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This study is devoted to the analysis of capillary oscillations of a gas bubble in a
liquid with an insoluble surfactant adsorbed on the surface. The influence of the Gibbs
elasticity, the viscosities of the liquid and gas, as well as the shear and dilatational
surface viscosities, on the damping of free oscillations is examined. Dependences of the
frequency shift and the damping rate on the parameters of the problem are determined.
In the limit of small viscosities and neglecting the surfactant surface diffusion, a
simplified dispersion relation is obtained, which includes finite parameters of surface
viscosities and Gibbs elasticity. From this relation, conditions are identified under which
the damping of capillary oscillations can occur with a small frequency. Numerical
solutions of the full dispersion relation demonstrate that a non-oscillatory regime is
impossible for the considered configuration. An additional mode associated with Gibbs
elasticity is discovered, characterized as a rule by low natural frequency and damping rate.
Approximate relations for the complex natural frequency of bubble oscillations in a low-
viscosity liquid in the presence of a surfactant are derived, including an estimate of the
contribution of the gas inside the bubble to viscous dissipation. An original Lagrangian–
Eulerian method is proposed and used to perform direct numerical simulations based
on the full nonlinear Navier–Stokes equations and natural boundary conditions at the
interface, accounting for shear and dilatational viscosities. The numerical data on the
damping process confirm the results of the linear theory.

Key words: bubble dynamics, capillary waves, computational methods

1. Introduction
Bubbles oscillating in a fluid are used in numerous technological devices and processes,
including microfluidic devices, chemical processes, emulsification, oil recovery, cleaning,
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drug delivery and flotation separation. In many of those processes, surfactants are
introduced into the liquid. In addition to the technological applications, the analysis of the
influence of surfactants on the frequency and damping of droplet and bubble oscillations
provides tools for experimental measurements of rheological properties of an interface
covered by a surfactant (Lu & Apfel 1990; Johnson & Stebe 1994; Tian, Holt & Apfel
1995; Asaki & Marston 1997; Meier et al. 2000; Freer, Wong & Radke 2005; Ravera,
Loglio & Kovalchuk 2010; Lalanne, Masbernat & Risso 2020).

The dynamics of the gas–liquid interface is strongly influenced by the presence of a
surfactant (Levich 1962). That influence is twofold. On one side, the surfactant locally
diminishes the surface tension. Therefore, the non-uniformity of the surface concentration
of the surfactant caused by an interfacial flow creates a tangential Marangoni stress that
leads to an effective elasticity of the interface between the bubble and the surrounding
liquid (the Gibbs elasticity). The mathematical description of the surfactant redistribution
on a deformable surface taking into account advection, diffusion and the concentration
change due to the surface deformation was formulated by Stone (1990) and Wong,
Rumschitzki & Maldarelli (1996). On another side, an interface containing a surfactant
is subject to additional dissipation mechanisms known as the shear and dilatational
interfacial viscosities (Scriven 1960).

While the radial bubble oscillations under the action of surfactants are relatively well
explored (Glazman 1983; Karapantsios & Kostoglou 1999; Zhong & Ardekani 2022), the
influence of surfactant on shape-changing oscillations has not yet been fully understood.
In the absence of the surfactant, the shape-changing oscillations have been considered by
Reid (1960) and Prosperetti (1980) for both gas bubbles and liquid droplets in a similar way
(because for that kind of oscillations the compressibility effects are of minor importance).

Estimates made for a millimetre air bubble in water show that the natural frequency of
the quadrupole mode of capillary oscillations (Lamb 1932) of the bubble (approximately
420 Hz) is an order of magnitude lower than the frequencies of monopole oscillations
(Plesset 1949; Rayleigh 1879) of the bubble volume (approximately 6.6 kHz). And with
the growth of the bubble size, this difference increases. This should obviously increase the
accuracy of the experiment aimed at observing precisely the oscillations of the shape of
such a spherical interface. Moreover, the influence of surfactants further reduces, through
the surface tension factor, the frequencies of capillary oscillations, having a relatively weak
effect on volume oscillations.

The influence of the surfactant on the shape-changing oscillations of an interface
between two fluids was the subject of the investigation by Miller & Scriven (1968),
Sparling & Sedlak (1989), Lu & Apfel (1991) and Tian et al. (1995) (for a liquid–gas
interface). A systematic investigation of small-amplitude shape oscillations of a liquid
droplet in a gas in the presence of an insoluble surfactant on the interface was carried
out by Lyubimov et al. (2011). The dispersion relation for the oscillation frequency that
describes the transition from oscillatory to monotonic decay of disturbances caused by
interfacial viscosities was derived.

The finite-amplitude oscillations of droplets and bubbles covered by a surfactant can be
studied using numerical methods tracking the droplet and bubble shape change. Among
them are the level-set method (Xu & Zhao 2003; Reusken & Zhang 2013; de Langavant
et al. 2017; Piedfert et al. 2018), volume of fluid method (Drumright-Clarke & Renardy
2004; James & Lowengrub 2004) and the combination of the boundary element method
with the finite volume method (Bazlekov, Anderson & Meijer 2004; Bazlekov, Anderson &
Meijer 2006). A special Lagrangian–Eulerian method was suggested by Luo, Shang & Bai
(2019).
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The goal of the present paper is the analytical and numerical investigation of gas bubble
oscillations within a viscous liquid in the presence of an insoluble surfactant. The finite
viscosity and density of the gas in the bubble are taken into account. A novel numerical
approach for the computation of finite-amplitude bubble oscillations is suggested. The
physical formulation of the problem and the characteristic non-dimensional parameters are
presented in § 2. In § 3, the mathematical formulation of the problem for small-amplitude
oscillations is given. The results of the analysis of the dispersion relation that determines
the frequency and damping of oscillations are discussed. Special attention is devoted to
the case of small but finite viscosities of the liquid and the gas. The influence of the Gibbs
elasticity, surface diffusion and interfacial viscosities is investigated in detail. In § 4, the
results of numerical simulations of the full nonlinear system of equations are presented and
compared with the predictions of the linear theory. Section 5 contains concluding remarks.

2. Problem formulation
We consider a gas bubble that is spherical at equilibrium with radius R0, suspended in an
unbounded liquid that remains motionless far from the bubble. It is assumed that the force
of gravity is balanced by other forces, such as the force of acoustic radiation, therefore, the
bubble does not rise. The influence of the bubble rising in a viscous liquid (Bozzano &
Dente 2009) on its natural frequencies and damping rates (Lalanne, Tanguy & Risso 2013)
is an important problem, but its consideration is beyond the scope of this paper. The action
of gravity on the droplet shape is neglected, because the capillary constant is much larger
than the radius of the bubble. The compressibility of the gas inside the bubble is neglected,
which is valid when the condition λ2 = 2πc2/ω � R0 is satisfied, where λ2 represents
the acoustic wavelength in the gas calculated using the speed of sound c2 and the cyclic
frequency of the system’s natural oscillations ω.

The material parameters of the media include the liquid density ρ1 and its kinematic
viscosity coefficient ν1, as well as the corresponding parameters for the gas ρ2 and ν2.
Here and subsequently, the index j refers to either the external liquid ( j = 1) or the gas
inside the bubble ( j = 2).

An insoluble surfactant is adsorbed at the gas–liquid interface, with the surface tension
coefficient γ assumed to vary linearly with small deviations Γ ′ of the surfactant surface
concentration from its equilibrium value Γ0,

γ = γ0 +
(

dγ

dΓ

)
Γ =Γ0

Γ ′, (2.1)

where γ0 denotes the equilibrium value of the surface tension coefficient at Γ ′ = 0 (or
Γ = Γ0).

The motion of viscous incompressible media is described by the Navier–Stokes
equations

∂uj

∂t
+ (

uj · ∇)
uj = −∇ pj

ρj
+ νj	uj (2.2)

and the continuity equations

∇ · uj = 0, (2.3)

where t is the time, while uj and pj are the velocity and pressure fields in the media,
respectively.
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The surfactant redistribution along the surface is described by the convective diffusion
equation that accounts for the free surface deformation (Stone 1990; Wong et al. 1996),

∂Γ

∂t
+ ∇s · (Γ us) + Γ ∇s · n (u · n) − u · ∇sΓ = Ds∇2

s Γ. (2.4)

Here Γ is the surface surfactant concentration, Ds is the surface diffusion coefficient,
∇s = (I − nn) · ∇ is the surface gradient operator, us = (I − nn) · u, where u is the
interface velocity, I is the identity matrix and n is the external normal to the liquid
boundary. The partial derivative of Γ with respect to time is calculated in the normal
direction. The second term on the left-hand side describes surfactant convection along the
surface, while the third and fourth terms account for changes in surface concentration due
to local changes in boundary area.

In the depths of its volume, the liquid remains at rest and

u1 → 0. (2.5)

At the interface described by equation G(r, t) = 0, where r is the radius vector, the
kinematic condition

∂G

∂t
+ u1 · ∇G = 0 (2.6)

and continuity condition of velocity

u1 = u2 (2.7)

are set. The stress boundary conditions on the free surface were written as in Nadim (1996),

n · (Π1 − Π2) = −∇s · Πs, (2.8)

where Π1 and Π2 are the stress tensors in the liquid and gas phases, respectively, and Πs
is the surface tensor describing the rheological properties of the interface according to the
Boussinesq–Scriven model (Scriven 1960),

Πs = γ Is + 2ηs Es + ηd Is (∇s · u), (2.9)

where ηs and ηd are the shear and dilatational surface viscosities, Is = (I − nn) is the
surface unit tensor and Es is the surface rate-of-strain tensor defined as

Es = 1
2

{∇s u · Is + Is · (∇s u)T } − 1
2

Is (∇s · u). (2.10)

To express the problem below in a dimensionless form, we choose the equilibrium

bubble radius R0 as the unit of length, the capillary time τ0 =
√

(ρ1 + ρ2)R3
0/γ0 as the unit

of time, the capillary pressure γ0/R0 as the unit of pressure and the equilibrium surfactant
concentration Γ0 as the unit of surface concentration.

The governing dimensionless parameters include the dimensionless densities of the
media,

ρ̃j = ρj

ρ1 + ρ2
, (2.11)

which satisfy the relation ρ̃1 + ρ̃2 = 1. The dissipative parameters for the liquid and gas
are defined as

δ1 = ν1τ0

R2
0

, δ2 = ν2τ0

R2
0

. (2.12)
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Additionally, the parameters that characterize the shear and dilatational surface
viscosities, the dimensionless Gibbs elasticity and the surfactant surface diffusion are
given by

hs = ηsτ0

(ρ1 + ρ2) R3
0
, hd = ηdτ0

(ρ1 + ρ2) R3
0
, (2.13)

k =
(

dγ

dΓ

)
Γ =Γ0

Γ0

γ0
, ds = Dsτ0

R2
0

. (2.14)

The dissipative parameters δj are defined as the inverse Reynolds numbers and specify
the ratio of viscous forces to inertial forces. In the same way, the parameters of shear hs
and dilatational hd surface viscosities give similar ratios, but for surface viscous stresses.
As noted by Tian et al. (1995), the dilatational surface viscosity is usually much larger than
the shear surface viscosity (ηd � ηs) for a soluble surfactant (they can be compatible for
insoluble surfactants). According to Karapantsios & Kostoglou (1999) for a monolayer of
stearic acid ηd = 1.5 × 10−3 N s m−1. Then for the millimetre-sized air bubbles of interest
to us in water, δ1 ∼ 0.005 and hd ∼ 15. Note that the parameters of shear hs and dilatational
hd surface viscosities increase with decreasing bubble radius R0 faster than the dissipative
parameters δj . Thus, for small gas bubbles, the role of surface viscosities increases. As
mentioned in Lu & Apfel (1990), the surface diffusion coefficient is Ds ∼ 10−7 m2 s−1.
Therefore, for millimetre bubbles ds ∼ 5 × 10−4.

It can be shown that, when the dependence of surface tension on surfactant
concentration follows Henry’s linear law,

γ = γpure − RgT Γ, (2.15)

then

k = −Ma, (2.16)

where the Marangoni number

Ma = RgT Γ0

γ0
(2.17)

is expressed in terms of the universal gas constant Rg , the absolute temperature T and the
equilibrium surface tension coefficient γ0, related to the surface tension coefficient in the
absence of surfactant γpure by

γ0 = γpure − RgT Γ0. (2.18)

3. Small-amplitude oscillations of the system

3.1. Governing equations and boundary conditions
Let us first consider small-amplitude oscillations of the system. In this case, the flow
induced by oscillations is described by linearized Navier–Stokes equations for viscous
incompressible media,

∂uj

∂t
= −∇ pj

ρ̃j
+ δj	uj , (3.1)

and the continuity equations (2.3).
The origin O of the spherical coordinate system {O; r, ϑ, φ} is placed at the centre of

the equilibrium bubble (figure 1). It is known that, in the framework of the linearized
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Figure 1. Configuration and parameters of the problem.

problem (Miller & Scriven 1968), the natural frequencies and damping rates of the non-
symmetric solution with a non-zero azimuthal number for the spherical harmonic coincide
with those obtained for the axisymmetric case. Therefore, for the sake of simplicity, we
further assume that the azimuthal component of the velocity is absent (uφ = 0) and the
derivatives in the corresponding direction are equal to zero (∂/∂φ ≡ 0).

Linearized boundary conditions are written at the unperturbed interface r = 1. These
are the kinematic boundary condition (3.2), the continuity conditions of the velocity field
(3.3) and (3.4), and the balance conditions of the tangential (3.5) and normal (3.6) stresses,
represented taking into account additional terms with the Marangoni force, as well as the
shear and dilatational surface viscosities (Lu & Apfel 1991),

∂ f

∂t
= u1r , (3.2)

u1r = u2r , (3.3)
u1ϑ = u2ϑ, (3.4)[

ρδ

(
1
r

∂ur

∂ϑ
+ ∂uϑ

∂r
− uϑ

r

)]
+ (hs + hd)

1
r2

∂

∂ϑ

(
∂u1ϑ

∂ϑ
+ u1ϑctgϑ

)

+ 2hs
u1ϑ

r2 + 2hd
1
r2

∂u1r

∂ϑ
+ k

1
r

∂Γ ′

∂ϑ
= 0, (3.5)[

p − 2ρδ
∂ur

∂r

]
+ 2hd

1
r2

(
∂u1ϑ

∂ϑ
+ u1ϑctgϑ + 2u1r

)
+ k

2
r
Γ ′

= 2 f + ∂2 f

∂ϑ2 + ctgϑ
∂ f

∂ϑ
. (3.6)

Here, square brackets denote the jump of the corresponding quantity when crossing
from gas to liquid (a quantity related to the gas is subtracted from the quantity related to
the liquid), while f and Γ ′ represent perturbations of the interface shape and the surfactant
surface concentration, respectively, measured from the base state with the spherical bubble
shape (r = 1) and uniformly distributed surfactant. The transport of the latter is governed
by the corresponding linearized equation
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∂Γ ′

∂t
+ 1

r

(
∂u1ϑ

∂ϑ
+ u1ϑctgϑ

)
+ 2

u1r

r
= ds

1
r2

(
∂2Γ ′

∂ϑ2 + ctgϑ
∂Γ ′

∂ϑ

)
. (3.7)

According to Chandrasekhar (1959), the linear problem, (3.1) and (2.3), admits in a
spherical coordinate system a solution of the toroidal type, axisymmetric in our case,
corresponding to the deformation of the shape of the interface, and hence to its capillary
oscillations. Under the condition of the solution being bounded at the centre of the bubble
at r = 0 and decay at infinity at r = ∞, the velocity and pressure fields are found as

ujr = l(l + 1)

r2 Uj (r)Yl (ϑ) exp (−iΩl t) + c.c., (3.8)

ujϑ = 1
r

dUj

dr

∂

∂ϑ
Yl (ϑ) exp (−iΩl t) + c.c., (3.9)

pj = Πj (r) Yl (ϑ) exp (−iΩl t) + c.c., (3.10)

Π1 = A1

rl+1 , (3.11)

Π2 = B1rl , (3.12)

U1 = i

l

A1

ρ̃1Ωl

1
rl

+ A2r
h(1)

l (x1r)

h(1)
l (x1)

, (3.13)

U2 = − i

l + 1
B1

ρ̃2Ωl
r l+1 + B2r

jl (x2r)

jl (x2)
, (3.14)

where Ωl is the dimensionless eigenfrequency for the harmonic with meridional number
l, described by the spherical harmonic function Yl(ϑ). Also,

x1 =
√

iΩl

δ1
, x2 =

√
iΩl

δ2
, (3.15)

and h(1)
l , jl are spherical Hankel and Bessel functions of the first kind, respectively.

It should be noted that, according to Prosperetti (1980), the selection of bounded
solutions (3.13) and (3.14) assumes the condition Re Ωl � 0 for the real part of the
eigenfrequency. Furthermore, by introducing a branch cut along the negative real axis
in the complex plane to ensure an unambiguous definition of the square root, we guarantee
that Im xj � 0. This approach maintains consistency in the mathematical treatment of the
problem while ensuring physically meaningful solutions for the oscillation frequencies
and damping characteristics of the system. The condition on the imaginary part of xj
is particularly important as it directly relates to the viscous dissipation mechanisms in
both the liquid and gas phases, which fundamentally influence the bubble’s oscillation
dynamics.

The deviation of the bubble surface from a spherical shape r = 1 and, accordingly, the
disturbances of the surface concentration of the surfactant are represented as

f = FYl (ϑ) exp (−iΩl t) + c.c., (3.16)
Γ ′ = ΛYl (ϑ) exp (−iΩl t) + c.c. (3.17)

By substituting expressions (3.8)–(3.17) into relations (3.2)–(3.7) and performing
appropriate transformations, we arrive at a system of linear algebraic equations for the
amplitudes A1, A2, B1, B2 and F ,
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(l + 1)
i

ρ̃1Ωl
A1 + l (l + 1) A2 + iΩl F = 0, (3.18)

1
l

i

ρ̃1Ωl
A1 + A2 = − 1

l + 1
i

ρ̃2Ωl
B1 + B2, (3.19)

i

ρ̃1Ωl
A1 − {Q (x1) + 2} A2 = i

ρ̃2Ωl
B1 − {P (x2) + 2} B2, (3.20)

{M + 2 (l + 1) H2} i

ρ̃1Ωl
A1 − {i ρ̃1Ωl + M Q (x1) − 2 (l − 1) (l + 2) H1} A2

+
{

2 (l − 1)
iδ2

Ωl
B1 + i ρ̃2Ωl + 2ρ̃2δ2 P (x2) − 2 (l − 1) (l + 2) ρ̃2δ2

}
B2 = 0, (3.21){

1 + 2 (l + 1) (l + 2) H2
i

ρ̃1Ωl

}
A1 − 2l (l + 1) H2 Q (x1) A2 −

{
1 + 2l (l − 1)

iδ2

Ωl

}
B1

+ 2l (l + 1) ρ̃2δ2 P (x2) B2 + (l − 1) (l + 2) F = 0, (3.22)
where

M = l (l + 1) (H2 − H1) + 2H1, H1 = ρ̃1δ1 − hs,

H2 = ρ̃1δ1 + hd + k

iΩl − l (l + 1) ds
, (3.23)

Q (x1) = l − 1 − x1h(1)
l+1 (x1)

h(1)
l (x1)

, P (x2) = l − 1 − x2 jl+1 (x2)

jl (x2)
. (3.24)

As in Prosperetti (1980), the Hankel and Bessel function ratios in Q(x1) and P(x2) were
computed using the following recurrence relations:

Q (x1) = l − 1 − H̃ (l + 1/2, x1), P (x2) = l − 1 − x2
2

J̃ (l + 3/2, x2)
, (3.25)

where

H̃ (ν, x) =
⎧⎨
⎩

1 − i x, ν = 1/2

2ν − x2

H̃ (ν − 1, x)
, otherwise,

(3.26)

J̃ (ν, x) =
⎧⎨
⎩

x cot x, ν = 1/2
x2

2 (ν − 1) − J̃ (ν − 1, x)
, otherwise.

(3.27)

The homogeneous system of linear algebraic equations (3.18)–(3.22) has non-trivial
solutions when its determinant equals zero. This condition determines the complex
eigenfrequencies of bubble oscillations Ωl as functions of the problem parameters. If it
is necessary to exclude the influence of a light internal medium, when ρ̃1 = 1 and ρ̃2 = 0,
then it is necessary to drop relations (3.19) and (3.20), and in the remaining equations
(3.18), (3.21) and (3.22) set the amplitudes B1 and B2 equal to zero.

The eigenfrequencies were determined both analytically and numerically. In the latter
case, the determinant of system (3.18)–(3.22) or the reduced system was found using
Gaussian elimination with pivoting. The requirement of vanishing real and imaginary
parts of the complex determinant leads to a system of two dispersion relations. Its
solutions for the real part (oscillation frequency) and imaginary part (damping rate) of
the eigenfrequency were determined numerically using the Newton–Raphson method.
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According to the remarks (Prosperetti 1980) on the spherical Hankel function, the
presence of an external medium makes the number of possible solutions of the system
of transcendental algebraic equations finite (this is infinite for the configuration of a drop
in a vacuum when ρ̃2 = 1 and ρ̃1 = 0). Among numerical solutions, those showing the
least damping were selected. The obtained results are presented in the following section.

3.2. Results

3.2.1. Estimates for the case of small bulk viscosity
It is evident that small viscosities of the liquid and gas should not significantly affect the
capillary oscillations of the system. Therefore, the main part of the eigenfrequency equals
the Rayleigh frequency (Lamb 1932),

Ωl0 =
√

l(l2 − 1)(l + 2)

lρ̃1 + (l + 1)ρ̃2
. (3.28)

However, the correction 	Ωl = Ωl − Ωl0 may become noticeable at finite values of the
surface viscosity parameters hs and hd , as well as in several other situations discussed
below.

In the case when δj → 0 and Ωl ≈ Ωl0, the following asymptotic formulae can be used:

Q (x1) ≈ i x1 + . . . , (3.29)
P (x2) ≈ −i x2 + . . . . (3.30)

Analysis of the system (3.18)–(3.22) revealed several limiting cases for which
approximate estimates of the correction 	Ωl can be obtained:

(i) first, with the dominance of Gibbs elasticity or dilatational surface viscosity, if hs 	
1, hd ∼ 1 or |k|/(Ωl0)ρ̃2=0 ∼ 1 and ds � 1, then

(	Ωl)ρ̃2=0 ≈ −1 + i

2
√

2

(l + 2)2

l

√
(Ωl0)ρ̃2=0

√
δ1 − 2 (l − 1) (l + 2)

l
ihs; (3.31)

(ii) second, if shear surface viscosity dominates and hs ∼ 1, hd 	 1, |k|/(Ωl0)ρ̃2=0 	 1
and ds 	 1, then

(	Ωl)ρ̃2=0 ≈ −1 + i

2
√

2
l
√

(Ωl0)ρ̃2=0
√

δ1 − 2 (l + 1)

(Ωl0)ρ̃2=0
k − 2 (l + 1) ihd; (3.32)

(iii) third, if the complicating factors are small as hs, hd , |k|/(Ωl0)ρ̃2=0, ds 	 √
δ1, then

(	Ωl)ρ̃2=0 ≈ − (2l + 1) (l + 2) iδ1 − 1
2

l + 2
l − 1

(Ωl0)ρ̃2=0 k

− 1
2

l (l − 1) (l + 2) ihs − 1
2

(l + 1) (l + 2)2 ihd . (3.33)

In all three expressions presented above, the dynamic effect of gas in the bubble was
neglected (ρ̃2 = 0). Here, the real part of the correction 	Ωl indicates the shift in the
eigenfrequency of oscillations, while the imaginary part relates to the damping rate taken
with the opposite sign (see (3.8)–(3.10), (3.16) and (3.17)).

The expression for the Rayleigh frequency for the light bubble configuration is used
above,

(Ωl0)ρ̃2=0 =
√

(l2 − 1)(l + 2), (3.34)
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with which the correction (	Ωl)ρ̃2=0 should be summed up in the three approximations
(3.31)–(3.33).

If the gas density in the bubble is considered non-zero, the contributions (3.31)–(3.33)
should be corrected as follows:

(i) for the first case,

	Ωl ≈ (	Ωl)ρ̃2=0 − 1 + i

2
√

2

(l − 1)2

l

√
(Ωl0)ρ̃2=0 ρ̃2

√
δ2; (3.35)

(ii) for the second case,

	Ωl ≈ (	Ωl)ρ̃2=0 − 1 + i√
2

(l + 1)2

l3/2
1√

(Ωl0)ρ̃2=0
ρ̃2

√
δ2; (3.36)

(iii) for the third case,

	Ωl ≈ (	Ωl)ρ̃2=0 − 1 + i

2
√

2

(2l + 1)2

l

√
(Ωl0)ρ̃2=0 ρ̃2

√
δ2. (3.37)

And they are already summed up with the full Rayleigh frequency Ωl0 (see (3.28)).
From expressions (3.35) and (3.36), it follows that the influence of gas is small due to the
parameter ρ̃2 ≈ 0 compared with the liquid contribution from (3.31) and (3.32) and can be
neglected. In expressions (3.33) and (3.37), the linear contribution of liquid viscosity must
be compared with the root contribution of gas viscosity.

It is known that when deriving approximation relations for the correction to the natural
frequency and the damping rate for the case of an interface between two media, it is
important to know the order of magnitude of the ratios of their densities and viscosities.
This is emphasized, for example, in Lu & Apfel (1991), where the corresponding
asymptotic formulae are obtained, but only for comparable dynamic properties of the
media. In the present work, the internal medium was initially considered a gas with
negligible density and viscosity. This allows us to exclude it from consideration at the
stage of deriving the dispersion relation, to which the technique of expansions in series
in a small parameter was then applied. Note (Miller & Scriven 1968) that the presence of
surfactants promotes a root damping law in viscosity, which in its absence is typical for
the interface between two liquids.

The asymptotic formulae in the present paper, (3.31) and (3.32), were found to be
consistent with the asymptotic expressions available from Lu & Apfel (1991), in which
the density and viscosity of the internal medium formally tend to zero. Additionally, the
contribution of the shear surface viscosity was included in (3.31), and the contribution of
the dilatational surface viscosity was included in (3.32).

The case of (3.33) in the present work should be mentioned separately. Here, the
parameters of the Gibbs elasticity, as well as the shear and dilatational surface viscosities,
were considered to be simultaneously small, which ensures a linear contribution to the
correction to the natural frequency in the viscosity of the liquid. At the same time, for the
case of two media with comparable dynamic properties considered in Lu & Apfel (1991),
the contributions of their viscosities were root-valued even with such a weak influence of
the surfactant. In terms of the contributions of the surface viscosities, (3.33) corresponds
to the expression from Lu & Apfel (1991).

If it is necessary to take into account the viscous contribution of the light gas in the
bubble, it is necessary to return to the general dispersion relation for the two media. Such
contributions (see (3.35)–(3.37)) turn out to be proportional to the square root of the gas
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Figure 2. Dependences of the frequency shift (a) and damping rate (b) on the dissipative parameters of the
media, when δ1 = δ2. The relative density of the light phase is ρ̃2 = 0.01, the meridional number is l = 2 and
the Gibbs elasticity parameter is k = 0. The surface viscosity parameters are hs = 1 and hd = 0. The surface
diffusion parameter is ds = 0. The solid line presents the numerical calculation. The dashed line shows the
summary result of the asymptotic formulae (3.32) and (3.36). The long-dash line presents the corresponding
approximation relation in Lu & Apfel (1991).

viscosity and to the relative gas density. Qualitatively, they coincide with the asymptotic
expressions available from Lu & Apfel (1991). Complete quantitative correspondence is
possible for (3.35) and (3.37), but not for (3.36). A comparison of the above approximation
relations and numerical calculation data is shown in figure 2(a,b).

As seen from (3.31)–(3.33), the transition to a square root dependence on liquid viscosity
for the damping law, caused by surfactants, is typically accompanied by a decrease
in the eigenfrequency. This trend is counteracted by the contribution proportional to
the dimensionless Gibbs elasticity k < 0, which, conversely, can lead to an increase in
frequency. The small shear hs and dilatational hd surface viscosities associated with
surfactants increase the damping rate but either does not affect or weakly affects the
frequency.

If we assume that the surface viscosity parameters hs and hd and the dimensionless
Gibbs elasticity k remain finite, while the surfactant surface diffusion parameter ds = 0,
then setting the determinant of system (3.18)–(3.22) to zero in the leading order with
respect to δj yields a simplified dispersion relation,

(aΩl + 1)
(
Ω2

l − Ω2
l0

) + bΩ2
l + cΩl = 0. (3.38)

Here

a = l (l + 1) (hs + hd) − 2hs

l (l + 1) k
i, b = −4 (l − 1) (l + 2)

lρ̃1 + (l + 1) ρ̃2

hshd

k
, (3.39)

c = 4 (l − 1) (l + 2) hs

lρ̃1 + (l + 1) ρ̃2
i. (3.40)

A particular case of (3.38) for the configuration of a liquid droplet suspended in a
vacuum, where ρ̃2 = 1 and ρ̃1 = 0, can be found in Lyubimov et al. (2011).

Figure 3 shows a shaded region in the surface viscosity parameter space (hs − hd )
where all solutions of (3.38) are non-oscillatory for the case of light bubble, when ρ̃1 = 1
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Figure 3. The region of non-oscillatory solutions of (3.38) for the light bubble.
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Figure 4. Dependences of the oscillation frequency (a) and damping rate (b) on the shear surface viscosity
parameter. The dissipative parameter is δ1 = 0.001, the dilatation surface viscosity parameter is hd = 2, and
the surface diffusion parameter is ds = 0. The dashed and long-dash lines show the results of the asymptotic
formula (3.38). Solid lines ‘1’ and ‘2’ present two numerical solutions.

and ρ̃2 = 0. Here, the meridional number is taken as l = 2, and the dimensionless Gibbs
elasticity equals k = −1. The numerical results presented in figures 4(a,b) and 5(a,b)
demonstrate that non-oscillatory damping is unattainable. For a fixed meridional number,
no more than two solutions of the dispersion relation can be distinguished, which are
approximately described by (3.38). The solution presented by lines ‘1’ in the figures can be
called capillary, and the solution shown by lines ‘2’ is associated with the Gibbs elasticity
and is absent for the parameter k = 0. Such solutions are characterized by a non-zero real
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Figure 5. Dependences of the oscillation frequency (a) and damping rate (b) on the shear surface viscosity
parameter. The dissipative parameter is δ1 = 0.001, the dilatation surface viscosity parameter is hd = 0.1 and
the surface diffusion parameter is ds = 0. The dashed and long-dash lines show the results of the asymptotic
formula (3.38). Solid lines ‘1’ and ‘2’ present two numerical solutions.

part of the eigenfrequency, which always tends to zero with increasing surface dissipation
for the ‘elastic’ solution 2 and can remain finite for the capillary solution 1 (see figure 5a).
Also, the solutions can alternate in the magnitude of their damping decrement. So that the
solution related with the Gibbs elasticity may become the least rapidly decaying.

As a result of the approximation, the ratio of the spherical Hankel functions of the first
kind disappears from the simplified dispersion relation (3.38). This ratio is complex for
the real argument. The latter would correspond to the non-oscillatory regime. According
to Prosperetti (1980), the presence of this ratio excludes the possibility that non-oscillatory
solutions would be exact solutions of the general dispersion relation for a configuration
with an external media, where the general expression for the velocity includes the indicated
Hankel function.

3.2.2. Numerical data for cases of small and finite viscosities
Let us analyse the influence of Gibbs elasticity on the shift of the eigenfrequency
(figure 6a) and the damping rate (figure 6b). The quadrupole mode with meridional
number l = 2 was considered. A sufficiently small dissipative parameter for the liquid
δ1 = 0.001 was taken. For the gas in the bubble, ρ̃2 = 0 was assumed. Surface viscosity
and diffusion were excluded from this consideration (ds, hs, hd = 0). Calculations show
that the capillary mode remains the least rapidly damping. The dashed lines in the figures
show estimate (3.31) at finite values of the Gibbs elasticity parameter k and small liquid
viscosity δ1 → 0. The long-dash lines show a similar estimate (3.33) for small k. It can
be stated that the asymptotic formulae obtained above have a sufficiently wide range of
applicability.

The maximum damping rate, as well as the real part of the eigenfrequency, is observed
at sufficiently small absolute values of parameter k (figure 6b). Then, as |k| increases, the
surfactant effect weakens and then reaches saturation. However, at finite |k|, the damping
rate remains greater, and the real part of the eigenfrequency smaller, than in the case
without surfactant.
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Figure 6. Dependences of the frequency shift (a) and damping rate (b) of the capillary mode on the Gibbs
elasticity parameter. The dissipative parameter is δ1 = 0.001.
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Figure 7. Dependences of the oscillation frequency (a) and damping rate (b) of the capillary mode on the
Gibbs elasticity parameter. The surface diffusion parameter takes values ds = 0 (curve 1), ds = 1 (2), ds = 10
(3) and ds = 100 (4).

Figure 7(a,b) show the dependences of the eigenfrequency and damping rate on the
Gibbs elasticity parameter k for different values of the surface diffusion parameter ds . It
can be seen that as the latter increases, when the surface concentration of surfactant levels
out faster along the interface, the influence of Gibbs elasticity on the characteristics of
free oscillations of the system decreases. It can be expected that the same effect would be
produced by redistribution of surfactants in the volume of liquid.

As shown in figure 8(a,b), constructed at ds = 0, the situation becomes more
complicated at a slightly larger value of the dissipative parameter δ1 = 1/300. In this
case, a competition arises between two solutions of the dispersion relation, obtained at
a fixed meridional number l = 2 and showing alternately the least damping, which are
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Figure 8. Dependences of the oscillation frequency (a) and damping rate (b) on the Gibbs elasticity
parameter. The dissipative parameter is δ1 = 1/300. Solid lines ‘1’ and ‘2’ represent two different modes.
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Figure 9. Dependences of the oscillation frequency (a) and damping rate (b) on the Gibbs elasticity
parameter. The dissipative parameter is δ1 = 1. Solid lines ‘1’ and ‘2’ represent two different modes.

presented in the figures by solid lines. The capillary mode shown by lines ‘1’ in the figures
becomes more rapidly damping, as the value |k| increases, than the mode related to Gibbs
elasticity, shown by lines ‘2’. The latter solution can be creeping, that is, it can demonstrate
a small eigenfrequency and weak damping. Figure 8(a) shows the existence of a finite gap
between the eigenfrequencies of the two solutions, even when their damping rates coincide
(figure 8b).

Let us analyse the case of a finite value of the dissipative parameter δ1 = 1 (figure 9a,b).
In this case, the mode related to Gibbs elasticity, shown by lines ‘2’ in the figures, always
has the least damping compared with the capillary mode shown by lines ‘1’. Also, as can
be seen from figure 9(a), the real part of the eigenfrequency for the two modes behaves
differently as |k| increases.
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Figure 10. Dependences of the oscillation frequency (a) and damping rate (b) on the shear surface viscosity
parameter hs for the ‘elastic’ mode. The Gibbs elasticity parameter is k = −1, and the dissipative parameter
is δ1 = 1/300. The dilatational surface viscosity parameter takes values hd = 0 (curve 1), hd = 0.1 (2) and
hd = 1 (3).
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Figure 11. Dependences of the oscillation frequency (a) and damping rate (b) on the dilatational surface
viscosity parameter hd for the ‘elastic’ mode. The Gibbs elasticity parameter is k = −1, and the dissipative
parameter is δ1 = 1/300. The shear surface viscosity parameter takes values hs = 0 (curve 1), hs = 0.1 (2) and
hs = 1 (3).

Figures 10(a,b) and 11(a,b) show the dependences of the eigenfrequency and damping
rate (for the least rapidly damping mode that interests us) on the parameters of shear hs
and dilatational hd surface viscosities. Here, the Gibbs elasticity parameter is taken as
k = −1, the dissipative parameter equals to δ1 = 1/300, and the surface diffusion factor
is ds = 0. With this choice of parameters, figures 12(a,b) and 13(a,b) demonstrate that the
mode related to the Gibbs elasticity is the least rapidly damping. Regarding the damping
rate (figure 10b and 11b), the same type of dependence on surface viscosities is found as
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Figure 12. Dependences of the oscillation frequency (a) and damping rate (b) on the shear surface viscosity
parameter hs . The Gibbs elasticity parameter is k = −1, the dissipative parameter is δ1 = 1/300 and the
dilatation surface viscosity parameter is hd = 0. Solid lines ‘1’ and ‘2’ represent two different modes.
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Figure 13. Dependences of the oscillation frequency (a) and damping rate (b) on the dilatation surface
viscosity parameter hd . The Gibbs elasticity parameter is k = −1, the dissipative parameter is δ1 = 1/300
and the shear surface viscosity parameter is hs = 0. Solid lines ‘1’ and ‘2’ represent two different modes.

on parameter k, where reaching a maximum is replaced by weakening and saturation of
the effect. The real part of the eigenfrequency (figures 10a and 11a) can either decrease or
increase with increasing surface viscosities.

Figures 14(a,b) and 15(a,b) were constructed for the dissipative parameter δ1 = 0.001,
the surface diffusion factor ds = 0 and the Gibbs elasticity parameter k = −0.05. The
latter approximately corresponds to the maximum effect of Gibbs elasticity according to
figure 6(a,b). Qualitatively, the same results are demonstrated as in the case of the previous
drawings.
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Figure 14. Dependences of the oscillation frequency (a) and damping rate (b) on the shear surface viscosity
parameter hs for the least rapidly damping mode. The Gibbs elasticity parameter is k = −0.05, and the
dissipative parameter is δ1 = 0.001. The dilatation surface viscosity parameter takes values hd = 0 (curve 1),
hd = 0.1 (2) and hd = 1 (3).
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Figure 15. Dependences of the oscillation frequency (a) and damping rate (b) on the dilatational surface
viscosity parameter hd for the least rapidly damping mode. The Gibbs elasticity parameter is k = −0.05, and
the dissipative parameter is δ1 = 0.001. The shear surface viscosity parameter takes values hs = 0 (curve 1),
hs = 0.1 (2) and hs = 1 (3).

It can be said that there are two regimes. In the first regime, the damping rate, as well
as the real part of correction to the eigenfrequency, change quite rapidly with an increase
in some parameter associated with the surfactant, be it the absolute value of the Gibbs
elasticity (figure 6a,b), or the shear surface viscosity (figure 10a,b) or the dilatational
surface viscosity (figure 11a,b). The reason is that the Marangoni force, as well as the
surface viscous stresses, affects the pressure field, which is included in the condition of the
balance of normal stresses, which leads to the change of the eigenfrequency of the system.
With a further increase in the parameters, the saturation regime appears, the transition to
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r

ϕ

τ

n

z

Figure 16. The computational domain.

which occurs, as a rule, through passing the maximum. Here, the velocity field on the
interface changes in such a way as to reduce the Marangoni force or the surface viscous
stresses. Thus, the shear surface viscosity factor is weakened if the tangential component of
the velocity on the interface tends to zero. However, this gives the interface the properties
of a membrane, which leads to an increase in vorticity near the boundary, which turns out
to be significantly greater than in the case of a free surface without any surfactant. Such
a solution through the term containing viscous stresses in the condition of the balance of
normal stresses also leads to a change of the eigenfrequency.

4. Direct numerical simulation based on full nonlinear equations

4.1. Mathematical model
This section is devoted to direct numerical simulation of natural oscillations of a gas
bubble in a viscous liquid with insoluble surfactant at the gas–liquid interface. The
numerical simulation was performed for a domain representing a circular cylinder with
the bubble located along its axis. The distance from the sidewalls of the cylinder to the
bubble was chosen sufficiently large to exclude their influence on the flow near the bubble
(approximately 15 radii). A computational experiment showed that the value of the velocity
components at a distance of 12 radii does not exceed 10−6. Calculations were carried out
within an axisymmetric approach, in which case the computational domain represents
a rectangle (figure 16). The numerical solution of the problem under consideration in
a full three-dimensional formulation, allowing for asymmetric oscillation modes, is a
rather labour-intensive task. The main difficulty is associated with the development of
a computational algorithm with explicit identification of the shape of the interphase
boundary (tracking method), which will allow for dynamic boundary conditions on it.
The ‘volume of fluid’ and ‘level set’ algorithms (capture method), which are widely used
in computational fluid dynamics, are not capable of solving problems with the boundary
conditions used in this work.

The motion of the liquid phase was described by the Navier–Stokes (2.2) and continuity
(2.3) equations, which are projected onto the axes of the cylindrical coordinate system
{r, z} (figure 16).

The gas in the bubble was considered ideal and described by the Mendeleev–Clapeyron
equation of state
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pV = RgT, (4.1)

where Rg (J mol−1 K−1) is the universal gas constant, T (K ) is the temperature and
V (m3) is the volume of the gas bubble. The viscosity of the gas in the bubble is neglected.
The boundary conditions at the interface include (2.6)–(2.10), written in projections on the
axes of the Cartesian coordinate system {n, τ } (figure 16), normally associated with the
free surface. As a result, the conditions of balance of normal and tangential stresses on the
free surface in dimensionless form are written as

p2 − p1 + 2δ1
∂un

∂n
= −γ (K1 + K2) − {K1 (hs + hd) − K2 (hτ − hd)}

(
∂uτ

∂τ
+ un K1

)

+ {K1 (hs − hd) − K2 (hs + hd)} ur

r
, (4.2)

δ1

(
∂uτ

∂n
+ ∂un

∂τ
− uτ K1

)
= ∂

∂τ

{
γ + (hs + hd)

(
∂uτ

∂τ
+ un K1

)
− (hs − hd)

ur

r

}

+ 2hs

(
∂uτ

∂τ
+ un K1 − ur

r

) √
1
r2 − K 2

2 , (4.3)

where K1 and K2 are the negative principal curvatures of the concave surface, and γ =
γ /γ0 is a dimensionless coefficient of surface tension. The transport of surfactants along
the boundary is described by (2.4). The tension coefficient is calculated in accordance
with the Henry isotherm, which assumes a linear dependence on the concentration (2.15).
We do not use the more general Langmuir law, since we believe that even in the numerical
solution, the deviations of the surface tension coefficient from its equilibrium value are
small and obey a linear dependence on the surface concentration of the surfactant.

On the walls of the cylinder, no-slip conditions are specified, and on the axis of
symmetry, symmetry conditions are specified. At the initial moment of time, the bubble
has the shape of a flattened ellipsoid and is in a liquid at rest. The dimensionless semiaxes
of the ellipsoid are equal (1 − Δ) and (1 − Δ)−0.5, where Δ is a geometric parameter. The
surfactant is distributed uniformly along the boundary with a concentration of Γ0.

4.2. Numerical method
The numerical solution of the problem was conducted using an original Lagrangian–
Eulerian computational technique. The solution domain was covered with a fixed staggered
grid with non-uniform spacing. The grid spacing was refined in the vicinity of the free
surface and gradually increased with distance from it. The phase interface was represented
as an ordered set of marker particles that served as nodes of a moving computational grid.

The equations of motion (2.2) and continuity (2.3) were discretized using the finite
volume method, with the SIMPLE (semi-implicit method for pressure-linked equations)
algorithm (Patankar 1980) employed for pressure–velocity coupling. Three types of
control volumes were identified in the domain: those not containing the liquid phase where
computations were not performed; complete control volumes where standard calculations
were carried out; and partially filled control volumes through which the free surface
passed. Calculations in the latter required the construction of irregular control volumes
and the use of values of the computed variables from the interface.

The computation of characteristics on the free surface was performed in two stages.
At the first stage, a local Cartesian coordinate system associated with the boundary was
introduced at each point of the surface. The equations for stresses (4.2) and (4.3) and
the continuity (2.3) were projected onto its axes, and their finite-difference analogues
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Figure 17. Temporal dependences of the velocity of the south pole (a), the total amount of surfactant on the
surface (b) and the distribution of surface concentration (c) at t = 0.5. Here δ1 = 1/300, ds = 1.176 × 10−6,
k = −1, hs = 0.5 and hd = 0.5. Δ = 0.005 (1, 2, 3, 4 are h = 1/20, 1/40, 1/80, 1/160).
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Figure 18. Temporal dependences of the velocity of the south pole (a), the total amount of surfactant on the
surface (b) and the distribution of surface concentration (c) at t = 0.5. Here δ1 = 1/300, ds = 1.176 × 10−6,
k = −1, hs = 0, and hd = 0. Δ = 0.005 (1, 2, 3, 4 are h = 1/20, 1/40, 1/80, 1/160).

were obtained using a finite-difference approach. The discretized continuity equation
and the balance of tangential stresses were used to determine the normal and tangential
components of velocity, while the equation for the balance of normal stresses was used to
determine the pressure. At the second stage, the convective diffusion (2.4) was discretized,
and the surface concentration was calculated. This implementation of direct numerical
simulations is valid only for zero viscosity of the dispersed phase, but the conditions for
normal and shear stresses at the interphase boundary are explicitly satisfied, taking into
account dependence of gas pressure on bubble volume.

The movement of marker particles was carried out in accordance with the finite-
difference analogues of the kinematic boundary conditions. The free surface is
approximated using a cubic spline, the coefficients of which are calculated according to
the method described in Zav’ialov et al. (1980). In this case, the polar coordinate system
is used. When calculating the curvature of the surface, the first and second derivatives
are determined using a spline. During the deformation of the boundary over time, areas
with local clustering or rarefaction of markers could form on it, which adversely affected
the stability of the numerical calculation. In this regard, a procedure for redistributing
markers was periodically performed using the mentioned spline with an interval of 0.25
dimensionless time units.

Tests were performed to verify the approximation convergence on a sequence of grids.
The dependences of the velocity of the south pole on time, calculated on different grids,
for the case with and without surface viscosity are shown in figures 17(a) and 18(a),
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hs = 0.5, hd = 0.5 hs = 0, hd = 0

h t1 V1 t2 V2 t1 V1 t2 V2

1/160 0.49034 −0.00604 1.98537 0.000535 0.6378 −0.00992 2.05365 0.007148
1/80 0.49537 −0.00612 1.99756 0.000412 0.6206 −0.01013 2.04104 0.007492
1/40 0.51448 −0.00627 2.05507 0.000225 0.66646 −0.00946 2.1018 0.007377
1/20 0.65528 −0.0066 2.12478 0.000051 0.74556 −0.00923 2.33567 0.007786

Table 1. Values of time and velocity at the first two extremum points for different grid spacings.
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Figure 19. Dependence of axial velocity and concentration Γ of the north pole on time. Here δ1 = 1/300,
ds = 1.176 × 10−6, k = −1 and Δ = 0.005. Here (a) hs = hd = 0, (b) 0.2 and (c) are 0.5.

respectively. Table 1 shows the values of time and velocity at the first two extremum
points, demonstrating the convergence of the calculation algorithm. Here, h is the
minimum grid spacing in the vicinity of the bubble. It can be seen that the proposed
computational technique demonstrates an order of accuracy not lower than the first. All
further calculations were performed on a grid with spacing h = 1/80.

Figures 17(b) and 18(b) show a graph of the temporal behaviour of the total amount of
surfactant, i.e. the integral of the surfactant concentration Γ1 over the bubble surface. This
demonstrates the fulfilment of the conservation law. The characteristic Γ1 is calculated
as a surface integral of the concentration Γ over the interface, computed using the
rectangle method. The step-like changes in the characteristics on coarse grids occur at the
step of performing the procedure for redistributing the markers. Figures 17(c) and 18(c)
illustrate the distribution of the surface concentration of surfactant along the free surface.
The coordinate ϕ is the angle by which the polar axis must be rotated anticlockwise in
order to reach the current point of the free boundary. The polar axis originates from
a point located midway between the north and south poles and is directed vertically
downward.

4.3. Calculation results
At the initial moment of time, the free surface of the bubble begins to deform under
the action of surface tension forces and the Marangoni effect. Subsequently, the motion
takes on a decaying oscillatory character, illustrated in figure 19, which shows graphs
of the change in axial velocity and surface concentration at the north pole over time. It
can be seen that with increasing values of surface viscosities, both the damping rate and
frequency increase. Thus, the first maximum of speed is achieved at time 0.625, 0.535,
0.47 for the cases in figures 19 (a), 19(b) and 19(c), respectively. During periods when
the velocity Vn has positive values, the bubble deforms from a flattened state (A) to one
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Figure 20. Distributions of tangential velocity (a), normal velocity (b) and concentration (c) along the free
boundary. Here δ1 = 1/300, ds = 1.176 × 10−6, k = −1 and Δ = 0.005 (solid, dot–dash, dashed lines are for
hs = hd = 0, 0.2, 0.5).

elongated along the axis of symmetry (D). The change in concentration for the selected
similarity numbers is mainly associated with local changes in surface area and convective
transport.

When deforming from a flattened state (A) to a state close to spherical (B), the area
of the selected region near the north pole increases, and the concentration consequently
decreases. During deformation from the spherical state (B) to an ellipsoid elongated along
the axis (C), the area continues to increase, while the concentration changes its trend to
increasing due to enhanced convective transport. On the negative sections of Vn (C–D–E),
the picture is exactly the opposite. At the same time, a slight phase difference between
velocity and concentration is observed. Non-zero Marangoni stresses make an additional
contribution to the convective transport of surfactants along the surface, since they are
taken into account through the boundary conditions for the jump in tangential stresses at
the interface. The resulting phase difference is a consequence of the mutual influence of
convective transport and local changes in surface area. In the absence of surface viscosity,
the velocity lags behind the concentration, while with increasing viscosity coefficients hs
and hd the situation changes, and the velocity begins to lead the concentration.

Figure 20 shows the distributions of calculated characteristics on the free surface for
different values of surface viscosity at times corresponding to spherical surface shapes
(point B, figure 19a). It can be seen that with increasing values of hs and hd , the
absolute values of the tangential velocity component decrease, which leads to a weakening
of the convective transport mechanism of surfactant along the surface. Thus, at zero
surface viscosity, the concentration changes due to area change and convective transport
practically balance each other at point B. With increasing surface viscosity, the term
associated with local area changes varies insignificantly, while convective terms decrease,
leading to a phase lag. The velocity distributions at the time when the surface has a
maximally elongated shape along the axis of symmetry (point C, figure 19a) are close
to zero.

The flow kinematics near the bubble at the moment when the surface shape is close to
spherical (point B, figure 19) is demonstrated in figure 21. The flow is characterized by
the formation of two symmetric circulation zones. Calculations showed that accounting
for surface viscosity in the considered range does not qualitatively affect the flow in the
bulk phase.

Figure 22 demonstrates the effect of the initial deviation of the shape from a sphere
on the damping dynamics. It can be seen that changing the parameter Δ in the range
from 0.005 to 0.1 does not significantly affect the values of the damping rate and
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Figure 21. Distribution of radial (a), axial (b) velocity components, pressure (c) and streamlines (d) at
t = 0.6. δ1 = 1/300, ds = 1.176 × 10−6, k = −1, hs = hd = 0 and Δ = 0.005.
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time for different initial surface shapes. Here δ1 = 1/300, ds = 1.176 × 10−6, k = −1 and hs = hd = 0.2 (1, 2,
3, 4, 5 are for Δ = 0.005, 0.01, 0.02, 0.05, 0.1).

oscillation period. The difference in the integral values of the surfactant at the boundary
is explained by the difference in the areas of the initial surface shape. As a result, the radii
of the equilibrium spherical shapes of the bubble will differ depending on Δ, since they
will have different concentrations of the surfactant and, as a consequence, different surface
tension coefficients.

Figure 23(a,b) present a comparison of numerical modelling results with results
obtained within the framework of linear theory for the case of absence of surface viscosity
in terms of natural frequency and damping rate characteristics. The solid and dashed lines
represent two solutions of the linear theory, corresponding alternately to the least rapidly
damping mode regime. Figures 24(a,b) and 25(a,b) demonstrate a similar comparison
taking into account non-zero values of shear hs and dilatational hd surface viscosities. It
is evident that the numerical solution tends to the least rapidly damped mode of natural
oscillations, which is the mode related to the Gibbs elasticity (compare the parameters
used here and data of figures 12b and 13b). The damping rate was determined from the
extremum points on the curve of the dependence of the north pole coordinate on time.
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Figure 23. Dependence of natural frequency (a) and damping rate (b) on the Gibbs elasticity parameter in the
absence of surface viscosity (points are for numerical results, solid and dashed lines are for linear theory). Here
δ1 = 1/300, ds = 1.176 × 10−6 and Δ = 0.005.
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Figure 24. Dependence of natural frequency (a) and damping rate (b) on the shear surface viscosity parameter
hs (points are for numerical results, lines are for linear theory). Here δ1 = 1/300, ds = 1.176 × 10−6, k = −1,
hd = 0 and Δ = 0.005.

For cases with large damping rate values (greater than 1.5), the oscillations damped
quickly enough, making it difficult to extract a sufficient number of points for
approximation. The discrepancies between the theoretical and numerical results become
significant when taking into account hs . The observed discrepancies with increasing
surface viscosity hs are associated with the presence of a nonlinear term in the equation
of balance of tangential stresses (the last term on the right-hand side of (4.3)) in the
formulation for the numerical problem. For the case hs = 0, the results agree qualitatively
and quantitatively.
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Figure 25. Dependence of natural frequency (a) and damping rate (b) on the dilatational surface viscosity
parameter hd (points are for numerical results, lines are for linear theory). Here δ1 = 1/300, ds = 1.176 × 10−6,
k = −1 and Δ = 0.005 (solid, dashed lines are for hs = 0, 1).

5. Conclusions
Taking into account the combined influence of bulk viscosities of the liquid and gas, shear
and dilatational surface viscosities, Marangoni force and surfactant surface diffusion, we
have investigated small capillary oscillations of a gas bubble in a viscous liquid with
insoluble surfactant at the gas–liquid interface. The key dimensionless parameters of the
problem are the Gibbs elasticity, k, the coefficients of surface viscosities, hs and hd , and
the surface diffusion, d.

For small oscillation amplitudes, the problem was reduced to solving linearized
Navier–Stokes equations and continuity equations in spherical coordinates. The boundary
conditions on the bubble surface included the balance of normal and tangential stresses,
the kinematic condition for interface deformation and the surfactant transport equation.
Solutions of toroidal type were sought in the form of spherical harmonics.

The dispersion relation for the complex oscillation frequency was obtained, taking into
account the influence of surface viscosities and Gibbs elasticity. Analytical estimates were
obtained for the frequency shift and damping rate in limiting cases of small viscosities,
where surface effects dominate. It was shown that the gas contribution to dissipation is
negligible due to its much lower density compared with the liquid.

Gibbs elasticity significantly affects the dynamics of the gas bubble. As the absolute
value of the elasticity parameter k increases, the oscillation frequency decreases while the
damping rate grows. Maximum dissipation is observed at moderate absolute values of k,
after which the effect is weakening and saturates. Surface diffusion weakens the influence
of Gibbs elasticity by levelling the surfactant concentration and reducing surface tension
gradients.

The shear hs and dilatational hd surface viscosities increase the damping rate but may
either increase or decrease the oscillation frequency.

The analysis showed that non-oscillatory damping (zero real part of frequency) is
unattainable – even in the limit of large viscosities, a small non-zero frequency persists.

For cases with noticeable viscous dissipation in the liquid, the coexistence of two modes
was discovered: the capillary mode (with high frequency and damping) and a creeping
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‘elastic’ mode (with low frequency and weak damping). The latter is associated with Gibbs
elasticity and may become dominant as the absolute value of parameter k increases due to
its weak damping.

Using an original Lagrangian–Eulerian method, direct numerical simulation of natural
oscillations of a gas bubble in liquid with insoluble surfactant at the interface was
performed, based on full nonlinear equations. The obtained dependences of damping rate
and frequency on Gibbs elasticity and dimensionless parameters of shear and dilatational
viscosities agree well with the results obtained within the linear theory. The distributions
of kinematic characteristics and surfactant surface concentration along the free boundary
and in its vicinity were determined.

The results of this study provide a comprehensive understanding of the complex
interplay between surface rheology, surfactant transport and bulk viscous effects in bubble
dynamics, while establishing the limits of applicability of linear theory through detailed
numerical validation. The developed computational approach enables accurate modelling
of finite-amplitude oscillations with arbitrary surface rheological properties.

A potential application of the obtained results can be the determination of rheological
characteristics of surfactant-covered surfaces, which are very important for planning
experimental studies on the behaviour of liquids containing bubbles, by measurement
of the frequency and the damping rate of shape-changing bubble oscillations. Also, the
present paper can be considered as a starting point for solving the broader problem of the
quantitative description of technological processes involving such liquids, among them the
flotation separation, which is the main method of mineral processing. For that goal, the
analysis has to be extended by the investigation of the influence of bubble rising, which
creates a non-uniform distribution of the surfactant on the bubble surface. It is expected
that bubble oscillations can have a significant effect on the interaction of solid particles
with gas bubbles in that process.
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