̂) ∼ ±√

2ρ x̂ .

We now consider the local behaviour of the integral (A27) close to the tip, i.e. points for
which x̂ � ρ. The dominant contribution to the pressure field in the vicinity of the tip
comes from the integral over the shaded region

p̂(x̂, ŷ) ∼ − E ′

8π

a∫
0

√
2ρ x̂ ′∫

−
√

2ρ x̂ ′

ŵ(x̂ ′, ŷ′)dŷ′dx̂ ′[
(x̂ ′ − x̂)2 + (ŷ′ − ŷ)2

]3/2 . (A30)

Since ŵ = 0 along ∂Ω, as one moves away from this zero level set, the dominant increase
in ŵ is in the direction of the x̂ component, normal to the boundary, while there is little
variation of ŵ in the ŷ direction, which is tangent to the boundary. Thus as x̂ → 0 we
assume that ŵ(x̂ ′, ŷ′) 
 ŵ(x̂ ′). Moreover, we define a limiting process controlled by x̂ by
scaling x̂ ′ and ŷ′ to x̂ , which is the distance from the boundary to the receiving point, as
follows: x̂ ′ = ux̂ and ŷ′ = v x̂ . Thus considering the approach to the tangent point to be
along the line ŷ = 0, the integral (A30) reduces to

p̂(x̂, 0) ∼ − E ′

8πx̂

a/x̂∫
0

ŵ(ux̂)

√
2uρ/x̂ ′∫

−
√

2uρ/x̂ ′

dv[
(u − 1)2 + v2

]3/2 du. (A31)

Since we are considering the limit in which the receiving point x̂ is much closer
to the tip than the radius of curvature ρ, i.e. ρ/x̂ → ∞, the inner integral becomes
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−∞ (dv/[(u − 1)2 + v2]3/2) = (2/(u − 1)2), so that

p̂(x̂, 0) ∼ − E ′

4πx̂

a/x̂∫
0

ŵ(ux̂)
du

(u − 1)2

= − E ′

4πx̂

⎡
⎢⎣− ŵ(ux̂)

(u − 1)

∣∣∣∣
a/x̂

0
+

a/x̂∫
0

dŵ(ux̂)

d(ux̂)

x̂du

(u − 1)

⎤
⎥⎦ . (A32)

We observe that the inner integral involved in this reduction is essentially the same as the
inner integral involved with the reduction of the infinitely long rectangular fracture to a
single cross-section representing a fracture in a state of plane strain. Now the lower bound
of the integrated term, which results from integration by parts, vanishes since ŵ(0) = 0,

while we assume ŵ(a) is bounded so that the upper bound term also vanishes as u =
a/x̂ → ∞. Thus, taking the limit a/x̂ → ∞ and reverting to x̂ ′ = ux̂, we obtain

p̂(x̂, 0) ∼ − E ′

4π

∞∫
0

dŵ(x̂ ′)
dx̂ ′

dx̂ ′

(x̂ ′ − x̂)
, (A33)

which is the elasticity equation for a semi-infinite fracture in a state of plane strain.

A.4. Semi-infinite crack eigenfunction and the Sneddon solution

A.4.1. Semi-infinite crack eigenfunction
If we consider power law fracture apertures of the form ŵ = x̂λ, where 0 < λ< 1 then
(A33) becomes

p̂(x̂, 0) ∼ − E ′λ
4π

∞∫
0

x̂ ′λ−1

(x̂ ′ − x̂)
dx̂ ′. (A34)

Now introducing a branch cut along the ray [0, ∞), integrating along the keyhole contour
centred at the branch point x̂ ′ = 0 and evaluating the residue contributions either side of
the branch cut, we obtain

p̂(x̂, 0) ∼ − E ′λ
4π

(−π cot(πλ)x̂λ−1) = E ′λ
4

cot(πλ)x̂λ−1 (A35)

i.e. the Cauchy operator (A33) has an eigenfunction x̂λ−1 with eigenvalue
−(E ′λ/4) cot(πλ). This result is also established in appendix C of (Spence & Sharp 1985).

A.4.2. The Sneddon solution
The solution (Sneddon 1995) to the plane strain integral equation (A29), relating the
applied pressure p(y) to the fracture aperture w(y), can be solved directly for the special
case p(y) = p0 by making use of the following property of the Chebychev polynomials of
the second kind Un(x): ∫ 1

−1

Un(t)
√

1 − t2

(t − x)2 dt = −π(n + 1)Un(x), (A36)
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where Un(cos θ) sin θ = sin((n + 1)θ) and x = cos θ . Since U0(x) = 1, when we combine
this property with (A29), we obtain

w(y) = 4
E ′ p0

(
H

2

) √
1 − (2y/H)2. (A37)

More generally, (A29) can be written succinctly (Spence & Sharp 1985; Lister 1990) in
terms of the Hilbert transform H( f ) = (1/π)

∫ ∞
−∞( f (η)/(η − y))dη as follows:

p(y) = − E ′

4
H

(
dw

dy′

)
. (A38)

Here, the finite crack is enforced by the condition that w(y) = 0 for |y|� H/2. Since
H(H(.)) = −I, taking the Hilbert transform (Lister 1990) we obtain

dw

dy
= 4

E ′H(p) = 4
E ′π

∫ a

−a
p(y′)

(
a2 − y′2

a2 − y2

)1/2 dy′

y′ − y
+ C√

a2 − y2
, (A39)

where a = H/2. For the special case of a constant pressure p(y′) = p0 within the
vertical cross-section, using the integral

∫ 1
−1

√
(1 − t2)/(t − y)dt = −πy, integrating and

imposing the boundary conditions w(±H/2) = 0, we obtain (A37). Integrating (A37) over
the vertical cross-section of the rectangular fracture (−H/2, H/2) we obtain the local
pressure-width (2.10).
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