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Abstract. We classify generic unfoldings of germs of antiholomorphic diffeomorphisms
with a parabolic point of codimension k (i.e. a fixed point of multiplicity k + 1)
under conjugacy. Such generic unfoldings depend real analytically on k real parameters.
A preparation of the unfolding allows to identify real analytic canonical parameters, which
are preserved by any conjugacy between two prepared generic unfoldings. A modulus of
analytic classification is defined, which is an unfolding of the modulus assigned to the
antiholomorphic parabolic point. Since the second iterate of such a germ is a real unfolding
of a holomorphic parabolic point, the modulus is a special form of an unfolding of the
Écalle–Voronin modulus of the second iterate of the antiholomorphic parabolic germ. We
also solve the problem of the existence of an antiholomorphic square root to a germ of a
generic analytic unfolding of a holomorphic parabolic germ.
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1. Introduction
Antiholomorphic dynamics is developing in parallel with holomorphic dynamics. The
development of holomorphic dynamics has taken off from the fine study of the structure of
the Mandelbrot set for quadratic polynomials by Douady and Hubbard [DH84, DH85]. The
Mandelbrot set was further generalized to multibrot sets for polynomials of higher degree.
However, in the cubic case, the multibrot is not locally connected. To further investigate
the cubic case, Milnor studied real cubic polynomials in 1992 (see [Mi92]). There, a
prototype for the behavior in the bitransitive case was the tricorn, which is the equivalent
of the Mandelbrot set for the antiholomorphic map z �→ z2 + c. The generalization of the
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2 C. Rousseau

tricorn was the multicorn, which appears for z �→ zd + c. This made the link between
holomorphic and antiholomorphic dynamics, and led to an increasing interest in the latter.

Considering holomorphic dynamics, for instance, iterations of quadratic polynomials,
the interesting behavior occurs close to the boundary of the Mandelbrot set. There,
periodic points with rational multipliers (also called resonant periodic points) are dense
and organize the global dynamics. The local study of these periodic points sheds some
light on how this dynamics is organized.

In parallel, a whole chapter of mathematics developed around the classification problem
for singularities in analytic dynamics. Écalle [E85] and Voronin [V81] classified resonant
fixed points of germs of one-dimensional analytic diffeomorphisms

f (z) = exp
(

2πip

q

)
z + zkq+1 + O(zkq+2) (1.1)

up to conjugacy (local changes of coordinates) and derived moduli spaces for these.
The moduli are constructed as follows. While a simple formal normal form exists, the
formal normalizing change of coordinate generically diverges. However, there exists almost
unique normalizing changes of coordinates on sectors covering a punctured neighborhood
of the fixed point. The modulus is given by the mismatch between these almost unique
normalizing changes of coordinates. The moduli spaces are huge, namely functional
spaces, thus highlighting the richness of the different geometric behaviors of these
singularities. Explaining this richness came from two directions. To highlight this, let us
focus on the simplest case of a double singular point, called a codimension 1 parabolic
point (p = q = k = 1 in (1.1)). The normal form in this case is the time-one map of
the flow of a vector field z2/(1 + bz) (∂/∂z). Since a double fixed point can be seen as
the merging of two simple fixed points, it is natural to unfold the germ of an analytic
diffeomorphism in a family splitting the double fixed point into two simple fixed points.
Two independent attempts to understand the dynamics developed in parallel. On the one
hand, there were studies in the parameter directions in which the simple fixed points were
linearizable (see for instance [Ma87, Gl01]). In the neighborhood of each fixed point,
the diffeomorphism is analytically conjugate to the normal form given by the time-one
map of the flow of a vector field (z2 − ε)/(1 + b(ε)z) (∂/∂z). However, generically,
the two normalizations do not match. The mismatch is a modulus of the unfolding for
these parameter values and the limit of this mismatch when the fixed points merge
together is the Écalle–Voronin modulus. This approach could not work in the parameter
directions, where either at least one simple fixed point is not normalizable or the domains
of normalizations have void intersections. A way through came from a visionary idea of
Douady, namely, to normalize the system in some domains that contain sectors at the two
fixed points and whose union covers a punctured neighborhood of the two fixed points.
If the domains are appropriately chosen, then the normalizations are almost unique, thus
allowing to unfold the moduli. This approach was first proposed in the thesis of Lavaurs
[L89] and normalizing coordinates were constructed by Shishikura [S00]. The method
could be generalized to cover all directions in parameter space and led to constructions
of moduli for germs of unfoldings of parabolic points ([MRR94] for the generic case and
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Unfoldings of antiholomorphic parabolic point 3

[Ri08] for the general case). The generalization involves taking domains spiraling when
approaching the fixed points. Furthermore, the moduli space was identified in [CR14].

Generalizations to parabolic fixed points of multiplicity k + 1 (that is, codimension k)
were made possible again through the visionary ideas of Douady, who sensed that the
structure of domains on which to perform the normalizations was linked to the dynamics
of polynomial vector fields P(z)(∂/∂z) on C. In that case, a full generic unfolding involves
k independent parameters. The first step performed by Oudkerk [O99] covered some
directions in parameter space. A few years later, the systematic study of the generic
polynomial vector fields was finalized in [DES05]. Using these results, the methods of
[MRR94] can be generalized to cover the full parameter space. Again, almost unique
normalizations exist on domains that have spiraling sectors attached to two fixed points.
These can be used to define a modulus of analytic classification for generic germs of
unfoldings of parabolic fixed points of codimension k [Ro15]. (Note that [Ri08] treats
the case of 1-parameter unfoldings.) Identifying the moduli space is still open for k > 1.

A similar program can be carried for multiple fixed points (also called parabolic points)
of germs of antiholomorphic diffeomorphisms

f (z) = z ± 1
2zkq+1 + O(zkq+2) (1.2)

and their unfoldings. The analytic classification of such germs was done in [GR21].
The similarities with the holomorphic case come from the fact that the second iterate
of an antiholomorphic map is holomorphic, and hence results on holomorphic parabolic
points are relevant. The differences are at the parameter level. The holomorphic or
antiholomorphic dependence of an antihomorphic diffeomorphism on parameters is not
preserved by iteration. This comes from the fact that the condition for a multiple
fixed point to have multiplicity k + 1 has real codimension k and a generic unfolding
depends real-analytically of k real parameters. The classification problem of codimension 1
unfoldings (parabolic points of multiplicity 2) has been completely studied in [GR23],
including identifying the moduli space.

In this paper, we consider the higher codimension k case. Usually, a conjugacy of
parameterized families of dynamical systems involves a change of parameter, which
governs which member of the first family is conjugate to which member of the second
family. In a generic holomorphic unfolding of a parabolic germ, there is a choice of a
canonical multi-parameter ε = (ε0, . . . , εk−1), which is unique up to the action of the
rotation group of order k. A modulus of analytic classification for such a generic unfolding
gε is given by a measure of how much gε differs from its formal normal form given by the
time one map v1

ε of a vector field

vε = zk+1 + εk−1z
k−1 + · · · + ε1z + ε0

1 + b(ε)zk

∂

∂z
. (1.3)

The normal form is invariant under (z, ε0, . . . , εk−1) �→ (τz, τε0, . . . , τ−(k−2)εk−1),
with τ k = 1. Additionally, in the particular case where b(ε) = b(ε), then for real ε,
there are k invariant lines under the dynamics and each choice of canonical parameter
is associated to an invariant line.
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In the antiholomorphic case, we consider generic unfoldings depending real-analytically
on k real parameters. We show that for k odd, there is a unique choice of canonical
parameters. For k even, the only freedom is the action on parameters of z �→ −z. Hence
(up to conjugating with z �→ −z when k is even), any conjugacy between two unfoldings
must preserve the canonical parameters. Moreover, a change of coordinate and move to the
canonical parameters prepares the family to a form fε naturally, compared with a formal
normal form, where ε = (ε0, . . . εk−1) is a real-analytic multi-parameter. This normal
form is given by σ ◦ v

1/2
ε , where vε is defined in (1.3) and σ is the complex conjugation,

and b(ε) is always real. Note that this normal form has no rotational symmetry (except
under z �→ −z when k is even). Moreover, the real axis is the only invariant line and a
symmetry axis for (1.3).

In practice, to derive a modulus, it is useful to extend ε to C
k and fε antiholomorphically

in the parameter. Then, the diffeomorphism gε = fε ◦ fε is a holomorphic unfolding of a
holomorphic parabolic point of codimension k depending holomorphically on the complex
parameter ε ∈ C

k . A modulus of analytic classification for gε is given by a measure of how
much gε differs from its formal normal form. As a result, a modulus in the antiholomorphic
case is obtained from the fact that two prepared families f1,ε and f2,ε are analytically
conjugate under a conjugacy tangent to the identity if and only if their associated ‘squares’
defined by gj ,ε = fj ,ε ◦ fj ,ε are holomorphically conjugate under a conjugacy tangent to
the identity.

We then consider several applications. As a first one, we derive the necessary and
sufficient condition for the existence of an invariant real analytic curve for real values of the
parameters. Of course, this curve can be rectified to the real axis. In the second application,
we consider the necessary and sufficient conditions under which a germ of a generic
unfolding of a holomorphic parabolic germ gε has an ‘antiholomorphic square root’, that
is, can be decomposed as gε = fε ◦ fε, with fε antiholomorphic. These conditions are just
the unfoldings of the corresponding conditions for the germ at ε = 0 given in [GR21] and
consist in some symmetry property of the modulus. As a particular case, we show that the
quadratic family gε(z) = z + z2 − ε has no antiholomorphic square root for small ε.

As a last application, we consider the map zd + c for c ∈ C, and the associated
multicorn for an integer d ≥ 2. It is known that there are exactly d + 1 values of c for which
there exists a parabolic fixed point of codimension greater than 1 (that is, multiplicity
greater than 2). We show that these points have exact codimension 2 and that the family
zd + c is a generic unfolding of these points.

2. Preparation of the family
2.1. Generalities and notation.

Notation 2.1.
(1) We denote by Ta the translation by a ∈ C.
(2) We denote by σ the complex conjugation z �→ z.
(3) We denote by Dr the disk of radius r.

Definition 2.2. A map f defined on a domain of C is antiholomorphic if ∂f /∂z = 0, which
is equivalent to σ ◦ f being holomorphic.
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Remark 2.3. Let z0 be a fixed point of a antiholomorphic map f. Then, only |f ′(z0)| is an
analytic invariant under analytic changes of coordinates.

Definition 2.4. A multiple fixed point of finite multiplicity of a germ of a holomorphic or
antiholomorphic diffeomorphism is called parabolic. The germ is said to be holomorphi-
cally parabolic or antiholomorphically parabolic.

PROPOSITION 2.5. [GR21] Let z0 be a parabolic fixed point of a germ of an antiholo-
morphic diffeomorphism. Then, there exists a holomorphic change of coordinate in the
neighborhood of z0 bringing the diffeomorphism to the form

f0(z) =

⎧⎪⎪⎨⎪⎪⎩
z + 1

2
zk+1 +

(
k + 1

8
− b

2

)
z2k+1 + o(z2k+1), k odd,

z ± 1
2
zk+1 +

(
k + 1

8
− b

2

)
z2k+1 + o(z2k+1), k even,

with b ∈ R. The integer k > 1 is called the codimension and the number b is the formal
invariant. The same k and b are the codimension and formal invariant of the holomorphic
parabolic germ g0 = f0 ◦ f0.

Remark 2.6. Note that when k is even, if we have the minus sign in f0, then we have the
plus sign in f −1

0 . Hence, we limit ourselves to the plus sign.

In this paper, we consider germs of families of antiholomorphic diffeomorphisms
depending real-analytically on k real parameters and unfolding a parabolic germ of the
form

f0(z) = z + 1
2
zk+1 +

(
k + 1

8
− b

2

)
z2k+1 + o(z2k+1). (2.1)

The germs of families have the form

fη(z) = z +
k+1∑
j=0

aj (η)zj + 1
2
zk+1 + o(zk+1), (2.2)

with aj (0) = 0 and η = (η0, . . . , ηk−1) ∈ (Rk , 0).

Definition 2.7. The family (2.2) is generic if the change of parameters η �→
(Re(a0), . . . , Re(ak−1)) is invertible.

The second iterate gη = fη ◦ fη is an unfolding of the holomorphic parabolic germ
depending on k real parameters, but it will be useful to complexify the parameters. The
following lemma is obvious.

LEMMA 2.8. Let us complexify the parameters η in fη in such a way that fη depends
antiholomorphically on η (that is, ∂fη/∂ηj = 0, j = 0, . . . , k − 1). Then, the map gη

defined for complex η by

gη = fη ◦ fη (2.3)

is a generic full unfolding of g0 depending holomorphically on η ∈ (Ck , 0).

https://doi.org/10.1017/etds.2025.10242 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10242


6 C. Rousseau

Proof. Note that gη depends holomorphically on η. Moreover the aj are antiholomorphic
in η, that is, functions aj (η). Then,

gη(z) = z +
k+1∑
j=0

(2Re(aj (η)) + o(η))zj + zk+1(1 + O(η)) + o(zk+1),

from which the genericity follows.

However, for the time being, we continue with η ∈ (Rk , 0).

LEMMA 2.9. Let f be an antiholomorphic diffeomorphism and g = f ◦ f be its second
iterate. If z0 is a fixed point of f, then g′(z0) ∈ R≥0. If {z1, z2} is a periodic orbit of period 2
of f, then g′(z1) = g′(z2).

Proof. We have g′(z0) = f ′(z0)f ′(z0). Also, g′(z1) = f ′(z2)f ′(z1) and g′(z2) =
f ′(z1)f ′(z2), from which the result follows.

COROLLARY 2.10. Let fη be an unfolding of an antiholomorphic parabolic germ and let
gη = fη ◦ fη be its second iterate. Then, its formal invariant b(η) commutes with σ .

Proof. Let z0, . . . , zk be the fixed points and periodic points of period 2 of fη merging to
the origin for η = 0: these are the fixed points of gη. It is known (see for instance [Ro15])
that b(η) = ∑k

s=0(1/log g′
η(zs)), which is real for real η by Lemma 2.9.

We want to classify germs of unfoldings of antiholomorphic parabolic germs under
conjugacy by mix analytic fibered changes of coordinate and parameters.

Definition 2.11. A change of coordinate and parameter, (z1, η) �→ (z2, ε) = (H(z1, η),
φ(η)), is mix analytic if:
• it is a diffeormorphism defined on a neighborhood Dr × ∏k−1

	=0(−δ	, δ	) of
0 ∈C×R

k , where Dr is the disk of radius r;
• φ depends real-analytically of η;
• H depends holomorphically on z1 and real-analytically on η.

Definition 2.12. Two germs f1,η and f2,ε of unfoldings of antiholomorphic parabolic
germs are conjugate if there exists a mix analytic change of coordinate and parameters
(z1, η) �→ (z2, ε) = (H(z1, η), φ(η)) defined on some R = Dr × ∏k−1

	=0(−δ	, δ	) such
that for all (z1, η) ∈ R,

H(f1,η(z1), η) = f2,φ(η)(H(z1, η)).

2.2. Preparing the family.

THEOREM 2.13. We consider a germ of a generic k-parameter family unfolding an
antiholomorphic parabolic germ of the form (2.2). There exists a mix analytic (fibered)
change of coordinate and parameters (z, η) �→ (Z, ε) transforming (2.2) to

Fε(Z) = Z + Pε(Z)( 1
2 + Qε(Z) + Pε(Z)Rε(Z)),
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Unfoldings of antiholomorphic parabolic point 7

where:
• Pε(Z) = Z

k+1 + ∑k−1
j=0 εjZ

j
and Qε is a polynomial of degree at most k with real

analytic coefficients in ε;
• if Z1, . . . , Zk+1 are the fixed points and periodic points of period 2 of Fε, that is, the

fixed points of Gε = F ◦2
ε , then b(ε) := ∑k+1

s=1(1/log G′
ε(Zs)) is real analytic with real

values;
• if vε = Pε(Z)/(1 + b(ε)zk) (∂/∂z), then log F ′

ε(Zs) = 1
2v′

ε(Zs) for s = 1, . . . , k + 1.

Proof. Let us consider the fixed points of fη. Taking z = x + iy, this leads to the two
equations

0 =
k+1∑
j=0

Re(aj )(x
j + y2O(|x, y|j−2)) + 1

2
xk+1(1 + O(η) + O(x)) + y2O(|x, y|k−1)

+
k−1∑
j=1

Im(aj )y O(|x, y|j−1) + · · · , (2.4)

0 = −2y + O(η) + o(|x, y|),
where coefficients of terms with negative exponent vanish. The second equation can be
solved by the implicit function theorem, yielding y = h(η, x) = O(η) + o(x), with h real
analytic in (x, η). Replacing this in the first equation yields

0 =
k∑

j=0

(Re(aj ) + O(|a0|, . . . , |aj−1|) + o(η))xj

+ 1
2
(1 + O(η))xk+1 + o(xk+1).

(2.5)

By the Weierstrass preparation theorem in the real analytic case, then (2.5) is equivalent to
P0,η(x) = 0, with P0,η a Weierstrass polynomial of the form

P0,η(x) =
k∑

j=0

2(Re(aj ) + O(|a0|, . . . , |aj−1|) + o(η))xj + xk+1.

We make the change of variable z = z1 + ih(η, z1), which sends the real axis in z1-space
to y = h(x) in z-space. Let f1,η be the expression of fη in the new variable z1. Then,
all fixed points of f1,η occur on the real line in z1-space. Moreover, if z1 = x1 + iy1, the
equation for the fixed points of f1 has the same form as before: y1 = 0 and

0 = P1,η(x1) =
k∑

j=0

2(Re(aj ) + O(|a0|, . . . , |aj−1|) + o(η))x
j

1 + xk+1
1 .

The next step is to make a translation by a real number z2 = z1 + O(|a0|, . . . , |ak−1|) +
Re(ak) + o(η) transforming P1,η(x1) to

P2,η(x2) =
k−1∑
j=0

αj (η)x
j

2 + xk+1
2 ,
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where αj (η) = 2(Re(aj ) + o(η)). Let α = (α0, . . . , αk−1). If the family is generic, the
change of parameters η �→ α is invertible and we could as well take α as a new parameter.
However, in practice, we will keep η.

When considering fη as a two-dimensional real diffeomorphism, the eigenvalues at a
fixed point are two opposite real numbers ±λ and determined by a unique real number λ

(this corresponds to the fact that only the norm of f ′
η(λ) is intrinsic).

If f2,η is the expression of fη in the variable z2 and z2 = x2 + iy2, then the fixed points
of f2,η are the points x2 + i · 0, where x2 is a real solution of P2,η(x2) = 0, and there
exists an open set in η-space in which P2,η has k + 1 real roots corresponding to k + 1
fixed points of f2,η.

Let us now consider the equation P2,η(x2) = 0 with x2 complex. Since the polynomial
has real coefficients, then the complex roots occur in conjugate pairs. All solutions are also
solutions of the equation P2,η(x2) = 0. Taking z2 = x2 + i · 0, these points correspond
to solutions of f2(z2) = z2. Hence, a pair of complex conjugate roots (w, w) of P2,η

corresponds to a periodic orbit of period 2 of f2.
Let us consider g2,η = f2,η ◦ f2,η. Then, g2,η is a k real parameter unfolding of a

codimension k holomorphic parabolic germ, which always has k + 1 fixed points counting
multiplicities. The equation for fixed points of g2,η is given by a Weierstrass polynomial
pη(z2) depending real-analytically on η. The fixed points of g2,η are either fixed points of
f2,η or belong to pairs (w, w) of periodic points of f2,η with period 2. Hence, pη has real
coefficients when η is real. It follows that pη ≡ P2,η.

Let us now write g2,η in the form

g2,η(z2) = z2 + P2,η(z2)(1 + qη(z2) + P2,η(z2)Hη(z2)).

Let w1, . . . , wk+1 be the fixed points of g2,η. There exists a polynomial Sη(z2) degree at
most k such that

log(g′
2,η(wj )) = P ′

2,η(wj )(1 + Sη(wj )).

Indeed, when the wj are distinct, let Mj := log(g′
2,η(wj ))/P

′
2,η(wj ) − 1. Then, such a

polynomial Sη(z2) is found by the following Lagrange interpolation formula:

Sη(z2) = −

∣∣∣∣∣∣∣∣∣
0 1 z2 · · · zk

2
M1 1 w1 · · · wk

1
...

...
...

...
...

Mk+1 1 wk+1 · · · wk
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 w1 · · · wk

1
...

...
...

...
1 wk+1 · · · wk

k+1

∣∣∣∣∣∣∣
.

Here, Sη depends analytically on η, since it is invariant under permutations of the wj .
Moreover, limits exist when two fixed points coalesce. Extending η to complex values and
using Hartogs’ theorem allows to conclude that limits exist when more than two fixed
points coalesce. Since P2,η has real coefficients, since the complex conjugate roots of P2,η
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Unfoldings of antiholomorphic parabolic point 9

correspond to periodic points of period 2 of f2,η and using Lemma 2.9, it follows that for
each root wj of P2,η, then wj is a root of P2,η and Mj := log(g′

2,η(wj ))/P
′
2,η(wj ) − 1,

and thus that Sη has real coefficients.
Hence, the logarithms of the multipliers at the fixed points of g2,η are the eigenvalues

at the singular points of the vector field

ż2 = vη(z2) = P2,η(z2)(1 + Sη(z2)). (2.6)

By the variant of Kostov’s theorem valid for real analytic dependence on parameters
[KR20], there exists exactly k changes of coordinate and parameter (z2, η) �→ (z3, ε)

transforming (2.6) to

ż3 = zk+1
3 + εk−1z

k−1
3 + · · · + ε1z3 + ε0

1 + b(ε)zk
3

:= Pε(z3)

1 + b(ε)zk
3

.

The k one-parameter families of changes of coordinates are obtained one from another
using the action of the rotation group of order k on that vector field,

(z3, εk−1, . . . , ε1, ε0) �→ (τz3, τ−k+2εk−1, . . . , ε1, τε0),

where τ k = 1. The one tangent to the identity preserves the real axis, which is a privileged
direction for f3,η (that is, f2,η in the z3 variable). Hence, we choose a change of coordinate
tangent to the identity (changes z3 �→ −z3 are also allowed when k is even).

At this step, the map gε is prepared. However, the map f3,ε may not be prepared yet.
Indeed, the derivatives of f3,ε are not intrinsic. Considering that solutions of Pε(z3) = 0
are also solutions of Pε(z3) = 0 and that these solutions are solutions of f3,ε(z3) = z3,
then f3,ε has the form

f3,ε(z3) = z3 + Pε(z3)M(ε, z3).

By further dividing M − 1
2 by Pε, namely

M(ε, z3) = 1
2

+
k∑

	=0

m	(ε)z
	
3 + Pε(z3)Nε(z3),

this yields

f3,ε(z3) = z3 + Pε(z3)

(
1
2

+
k∑

	=0

m	(ε)z
	
3 + Pε(z3)Nε(z3)

)
.

If w1, . . . , wk+1 are the solutions of Pε(z3) = 0, then

f ′
3,ε(wj ) = 1 + P ′

ε(wj )

(
1
2

+
k∑

	=0

m	(ε)w
	
j

)
.

By Lemma 2.9, we already know that

f ′
3,ε(wj )f

′
3,ε(wj ) ∈ R.
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We look for a change of coordinate Z = uε(z3) = z3 + Pε(z3)(
∑k

	=0 D	z
	
3) preserving

the fixed points and periodic points of period 2 of f3,ε so that if Fε = uε ◦ f3,ε ◦ u−1
ε , then

F ′
ε(wj ) = F ′

ε(wj ), j = 1, . . . , k + 1. (2.7)

Note that Fε(wj ) = wj . Hence,

F ′
ε(wj ) = u′

ε(wj )

u′
ε(wj )

f ′
3,ε(wj ).

Hence, we ask that

u′
ε(wj ) =

√
f ′

3,ε(wj ). (2.8)

If wj ∈ R is a fixed point of f3,ε, then F ′
ε(wj ) = |f ′

3,ε(wj )| ∈ R≥0. If (wj , wj)

is a periodic orbit of period 2, then F ′
ε(wj ) =

√
f ′

3,ε(wj )
√

f ′
3,ε(wj ) and F ′

ε(wj ) =√
f ′

3,ε(wj )
√

f ′
3,ε(wj ). Hence, F satisfies (2.7).

We now need to prove that it is possible to construct u mix analytic satisfying (2.8).
Let Kε(z3) = ∑k

	=0 D	z
	
3. Then, u′

ε(wj ) = 1 + P ′
ε(wj )Kε(wj ), while

√
f ′

3,ε(wj ) =
√√√√1 + P ′

ε(wj )

(
1
2

+
k∑

	=0

m	(ε)w
	
j

)
:= 1 + P ′

ε(wj )

(
1
4

+ Vε(wj )

)
for some analytic function Vε. Hence, Kε(wj ) = 1

4 + Vε(wj ) := Wj . For distinct wj , the
polynomial Kε is given by a Lagrange interpolation formula

Kε(z3) = −

∣∣∣∣∣∣∣∣∣
0 1 z3 · · · zk

3
W1 1 w1 · · · wk

1
...

...
...

...
...

Wk+1 1 wk+1 · · · wk
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 w1 · · · wk

1
...

...
...

...
1 wk+1 · · · wk

k+1

∣∣∣∣∣∣∣
.

Note that the conditions defining Kε are analytic in ε. Hence, it is possible to
complexify ε. The formula has a limit when two wj coalesce. The limit also exists
for the more degenerate cases by Hartogs’ theorem. Since the conditions are invariant
under permutations of wj , the polynomial Kε depends analytically on ε by the symmetric
function theorem.

COROLLARY 2.14. When k is odd, the canonical parameter of the prepared fε is unique.
When k is even, conjugating fε with L−1(z) = −z yields a second prepared form
f̂ε̂ = L−1 ◦ fε ◦ L−1 with canonical parameter

ε̂ = (εk−1, −εk−2, . . . , ε1, −ε0). (2.9)
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Unfoldings of antiholomorphic parabolic point 11

3. Modulus of analytic classification
We now consider a germ of a generic antiholomorphic family unfolding a parabolic point
of codimension k in prepared form

fε(z) = z + Pε(z)(
1
2 + Qε(z) + Pε(z)Rε(z)), (3.1)

as described in Theorem 2.13. As in Lemma 2.8, we complexify the parameter ε in (Ck , 0),
we ask that fε depends antiholomorphically on ε, and we define the second iterate as in
(2.3). Germs of generic analytic unfoldings of a holomorphic parabolic point of codimen-
sion k have been studied in [Ro15], and we will see that two prepared germs of antiholo-
morphic families f1,ε and f2,ε are conjugate under a conjugacy tangent to the identity
depending real-analytically on ε ∈ (Rk , 0) if and only if the corresponding homolorphic
families g1,ε = f1,ε ◦ f1,ε and g2,ε = f2,ε ◦ f2,ε, with complex analytic dependence on
ε ∈ (Ck , 0), are analytically conjugate under a conjugacy tangent to the identity.

For real ε, the formal normal form of fε is given by σ ◦ v
1/2
ε = v

1/2
ε ◦ σ , where vt

ε is
the time t of the vector field

vε = Pε(z)

1 + b(ε)zk

∂

∂z
, (3.2)

and

Pε(z) = zk+1 +
k−1∑
j=0

εj z
j . (3.3)

For complex values of ε, we have to think of the formal normal form meaning that

ĥε ◦ fε ◦ (ĥε)
−1 = σ ◦ v1/2

ε = v
1/2
ε ◦ σ (3.4)

for some formal map ĥε.
We want to describe the dynamics of the germ of a family. In practice, this means

describing the dynamics for z in a disk Dr of radius r for all values of the parameter in
some polydisk |ε| < ρ. The general spirit is that if ρ is taken sufficiently small so that
the fixed points stay bounded away from ∂Dr , for instance, in Dr/2, then the dynamics
is structurally stable in the neighborhood of ∂Dr , and this dynamics organizes the whole
dynamics inside the disk. The modulus of analytic classification measures the obstruction
to transforming analytically the family into the formal normal form. To construct the
modulus, we transform the family almost uniquely to the normal form on (generalized)
sectors in z-space. (Note that fε sends one sector to a different sector.) In accordance
with the general spirit just mentioned, these generalized sectors are constructed from the
behavior around ∂Dr and then following the dynamics inwards. Then, the modulus is given
by the mismatch of the normalizing transformations. In the construction, 2k generalized
sectors are needed, if we add the additional constraint that the generalized sectors have a
limit when ε → 0.

In practice, it is more natural to change the coordinate to the time coordinate of the
vector field vε, given by

Zε =
∫

1 + b(ε)zk

Pε(z)
dz.
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In this new coordinate, fε is transformed to Fε = Zε ◦ fε ◦ Z−1
ε and the normal form to

T1/2 ◦ �, where � is a complex conjugation defined in the Riemann surface of the time
coordinate by lifting σ (see Definition 3.1 below) and T1/2 is the translation by 1

2 (see
Notation 2.1). Then, in the Zε-coordinate, the sectors will correspond to the saturation by
the dynamics of strips transversal to the horizontal direction, and we need to consider pairs
of sectors for Zε and Zε.

3.1. The time coordinate Zε. The time coordinate Zε is multivalued over the disk
punctured at the fixed points and the image Zε(Dr \ {Pε(z) = 0}) is a complicated
Riemann surface. In practice, we work with 2k charts defined from ∂Dr and going inwards.
For j = 0, ±1, . . . ± k (with indices (mod 2k)), we define

Zε,j (z) =
∫ z

ζj

1 + b(ε)zk

Pε(z)
dz,

where ζ0 = r and, for j = ±1, . . . , ±k, ζj close to ∂Dr is defined by
∫
γj

(1 + b(ε)zk)/

Pε(z) dz = 2πib(ε)/k with γj an arc from ζj−1 to ζj located in the neighborhood
of ∂Dr . The chart for Zε,j contains the arc {reiθ | θ ∈ (πj/k − π/2k, πj/k + π/2k)}.
In particular,

Zε,j (z) = Zε,j−1(z) − 2πib(ε)

k
, (3.5)

where the indices are (mod 2k).
Each simple singular point zs of vε has a non-zero period given by 2πi

Res((1 + b(ε)zk)/Pε(z), zs). Moreover, the fixed points of fε are sent at infinity in
directions which rotate when the parameter varies. Note that the periods of points are
unbounded and have an infinite limit when two singular points merge together.

What is important is that the whole dynamics is organized by the structurally stable
behavior in the neighborhood of ∂Dr (see Figure 1). For sufficiently small ε, the image
of ∂Dr is, roughly speaking, a k-covering of a curve close to a circle of radius R = 1/krk

(there is an extra discrepancy of 2πib(ε), which is small compared with the radius R) and
the interior of the disk is sent to a k-sheeted surface on the exterior of the image circle (but
there is again an extra discrepancy of 2πib(ε)). The interior of the image circle is often
called a hole. Because of the periods, there are sequences of holes on the Riemann surface
of Zε. In the limit ε = 0, only one hole remains, the principal hole, while the others have
disappeared at infinity.

Definition 3.1. The complex conjugation σ is lifted in the time coordinate to �. For
real ε, � is the usual complex conjugation in the coordinate Z0,ε and is extended
antiholomorphically over the Riemann surface of the time. It is then antiholomorphically
extended in non-real ε. If Uε,j is the image of Zε,j , then � : Uε,j → Uε,−j satisfies

� ◦ Zε,j = Zε,−j ◦ σ .
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Unfoldings of antiholomorphic parabolic point 13

FIGURE 1. The 2k sectors near ∂Dr and the corresponding sectors in time space (colour online).

FIGURE 2. The four sectors for Pε(z) = z3 + ((2 + i)/20)z + ((1 + 6i)/30)eiπ/4 (colour online).

3.2. The 2k sectors in z-space. The 2k sectors in z-space will be attached to ∂Dr as in
Figure 1. In the generic case of simple singular points, their boundary will be given by (see
Figure 2):
• one arc γ along ∂Dr containing {reiθ | θ ∈ (πj/k − π/2k, πj/k + π/2k)} for

some j, as in Figure 1;
• one arc from one end of γ to one singular point;
• a second arc from the other end γ to a second singular point;
• an arc between the two singular points.
The last three arcs will often be spiralling when approaching the singular points. All
together, the 2k sectors provide a covering of Dr \ {Pε(z) = 0}. Note the shape of the
intersection of the four sectors in Figure 3.

Because the singular points move around inside the disk, the 2k sectors cannot be
defined depending continuously on the parameters in a uniform way in the parameter space.
Hence, we will need to use a covering of the parameter space minus the discriminant set
(where multiple fixed points occur) by C(k) = (2k

k

)
/(k + 1) simply connected sectoral

domains. To describe these sectoral domains, we need to consider the dynamics of
wε = ivε. However, in practice, it suffices to work with the polynomial vector field
iPε(z)(∂/∂z), which has the same fixed points as wε and whose real-time trajectories
inside Dr are close to those of wε.
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14 C. Rousseau

FIGURE 3. The intersections of the four sectors of Figure 2: four intersection parts link a fixed point to the
boundary and have a limit when the fixed points merge together. The two other parts (called gate sectors) link

two fixed points and disappear when the two points merge together (colour online).

The ‘generic’ polynomial vector fields have been described by Douady, Estrada, and
Sentenac [DES05] (see §3.3 below). The sectoral domains are enlargements of the C(k)

generic strata of Douady, Estrada, and Sentenac [DES05] and cover the parameter space
minus the discriminant set. The discriminant set has complex codimension 1. Hence, to
secure conjugacy of the families over the full parameter space, it will be sufficient to
describe a modulus outside the discriminant set, thus guaranteeing that two families with
same modulus are conjugate over the complement of the discriminant set, and then to
check that the conjugacy remains bounded when approaching the discriminant set.

3.3. The work of Douady, Estrada, and Sentenac. The paper [DES05] classifies
‘generic’ monic polynomial vector fields Pε(z)(∂/∂z) up to affine transformations by
means of an invariant composed of two parts: a combinatorial part and an analytic part
given by a vector of Hk . (The corresponding description for iPε(z)(∂/∂z) follows through
z �→ τz for τ k = −i.)

The dynamics of Pε(z)(∂/∂z) is governed by the pole at infinity and its 2k separatrices
alternately stable and unstable (see Figure 4). Douady, Estrada, and Sentenac have studied
the generic case where the singular points are simple and there is no homoclinic loop
through infinity, which we call DES-generic. Under the DES-generic hypothesis, the
separatrices land at the k + 1 singular points, which are foci or nodes (the eigenvalue
has a non-zero real part). Moreover, the singular points are linked by trajectories. Two
trajectories joining two singular points are called equivalent if they have the same α-limit
and ω-limit points. The equivalence classes of trajectories can be considered as the edges
of a tree graph with k + 1 vertices located at the fixed points. The combinatorial part of
the Douady–Estrada–Sentenac invariant is given by the tree graph and the way to attach
it to the separatrices (see Figure 5). There are C(k) different combinatorial parts, yielding
C(k) generic DES strata. Each DES stratum is parameterized by H

k .
Exceptionally, some separatrices can merge by pairs, one stable, one unstable, in

homoclinic loops through ∞. A necessary condition for this to occur is that the sum of
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FIGURE 4. The pole at infinity of Pε(z)(∂/∂z) and its separatrices organizing the dynamics in the neighborhood
of ∂Dr as in Figure 1.

FIGURE 5. The tree graph and its attachment to the separatrices (colour online). (The figure is topological and
the trajectories and separatrices could spiral when approaching the singular points.)

the periods of the singular points surrounded by the homoclinic loop is a real number.
Generically, this occurs on hypersurfaces of real codimension 1, which separate the strata
of DES-generic vector fields.

Apart from the multiple singular points, the homoclinic loops are the only bifurcations.
In particular, there are no limit cycles and any singular point with a pure imaginary
eigenvalue is a center surrounded by a homoclinic loop through infinity.

In the DES-generic case, the separatrices split the plane into k connected regions, each
adherent to two fixed points, one attracting, one repelling (see Figure 6(a)). It is these
connected regions for the vector field iPε(z)(∂/∂z) that will be used to define the 2k

sectors.

3.4. The sectoral domains in parameter space. We want to describe the orbit space of a
germ fε and that of gε = fε ◦ fε. Since gε is close to the time-one map of Pε(z)(∂/∂z), it
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FIGURE 6. Two connected regions determined by the separatrix graph iPε(z)(∂/∂z) (colour online).

FIGURE 7. A separatrix of a polynomial vector field making wide meandering before landing at a singular point
and cutting the disk into parts (colour online).

is natural, to capture the orbits, to look at a transversal direction to the flow of Pε(z)(∂/∂z),
and the most natural direction is the perpendicular direction.

We consider the intersection of the regions bounded by the separatrices of iPε(z)(∂/∂z)

with the disk Dr . The easy situation is when each intersection is connected.
In that case, any change of coordinate to the normal form on one of these regions of the

disk in the sense of (3.4) will be unique up to post-composition with some map vt
ε for some

t ∈ R. However, these connected regions will have a disconnected limit when the two fixed
points merge together. Hence, to have good limit properties, we cut these regions into two
(see Figure 6(b)), using a trajectory linking the two singular points. The regions can be
sectorially enlarged near the singular points to provide an open cover of Dr \ {Pε(z) = 0}
(see Figure 6(c)).

The construction needs to be adapted when some intersections of the regions with Dr

are disconnected. This occurs, for instance, when an eigenvalue at a singular point has a
very small real part. Then, some separatrix makes wide meandering before landing at a
singular point (see Figure 7). In that case, we need to adapt the construction by taking the
boundaries of the regions given by piecewise trajectories of vector fields eiαPε(z)(∂/∂z)

for a finite number of real values of α bounded away from πZ. In practice, this is done
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FIGURE 8. Two strips on different sides of the fundamental hole. When there is a transition map, the slopes
should be the same (bottom in the figure).

by changing to the time coordinate t = ∫
(dz/Pε(z)) of the vector field dz/dt = Pε(z).

The regions will be infinite strips with piecewise linear boundaries. The bonus of this
construction is that it can be extended for all non-DES-generic parameter values as long as
the fixed points are simple. Then, we will be able to perform the construction everywhere
on the complement of the discriminant set, that is, on a region of complex codimension 1.

Definition 3.2. A sectoral domain is a simply connected domain in parameter space, which
is an enlargement of a DES-stratum of the vector field iPε(z)(∂/∂z), on which it is possible
to construct 2k sectors depending continuously on the parameter.

3.5. Sectors and translation domains.

Definition 3.3. Let Fj ,ε := Z−j ,ε ◦ fε ◦ Z−1
j ,ε (respectively Gj ,ε := Zj ,ε ◦ gε ◦ Z−1

j ,ε ) be
the lifts of fε (respectively gε) in the charts in time coordinate.

Let �s be a sectoral domain. We denote by Sj ,ε,s , j = 0, ±1, . . . , ±k, where indices
are (mod 2k), the 2k sectors associated to �s to be constructed. They are inverse images of
translation domains Uj ,ε,s , j = 0, ±1, . . . , ±k in the time coordinate, which are defined
as follows. We first consider the particular values of �s for which all singular points of
iPε(z) are nodes. For these values, the holes in time space are all horizontal. Let ε ∈ �s . It
is known that Gj ,ε is close to the translation by 1, T1 (see for instance [Ro15, Proposition
4.1]). Let us take any vertical line 	ε to the left or right of the principal hole in the chart
Zj ,ε such that:
(1) there are no other holes between 	ε and the principal hole;
(2) the strip B	ε bounded by 	ε and Gj ,ε(	ε) is included in the chart.
Then, the translation domain Uj ,ε,s associated to the chart Zj ,ε is the saturation of the
strip B	ε by Gj ,ε inside the chart. For the other values of ε ∈ �s , we may take for 	ε any
bi-infinite piecewise linear curve such that 	ε and Gj ,ε(	ε) do not intersect, conditions (1)
and (2) above are satisfied, and 	ε depends continuously on ε (see Figure 8).
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The sectors in z-space are simply Sj ,ε,s = Z−1
j ,ε (Uj ,ε,s), j = 0, ±1, . . . , ±k with indices

(mod 2k).

3.5.1. Pairing sectoral domains.

PROPOSITION 3.4. It is possible to cover the complement of the discriminant set in
parameter space with C(k) sectoral domains. The size of sectoral domains can be chosen
so that the image of a sectoral domain under ε �→ ε is again a sectoral domain. Then,
sectoral domains can be either:
• invariant under ε �→ ε;
• or grouped by symmetric pairs.

Proof. The proof can be found in [Ro15]. The last property comes from the fact that the
coefficients of Pε(z) are real for real ε.

If �s is a sectoral domain, then we denote by �s := �s its symmetric image. This yields
an involution on the set of indices, which we denote by s �→ s.

3.6. The Fatou coordinates.

PROPOSITION 3.5. (Definition of Fatou coordinates) Let fε be a prepared germ of
type (3.1). Let Fj ,ε be the lift of fε in the time coordinate Zj ,ε. Then, for all sectoral
domains �s , if

Qj ,s =
⋃

ε∈�s∪{0}
{ε} × Uj ,ε,s ,

j = 0, ±1, . . . , ±k, then there exists families {�j ,ε,s}ε∈�s∪{0} of Fatou coordinates of fε

defined on Qj ,s such that:
•

�−j ,ε,s ◦ Fj ,ε ◦ (�j ,ε,s)
−1 = � ◦ T 1

2
; (3.6)

• �j ,ε,s is holomorphic on int(Qj ,s) with continuous limit at ε = 0 independent of s, i.e.

lim
ε→0
ε∈�s

�j ,ε,s = �j ,0,

where the convergence is uniform on compact sets and �j ,0 is a Fatou coordinate of
f0 on Uj ,0;

• the families are uniquely determined by

�−j ,ε,s(X−j ,ε,s) + �j ,ε,s(Xj ,ε,s) = Cj ,ε,s , (3.7)

where Xj ,ε,s ∈ Uj ,ε,s and X−j ,ε,s are base points, σ ◦ Cj ,ε,s = C−j ,ε,s , and both Xj ,ε,s
and Cj ,ε,s are holomorphic in ε ∈ �s with continuous limit at ε = 0.

Proof. We take �̃j ,ε,s as a Fatou coordinate for Gj ,ε satisfying �̃j ,ε,s ◦ Gj ,ε = T1 ◦ �̃j ,ε,s

and depending analytically on ε with continuous limit at ε = 0. These are known to exist
(see [Ro15]). One way to achieve the required dependence on ε is to take a base point
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FIGURE 9. The transition functions (colour online).

Xj ,ε,s depending analytically on ε with continuous limit at ε = 0 independent of s (a base
point constant in ε and s would work) and to ask that �̃j ,ε,s(Xj ,ε,s) = 0.

Let K̃j ,ε,s = �̃−j ,ε,s ◦ Fj ,ε ◦ (�̃j ,ε,s)
−1. Then, K̃j ,ε,s is a diffeomorphism, which

commutes with T1. Quotienting by T1, yields that K̃j ,ε,s = � ◦ TAj ,ε,s . Moreover,
K̃−j ,ε,s ◦ K̃j ,ε,s = T1, which yields Aj ,ε,s + A−j ,ε,s = 1. The result follows by letting
�j ,ε,s = T−(A−j ,ε,s/2) ◦ �̃j ,ε,s and �−j ,ε,s = T−(Aj ,ε,s/2) ◦ �̃−j ,ε,s (details as in [GR23]).

Moreover, other Fatou coordinates satisfying (3.6) must have the form TBj ,ε,s ◦ �j ,ε,s

with Bj ,ε,s = B−j ,ε,s . This changes Cj ,ε,s := �−j ,ε,s(X−j ,ε,s) + �j ,ε,s(Xj ,ε,s) to
Cj ,ε,s + 2Bj ,ε,s .

3.7. Defining the modulus.

Definition 3.6. Let fε be a prepared germ of type (3.1), let �s be a sectoral domain, and let
{�j ,ε,s}ε∈�s∪{0}, j = 0, ±1, . . . , ±k be associated Fatou coordinates. The 2k associated
transition functions are the functions (see Figure 9)

�	,ε,s =
{

�	,ε,s ◦ T−sgn(	)(iπb(ε)/k) ◦ (�	−1,ε,s)
−1, 	 odd,

�	−1,ε,s ◦ Tsgn(	)(iπb(ε)/k) ◦ (�	,ε,s)
−1, 	 even,

(3.8)

	 = ±1, . . . , ±k.

PROPOSITION 3.7. Let fε be a prepared germ of type (3.1), let �s be a sectoral domain,
and let {�	,ε,s}ε∈�s∪{0}, 	 = ±1, . . . , ±k, be associated transition functions. Then, we
have the following:
(1) T1 ◦ �	,ε,s = �	,ε,s ◦ T1;
(2)

� ◦ T1/2 ◦ �	,ε,s = �−	,ε,s ◦ � ◦ T1/2. (3.9)

In particular, all transition functions are determined by the ones for 	 > 0.
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(3) It is possible to choose Fatou coordinates so that the constant terms in the Fourier
expansion of {�	,ε,s}ε∈�s∪{0} are given by

c	,ε,s = sgn(	)(−1)	
iπb(ε)

k
. (3.10)

Such Fatou coordinates are called normalized and the corresponding transition
functions are also called normalized.

(4) If {�̃	,ε,s}ε∈�s∪{0}, 	 = ±1, . . . , ±k, are other transition functions associated to
other normalized Fatou coordinates, then there exist Bε,s satisfying Bε,s = Bε,s

analytic in ε ∈ �s with continuous limit at ε = 0 such that

�̃	,ε,s = T−Bε,s ◦ �	,ε,s ◦ TBε,s . (3.11)

We say that the collections of normalized transition functions {�1,ε,s , . . . ,
�k,ε,s}ε∈�s∪{0} and {�̃1,ε,s , . . . , �̃k,ε,s}ε∈�s∪{0} are equivalent and we write

{�1,ε,s , . . . , �k,ε,s}ε∈�s∪{0} ≡ {�̃1,ε,s , . . . , �̃k,ε,s}ε∈�s∪{0}. (3.12)

(5) When k is even, if fε is in prepared form and L−1(z) = −z, then f̂ε̃ = L−1 ◦ fε ◦
L−1 is also in prepared form for the canonical parameter ε̂ defined in (2.9). Let �ŝ

be the image of �s under the map ε �→ ε̂. If {�	,ε,s}ε∈�s∪{0},	=1,...,k are normalized
transition functions for fε and

�̂	,ε̂,ŝ = � ◦ T1/2 ◦ �k+1−	,ε,s ◦ � ◦ T−1/2,

then {�̂1,ε̂,ŝ , . . . , �̂k,ε̂,ŝ}ε̂∈�ŝ∪{0} are normalized transition functions for f̂ε̂. We
write

({�1,ε,s , . . . , �1,ε,s}ε∈�s∪{0}) ∼= ({�̂1,ε̂,ŝ , . . . , �̂k,ε̂,ŝ}ε̂∈�ŝ∪{0}). (3.13)

Remark 3.8. Note that the constant terms c	,ε,s in (3.10) coincide precisely with the change
of time coordinates Zj ,ε between the corresponding sectors in (3.5).

Definition 3.9. Let fε be a prepared germ of type (3.1).
(1) For k odd, the modulus of fε is given by the (kC(k) + 3)-tuple

M(fε) = (k, ε, bε, ({�1,ε,s , . . . , �k,ε,s}ε∈�s∪{0})s/ ≡), (3.14)

where {�	,ε,s}ε∈�s∪{0} are the associated normalized transition functions to a sectoral
domain �s . This is also the modulus of fε for k even under conjugacy tangent to the
identity.

(2) For k even, the modulus of fε is given by the quotient of M(fε) by ∼=:

N (fε) = (k, ε, bε, ({�1,ε,s , . . . , �k,ε,s}ε∈�s∪{0})s/ ≡)/ ∼=, (3.15)

where

(k, ε, bε, ({�1,ε,s , . . . , �k,ε,s}ε∈�s∪{0})s/ ≡)

∼= (k, ε̂, bε̂, ({�̂1,ε̂,ŝ , . . . , �̂k,ε̂,ŝ}ε̂∈�ŝ∪{0})ŝ/ ≡).
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3.8. The classification theorem.

THEOREM 3.10. Two prepared unfoldings of antiholomorphic parabolic germs of
type (3.1) are analytically conjugate if and only if they have the same modulus.

Proof. If two families are analytically conjugate, then they obviously have the same
modulus. Conversely, suppose that two prepared families fε and f̃ε̃ have the same modulus.
In the case where k is odd, then ε = ε̃ by Corollary 2.14, and it is of course possible
to suppose that their normalized transition functions are equal: �	,ε,s = �̃	,ε,s . When k
is even, the same is true, possibly after conjugating f̃ε̃ by L−1, in which case, the new
canonical parameter becomes ˆ̃ε = ε.

Moreover, the Fatou coordinates have been chosen so that �	,0,s are independent of s.
For ε ∈ �s , a conjugacy is defined by

Hε,s(z) = Z−1
j ,ε ◦ (�̃j ,ε,s)

−1 ◦ �j ,ε,s ◦ Zj ,ε, j = 0, ±1, . . . , ±k,

where �j ,ε,s and �̃j ,ε,s are the normalized Fatou coordinates of fε and f̃ε, respectively.
We claim that Hε,s is well defined over Dr . Since the conjugacy we are constructing is also
a conjugacy between gε = fε ◦ fε and g̃ε = f̃ε ◦ f̃ε, and since full details have been given
for the latter case in [Ro15], we explain the ideas and skip some details. The intersection
of two sectors has connected components of two forms (see Figure 2):
• subsectors from one fixed point of gε to the boundary: on such a subsector the result

follows from (3.9);
• subsectors joining two singular points, sometimes called gate sectors (the name comes

from [O99]). The transition map between Fatou coordinates over a gate sector is a
translation. The normalization of a transition map is such that this translation depends
only on the normal form. Indeed, crossing a gate sector like along the blue thick line
in Figure 10 is the same as turning around the singular points on one side of the blue
thick line or on the other side (of course, in the appropriate direction) and taking into
account the changes of time (3.5) from one sector to the next. Additionally, the period
of a singular point zn is 2πi/g′

ε(zn) = 2πi/g̃′
ε(zn). Hence, the translation given by the

transition over of a gate sector is the same for fε and for f̃ε.
Now, suppose that �s ∩ �s′ 
= ∅. Then, H−1

ε,s′ ◦ Hε,s commutes with gε and is equal to
the identity for ε = 0. If the modulus is non-trivial (that is, not all transition functions are
identically translations), then H−1

ε,s′ ◦ Hε,s = g
◦m/n
ε for some non-zero n independent of ε

by Proposition 3.11 below. Since H−1
0,s′ ◦ H0,s = id because the �	,0,s are independent of s,

then m = 0, and the Hε,s are analytic extensions of each other when s varies and yield
a uniform bounded conjugacy Hε outside the parameter values in the discriminant set.
Hence, the conjugacy can be analytically extended to the discriminant set.

If the modulus is trivial, then the Hε,s need to be corrected before being glued in a
uniform way. Indeed, H−1

ε,s′ ◦ Hε,s = g
◦t (ε)
ε for some real t (ε), which has the property that

t (0) = 0. We want to modify the normalized Fatou coordinates so as to force that t (ε) = 0.
This is done by choosing normalized Fatou coordinates with one fixed base point, for
instance, z = r (respectively z = r ′) for �0,ε,s (respectively �̃0,ε,s). Then, g

◦t (ε)
ε (r) = r ,

which yields t (ε) = 0 since t is continuous and t (0) = 0.
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FIGURE 10. The change of time of the crossing of a gate sector (in gray) from top to bottom along the blue thick
line is the same as the change of time when turning around the singular points on the left in the positive direction,
or turning around the singular points on the right in the negative direction and, in both cases, taking also into

account the changes of time (3.5) from one sector to the next (colour online).

The following proposition is well known (see for instance [Ro15]).

PROPOSITION 3.11. Let gε be an unfolding of a holomorphic parabolic germ. Then:
(1) either gε is conjugate to the normal form v1

ε and any holomorphic family of
diffeomorphisms hε commuting with gε has the form hε = g

◦α(ε)
ε for α(ε) analytic;

(2) or there exists q ∈ N∗ such that any holomorphic family of diffeomorphisms hε

commuting with gε has the form hε = g
◦p/q
ε for some p ∈ Z. In particular, if

limε→0 hε = id, then hε ≡ id.

Proof. In each Fatou coordinate of gε, then hε commutes with T1, that is, is of the
form Tα(ε). For hε to be uniformly defined over Dr , then Tα(ε) must commute with the
transition functions. In case (1), the transition functions are translations and any translation
commutes with them. In case (2), there is a maximum q ∈ N such T1/q commutes with the
transition functions. Then, α(ε) = p/q is constant in ε.

COROLLARY 3.12. Two prepared families of type (3.1) are analytically conjugate under
a conjugacy tangent to the identity if and only if their second iterates gε and g̃ε are
analytically conjugate under a conjugacy tangent to the identity.

Proof. One direction is obvious. For the other direction, it is important to use that gε

and g̃ε have representatives of the modulus satisfying (3.9). Then, an equivalence between
them constructed as in the proof of Theorem 3.10 (and hence tangent to the identity) yields
an equivalence between fε and f̃ε.

COROLLARY 3.13. A prepared family of type (3.1) is analytically conjugate to its normal
form σ◦v1/2

ε if and only if all the transition maps �j ,ε,s are translations.
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4. Antiholomorphic parabolic unfolding with an invariant real analytic curve
4.1. The case ε = 0. This case has been studied in [GR21]. Suppose that an
antiholomorphic parabolic germ f0 keeps invariant a germ of a real analytic curve. This
property is invariant under holomorphic conjugacy and can be read on the modulus.
Indeed, modulo a conjugacy, we can suppose that f0 preserves the real axis, and hence
commutes with σ . This in turn implies that the transition maps satisfy

� ◦ �	 = �−	 ◦ �. (4.1)

Together with (3.9), this yields that for all 	,

T1/2 ◦ �	 = �	 ◦ T1/2, (4.2)

which is precisely the condition for g0 = f0 ◦ f0 to have a holomorphic square root (see
for instance [I93]). Indeed, this is natural since (4.1) yields that f0 commutes with σ and
then that σ ◦ f0 is a holomorphic square root of g0.

The converse is also true.

THEOREM 4.1. [GR21] Let f0 be an antiholomorphic parabolic germ. We have the
equivalences:
(1) f0 keeps invariant a germ of a real analytic curve;
(2) f0 is analytically conjugate to a germ with real coefficients;
(3) the modulus of f0 satisfies (4.1);
(4) the modulus of f0 satisfies (4.2).

4.2. The unfolding. We now consider a prepared generic unfolding fε of f0. If we limit
ourselves to real values of ε, then it makes sense to have fε preserving a germ of a real
analytic curve, which is tangent to the real axis since fε is prepared. If z = x + iy, this
germ of a real analytic curve has the form y = α(x, ε) = O(Pε(x)), since the fixed points
are real for real ε and belong to the invariant curve. This yields a local holomorphic
diffeomorphism z �→ βε(z) = z + iα(z, ε), which preserves the prepared character. Let
us now consider f̃ε = β−1

ε ◦ fε ◦ βε. Then, for real ε, f̃ε sends a neighborhood of 0 on the

real axis to the real axis. For complex ε, this yields f̃ε(z) = f̃ε(z), which in turn yields that

g̃ε(z) := f̃ε ◦ f̃ε(z) = f̃ε(f̃ε(z)) = (σ◦f̃ε) ◦ (σ◦f̃ε)(z), that is, g̃ε has the holomorphic
square root σ◦f̃ε. Therefore, gε = fε ◦ fε also has a holomorphic square root.

Hence, we have the following theorem.

THEOREM 4.2. Let fε be a prepared germ of an antiholomorphic parabolic unfolding. We
have the following equivalences.
(1) For real values of ε, fε preserves a germ of a real analytic curve depending real

analytically on ε.
(2) The square gε = fε ◦ fε has a holomorphic square root tangent to the identity.
(3) The modulus of fε satisfies

T1/2 ◦ �	,ε,s = �	,ε,s ◦ T1/2. (4.3)

(4) The modulus of fε satisfies

� ◦ �	,ε,s = �−	,ε,s ◦ �. (4.4)
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Proof. (1) ⇒ (2) is shown above.
(2) ⇒ (3). Let hε be a holomorphic square root of gε tangent to the identity. In

particular, hε sends (approximately) a sector Sj ,ε,s to the same sector. Then, �j ,ε,s ◦ Zj ,ε ◦
hε ◦ Z−1

j ,ε ◦ �−1
j ,ε,s = T1/2, and since hε is globally defined, then T1/2 must commute with

the �	,ε,s , yielding (4.3).
(3) ⇔ (4) because of (3.9).
(4) ⇒ (1). Let

ζj ,ε,s = Z−1
−j ,ε ◦ �−1

−j ,ε,s ◦ � ◦ �j ,ε,s ◦ Zj ,ε.

First, note that ζj ,ε,s is well defined independently of the freedom on Fatou coordinates
because of (3.7). Note that ζj ,ε,s is independent of j, yielding a well-defined ζε,s on
Dr \ {Pε(z) = 0} for ε ∈ �s . This follows from (4.4) on the intersection sectors to the
boundary. On the gate sectors, joining two singular points, it follows from the proof of
Theorem 3.10 that the translations T	,ε,s along gate sectors (crossed in symmetric directions
with respect to the real axis for (ε, s) and (ε, s)) satisfy T	,ε,s ◦ � = � ◦ T−	,ε,s .

Because ζε,s is bounded in the neighborhood of Pε(z) = 0, it can be extended to this
set. Moreover, ζε,s depends antiholomorphically on ε and ζε,s ◦ ζε,s = id.

Since T1/2 and � commute, it follows from (4.4) and (3.9) that ζε,s ◦ fε is a holomorphic
square root of gε over �s , whose limit is tangent to the identity when ε → 0. On the
intersection �s ◦ �s′ , ζε,s ◦ fε and ζε,s′ ◦ fε are two holomorphic square roots of gε,
whose limit is tangent to the identity when ε → 0. By uniqueness of such square roots, we
have ζε,s = ζε,s′ . Hence, ζε is uniformly defined outside the discriminant set and bounded
there, yielding that it can be extended antiholomorphically to this set.

Now, restricting to real values of ε, ζε is an antiholomorphic involution depending
real-analytically on ε. Let us look at the equation of fixed points ζε(z) = z. Since
ζ ′

0(0) = 1, then letting z = x + iy, by the implicit function theorem, the equation
for the imaginary parts yields y − q(ε, x) = 0, with q real-analytic in ε and x. Let
V (x, y, ε) = 0 be the equation for the real parts. Since ζs is an involution, it has no isolated
fixed points. Hence, y − q(ε, x) divides V (x, y, ε). Let hε(z) = z + iq(z, ε). Then,
χε = h−1

ε ◦ ζε ◦ hε fixes the real axis. By the identity principle, σ ◦ χε = id, yielding that
χε = σ and that ζε is the Schwarz reflection with respect to the analytic curve y = q(ε, x).
Let z be any fixed point of ζε. Since ζε and fε commute, then ζε(fε(z)) = fε(z), that is,
fε(z) is also a fixed point of ζε. Hence, the curve y = q(ε, x) is invariant by fε.

5. Antiholomorphic square root of a germ of holomorphic parabolic unfolding
The formal normal form of a holomorphic parabolic germ is invariant under rotations of
order k (modulo a reparameterization), while that of an antiholomorphic germ in prepared
form has the real axis as a symmetry axis. Each invariance requires a quotient in the
definition of the modulus of the corresponding parabolic germ or its unfoldings. For these
respective quotients, we will need to use actions of the rotation group Rk of order k and of
the symmetry with respect to an axis ei(πm/k)

R on the set of indices {±1, . . . , ±k} of the
transition maps. We start by defining these actions.
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FIGURE 11. For k = 3, the symmetry condition on the indices with respect to the symmetry axis e2πi/3
R is given

by the involution ξ2(1) = −3, ξ2(2) = 3, ξ2(−1) = −2 (colour online).

5.1. Actions on the set of indices.

Definition 5.1.
• Let ι : {±1, . . . , ±k} → {1, . . . 2k} be defined as

ι(j) =
{

j , j > 0,
2k + 1 + j , j < 0.

• The rotation group Rk = {r0, r2, . . . , r2(k−1)} with rm(w) = ei(πm/k)w acts on the
set of indices ±1, . . . , ±k as r2m(j) = ι−1(q(ι(j) + 2m)), where q(s) ∈ {1, . . . , 2k}
and q(s) is congruent to s (mod 2k). (By abuse of notation, r2m denotes both the
rotation and its action on the set of indices.)

• The symmetry ξ0 with respect to R on the set of indices {±1, . . . , ±k} is defined as
ξ0(j) = −j .

• The symmetry ξm with respect to the line ei(πm/k)
R on the set of indices

{±1, . . . , ±k} is defined as ξm = rm ◦ ξ0 ◦ r−1
m for m = 0, . . . , k − 1 (see Figure 11).

5.2. The case ε = 0. This case has been studied in [GR21]. A holomorphic parabolic
germ

g(z) = z + zk+1 + o(zk+1) (5.1)

has k formal antiholomorphic square roots of the form

f (z) = ei(2πm/k)z + 1
2ei(2πm/k)zk+1 + o(zk+1), (5.2)

m = 0, . . . , k − 1. Denoting �j = �j ,0,s , j = ±1, . . . , ±k, defined as in Definition 3.6,
the analytic part of the modulus of g is composed of the 2k-tuple of normalized transition
functions (�1, . . . , �k , �−k , . . . , �−1) quotiented by:
• the action of C corresponding to conjugating all �j by translations Tc;
• the action of the rotation group Rk of order k. The action of r2m is given by

(�1, . . . , �k , �−k . . . , �−1) �→ (�r2m(1), . . . , �r2m(k), �r2m(−k) . . . , �r2m(−1)).
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THEOREM 5.2. [GR21] The formal square root (5.2) is antiholomorphic if and only if
the modulus satisfies a symmetry condition with respect to the symmetry axis ei(πm/k)

R.
If ξm(j) is the symmetric index of j with respect to ei(πm/k)

R, then this symmetry condition
takes the form

� ◦ T1/2 ◦ �j = �ξm(j) ◦ � ◦ T1/2

for some representative of the modulus.

5.3. The unfolding case. Generic holomorphic unfoldings of a parabolic germ (5.1) have
been studied in [Ro15]. They can also be put in a prepared form with canonical parameters

gε(z) = z + Pε(z)(1 + Mε(z) + Pε(z)Nε(z)), (5.3)

where Pε is defined in (3.3) and Mε is a polynomial in z of degree at most k.
Sectoral domains can be defined as in Definition 3.2 and transition functions for each

sectoral domain as in Definition 3.6.

Definition 5.3. Let gε be a prepared germ of type (5.3). The modulus of gε is given by the
equivalence class of (3 + 2kC(k))-tuples (see Figure 9),

M(fε) = (k, ε, bε, (({�±1,ε,s , . . . , �±k,ε,s}ε∈�s∪{0})/ ≡)s)/ ∼=, (5.4)

where {�	,ε,s}ε∈�s∪{0} are the associated normalized transition functions to a sectoral
domain �s and the equivalence definitions are defined as follows.
(1) {�±1,ε,s , . . . , �±k,ε,s}ε∈�s∪{0} ≡ {�̃±1,ε,s , . . . , �̃±k,ε,s}ε∈�s∪{0} if there exists Bε,s

analytic in ε ∈ �s with continuous limit at ε = 0 such that

�̃	,ε,s = T−Bε,s ◦ �	,ε,s ◦ TBε,s .

(2) Let r2	 ∈ Rk , 	 = 0, . . . , k − 1, act on ε by

r2	(εk−1, . . . , ε1, ε0) = (εk−1e
−i(2π	(k−2)/k), . . . , ε1, ε0e

i(2π	/k)).

Let �r2	(s) := r2	(�s). Then,

(k, ε, bε, ({�1,ε,s , �−1,ε,s , . . . , �k,ε,s , �−k,ε,s}ε∈�s∪{0})s)
∼= (k, r2	(ε), br2	(ε), ({�r2	(1),r2	(ε),r2	(s), �ξ2	(r2	(1)),r2	(ε),r2	(s), . . . ,

�r2	(k),r2	(ε),r2	(s), �ξ2	(r2	(k)),r2	(ε),r2	(s)}ε∈�s∪{0})s).

THEOREM 5.4. Let gε be a prepared generic unfolding of a holomorphic parabolic
germ of type (5.3). Then, gε has an antiholomorphic square root fε (that is satisfying
fε ◦ fε = gε), with f0 of the form (5.2), if and only if a representative of the modulus (5.4)
satisfies

� ◦ T1/2 ◦ �	,ε,s = �sm(	),ε,s ◦ � ◦ T1/2. (5.5)

Moreover, this antiholomorphic square root is unique unless the modulus is trivial, that is,
gε is conjugate to v1

ε . In the latter case, there exist an infinite number of square roots which
are the conjugates of rm ◦ σ ◦ v1/2+iy(ε) ◦ r−1

m , with y(ε) analytic and y(ε) = y(ε).
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Proof. When the modulus is trivial, we can suppose that gε = v1
ε . Moreover,

(rm)∗(vε) = (−1)mvε. Hence, for m odd, r−1
m ◦ gε ◦ rm = v−1

ε and in this case, we
consider square roots of g−1

ε . It therefore suffices to consider antiholomorphic square
roots tangent to the identity. In the time coordinate (the Zj -coordinate), v1

ε is given
by T1, and in the coordinate w = Exp(−2πiZ), it is given by the identity on CP

1. For
real ε, square roots in the w-coordinate must satisfy κε ◦ κε = id. Moreover, κ exchanges
0 and ∞. Hence, κ = δ ◦ L for δ(w) = 1/w and L some linear transformation. Then,
square roots in the Zj -coordinates are of the form � ◦ Ta(ε), with a(ε) + a(ε) = 1, that is,
a(ε) = 1/2 + iy(ε) for some real function y depending real-analytically on ε. Hence, for
real ε, the square roots are given by rm ◦ σ ◦ v1/2+iy(ε) ◦ r−1

m , with y(ε) real-analytic. The
result follows by extending holomorphically y(ε) to the complex domain (thus yielding
that the square root depends antiholomorphically on ε).

Let us now suppose that the modulus is not trivial. As a first reduction, let us
rather consider g1,ε = r−1

m ◦ gε ◦ rm. Then, we can limit ourselves to the case m = 0 and
ξ0(j) = −j . However, for m odd, then g′

1,0(z) = z − zk+1 + · · · and a second reduction
is needed. When k is odd, it suffices to conjugate with z �→ −z. When k is even, the second
reduction is to work with g2,ε = g−1

1,ε , which is in prepared form (5.3). Hence, we can limit
ourselves to prove the theorem when m = 0.

Let �s be a sectoral domain and let �j ,ε,s , j = 0, ±1, . . . , ±k (with indices (mod 2k))
be corresponding normalized Fatou coordinates for which the transition functions satisfy
(5.5). We define

fε,s = Z−1
ε,−j ◦ �−1

−j ,ε,s ◦ � ◦ T1/2 ◦ �j ,ε,s ◦ Zε,j on Sj ,ε,s . (5.6)

Note that Fatou coordinates such that (5.5) is satisfied are determined up to left composi-
tion with Tas(ε) such that as(ε) = as(ε). Hence, the definition of fε,s is intrinsic and does
not depend on the choice of Fatou coordinates. Moreover, the function fε,s is well defined
on Dr \ {Pε(z) = 0}. Indeed, (5.5) guarantees that it is well defined when crossing an
intersection sector touching the boundary of the disk because of (5.5). Over a gate sector,
it follows from the proofs of Theorems 3.10 and 4.2 that the translations T	,ε,s satisfy
T	,ε,s ◦ � = � ◦ T−	,ε,s .

The map fε,s is bounded in the neighborhood of Pε(z) = 0 and hence can be extended
to that set.

We now need to show that different fε,s glue into a global fε defined for ε outside the
discriminant set in ε-space.

It is of course possible to choose the Fatou coordinates respecting (3.7) so that
lim ε→0

ε∈�s

�	,ε,s = �	,0 is independent of s.

Let us now consider �s ∩ �s′ and let hε = f −1
ε,s′ ◦ fε,s . It commutes with gε. Because

the modulus is non-trivial and in view of Proposition 3.11, this means that hε = g
p/q
ε

for some p/q ∈ Z independent of ε. Moreover, because of the limit property, then
lim ε→0,

ε∈�s∩�s′
hε = id. Hence, p/q = 0 and fε,s = fε,s′ .

Finally, fε is bounded in the neighborhood of the discriminant set in ε-space and can
be extended antiholomorphically there.
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FIGURE 12. The chessboard associated to the Fatou set of g(z) = z + z2. The critical point is the red square, the
parabolic point is the green star. The orange disks show a representative of the critical point in the orbit space

and its preimages under the transition maps ψ±1 (colour online). (Figure courtesy of Arnaud Chéritat).

COROLLARY 5.5. Let gε be a prepared unfolding of a holomorphic parabolic germ of type
(5.3) for which a representative of the modulus satisfies (5.5). Then, gε has a holomorphic
square root and only gε has an invariant germ of a real analytic curve.

Proof. By Theorem 5.4, gε has a square root fε and then the result follows from
Theorem 4.2.

5.4. Application to holomorphic quadratic germs.

THEOREM 5.6. The holomorphic quadratic parabolic germ g(z) = z + z2 has no anti-
holomorphic square root, nor does any of the gε(z) = z + z2 − ε for small ε.

Proof. By Theorem 5.4 and Corollary 5.5, since the real axis is invariant, g has a
holomorphic square root g1 if and only if g has an antiholomorphic square root f = σ ◦ g1.
Suppose that g has a local holomorphic square root g1. This means that the transition maps
�±1 satisfy (4.3). The global dynamics of g has been thoroughly studied in the literature
and its Fatou set is well known: see for instance [D94] and Figure 12. This dynamics
is governed by the critical point at zc = − 1

2 . Any face of the chessboard in Figure 12
is biholomophic to the upper half-plane, any corner belongs to either some g−n(zc) or
g−n(0) for some n ∈ N, and the union of the infinite set of corners and edges is the union
of the g−n([−1, 0]) for n ∈ N. What we are really interested in is the space of orbits, that
is, C/g. Quotienting by the dynamics in z-space is the same as first quotienting by T1 in
each Fatou coordinate and then quotienting by the transition maps. Quotienting by T1 is the
same as composing the Fatou coordinate with the change of coordinate w = exp(−2πiZ).
This transforms each codomain of a Fatou coordinate in CP

1 \ {0, ∞}. The transition map
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�−1 (respectively �1) is transformed into a germ of a holomorphic diffeomorphism ψ−1

(respectively ψ1) with a fixed point at the origin (respectively at ∞). The invariant real
axis is transformed into the equator of CP

1. It follows from the special geometry of g
that the image of the extension of ψ−1 (respectively ψ1) contains the lower (respectively
upper) hemisphere. Moreover, the equator contains a unique representative of the orbit
of the critical point: this point is a critical value of both ψ±1 on the boundary of their
domain of univalence. Because of (4.4), it suffices to consider ψ−1. Now, g has a local
holomorphic square root g1 if and only if ψ±1 are odd functions, and moreover, this square
root can be extended to the full domain covered by the Fatou coordinates. This means
that ψ ′−1 is an even function with a non-vanishing constant term. We know that it has
at least one critical point. Hence, it has at least two non-zero critical points of the form
±wc 
= 0. Then, ψ−1(±wc) = ±ψ−1(wc), that is, ψ−1 has two distinct critical values if
ψ−1(wc) 
= 0. This condition is satisfied, since geometrically, w = 0 corresponds to the
parabolic point and no preimages of the critical point are sent by g to the parabolic point,
which is a contradiction. Hence, g has no local holomorphic square root g1.

If follows that the transition maps of g do not satisfy (4.3). Since the transition maps of
gε depend continuously on ε, they do not satisfy (4.3), which is a necessary condition for
gε to have a holomorphic square root.

6. The multicorn families
It is shown in [HS14] that all parabolic points of the multicorn family fc(z) = zd + c have
multiplicity 1 or 2. We give a second proof and add that the family is a generic unfolding
around these points.

PROPOSITION 6.1. For d ≥ 2, the multicorn family fc(z) = zd + c has d + 1 values
of c given by cτ = (d + 1)d−d/(d−1)ei(π/(d+1))τ , where τd+1 = 1, for which the point
zτ = d−1/(d−1)ei(π/(d+1))τ is an antiholomorphic parabolic point of codimension 2. The
family is generic around these points when considering the real and imaginary parts of
c as parameters. The parabolic fixed points occurring for other parameter values of c
have codimension 1 and the 2-parameter family contains a generic unfolding around these
points.

Proof. We let d = k + 1 to use the same notation as in the rest of the paper. A parabolic
point of codimension greater than 1 is one for which, under the form f1(z1) = z1 +
a2z

2
1 + O(z1

3), then a2 ∈ iR. We look for a parabolic point z0, that is, a fixed point satis-
fying fc0(z0) = zk+1

0 + c0 = z0 and |f ′
c0

(z0)| = |(k + 1)zk
0| = 1 for some c0 ∈ C. Then,

z0 = (k + 1)−1/keiθ for some θ ∈ [0, 2π ], from which c0 = z0 − zk+1
0 . We localize at z0

by the change of variable Z = z − z0. In the new variable, the function becomes

Fc0(Z) = e−ikθZ + k(k + 1)2/(k+1)

2
e−i(k−1)θZ

2

+ k(k − 1)(k + 1)3/(k+1)

6
e−i(k−2)θZ

3 + O(Z
4
).
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We let Z1 = ei(kθ/2)Z. This transforms Fc0 into

F1,c0(Z1) = Z1 + k(k + 1)2/(k+1)

2
ei((k+2)/2)θZ

2
1

+ k(k − 1)(k + 1)3/(k+1)

6
ei(k+2)θZ

3
1 + O(Z

4
1).

Then, Z1 = 0 has codimension 1 if ei((k+2)/2)θ /∈ iR (see for instance [GR21]), and at
least 2 if ei((k+2)/2)θ ∈ iR, that is, θ = π/(k + 2) + 2mπ/(k + 2) for m ∈ Zk+2. In the lat-
ter case, zk+1

0 is opposite to z0 and c0 = z0 − zk+1
0 = (k + 2)(k + 1)−(k+1)/kei(π/(k+2))τ

for some τ satisfying τ k+2 = 1.
Note that F1,c0(Z1) = Z1 + a2Z

2
1 + a3Z

3
1 + O(Z

4
1), with a2 ∈ iR and a3 ∈ R≤0. To

check that the codimension is exactly 2, we get rid of the coefficient in Z
2
1 by means

of the change of coordinate Z1 = Z2 + (a2/2)Z2
2. This transforms F1,c0 into F2,c0(Z2) =

Z2 + (a3 − a2
2)Z

3
2 + O(Z

4
2). Then,

a3 − a2
2 = k(k + 1)3/(k+1)

12
(3k(k + 1)1/(k+1) − 2(k − 1)) > 0.

We now consider the family in the neighborhood of c0, by taking c = c0 + ε. Then,
Fc(Z) = Fc0(Z) + ε and F1,c(Z1) = F1,c0 + εei(kθ/2). Finally, the change Z1 = Z2 +
(a2/2)Z2

2 brings it to

F2,c(Z2) = η0 + (1 + η1)Z2 + O(η)Z
2
2 + (a3 − a2

2 + O(η))Z
3
2 + O(Z

4
2),

where η0 = ei(kθ/2)ε + o(ε) and η1 = −a2η0 + o(η0). A further scaling Z2 �→ rZ2 for
some r ∈ R>0 would change F2,ε exactly to the form (2.2). The change of parameter
(Re(ε), Im(ε)) �→ (Re(η0), Re(η1)) is invertible, since a2 ∈ iR, from which the genericity
of the family follows.

In the codimension 1 case, the corresponding change Z1 = Z2 + i(Im(a2)/2)Z2
2 brings

the family to the form

F2,c(Z2) = η0 + (Re(a2) + η1)Z2 + O(η)Z
2
2 + (a3 − ia2Im(a2) + O(η))Z

3
2 + O(Z

4
2),

which is a 2-parameter unfolding containing a generic unfolding.
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