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ABSTRACT: This paper explores the influence of layer variations within Artificial Neural Network (ANN)
crowds on their collective behavior and prediction accuracy. While prior research has demonstrated the
effectiveness of ANN crowds, understanding how architectural variations impact performance is limited. A coding
scheme is used to categorize architectures into distinct behavioral profiles (Normality, Centrality, Width). These
profiles provide insights into how individual architecture contributes to the overall behavior and performance of the
crowd. The research uses two prediction models. Analysis of behavior distributions across layers reveals minimal
fluctuations in both models, suggesting consistent behavior across varying layer configurations. Future work will
explore the relationship between layer variations and error metrics to understand their impact on performance.
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1. Motivation: understanding ANN Crowd architectures

Artificial Neural Network (ANN) crowds represent a novel approach to ensemble learning, leveraging
the collective wisdom of a diverse set of neural network architectures to solve predictive tasks (Adebayo
et al., 2024). Unlike traditional single-model approaches, ANN crowds consist of 189 unique
architectures, replicated 100 times each with random initial weights, thus satisfying the crowd
requirements of diversity, independent, and decentralization (Adebayo et al., 2024). ANN crowds have
been effectively used for early-stage product predictions, such as assembly time and market price,
especially when limited data is available (Adebayo et al., 2024; Gill et al., 2017; Namouz, 2013;
Owensby & Summers, 2014; Patel et al., 2017). However, despite their potential, the inner workings of
ANN crowds, particularly the effects of architectural diversity, remain poorly understood (Bian & Wang,
2007; Brown et al., 2005; Minku et al., 2010; Robert & Romero, 2015). To maximize the predictive
power of ANN crowds, it is essential to investigate how specific architectural features, such as the
number and depth of layers, influence their collective behaviour and accuracy.

While prior studies have explored the general principles of ensemble learning and the benefits of ANN
crowds, they often treat the crowd as a monolithic entity without delving into the influence of individual
architectural variations (Ganaie et al., 2021; Hansen & Salamon, 1990; Krogh, n.d.; Li et al., 2018;
Owensby & Summers, 2014; Patel et al., 2017; Yang et al., n.d.). In particular, the impact of layer
configurations, ranging from shallow to deep architectures on ANN crowd behaviour metrics, such as
Normality, Centrality, and Width, has received limited attention. This research addresses the critical
questions: (1) how do variations in the number of layers influence ANN crowd behaviour as measured by
these metrics, and (2) how do layer-induced behaviour profiles correlate with specific prediction
accuracy metrics, such as Mean Absolute Error and Standard Deviation? By focusing on layer
variations, this aligns with ICED’s focus on computational tools for engineering design, offering
designers a scalable method to predict assembly time and market price early, enhancing decision-making
and reducing design iteration cycles.
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2. Ensemble deep learning and ANN Crowd

Ensemble deep learning is a powerful paradigm that combines the strengths of ensemble methods and
deep learning techniques (Ganaie et al., 2022; Mahajan et al., 2023; Sagi & Rokach, 2018). This
approach leverages the feature extraction capabilities of deep learning with the error-reduction
benefits of ensemble methods to create more robust and accurate predictive models (Ganaie et al.,
2022). At its core, ensemble deep learning involves combining multiple deep learning models to
improve overall performance and generalization (Ali et al., 2024; Ganaie et al., 2022; Qiu et al.,
2014). The key principle behind this approach is that by aggregating the predictions of diverse
models, the ensemble can overcome the limitations of individual models and achieve superior results
(Ganaie et al., 2022).

The ANN Crowd exemplifies a specialized form of ensemble deep learning, scaling this concept to an
unprecedented level with 18,900 individual neural networks (189 unique architectures x 100 replicates).
(Adebayo et al., 2024). This relationship situates ANN Crowds within the ensemble learning framework
while showcasing their enhanced scalability and ability to handle diverse datasets with minimal data,
such as predicting assembly time and market price in early-stage design. Compared to traditional
ensemble methods, ANN Crowds offer distinct advantages. For instance, the ANN Crowd achieves a
reported prediction error of 5% for Assembly Model to Assembly Time (AM-AT) with just 20 samples
(Miller et al., 2014; Owensby & Summers, 2014; Sri Ram Mohinder et al., 2017), outperforming
Bagging in fraud detection (~10-15% implied MAE, 100,000 samples(Zareapoor & Shamsolmoali,
2015) and Negative Correlation Learning (NCL) (~8.15% RMS error, 720 samples (Y. Liu & Yao,
1999). However, this scalability comes at the cost of higher computational demands, contrasting with the
efficiency of smaller ensembles like Stacking (Wolpert, 1992), which uses fewer models but requires
careful tuning.

By extracting the collective wisdom of its vast array of ANNs, the ANN Crowd excels in tasks with
limited or noisy data, offering a robust alternative to conventional approaches. This study builds on this
foundation, exploring how architectural variations, particularly layer configurations, influence crowd
behavior and prediction accuracy.

2.1. Novelty of ANN Crowds

The ANN Crowd represents a significant evolution in ensemble deep learning, distinguished from
traditional ensemble methods by its unique architectural features and scalability. Unlike methods such as
Bagging, Boosting, or Stacking, which typically combine a modest number of models (e.g., 4-50), ANN
Crowds leverage 18,900 models (189 architectures x 100 replicates), offering a flexible, problem-
agnostic approach to predictive tasks. This section details the defining innovations of ANN Crowds,
model diversity, independence, large-scale architecture, minimal data requirements, and capacity for
complex input-output relationships, while contrasting them with state-of-the-art techniques to highlight
advantages and limitations (Table 1).

Table 1. Comparison of ANN Crowds with traditional ensemble methods

Feature Traditional Ensemble ANN Crowds

Model Diversity Moderate (Few model types) High (189 unique architectures)
Independence Varies (Dependencies in Boosting/Stacking) Ensured (No dependencies)
Scale Limited (e.g., 4-50 models) Large (18900 models)

Training Data Size Moderate to High (100s-1000s samples) Low (~20 samples
Input-Output Complexity Rigid (Task-specific) Flexible (Problem-Agnostic)

2.1.1. Diversity

ANN crowds incorporate an extensive range of diverse ensemble strategies and architectures
(Adebayo et al., 2024). Unlike traditional methods that might use a limited number of model types
or create multiple versions of the same datasets (Ha et al., 2005; Randhawa et al., 2018; Sethanan
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et al., 2023), ANN crowds employ 189 different artificial neural network (ANN) architectures, each
with varying numbers of nodes (1-15) and layers (1-3). This level of architectural diversity allows
the ANN crowd to explore a much broader solution space, allowing the ensemble to handle
complex, high-dimensional problems more effectively (Adebayo et al., 2024). This approach aligns
with the theoretical underpinnings of ensemble learning, which emphasizes the importance of
diversity for improving model performance (Ganaie et al., 2022; Nam et al., 2021; Robert &
Romero, 2015).

2.1.2. Independence

A key novelty of ANN crowds is the method used to ensure independence among models (Adebayo
et al., 2023, 2024; Mathieson, 2011). Each of the 189 architectures is designed to operate without any
interaction or dependencies between them (Mathieson, 2011). There is no exchange of information
during the training for the individual ANNs. This guarantees that there is independence in the models.
They are run in parallel. This level of independence is crucial for avoiding correlated errors and ensuring
a truly diverse set of predictions (Mathieson, 2011). Unlike methods like Boosting or Stacking, where
models are inherently dependent on each other (Gonzalez et al., 2020; Low et al., 2020), ANN crowds
maintain strict separation between each model’s training process. This independence allows the ANN
crowd to capture a wider range of perspectives on the data, potentially leading to more robust and
accurate predictions.

2.1.3. Size and scale

The sheer scale of ANN crowds sets them apart from traditional ensemble methods (Adebayo et al.,
2024). With 18,900 total models (189 architectures x 100 replicates), ANN crowds operate at a scale that
is orders of magnitude larger than most ensemble approaches (Deng & Platt, n.d.; P. Liu et al., n.d.). The
replicates are possible with random initial weights in each architecture and an early termination before
convergence of the training. This scale amplifies the ANN crowd’s ability to generalize, making it more
resilient to overfitting and capable of handling a wide range of prediction tasks (Adebayo et al., 2024).
The large number of models allows the ANN crowd to capture subtle patterns and relationships in the
data that might be missed by smaller ensembles.

2.1.4. Training data size

One of the most striking innovations of ANN crowds is their ability to achieve remarkable prediction
accuracy using minimal training data (Adebayo et al., 2023, 2024). ANN crowds can be successfully
trained with as few as 20 samples, which is particularly noteworthy given the complexity and scale of the
ensemble (Adebayo et al., 2023). This efficiency in handling small datasets set ANN crowds apart from
many deep learning approaches that typically require large amounts of training data (Huang et al., 2017).
The ability to work with limited data makes ANN crowds particularly valuable in domains where data
collection is expensive, time-consuming, or otherwise constrained.

2.1.5. Input and output complexity

ANN Crowds excel in handling complex input-output mappings, such as predicting market prices or
assembly times from intricate product assembly models, showcasing their versatility and adaptability
in engineering and design tasks (Owensby & Summers, 2014). Unlike traditional ensemble methods,
ANN Crowds leverage a structured yet flexible input-output complexity framework, which
incorporates 29 graph-based complexity metrics as inputs (Adebayo et al., 2024; Mathieson et al.,
2011). These metrics capture detailed aspects of product design, including size, interconnectivity, and
decomposition, enabling the ANN Crowd to account for the multifaceted relationships inherent in such
tasks (Mathieson, 2011). This approach enhances the ANN Crowd’s ability to process intricate inputs
and generate interpretable, problem-specific outputs (See Figure 1) (Mathieson, 2011). Such
adaptability is particularly valuable in engineering design, where non-linear interactions among
numerous variables often determine outcomes. By maintaining a problem-agnostic structure, ANN
Crowds avoid the need for domain-specific adjustments, making them a robust and efficient solution
across diverse predictive tasks.
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Figure 1. Mapping complexity metrics to target

2.2. Prior work and applications

The ANN Crowd has proven effective in predicting critical product characteristics during early design
stages, such as assembly time and market price, using limited design data like assembly and function
models.(Miller et al., 2014; Sri Ram Mohinder et al., 2017). Its applications extend to identifying
automotive assembly defects and evaluating life cycle assessments, demonstrating versatility in complex
engineering challenges (Patel et al., 2017). Leveraging 29 structural complexity metrics as input, the
ANN Crowd’s 18,900 diverse neural networks independently identify relationships between inputs and
target values such as market price or assembly time (Figure 1) (Adebayo et al., 2024). Predictions are
validated against known outcomes to assess accuracy and precision, with assembly models typically
outperforming function structures (Sri Ram Mohinder et al., 2017). Despite its successes, variations in
accuracy across prediction models highlight the need for deeper exploration of ANN Crowd architectures
and individual network behaviours to optimize performance further.

3. Architectural variations (diversity) in ANN Crowds

Architectural variations in ANN crowds are central to their predictive performance, offering a rich
diversity of configurations. These variations encompass nodes, connection pattern and layers, each
contributing uniquely to the collective wisdom of the crowd.

3.1. Node variations

Node variation refers to differences in the number of neurons (nodes) within each architecture of the
ANN crowd (Davenport et al., n.d.). The number of neurons, which range from 1 to 15 neurons per
hidden layer, defines the network’s computational capacity to process input data and generate
predictions (Mathieson, 2011). The key logic behind varying node counts is to strike a balance between
generalization and the ability to model complex relationships. While fewer nodes help prevent
overfitting by promoting generalization, more nodes enable the model to capture more intricate data
patterns. This diversity of node configurations is essential in allowing the ANN crowd to tackle a broad
range of prediction tasks, such as assembly time or market price, where different levels of complexity
are involved (Mathieson, 2011). The ANN crowd includes 189 different architectures with various
node counts, with each architecture replicated 100 times for robustness, ensuring a broad exploration
of node capabilities.

3.2. Connection variations

Connection variation in ANN crowds defines how neurons connect across layers, shaping the flow and
transformation of information. Patterns include Convergence (C), where larger layers reduce to smaller
ones (e.g., 5 nodes to 3 nodes); Same (S), where layers maintain the same number of nodes; and
Divergence (D), where smaller layers expand into larger ones (e.g., 2 nodes to 5 nodes). For example,
Figure 2 illustrates an architecture in ANN Crowd with connection pattern [C, S, D] starts with 29 input
metrics converging to 2 nodes, followed by another 2-node layer, and then diverging to 5 nodes before
converging to a single output. This diversity in connection patterns plays a critical role in how the crowd
processes the input metrics and influences prediction accuracy.
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Figure 2. Architecture [C,S,D]

3.3. Layer variations

Layer variation in the ANN crowd captures differences in the number and structure of hidden layers,
with networks ranging from one to three layers. These variations enable the crowd to balance
simplicity and complexity, with shallow architectures offering efficiency and deeper networks
capturing intricate data relationships. While a single hidden layer can approximate any function, multi-
layered configurations better model complex patterns, providing flexibility for diverse prediction
tasks. The ANN crowd limits the number of neurons per layer relative to the total layers to prevent
overfitting while maintaining modelling efficiency. Configurations such as [2,2,5] (three layers with a
mix of 2 and 5 neurons) exemplify this approach, ensuring robust performance across varying levels of
task complexity. By analysing these variations, researchers gain insights into how architectural
complexity impacts prediction accuracy, informing the design of optimized ANN crowds tailored to
specific applications.

4. Behavior coding in ANN Crowds

Understanding how individual architectures contribute to the collective performance of an ANN crowd is
essential for optimizing its predictive capabilities (Adebayo et al., 2024). The Architecture Behavior
Coding Scheme provides a structured approach to evaluate these contributions, offering insights into the
roles and impacts of diverse architectures within the crowd (Adebayo et al., 2024). Using three key
metrics; Normality, Centrality, and Width. This scheme categorizes architectures into distinct behavioral
profiles, enabling a nuanced analysis of their influence on the crowd’s behavior and prediction accuracy.
Normality measures the alignment of an architecture’s prediction distribution with the overall crowd
distribution, serving as an indicator of confidence in its reliability. Architectures with high alignment are
labeled High Confidence, reflecting consistency with the crowd, while those with significant divergence
are categorized as Low Confidence, indicating potential unreliability. Centrality evaluates an
architecture’s role in shaping overall accuracy, classifying them as Positive, Neutral, or Negative
contributors, depending on their influence on the crowd’s prediction error. Width assesses the variability
introduced by an architecture, categorizing it as Narrow, Similar, or Wide, based on its effect on the
consistency of prediction errors.

These metrics form the basis of the Architecture Behavior Interpretation Scheme, which groups
architectures into 18 behavioral categories based on their Confidence, Goodness (derived from
Centrality), and Magnitude (derived from Width). For example, architecture labelled High Confidence,
Good Centrality, High Width (HGH) are consistent contributors to accuracy but may introduce
variability, while Low Confidence, Bad Centrality, Low Width (LBL) architectures are unreliable and
detrimental to performance. This classification system not only helps identify high-performing
architectures but also provides insights into the broader dynamics of ANN crowds.

In this research, the coding scheme plays a pivotal role in linking layer variations to architectural
behavior and prediction accuracy, supporting the paper’s overarching goal of understanding and
optimizing ANN crowd architectures. By characterizing architectural behaviors, this framework
contributes actionable insights for designing task-specific ANN crowds that maximize diversity and
predictive power.
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5. Research approach

This study builds upon previous research in ANN Crowds, leveraging existing datasets and prediction
models to investigate the impact of architectural variations on prediction accuracy. Specifically, the
research examines how changes in the number and depth of architectural layers influence behaviour
metrics (e.g., Normality, Centrality, and Width) and overall prediction performance. By analysing layer
configurations and their implications, the study aims to uncover the relationship between architecture and
predictive behaviours.

The data used in this research comprises 20 consumer electro-mechanical products, including power
tools and kitchen appliances. These products are represented through assembly models and function
structures, obtained from publicly available sources such as GRAB CAD'! and 3D CONTENT
CENTRAL?. For unavailable models, a reverse engineering approach is employed. Connectivity graphs
for the assembly models were derived using interference detection tools within SolidWorks, identifying
physical interactions between components (Owensby & Summers, 2014). Assembly times were
manually calculated using Boothroyd and Dewhurst Design for Assembly (DFA) tables, ensuring
consistency with established methodologies (Owensby & Summers, 2014). Additionally, market prices
were obtained from Amazon.com, averaging five base-price quotes for accuracy. The data was split into
training and test sets to evaluate predictive performance comprehensively—for example, 16 products
were used for training ANN Crowd models, while four were reserved for testing. Training the 18,900
models required approximately 40 minutes and prediction times averaged 2 minutes across the test set,
suggesting computational feasibility for early-stage design iterations where lead time reductions—hours
versus manual DFA’s days—justify the upfront training cost.

Key prediction models analysed include Assembly Model to Assembly Time (AM-AT), which exhibits
high accuracy with a prediction error of 5%, and Function Model to Market Price (FM-MP), which
demonstrates lower performance with a 50% accuracy rate (Sri Ram Mohinder et al., 2017). The
inclusion of these contrasting prediction models allows for studying the architectural behaviours across a
spectrum of precision, offering insights into the responsiveness of ANN Crowd configurations.

6. Results: behaviour distribution across layers

This section presents distribution of behaviors across three layers of the ANN Crowd for the two
prediction models: AM-AT and FM-MV. Figure 3 and Figure 4 illustrate the normal and unique behavior
distributions for AM-AT, while Figure 5 and Figure 6 do the same for FM-MV. The percentages
represent the proportion of each behavior relative to the total behavior observed in each layer.

For the AM-AT prediction model, Figure 3 shows that NormalHigh behavior starts at 74% in the first
layer but decreases sharply to 27% and 26% in Layers 2 and 3, respectively. Conversely, NormalLow
increases significantly from 26% in Layer 1 to 73% and 74% in subsequent layers. Other behaviors such
as CentralBad and CentralGood remain relatively stable, fluctuating between 43% and 45%. Similarly,
WidthNarrow, WidthSame, and WidthWide exhibit minor changes, with values remaining between 20%
and 65% across the layers. Unique behaviors for AM-AT (Figure 4) show consistent dominance of
combinations like High-Bad-Same and High-Good-Same (19% to 22%) across layers, while rare
combinations such as Low-Neutral-Wide remain close to 0% throughout.

1 www.grabcad.com
2 https://www.3dcontentcentral.com
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Figure 4. AM-AT unique behaviour distribution

For the FM-MYV prediction model, Figure 5 indicates that NormalHigh remains highly dominant across
all layers, with percentages of 87%, 88%, and 87% for Layers 1, 2, and 3, respectively. Similarly,
NormalLow is steady at 12% to 13%. Behaviors like CentralBad and CentralGood show slight variations,
with CentralGood increasing to 47% in Layer 2 before returning to 44% in Layer 3. The width behaviors
(WidthNarrow, WidthSame, and WidthWide) exhibit minimal changes across layers, with values ranging
from 25% to 54%. Unique behaviors for FM-MV (Figure 6) reveal that combinations such as High-
Good-Same remain consistently dominant (20% to 21%), while less frequent behaviors like Low-Bad-
Wide and Low-Neutral-Wide are nearly absent across all layers.

Layers - FM-MV

WidthSame
CentralNeutral
CentralBad

NormalHigh
0% 20% 40% 60% 80% 100%

N 3-AM-AT m2-AM-AT ®1-AM-AT

Figure 5. FM-MV Behaviour distribution
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Overall, the behavior distributions for both prediction models are largely stable across the layers, with
only minor fluctuations observed. These preliminary findings suggest that the ANN Crowd maintains
consistency in its predictions. To explore this stability’s impact, we computed correlations between
behavior metrics and prediction accuracy. For AM-AT, NormalHigh in Layer 1 showed a very weak
positive correlation with MAE (r 0.038), while CentralityGood exhibited a moderate negative
correlation (r -0.449), indicating that higher CentralityGood values reduce error. WidthWide in Layer 3
had a weak positive correlation with standard deviation (r 0.22), suggesting increased variability. In
Layers 2 and 3, NormalHigh’s correlation with MAE remained negligible (r -0.005 and -0.006). For
FM-MP, NormalHigh’s dominance (87-88%) aligned with a stable MAE of 50%, with all correlations
near zero (r < 0.05), reflecting minimal layer-driven shifts in error.

FM-MV Unique Behaviour
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Figure 6. FM-MV unique behaviour distribution

In the subsequent analysis, researchers will investigate whether the observed layer variations, although
minimal, impact the prediction accuracy of the ANN Crowd. This will involve analyzing metrics such as
the mean error and standard deviation to understand how these variations influence the model’s overall
performance.

7. Conclusions

This preliminary study investigated the behavior distributions across layers of the ANN Crowd using two
distinct prediction models, AM-AT and FM-MYV, for a dataset encompassing all products collectively.
The findings reveal largely stable patterns across layers, with minimal fluctuations in behaviors such as
Normality, Centrality, and Width. These results suggest that the ANN Crowd demonstrates consistent
predictive behaviors across layers, highlighting its robustness in addressing varying prediction tasks.
However, the study does not delve into behavior distributions for individual products, leaving room for
further exploration.

Future work will expand on these findings by investigating whether the observed layer variations impact
the prediction accuracy of the ANN Crowd. This will involve analyzing metrics such as error margins
and standard deviations to understand the influence of architectural configurations on overall predictive
performance. For engineering design, these findings suggest ANN Crowds can streamline early-stage
prototyping by predicting key metrics with minimal data, potentially cutting lead times by days compared
to manual methods like DFA. Industrial applications (e.g., automotive assembly) could further validate
this impact.
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