Journal of Clinical and
Translational Science

www.cambridge.org/cts

Research Article

Cite this article: Wang Y, Hilsman J, Li C,
Morris M, Heider PM, Fu S, Kwak MJ, Wen A,
Applegate JR, Wang L, Bernstam E, Liu H,
Chang J, Harris DR, Corbeau A, Henderson D,
Osborne J, Kennedy RE, Garduno-Rapp N-E,
Rousseau JF, Yan C, Chen Y, Patel MB,
Murphy TJ, Malin BA, Park CM, Fan JW, Sohn S,
Pagali S, Peng Y, Pathak A, Wu Y, Xia Z,
Loguercio S, Reis SE, and Visweswaran S.
Development and validation of natural
language processing algorithms in the national
ENACT network. Journal of Clinical and
Translational Science 9: €199, 1-10.

doi: 10.1017/cts.2025.10116

Received: 13 March 2025
Revised: 23 July 2025
Accepted: 28 July 2025

Keywords:

Translational research; electronic health
records; natural language processing; network;
ENACT

Corresponding author:
Y. Wang; Email: yanshan.wang@pitt.edu

© The Author(s), 2025. Published by Cambridge
University Press on behalf of Association for
Clinical and Translational Science. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (https://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use,
distribution and reproduction, provided the
original article is properly cited.

ASSOCIATION FOR CLINICAL
AND TRANSLATIONAL SCIENCE

Clinical Research

FORUM

Analysis. Advocacy. Action.

Development and validation of natural
language processing algorithms in the
national ENACT network

Yanshan Wangh23®, Jordan Hilsman®?, Chenyu Li¥*3®, Michele Morris®, Paul
M. Heider*, Sunyang Fu®, Min Ji Kwak®, Andrew Wen?>, Joseph R. Applegate®,
Liwei Wang®, Elmer Bernstam®’, Hongfang Liu®, Jack Chang®, Daniel R. Harris® ®,
Alexandria Corbeau®, Darren Henderson®, John Osborne!?, Richard E. Kennedy'?,
Nelly-Estefanie Garduno-Rapp'?, Justin F. Rousseau'?!?, Chao Yan*, You Chen'4,
Mayur B. Patel®, Tyler J. Murphy®®, Bradley A. Malin'*, Chan Mi Park?®,

Jungwei W. Fan'"8@®  Sunghwan Sohn'’, Sandeep Pagali®®, Yifan Peng?®2},
Aman Pathak??, Yonghui Wu?2, Zonggqi Xia?3, Salvatore Loguercio®*, Steven E. Reis!

and Shyam Visweswaran®3

IClinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA; 2Department of Health
Information Management, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Biomedical Informatics,
University of Pittsburgh, Pittsburgh, PA, USA; *Biomedical Informatics Center and Department of Public Health
Sciences, Medical University of South Carolina, Charleston, SC, USA; *McWilliams School of Biomedical Informatics,
University of Texas Health Science Center at Houston, Houston, TX, USA; ®McGovern Medical School, University of
Texas Health Science Center at Houston, Houston, TX, USA; "Division of General Internal Medicine, McGovern
Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; éClinical and Translational
Science Institute, University of Rochester Medical Center, Rochester, NY, USA,; °Institute for Biomedical Informatics,
University of Kentucky, Lexington, KY, USA; °Department of Biomedical Informatics and Data Science, University of
Alabama at Birmingham, Birmingham, AL, USA; !Division of Gerontology, Geriatrics, and Palliative Care,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; *2Clinical Informatics Center,
University of Texas Southwestern Medical Center, Dallas, TX, USA; **Department of Neurology, University of Texas
Southwestern Medical Center, Dallas, TX, USA; **Department of Biomedical Informatics, Vanderbilt University
Medical Center, Nashville, TN, USA; *>Department of Surgery, Vanderbilt University Medical Center, Nashville, TN,
USA; %Department of Gerontology, Hebrew SeniorLife, Marcus Institute for Aging Research, Boston, MA, USA;
"Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA; *8Center for Clinical and
Translational Science, Mayo Clinic, Rochester, MN, USA; **Department of Medicine, Mayo Clinic, Rochester, MN, USA;
20pepartment of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA; 2'Clinical & Translational
Science Center, Weill Cornell Medicine, New York, NY, USA; 2Department of Health Outcomes and Biomedical
Informatics, University of Florida, Gainesville, FL, USA; **Department of Neurology, University of Pittsburgh,
Pittsburgh, PA, USA and 2*Scripps Research, Scripps Research Translational Institute, La Jolla, CA, USA

Abstract

Objective: Electronic Health Record (EHR) data are critical for advancing translational research and
AI technologies. The ENACT network offers access to structured EHR data across 57 CTSA hubs.
However, substantial information is contained in clinical narratives, requiring natural language
processing (NLP) for research. The ENACT NLP Working Group was formed to make NLP-
derived clinical information accessible and queryable across the network. Methods: We established
the ENACT NLP Working Group with 13 sites selected based on criteria including clinical notes
access, IT infrastructure, NLP expertise, and institutional support. We divided sites into five focus
groups targeting clinical tasks within disease contexts. Each focus group consisted of two
development sites and two validation sites. We extended the ENACT ontology to standardize NLP-
derived data and conducted multisite evaluations using the Open Health Natural Language
Processing (OHNLP) Toolkit. Results: The working group achieved 100% site retention and
deployed NLP infrastructure across all sites. We developed and validated NLP algorithms for rare
disease phenotyping, social determinants of health, opioid use disorder, sleep phenotyping, and
delirium phenotyping. Performance varied across sites (F1 scores 0.53-0.96), highlighting data
heterogeneity impacts. We extended the ENACT common data model and ontology to incorporate
NLP-derived data while maintaining Shared Health Research Informatics NEtwork (SHRINE)
compatibility. Conclusion: This demonstrates feasibility of deploying NLP infrastructure across
large, federated networks. The focus group approach proved more practical than general-purpose
approaches. Key lessons include the challenge of data heterogeneity and importance of collaborative
governance. This work also provides a foundation that other networks can build on to implement
NLP capabilities for translational research.
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Introduction

Electronic health record (EHR) data serve as a rich and invaluable
source of real-world clinical information, enabling researchers and
healthcare professionals to gain comprehensive insights into patient
populations, treatment outcomes, and healthcare practices [1]. By
capturing a broad spectrum of clinical information, including
demographic details, diagnosis, procedures, medications, laboratory
test results, and clinical notes, EHR systems create a longitudinal
record that mirrors the complexity and heterogeneity of modern
healthcare. The accessibility of EHR data is paramount for
advancing translational research and the application of cutting-
edge technologies, including artificial intelligence and machine
learning. Furthermore, these computational tools depend on robust,
standardized, and interoperable EHR datasets to enable predictive
modeling [2], automated digital phenotyping [3], risk stratification
[4], and clinical decision support systems [5] that can enhance
clinical effectiveness, improve patient safety [5,6], and ultimately
shape the future of healthcare delivery.

The national Evolve to Next-Gen Accrual to Clinical Trials
(ENACT) network [1] was established in 2015 as the Accrual to
Clinical Trials (ACT) network to enable cohort discovery from
EHR data. This federated network connects EHR data repositories
across 57 Clinical and Translational Science Awards (CTSA) hubs,
enabling researchers to query the data of more than 142 million
patients across the hubs (sites). The ENACT network integrates
local Informatics for Integrating Biology at the Bedside (i2b2) [7]
and Observational Medical Outcomes Partnership (OMOP) (8]
data repositories (and eventually PCORnet [9] data repositories)
through the Shared Health Research Information Network
(SHRINE) platform, which enables interactive querying of the
data [10]. The network’s data, encompassing structured EHR
information on demographics, diagnoses, procedures, medica-
tions, laboratory test results, and visits, extends back at least a
decade, with some sites providing data for up to two decades.
Updates to the data occur at least once a month.

The ACT network aimed to enable national cohort discovery,
particularly for multisite research such as clinical trials, including
those supported by the Trial Innovation Network (TIN) [11].
However, ENACT*s goal is broader, including large-scale clinical
and translational research using patient counts, distributed analytics,
and ephemeral analytics enclaves. Furthermore, ENACT provides
prep-to-research data, enables the generation of evidence for clinical
decision-making, and serves as a resource for educating trainees.

Currently, ENACT provides access to structured EHR data,
enabling significant advances in cohort discovery and research
across this national network. However, while structured EHR data
offers valuable insights, much clinical information remains
embedded within unstructured EHR data. The unstructured
EHR data, including clinical encounter notes, radiology reports,
pathology reports, and other narrative documents, are challenging
to analyze due to their free-text format. To harness the full
potential of EHRs for translational research, applying natural
language processing (NLP) to extract research-usable data from
clinical notes is essential. Recognizing this critical need, the
ENACT NLP Working Group was established to make NLP-
derived data accessible and queryable across the network. Such
data will enhance the analytical capacity of the network, enabling
researchers to tap into previously inaccessible information in
clinical notes and generate new insights that can drive advances in
translational research and clinical care.

Wang et al.

This article provides a comprehensive overview of the
development and deployment of NLP infrastructure in ENACT.
We describe the formation and goals of the working group, the
policies and logistics involved, and the specific NLP algorithms and
tools utilized. We also describe the extension of the ENACT
ontology to standardize and query NLP-derived data across the
network. Furthermore, we provide a practical guide on multisite
evaluation of NLP algorithms, highlighting their performance,
scalability, and adaptability across diverse healthcare systems. We
also include an in-depth reflection on the experiences and lessons
learned from this journey, which may be helpful in other national
data networks, such as the PCORnet [9] and the All of Us Research
Program [12], which use NLP to unlock the potential of clinical
notes for research.

Methods
Formation and organization of the ENACT NLP working group

We established the ENACT NLP Working Group in 2023 with
participation from 13 ENACT sites selected based on specific
technical and organizational criteria. Eligible sites were required to
have: (1) an accessible source of clinical notes (e.g., clinical data
warehouse or Epic Clarity reporting database), (2) existing
information technology infrastructure capable of supporting
NLP computation, (3) demonstrated NLP expertise among staff,
and (4) institutional support from local CTSA hub leadership for
obtaining clinical notes access and managing participation
logistics.

The recruitment process began with a comprehensive survey of
all 57 ENACT sites to assess technical capabilities, resource
availability, and institutional interest. Sites meeting the primary
eligibility criteria were invited to participate in detailed technical
assessments, including infrastructure readiness evaluations and
personnel capability reviews. The final site selection prioritized
geographic diversity, healthcare system variety (including aca-
demic medical centers, integrated health systems, and specialty
hospitals), and complementary technical expertise to ensure robust
representation across the federated network.

NLP implementation strategy evaluation

We systematically evaluated potential implementation strategies
for federated clinical NLP deployment. This evaluation process
assessed multiple approaches, including general-purpose clinical
NLP platforms versus specialized, domain-specific algorithms. The
assessment criteria included: (1) compatibility with ENACT’s
existing SHRINE infrastructure and common data model (CDM)
implementations, (2) preprocessing requirements based on site-
specific data characteristics, (3) resource allocation efficiency, and
(4) alignment with CTSA research requirements.

Focus group strategy and resource optimization

We divide participating sites into five specialized focus groups,
each targeting specific clinical tasks within well-defined disease or
condition contexts. This specialization approach is based on three
key principles: (1) Clinical Relevance: Each focus group addresses
clinically important research questions with clear translational
implications; (2) Technical Feasibility: Focus group tasks are
scoped to be achievable within available resources while main-
taining high technical standards; and (3) Resource Efficiency:
Focus group organization minimizes duplication of effort by
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leveraging existing funded projects and ongoing research
initiatives at participating sites.

Each focus group is structured with two development sites
responsible for collaborative algorithm design, initial validation,
and comprehensive documentation, and at least two additional
validation sites responsible for independent cross-site evaluation
and generalizability assessment. This structure balances the need
for intensive development effort with robust cross-site validation
while maintaining manageable coordination complexity.

Working group governance and communication framework

We designed a collaborative governance model to coordinate
complex multi-institutional activities while respecting institutional
autonomy and diverse organizational cultures. The governance
framework emphasizes shared decision-making, transparent
communication, and equitable resource allocation across partici-
pating sites.

The working group operates under a distributed leadership
model with rotating meeting facilitation and consensus-based
decision-making protocols. Leadership responsibilities are shared
among sites based on expertise areas, technical decisions are made
through working group consensus, and administrative coordination
is managed through a dedicated project management personnel.
This structure ensures that no single institution dominates decision-
making while maintaining efficient coordination across diverse
institutional environments.

Results
The ENACT NLP Working Group

The ENACT NLP Working Group successfully launched with
13 participating sites representing diverse healthcare systems
across the United States (See Figure 1). All participating sites met
the established criteria and successfully established the required
technical infrastructure, including access to clinical notes,
computational resources, and previous experience in clinical
NLP. The working group achieved 100% site retention throughout
the project period, thanks to effective coordination facilitated by
the established communication framework.

During the initial discussions, we discovered two challenges:
(1) Processing all clinical notes at each site (which could number in
the billions) and extracting every biomedical entity from each note
(which could number in the tens of thousands) was infeasible, and
(2) Deploying a general-purpose NLP algorithm capable of
extracting all entities proved unrealistic and unlikely to perform
optimally. Instead, specialized NLP algorithms targeting specific
entities for particular tasks with greater precision were deemed
more realistic and practical.

Further, to maximize the limited funding available to the
working group, we divided the participating sites into five focus
groups, each targeting a specific task in the context of a disease or
condition. Each focus group consisted of two development sites
and at least two additional validation sites. The development sites
were tasked with jointly designing and validating a specialized NLP
algorithm, while the validation sites were responsible for evaluating
the algorithm. After validation, the NLP algorithm can be deployed
across the entire network. Some development sites leveraged
already-funded local projects or focused on an algorithm already in
development for an ongoing project. This strategy significantly
reduced the resources and effort needed to develop and deploy

several algorithms. Table 1 lists the focus groups, associated
development sites, and validation sites.

During later discussions, we realized that designing a
specialized NLP algorithm targeted for a task required specifying
the patient cohort and the clinical note type. For example, for the
SDOH-Housing Status task, the patient cohort included individ-
uals with substance use disorder (specifically those with stimulant
and opioid use disorders (OUDs) with ICD-10-CM diagnosis
codes of F11.*, F14.* F15.*%, T40.*, and T43.6*), and EHR data was
limited to emergency department notes. The algorithm would not
be expected to be applied to other types of patients or notes. Thus,
we required each focus group to provide a clear cohort definition
and identify the type of note needed to develop the NLP algorithm.
Table 1 provides the cohort definitions and clinical note types
identified by each focus group.

NLP implementation strategies considered

Our systematic evaluation of potential implementation strategies
for federated clinical NLP deployment revealed critical insights
that shaped our strategic approach. We assessed multiple
approaches, including general-purpose platforms that extract
standardized medical concepts versus specialized, domain-specific
algorithms. A standardized strategy would have processed clinical
notes to extract broad medical concepts, such as Unified Medical
Language System (UMLS) concepts, and populated existing
observation_fact tables within the ENACT CDM, enabling
researchers to query NLP-derived concepts through the established
SHRINE interface. The Open Health Natural Language Processing
(OHNLP) Consortium’s Toolkit, with its exceptional flexibility in
processing diverse data formats, compatibility with both i2b2 and
OMOP data models, and adaptability to site-specific variations,
positioned it as the optimal solution for handling ENACT’s
heterogeneous data environments. Given the universal need for
substantial preprocessing infrastructure and CTSA investigators’
requirements for fine-grained clinical phenotypes, we determined
that the specialized focus group approach using OHNLP’s
adaptable framework would provide superior precision for
targeted clinical applications while optimizing limited resources
within ENACT’s established federated architecture. During this
process, the NLP working group has worked collaboratively on
selecting and implementing NLP tools for extracting medical
concepts from clinical notes. The team also extended the ENACT
CDM to incorporate NLP-derived data while maintaining
flexibility for different projects. Standardized conventions for
storing NLP-extracted entities and contextual attributes were
established, ensuring seamless integration with structured EHR
data. Additionally, extensions to the ENACT ontology were
developed to facilitate querying NLP-derived concepts across
ENACT, and a federated evaluation framework was introduced for
cross-site validation of NLP algorithms. To enhance reliability, the
team also implemented a standardized error analysis process,
utilizing an established taxonomy to refine model performance
and assess generalizability across institutions. These collective
efforts streamlined clinical textual analytical capabilities within
ENACT. Details about these technologies are in the Supplemental
Material.

Overview of the ENACT NLP workflow

Figure 2 presents an overview of the NLP workflow developed by
the ENACT NLP Working Group, which is described step by
step below.
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Figure 1. Participating sites in the evolve to next-gen accrual to clinical trials (ENACT) network natural language processing (NLP) working group.

Table 1. Focus group tasks and associated development sites, deployment sites, cohort definitions, and clinical note types

Focus group Development
task sites Validation sites Cohort definition Note type(s)
Rare disease University of University of Pittsburgh, Weill Patients with any of the following Any

Texas Health Cornell Medicine
Science Center
at Houston,

Mayo Clinic

phenotyping

conditions: Complex Regional Pain
Syndrome (CRPS), Trigeminal
Neuralgia (TN), Idiopathic Pulmonary
Fibrosis (IPF), Familial Pancreatic
Carcinoma (FPC),, and Primary
sclerosing cholangitis (PSC) identified
by ICD-10 codes (G90.5*, G50.0,
J84.112, C25.*, K83.01).

Social University of University of Rochester, University of ~ Patients with at least one Emergency Clinical notes for ED visits
determinants Kentucky, Texas Health Science Center at Department visit (see Harris et al. (e.g., comprehensive assessment,
of health University of Houston [13] for details) consultation, etc.)
(SDOH) - Pittsburgh
Housing
status
Opioid use Medical University of Pittsburgh, University Patients with any of the following Emergency Department notes
disorder University of of Rochester conditions: Opioid Overdose (see

South Carolina, Lenert et al. [14] and Ward et al. [15]

University of for details), Opioid Use Disorder

Kentucky (see Zhu et al. [16] for details)
Sleep University of University of Texas Health Science Patients with Alzheimer’s disease Clinical encounter notes

phenotyping Pittsburgh, Center at Houston, University of (see Venkatesh et al. [17] for details)

University of Rochester

Florida
Delirium Mayo Clinic University of Texas Health Science Patients with delirium (see St Sauver Clinical notes (primarily focus on
phenotyping and Olmsted Center at Houston, University of et al. [18] for details) progress, nursing, and consultation

Medical Center Pittsburgh, Vanderbilt University
Medical Center, Beth Israel
Deaconess Medical Center,
University of Texas Southwestern
Medical Center, University of

Alabama at Birmingham

notes (e.g., neurology/psychiatry
consultations, physical/occupational
therapy, social work))
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Figure 2. An overview of the ENACT NLP workflow. *SHRIN= shared health research information network.

@ NLP Infrastructure: Each site participating in the NLP
initiative identifies a source of clinical notes (such as a clinical data
warehouse or Epic’s Clarity), allocates computing resources for
NLP processing, and deploys the OHNLP Toolkit. In addition to
ENACT’s Institutional Review Board (IRB) approval for structured
EHR data, the site obtains additional IRB approval, if necessary, to
use clinical notes.

® Algorithm Development: A participating site proposes and
develops an NLP algorithm, contacts the working group to
coordinate its validation, and partners with the Data
Harmonization Working Group to create the ENACT ontology
extension necessary for deploying the NLP algorithm.

® Algorithm Validation: The site that developed the algorithm
shares it with validation sites, along with the associated
specifications, such as the cohort definition, note type, and process
for establishing the gold and silver reference standards, as directed
by the working group.

@ Dissemination: Following validation, the working group
disseminates the algorithm and associated specifications to the
network via an online repository such as GitHub. The working
group also coordinates with the Data Harmonization Working
Group and the Network Operations Working Group to deploy the
ontology extensions across the network.

® Site Integration: Each participating site downloads the
algorithm and associated specifications from the online repository,
integrates it into their local NLP infrastructure, and populates the
local ENACT data repository’s i2b2 observation_fact table with
NLP-derived data. The site also updates the ENACT ontology to
include the extension required for querying NLP-derived data.

® Researcher Use: Any ENACT researcher at any participating
site uses the SHRINE interface to create queries that search NLP-
derived and structured EHR data. The query returns patient counts
from participating sites in the same manner as existing structured
EHR data queries.

This workflow, which includes infrastructure needs, algorith-
mic creation and validation, network-wide distribution, and local
integration, provides a structured approach for introducing and
scaling NLP capability in the network.

Demonstration projects

In this section, we present four demonstration projects, each
representing the work of a focus group and showcasing a distinct
area of research. Each project is at a different stage of development,
reflecting variations in goals, challenges, and resource availability.
While some focus groups have made significant progress and are
close to integrating NLP-derived data into the network, others are
in the early stages, concentrating on foundational tasks such as
acquiring clinical notes, establishing NLP infrastructure, or
refining the NLP algorithm. This variation underscores the
dynamic and adaptive nature of the collaborative effort to develop
and disseminate NLP capabilities across a large national network.

Demonstration project 1: Sleep phenotyping focus group

The Sleep Phenotyping Focus Group is investigating sleep
phenotyping within a cohort of Alzheimer’s Disease (AD) patients,
using encounter notes in these patients. To extract relevant sleep
phenotype information, we previously developed an NLP
algorithm to extract key phenotypes such as snoring, napping,
sleep problems, poor sleep quality, daytime sleepiness, nocturnal
awakenings, sleep duration, and other nocturnal symptoms [19].
This project offers a structured approach for analyzing the sleep
disturbances commonly observed in AD patients, ultimately
contributing to a deeper understanding of their clinical
implications.

The evaluation framework described earlier was applied to
assess the NLP algorithm, and the performance is shown in
Table 2. Two sites, University of Pittsburgh (Pitt) and the
University of Florida (UF) are the development sites, while the
University of Texas Health Science Center at Houston (UTH) is
one of the validation sites (the additional validation site, the
University of Rochester (UR), is in the process of generating
validation results). The algorithm’s behavior varied among the
three sites. At Pitt, it had a high recall and low precision, indicating
that it functioned with high sensitivity, whereas at UF and UTH, it
had a low recall and high precision, indicating that it functioned
more cautiously. Part of the reason for this discrepancy is that the
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Table 2. Performance of the algorithm developed by the sleep phenotyping
focus group

Wang et al.

Table 3. Performance of the algorithm developed by the housing status focus
group

ENACT sites ENACT sites
Metrics Pitt UF UTH Metrics UK Pitt UR UTH
F1 0.776 0.647 0.698 F1 N/A 0.959 0.823 0.689
Recall 0.944 0.542 0.551 Recall 0.980 0.992 0.798 0.875
Precision 0.695 0.868 0.953 Precision 0.990 0.928 0.850 0.568

data at Pitt is more evenly distributed across the sleep phenotypes,
with sample sizes of 12 and 48 for 6 of the 9 concepts, whereas the
data at UTH and UF is unevenly distributed mainly for sleep
problems and sleep quality concepts, for which the algorithm
generates many false negatives.

Demonstration project 2: Social determinants of health -
housing status focus group

Housing is a key environmental social determinant of health
(SDOH), closely associated with mortality and clinical outcomes.
Housing Status Focus Group seeks to develop an NLP algorithm to
extract the housing status of individuals from emergency depart-
ment notes. This project aims to provide valuable insights into the
impact of housing instability on health outcomes, thereby
informing future interventions and support strategies.

The housing status NLP algorithm was developed to extract
housing-related concepts such as homelessness, unstable housing,
recovery housing, emergency housing, temporary housing, and
exposure, and its performance is shown in Table 3. The University
of Kentucky (UK) and Pitt are the development sites, and UR and
UTH are the validation sites. Each site created a gold standard for
evaluation using a specific subset of patients treated in emergency
departments; details of the NLP algorithm development and
evaluation can be found in the relevant publication [13].

Demonstration project 3: Opioid use disorder focus group

Patients who present to the Emergency Department with an opioid
overdose (OOD) are at significant risk of death [20]. Identifying
individuals with OUD and at risk of OOD can aid in better
treatment and counseling, particularly in the context of treating
acute and chronic pain with opioids. ICD codes can identify OUD
patients and those at risk of OOD, but they may not be available in
the EHR at the time of the visit (Ward et al. [15]), and they are
frequently absent in patients when evidence in their unstructured
clinical notes indicates a risk for OUD in Zhu et al. [16] . In
particular, Zhu et al. [16] found that a lexicon-based strategy for
identifying patients at risk for OUD outperformed an ICD-based
method for phenotyping patients with OUD. The OUD Focus
Group is formalizing a phenotype based on the ICD code approach
(Ward etal. [15], Lenert et al. [14] and Zhu et al. [16]) to be used as
an initial silver standard for evaluation. The initial NLP
phenotyping method will be based on Zhu et al.’s lexicon-based
approach to identifying OUD, which will be refactored to work in
the OHNLP framework. The NLP algorithm is currently being
developed and validated across multiple sites.

Demonstration project 4: Delirium phenotyping focus group

Delirium is a common geriatric syndrome characterized by an acute
change in mental status, fluctuating course, lack of attention, and

Table 4. Performance of the algorithm developed by the delirium phenotyping
focus group

ENACT sites
Metrics Mayo UTH UAB VUMC
F1 0.958 0.895 0.530 0.606
Recall 0.919 0.985 0.770 0.796
Precision 1.000 0.819 0.400 0.490

disorganized thinking or altered level of consciousness [21].
Accurate prediction of delirium could significantly improve patient
outcomes through targeted interventions for hospitalized patients.
For delirium case ascertainment, we used the Confusion Assessment
Method (CAM) [22], which is recommended by the Network for
Investigation of Delirium: Unifying Scientists (NIDUS), as the gold
standard for diagnosing delirium. NLP-CAM is an NLP-powered
computational phenotyping tool that can identify a patient’s
delirium status from the EHR [23]. The tool was initially developed
at the Mayo Clinic (Mayo) based on CAM and includes 13 unique
concepts that range from neuropsychological characteristics to
cognitive and memory problems (e.g., agitation, disorganized
thinking, and fluctuation). We applied NLP-CAM to three test
sites (UTH, University of Alabama at Birmingham (UAB), and
Vanderbilt University Medical Center (VUMC)) and reported the
out-of-the-box performance, as shown in Table 4. We observed
moderate to high performance degradation due to site variations in
CAM screening, documentation, and patient characteristics. Our
next step is to conduct federated refinement [24] to optimize NLP
performance at each site.

Discussion

The ENACT NLP Working Group created NLP capability that is
specifically suited to a multisite, federated network for supporting
large-scale analytics. This capability enables extracting data from
clinical narratives, facilitating research that involves collaboration
across multiple sites, while simultaneously addressing data
heterogeneity and scalability. Below, we highlight six areas where
the NLP capability offers transformative potential in ENACT.

Potential applications

Recruitment for Clinical trials

NLP-derived data combined with structured EHR data could
enhance participant identification for multisite clinical trials,
improving recruitment efficiency and demographic representa-
tion. This capability is particularly valuable for rare disease
research, where pooling data across institutions enables the
identification of sufficient cases for robust analysis.
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Multisite large cohort studies

The integration of unstructured data into large cohort studies
significantly enhances the granularity and scope of research.
ENACT NLP enables the identification of complex phenotypes,
such as those described in clinical narratives, which are often
omitted in structured data alone. This capability is particularly
valuable for studying rare diseases, as it allows researchers to pool
data from multiple institutions to identify sufficient cases for
robust analysis. By supporting large-scale phenotyping and
longitudinal analyses, ENACT NLP facilitates cohort studies that
can uncover complex relationships between clinical variables and
outcomes, providing insights that would be limited with data from
a single site.

Federated learning and artificial intelligence (Al) development
The infrastructure supports privacy-preserving Al model develop-
ment by enabling local processing of unstructured data with
centralized model aggregation. This approach addresses data
heterogeneity and privacy challenges while creating models
generalizable across diverse healthcare systems.

Digital twin

Digital twins - virtual patient representations that simulate disease
progression and treatment responses — benefit from ENACT NLP’s
multisite capabilities. By extracting nuanced patient data from
unstructured narratives across the network, ENACT NLP enables
the creation of comprehensive digital twins that capture diverse
clinical contexts and patient populations. These models support
personalized simulations for precision medicine applications
at scale.

Population health and surveillance

ENACT NLP supports epidemiological studies and real-time
public health surveillance by extracting disease patterns, healthcare
utilization metrics, and social determinants of health from clinical
narratives. These capabilities enable targeted interventions and
evidence-based policy decisions.

Clinical decision support

The multisite network enhances clinical decision-making by
enabling clinicians to identify similar patients across institutions
and review their treatment outcomes. This is particularly impactful
for rare or complex conditions where local data may be insufficient.

Additional applications

ENACT NLP’s multisite infrastructure supports diverse research
areas: precision medicine (extracting patient-specific genetic and
environmental factors for personalized care); quality improvement
(identifying workflow inefficiencies and care gaps from clinical
narratives); health equity research (analyzing social determinants
like housing instability and food insecurity); pharmacovigilance
(detecting adverse drug reactions and off-label usage patterns); and
healthcare education (providing real-world case studies for
training programs). These applications collectively expand
ENACT NLP’s impact across healthcare research, policy, and
practice.

Lessons learned

Implementing and deploying NLP infrastructure in ENACT has
been a multifaceted journey, marked by significant advancements
in integrating NLP and textual analytical capabilities into a large
national EHR network. The ENACT NLP Working Group’s

collaborative efforts, leveraging existing IT infrastructures and
NLP expertise at various CTSA hubs, facilitated the rapid
deployment of NLP pipelines across the network. Establishing
dedicated communication channels through Slack workspaces and
regular coordination meetings proved instrumental in ensuring
smooth coordination and troubleshooting among participat-
ing sites.

Data heterogeneity: the fundamental implementation
challenge

Our most critical lesson learned was that data heterogeneity across
sites, even within sites using the same EHR vendor, represents the
fundamental implementation challenge. Despite 9 of 13 sites using
Epic as their primary EHR system, we encountered substantial
heterogeneity in their note data. Each site utilized different data
access sources (clinical data warehouse, Epic Clarity, or OMOP
warehouse) with unique challenges: template variations across
departments and time periods, loss of formatting during extract,
transform, load (ETL) processes, character encoding issues,
inconsistent use of structured fields, and site-specific documen-
tation workflows.

Sites demonstrated striking diversity in how clinical informa-
tion was structured and stored. Pitt’s dual Epic-Cerner environ-
ment required processing both mixed vendor templates and legacy
data integration challenges. The Medical University of South
Carolina (MUSC) faced critical ETL issues where structurally
significant formatting, including tables and newlines, was stripped
during data warehouse transfer, while UAB’s Cerner system
complicated matters by converting notes to portable document
format (PDF) files. Character encoding problems plagued multiple
sites, with MUSC encountering Windows-1250 encoding flagged
as ASCII/Unicode and Mayo experiencing Unicode-related NLP
failures.

Structured assessment templates were unexpectedly exported as
unstructured text blocks across multiple sites, including UT
Southwestern’s risk screening templates, UTH’s nursing flow
sheets, UK’s nursing assessments, Mayo’s medication code. Pitt’s
Epic system created additional complications by automatically
duplicating notes after physician signatures. These issues required
specialized parsers for text extraction, duplicate detection, and data
reconciliation,  extending implementation timelines by
3-4 weeks.

Broader implementation challenges

Beyond data heterogeneity, there were several other implementa-
tion challenges. The sheer volume of unstructured clinical notes
made processing all data impractical, forcing us to prioritize
specific concepts rather than attempt comprehensive extraction of
all concepts. Limited funding further restricted the number of NLP
algorithms we could develop and evaluate. Implementation
timelines varied significantly due to differences in site expertise,
resource availability, and IRB approval delays, with some sites first
validating on synthetic data before transitioning to gold-standard
datasets.

The domain-specific algorithm approach demands significant
infrastructure investment. Each site must maintain: (1) computing
resources capable of processing millions of notes (minimum
16 cores, 64 GB RAM for production), (2) secure storage for raw
and NLP-derived data, (3) at least 0.5 full-time equivalent (FTE)
technical personnel with NLP expertise for customization and
maintenance, and (4) sustained funding for updates and validation.
These requirements, particularly specialized technical expertise

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 09 Nov 2025 at 09:40:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/cts.2025.10116


https://doi.org/10.1017/cts.2025.10116
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

and computational resources, may exclude smaller institutions or
those with limited informatics infrastructure from participation.

Future directions

For the implementation and deployment of NLP in ENACT, we did
not use a theoretical framework to guide the implementation
process. Implementation science offers many valuable frameworks,
such as the Exploration, Preparation, Implementation, Sustainment
Framework (EPIS) [25,26] and the Consolidated Framework for
Implementation Research (CFIR) [25]. These frameworks offer
systematic methods to address site-specific adaptations, optimize
workflows, and identify scalability barriers, potentially accelerating
the translation of NLP insights into clinical practice across diverse
healthcare environments.

Limitations

The process described in this article has several limitations that
warrant consideration. First, the focus on specific projects, while
necessary due to resource constraints, limits generalizability to other
clinical contexts. NLP models trained and validated on specific
datasets may not perform as effectively on different patient
populations, specialties, or healthcare settings, requiring additional
adaptation and validation efforts. Additionally, the variability in data
quality, note types, and EHR systems across the participating sites
poses challenges in ensuring consistent performance of the NLP
algorithms. Differences in documentation practices, clinical termi-
nologies, and system configurations could introduce inconsistencies
that affect model robustness and accuracy, necessitating site-specific
tuning. The reliance on local funding and existing funded projects
for developing specific NLP tools also introduces potential biases, as
the algorithms may be optimized for specific datasets not
representative of the broader population. This funding-driven
approach may inadvertently prioritize projects with greater institu-
tional support while leaving gaps in NLP capabilities for under-
represented patient groups and clinical domains.

Second, the network-wide querying function remains under
development, limiting immediate utility for large-scale multisite
research. While some sites have joined the ENACT test network to
refine querying capabilities, progress has been gradual due to
infrastructure complexity and personnel bandwidth constraints.
We anticipate that querying functionality will be available to
working group sites by late 2025 and network-wide by late 2026.

Third, we did not systematically evaluate alternative NLP
infrastructure solutions. For example, Apache cTAKES offers
built-in stripping of protected health information and NLM
Metathesaurus integration that might have benefited certain use
cases. While the OHNLP Toolkit proved adequate for our
approach, a comprehensive comparison of available infrastruc-
tures, including commercial or cloud-based solutions, might have
revealed alternative solutions to challenges like cross-site port-
ability or maintenance requirements.

Generative Al and LLMs in ENACT NLP

Recent advances in generative AI (GenAl) and large language
models (LLMs) have the potential to address several key limitations
in the ENACT NLP project. First, current limitations in developing
generalized NLP algorithms across diverse health systems could be
alleviated using LLMs. Unlike specialized NLP algorithms, LLMs
such as GPT-4 can be fine-tuned to understand clinical context
across various datasets without requiring domain-specific rules. This
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generalization ability could help ENACT develop more versatile
NLP tools to handle multiple clinical tasks (e.g., phenotyping, cohort
identification) across different sites without extensive retraining.
Second, LLMs could enhance the accuracy of phenotyping efforts,
particularly in multisite studies, where heterogeneity in data sources
makes consistent concept extraction difficult. GenAlI models,
particularly those trained on clinical data, can significantly enhance
this task by capturing the nuances of clinical language. LLMs can
interpret complex medical narratives more effectively than rule-
based systems and adapt to new or evolving medical terminologies
[27]. For example, open-source LLMs (e.g., Llama2-70B-chat,
Openchat-3.5-0106) could identify mammograms that required
follow-up with F1 = 1.0 (ie, perfect performance in that
experiment) based on text reports. Notably, mammography reports
include a Breast Imaging-Reporting and Data System (BI-RADS)
score. A mammogram (report) that requires follow-up is one where
the interpreting radiologist assigned a BI-RADS score other than 1
or 2. Thus, identifying mammograms that require follow-up is a
relatively simple information extraction task [28]. Third, LLMs may
reduce the time to develop NLP algorithms. LLMs offer the
advantage of being pre-trained on diverse datasets, enabling them to
incorporate time-consuming external knowledge into knowledge
engineering in traditional rule-based NLP systems. Fourth, LLMs
could automate multisite validation and deployment. One of the key
bottlenecks for ENACT is the complex logistics of multisite
validation of NLP tools. GenAI models could streamline this by
providing automated validation.

While GenAI and LLMs offer considerable potential to advance
the ENACT NLP initiative, several significant challenges and
drawbacks must be considered. First, data privacy and security
concerns are paramount in healthcare, as LLMs typically require
large amounts of data to train and fine-tune. This presents the risk
of inadvertently exposing sensitive patient information, especially
when models are trained across multiple sites in a distributed
network like ENACT. Even anonymized or de-identified data may
still contain subtle details that could re-identify individuals, posing
a significant risk under regulations such as HIPAA. Additionally,
the computational and resource costs associated with training,
fine-tuning, and deploying LLMs are substantial, and for a large,
multisite initiative like ENACT, these infrastructure costs could be
prohibitive for sites with limited resources, leading to disparities in
model performance and inconsistent results across the network.
Another concern is fairness, as LLMs often inherit biases from their
training data. In healthcare, biased models could disproportion-
ately affect certain demographic groups, leading to incorrect or
harmful clinical recommendations. This is particularly problem-
atic in NLP tasks such as phenotyping or clinical decision support,
where subtle language or data representation biases could skew
interpretations. The black box nature of LLMs also poses
challenges in clinical applications where interpretability is crucial,
as clinicians and researchers often need to understand why a model
made a particular prediction. This lack of explainability can lead to
a lack of trust in the healthcare domain. Using LLMs raises
numerous ethical and legal concerns, including patient consent,
data ownership, and responsibility for errors or adverse outcomes.
These issues are particularly complex in a multisite network like
ENACT, where multiple stakeholders may be involved in data
sharing, algorithm development, and model deployment.
Moreover, LLMs sometimes generate plausible but incorrect
information, a phenomenon known as hallucination. This could
have serious consequences in clinical contexts, leading to
misinformed decisions based on faulty data extraction,
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summarization, or interpretation of clinical narratives. While
GenAl and LLMs hold promises for advancing the work of ENACT
NLP, the challenges in their implementation, especially in areas
like privacy, bias, and explainability, must be carefully managed. A
balanced approach combining the power of LLMs with traditional
rule-based methods and rigorous oversight may offer the best path
forward for ENACT NLP objectives.

Conclusion

The ENACT NLP Working Group has made significant strides in
deploying NLP infrastructure across a large, federated data
network, leveraging existing IT infrastructure and NLP expertise
from several CTSA hubs. By establishing focus groups dedicated to
specific disease conditions and utilizing the OHNLP Toolkit, the
working group was able to target specialized NLP algorithms for
distinct clinical tasks. This pragmatic approach has enabled
ENACT to deploy NLP solutions more efficiently while addressing
each site’s unique data and resource challenges. Furthermore, the
collaborative framework of partnerships within the OHNLP
development team has been crucial in facilitating rapid imple-
mentation and troubleshooting.

The project has faced challenges in processing vast amounts of
clinical notes and developing NLP algorithms that perform
consistently across all sites. The working group opted for focused
NLP deployments and clearly defined cohort specifications to
address these obstacles, tailoring algorithms to specific note types
and clinical contexts. As the project evolves, creating and refining
these NLP tools while emphasizing collaboration and resource
sharing will be critical in broadening the scope and impact of the
ENACT NLP initiative across diverse healthcare environments.
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