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Abstract. We classify generic unfoldings of germs of antiholomorphic diffeomorphisms
with a parabolic point of codimension k (i.e. a fixed point of multiplicity k 4 1)
under conjugacy. Such generic unfoldings depend real analytically on k real parameters.
A preparation of the unfolding allows to identify real analytic canonical parameters, which
are preserved by any conjugacy between two prepared generic unfoldings. A modulus of
analytic classification is defined, which is an unfolding of the modulus assigned to the
antiholomorphic parabolic point. Since the second iterate of such a germ is a real unfolding
of a holomorphic parabolic point, the modulus is a special form of an unfolding of the
Ecalle—Voronin modulus of the second iterate of the antiholomorphic parabolic germ. We
also solve the problem of the existence of an antiholomorphic square root to a germ of a
generic analytic unfolding of a holomorphic parabolic germ.
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1. Introduction

Antiholomorphic dynamics is developing in parallel with holomorphic dynamics. The
development of holomorphic dynamics has taken off from the fine study of the structure of
the Mandelbrot set for quadratic polynomials by Douady and Hubbard [DH84, DH85]. The
Mandelbrot set was further generalized to multibrot sets for polynomials of higher degree.
However, in the cubic case, the multibrot is not locally connected. To further investigate
the cubic case, Milnor studied real cubic polynomials in 1992 (see [Mi92]). There, a
prototype for the behavior in the bitransitive case was the tricorn, which is the equivalent
of the Mandelbrot set for the antiholomorphic map z > z> + ¢. The generalization of the
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2 C. Rousseau

tricorn was the multicorn, which appears for z > z¢ + ¢. This made the link between
holomorphic and antiholomorphic dynamics, and led to an increasing interest in the latter.

Considering holomorphic dynamics, for instance, iterations of quadratic polynomials,
the interesting behavior occurs close to the boundary of the Mandelbrot set. There,
periodic points with rational multipliers (also called resonant periodic points) are dense
and organize the global dynamics. The local study of these periodic points sheds some
light on how this dynamics is organized.

In parallel, a whole chapter of mathematics developed around the classification problem
for singularities in analytic dynamics. Ecalle [E85] and Voronin [V81] classified resonant
fixed points of germs of one-dimensional analytic diffeomorphisms

f(z) = exp <ZT$)Z + Kt okt (1.1

up to conjugacy (local changes of coordinates) and derived moduli spaces for these.
The moduli are constructed as follows. While a simple formal normal form exists, the
formal normalizing change of coordinate generically diverges. However, there exists almost
unique normalizing changes of coordinates on sectors covering a punctured neighborhood
of the fixed point. The modulus is given by the mismatch between these almost unique
normalizing changes of coordinates. The moduli spaces are huge, namely functional
spaces, thus highlighting the richness of the different geometric behaviors of these
singularities. Explaining this richness came from two directions. To highlight this, let us
focus on the simplest case of a double singular point, called a codimension 1 parabolic
point (p =g =k =1 in (1.1)). The normal form in this case is the time-one map of
the flow of a vector field z2 /(1 + bz) (0/9z). Since a double fixed point can be seen as
the merging of two simple fixed points, it is natural to unfold the germ of an analytic
diffeomorphism in a family splitting the double fixed point into two simple fixed points.
Two independent attempts to understand the dynamics developed in parallel. On the one
hand, there were studies in the parameter directions in which the simple fixed points were
linearizable (see for instance [Ma87, GIl01]). In the neighborhood of each fixed point,
the diffeomorphism is analytically conjugate to the normal form given by the time-one
map of the flow of a vector field - &)/(1 + b(e)z) (0/0z). However, generically,
the two normalizations do not match. The mismatch is a modulus of the unfolding for
these parameter values and the limit of this mismatch when the fixed points merge
together is the Ecalle—Voronin modulus. This approach could not work in the parameter
directions, where either at least one simple fixed point is not normalizable or the domains
of normalizations have void intersections. A way through came from a visionary idea of
Douady, namely, to normalize the system in some domains that contain sectors at the two
fixed points and whose union covers a punctured neighborhood of the two fixed points.
If the domains are appropriately chosen, then the normalizations are almost unique, thus
allowing to unfold the moduli. This approach was first proposed in the thesis of Lavaurs
[L89] and normalizing coordinates were constructed by Shishikura [S00]. The method
could be generalized to cover all directions in parameter space and led to constructions
of moduli for germs of unfoldings of parabolic points ((MRR94] for the generic case and

https://doi.org/10.1017/etds.2025.10242 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2025.10242

Unfoldings of antiholomorphic parabolic point 3

[Ri08] for the general case). The generalization involves taking domains spiraling when
approaching the fixed points. Furthermore, the moduli space was identified in [CR14].

Generalizations to parabolic fixed points of multiplicity £ + 1 (that is, codimension k)
were made possible again through the visionary ideas of Douady, who sensed that the
structure of domains on which to perform the normalizations was linked to the dynamics
of polynomial vector fields P(z)(9/dz) on C. In that case, a full generic unfolding involves
k independent parameters. The first step performed by Oudkerk [099] covered some
directions in parameter space. A few years later, the systematic study of the generic
polynomial vector fields was finalized in [DES05]. Using these results, the methods of
[MRRY94] can be generalized to cover the full parameter space. Again, almost unique
normalizations exist on domains that have spiraling sectors attached to two fixed points.
These can be used to define a modulus of analytic classification for generic germs of
unfoldings of parabolic fixed points of codimension k [Ro15]. (Note that [Ri08] treats
the case of 1-parameter unfoldings.) Identifying the moduli space is still open for k > 1.

A similar program can be carried for multiple fixed points (also called parabolic points)
of germs of antiholomorphic diffeomorphisms

f@ =z 74 + ot (12)

and their unfoldings. The analytic classification of such germs was done in [GR21].
The similarities with the holomorphic case come from the fact that the second iterate
of an antiholomorphic map is holomorphic, and hence results on holomorphic parabolic
points are relevant. The differences are at the parameter level. The holomorphic or
antiholomorphic dependence of an antihomorphic diffeomorphism on parameters is not
preserved by iteration. This comes from the fact that the condition for a multiple
fixed point to have multiplicity k£ + 1 has real codimension k and a generic unfolding
depends real-analytically of k real parameters. The classification problem of codimension 1
unfoldings (parabolic points of multiplicity 2) has been completely studied in [GR23],
including identifying the moduli space.

In this paper, we consider the higher codimension k case. Usually, a conjugacy of
parameterized families of dynamical systems involves a change of parameter, which
governs which member of the first family is conjugate to which member of the second
family. In a generic holomorphic unfolding of a parabolic germ, there is a choice of a
canonical multi-parameter ¢ = (&, . . . , &k—1), Which is unique up to the action of the
rotation group of order k. A modulus of analytic classification for such a generic unfolding
8¢ 1s given by a measure of how much g, differs from its formal normal form given by the
time one map v of a vector field

A o A e e et N (13)
’ 1+ b(e)zk dz’ '

The normal form is invariant under (z, €o, . .., &x—1) — (12, T€0,s . . ., T *Der_),
with 7% = 1. Additionally, in the particular case where % = b(¢), then for real ¢,
there are k invariant lines under the dynamics and each choice of canonical parameter
is associated to an invariant line.
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In the antiholomorphic case, we consider generic unfoldings depending real-analytically
on k real parameters. We show that for k odd, there is a unique choice of canonical
parameters. For k even, the only freedom is the action on parameters of z — —z. Hence
(up to conjugating with z — —z when k is even), any conjugacy between two unfoldings
must preserve the canonical parameters. Moreover, a change of coordinate and move to the
canonical parameters prepares the family to a form f; naturally, compared with a formal
normal form, where ¢ = (go, . .. &x—1) is a real-analytic multi-parameter. This normal
form is given by o o vgl/ 2, where v, is defined in (1.3) and o is the complex conjugation,
and b(e) is always real. Note that this normal form has no rotational symmetry (except
under z — —z when k is even). Moreover, the real axis is the only invariant line and a
symmetry axis for (1.3).

In practice, to derive a modulus, it is useful to extend & to C* and f, antiholomorphically
in the parameter. Then, the diffeomorphism g = fz o f; is a holomorphic unfolding of a
holomorphic parabolic point of codimension k depending holomorphically on the complex
parameter ¢ € C*. A modulus of analytic classification for g, is given by a measure of how
much g, differs from its formal normal form. As a result, a modulus in the antiholomorphic
case is obtained from the fact that two prepared families fj, and f>, are analytically
conjugate under a conjugacy tangent to the identity if and only if their associated ‘squares’
defined by g; . = fjz o fje are holomorphically conjugate under a conjugacy tangent to
the identity.

We then consider several applications. As a first one, we derive the necessary and
sufficient condition for the existence of an invariant real analytic curve for real values of the
parameters. Of course, this curve can be rectified to the real axis. In the second application,
we consider the necessary and sufficient conditions under which a germ of a generic
unfolding of a holomorphic parabolic germ g, has an ‘antiholomorphic square root’, that
is, can be decomposed as g. = fz o f¢, with f; antiholomorphic. These conditions are just
the unfoldings of the corresponding conditions for the germ at ¢ = 0 given in [GR21] and
consist in some symmetry property of the modulus. As a particular case, we show that the
quadratic family g, (z) = z + z> — ¢ has no antiholomorphic square root for small ¢.

As a last application, we consider the map 7¢ 4+ ¢ for ¢ € C, and the associated
multicorn for an integer d > 2. It is known that there are exactly d + 1 values of ¢ for which
there exists a parabolic fixed point of codimension greater than 1 (that is, multiplicity
greater than 2). We show that these points have exact codimension 2 and that the family
z¢ + ¢ is a generic unfolding of these points.

2. Preparation of the family
2.1. Generalities and notation.

Notation 2.1.

(1)  We denote by T, the translation by a € C.
(2) We denote by o the complex conjugation z > Z.
(3) We denote by D, the disk of radius r.

Definition 2.2. A map f defined on a domain of C is antiholomorphic if 3f /dz = 0, which
is equivalent to o o f being holomorphic.
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Remark 2.3. Let z( be a fixed point of a antiholomorphic map f. Then, only | f/(z0)| is an
analytic invariant under analytic changes of coordinates.

Definition 2.4. A multiple fixed point of finite multiplicity of a germ of a holomorphic or
antiholomorphic diffeomorphism is called parabolic. The germ is said to be holomorphi-
cally parabolic or antiholomorphically parabolic.

PROPOSITION 2.5. [GR21] Let zo be a parabolic fixed point of a germ of an antiholo-
morphic diffeomorphism. Then, there exists a holomorphic change of coordinate in the
neighborhood of zy bringing the diffeomorphism to the form

1 k+1 b
T Ezkﬂ + (% — E>22k+1 + 0@y, kodd,
fo@) = 1 k
1 b
P g (G e ke

with b € R. The integer k > 1 is called the codimension and the number b is the formal
invariant. The same k and b are the codimension and formal invariant of the holomorphic

parabolic germ go = fo o fo.

Remark 2.6. Note that when £ is even, if we have the minus sign in fj, then we have the
plus sign in fo_l. Hence, we limit ourselves to the plus sign.

In this paper, we consider germs of families of antiholomorphic diffeomorphisms
depending real-analytically on k real parameters and unfolding a parabolic germ of the

form
_ 1 k+1 b)\_ _
fo) =7+ EzkH + (T - §>z2k+‘ + 0@+, 2.1)
The germs of families have the form
k+1 ' 1
F@ =2+ ajmz + Ez"“ + 0@, 2.2)
Jj=0
witha;j(0) =0and n = (o, . .., Mk—1) € (R, 0).

Definition 2.7. The family (2.2) is generic if the change of parameters 7+
(Re(ap), . . ., Re(ar—_1)) is invertible.

The second iterate g, = f;, o f;; is an unfolding of the holomorphic parabolic germ
depending on k real parameters, but it will be useful to complexify the parameters. The
following lemma is obvious.

LEMMA 2.8. Let us complexify the parameters n in f, in such a way that f, depends
antiholomorphically on n (that is, 9f,/dn; =0, j =0,...,k —1). Then, the map g,
defined for complex n by

8y = fﬁo fn (2.3)
is a generic full unfolding of go depending holomorphically on n € (CX, 0).
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Proof. Note that g, depends holomorphically on 1. Moreover the a; are antiholomorphic
in n, that is, functions a; (7). Then,

k+1
gy(2) =z+ Y _(2Re(a;()) + o(m)z/ + (1 + 0) + 0c* 1),
j=0
from which the genericity follows. O

However, for the time being, we continue with 1 € (Rk, 0).

LEMMA 2.9. Let f be an antiholomorphic diffeomorphism and g = f o f be its second
iterate. If 7 is a fixed point of f, then g'(z0) € Rxo. If {z1, 22} is a periodic orbit of period 2
of f, then g'(z1) = g/(22).

Proof. We have g'(z0) = f'(z0) f'(z0). Also, g'(z1) = f'(z2) f'(z1) and g'(z2) =
f'(z1) f’(z2), from which the result follows. O

COROLLARY 2.10. Let f,, be an unfolding of an antiholomorphic parabolic germ and let
&n = fio fy beits second iterate. Then, its formal invariant b(n) commutes with o.

Proof. Let zg, . . ., zx be the fixed points and periodic points of period 2 of f;, merging to
the origin for n = 0: these are the fixed points of g,. It is known (see for instance [Ro15])
that b(n) = Zfzo(l/log g; (z5)), which is real for real n by Lemma 2.9. O

We want to classify germs of unfoldings of antiholomorphic parabolic germs under
conjugacy by mix analytic fibered changes of coordinate and parameters.

Definition 2.11. A change of coordinate and parameter, (z1, ) — (22, ¢) = (H(z1, 1),

¢ (n)), is mix analytic if:

e it is a diffeormorphism defined on a neighborhood D), x Hlé;é(—Sg, 8¢) of
0 € C x R*, where DD, is the disk of radius r;

e ¢ depends real-analytically of 7;

e H depends holomorphically on z; and real-analytically on 7.

Definition 2.12. Two germs fi, and f>, of unfoldings of antiholomorphic parabolic
germs are conjugate if there exists a mix analytic change of coordinate and parameters
(z1,n) = (z2,8) = (H(z1, 1), ¢(n)) defined on some R =D, x I—[lz;(])(—&, 8¢) such
that for all (z1, ) € R,

H(f17(z0),n) = fapo(H(z1, 0)).

2.2. Preparing the family.

THEOREM 2.13. We consider a germ of a generic k-parameter family unfolding an
antiholomorphic parabolic germ of the form (2.2). There exists a mix analytic (fibered)
change of coordinate and parameters (z, n) — (Z, ¢) transforming (2.2) to

Fo(Z)=Z+ P.(2)(3 + 0:(Z) + P.(Z)R:(2)),
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where:
— —k _ —
e P(Z)=2Z + + lez(l) £j 7' and Q. is a polynomial of degree at most k with real
analytic coefficients in &;

o ifZy,..., Zry are the fixed points and periodic points of period 2 of Fy, that is, the
fixed points of G = F22, then b(e) = Zf:ll (1/1og G, (Zs)) is real analytic with real
values;

o ifv,=P.(Z)/(1+b(e)") (8/9z), then log F/(Zs) = %vg(Zs)fors =1,...,k+ 1

Proof. Let us consider the fixed points of f;,. Taking z = x + iy, this leads to the two
equations

k+1
. . 1
0= Re@)(/ +y?0(x, y"™) + 2211+ 0m) + 0(0)) +y*0lx, y/7
j=0
k—1 ‘
+Y Im(a)y O(x, y )+, (2.4)
j=1
0=-2y+ 0@ +o(x, yD,

where coefficients of terms with negative exponent vanish. The second equation can be
solved by the implicit function theorem, yielding y = h(n, x) = O(n) + o(x), with h real
analytic in (x, n). Replacing this in the first equation yields

k
0= (Re(ay) + O(aol.. ... laj-1]) +o(m)x’
= 2.5)

+ %(1 + O oG,

By the Weierstrass preparation theorem in the real analytic case, then (2.5) is equivalent to
Py, (x) =0, with Py, a Weierstrass polynomial of the form

k
Poy(x) =Y 2(Re(a;) + O(laol, . . ., laj_1]) + o(m)x/ + x**1.
j=0
We make the change of variable z = z1 + ih(#, z1), which sends the real axis in zj-space
to y = h(x) in z-space. Let fi, be the expression of f, in the new variable z;. Then,
all fixed points of fi; occur on the real line in z;-space. Moreover, if z; = x1 + iy;, the
equation for the fixed points of f] has the same form as before: y; = 0 and

k
0= Piy(x1) =Y 2(Re(a;) + Olaol, . . ., laj—1]) + om)x{ + x{ .
j=0
The next step is to make a translation by a real number z, = z1 + O (Jag|, - . ., |lak—1]) +

Re(ay) + o(n) transforming Py ;(x1) to

k—1

Poy(x2) =Y aj(ma + x5t
j=0
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where o (7) = 2(Re(a;) +o(n)). Let a = (ap, . . . , ax—1). If the family is generic, the
change of parameters n — « is invertible and we could as well take o as a new parameter.
However, in practice, we will keep 7.

When considering f; as a two-dimensional real diffeomorphism, the eigenvalues at a
fixed point are two opposite real numbers X and determined by a unique real number A
(this corresponds to the fact that only the norm of f,; (A) is intrinsic).

If f.5 is the expression of f; in the variable z; and zo = x3 + iy, then the fixed points
of f>, are the points xp +i - 0, where x> is a real solution of P>;(x2) =0, and there
exists an open set in n-space in which P, has k + 1 real roots corresponding to k + 1
fixed points of f .

Let us now consider the equation P;;(x2) = 0 with x, complex. Since the polynomial
has real coefficients, then the complex roots occur in conjugate pairs. All solutions are also
solutions of the equation P, (x2) = 0. Taking zp = x +i - 0, these points correspond
to solutions of f>(z2) = z2. Hence, a pair of complex conjugate roots (w, w) of P,
corresponds to a periodic orbit of period 2 of f5.

Let us consider g2, = f2,; © f2,,- Then, g2, is a k real parameter unfolding of a
codimension k holomorphic parabolic germ, which always has k + 1 fixed points counting
multiplicities. The equation for fixed points of g, is given by a Weierstrass polynomial
Py (z2) depending real-analytically on 5. The fixed points of g3, are either fixed points of
f2.5 or belong to pairs (w, w) of periodic points of f3, with period 2. Hence, p; has real
coefficients when 7 is real. It follows that p, = P .

Let us now write g2, in the form

82.7(22) = 22 + Poy(22)(1 + gy (22) + P2y(22) Hy(22)).

Let wy, ..., wg41 be the fixed points of g2 ;. There exists a polynomial S,(z2) degree at
most k such that

log(gh,, (w)) = Pj,, (w) (1 + S,(w;)).

Indeed, when the w; are distinct, let M; :=log(g) ,(w;))/ P, ,(w;) — 1. Then, such a
polynomial S, (z2) is found by the following Lagrange interpolation formula:

0 1 n .

M, 1 w ce w]f

M 1 c k

k+1 Wk+1 Wy
SU(ZZ) = - k
1 wi e wl
k
Lowgepr -0 wiyy

Here, S, depends analytically on 7, since it is invariant under permutations of the w;.
Moreover, limits exist when two fixed points coalesce. Extending 1 to complex values and
using Hartogs’ theorem allows to conclude that limits exist when more than two fixed
points coalesce. Since P, ; has real coefficients, since the complex conjugate roots of P, ;
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correspond to periodic points of period 2 of f5; and using Lemma 2.9, it follows that for
each root w; of Py, then W, is a root of Py, and M, := log(g) ,(w;)/ Py, (wj) — 1,
and thus that S, has real coefficients.

Hence, the logarithms of the multipliers at the fixed points of g; , are the eigenvalues
at the singular points of the vector field

0= UU(Z2) = PZ,n(ZZ)(l + Sn(Z2))~ (2.6)

By the variant of Kostov’s theorem valid for real analytic dependence on parameters
[KR20], there exists exactly k& changes of coordinate and parameter (z2, n) — (23, &)
transforming (2.6) to

k1 k-1
23 tero1z3 Ao tezateo  Pe(z3)

1+ b(e)k T L+ b(e)Zk

3=

The k one-parameter families of changes of coordinates are obtained one from another
using the action of the rotation group of order k on that vector field,

k

—k+2
(235 Ek—1s - - > €1, 80) > (T23, T " TPgk_1, .. ., €1, T&Q),

where % = 1. The one tangent to the identity preserves the real axis, which is a privileged
direction for f3, (thatis, f, in the z3 variable). Hence, we choose a change of coordinate
tangent to the identity (changes z3 +— —z3 are also allowed when k is even).

At this step, the map g, is prepared. However, the map f3, may not be prepared yet.
Indeed, the derivatives of f3 are not intrinsic. Considering that solutions of P.(z3) =0
are also solutions of P.(z3) = 0 and that these solutions are solutions of f3.(z3) = z3,
then f3 . has the form

Fe(z3) =73+ P (Z3)M (e, Z23).

By further dividing M — % by P, namely

k
1
M(e,23) = 5 + 3 me()zs + Pe3)Ne (23),
=0
this yields
k
_ _ (1 » o
fre(z3) =7+ Pg(m(i + Y me(e)zs + Ps(z3)Ns(Z3))-
=0

If wy, ..., wgy are the solutions of Py (z3) = 0, then

k
1
fewp) =1+ Pé{(wj)<§ + Z me(e)wf.).
=0

By Lemma 2.9, we already know that

fé,e(wj)fé,g(wj) e R.
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We look for a change of coordinate Z = u.(z3) = z3 + P: (23)(21220 Dgzg) preserving
the fixed points and periodic points of period 2 of f3, so thatif Fx = us o f3. 0 u;l, then
Fl(wj)=F.w;), j=1,...,k+1 2.7)
Note that Fr(w;) = w;. Hence,
uy (W)

Fl(wj) = mfg/,g(wj)-
& J

ug(wy) =/ f3,(w)). 2.8)
If wjeR is a fixed point of f3,, then Fg(wj) = |f3/,8(wj)| € Ryo. If (wj, wj)

is a periodic orbit of period 2, then F!(w;) = \/ fg’g(wj)\/ fi.(wj) and F/(w;) =

\/fég(wj)\/fég(wj). Hence, F satisfies (2.7).
We now need to prove that it is possible to construct # mix analytic satisfying (2.8).
Let K. (z3) = Yk_o Dezl. Then, ul(wj) = 1+ Pl(w;)Ke(w)), while

/ / 1 ‘ — ). l 1
V) = |1+ Piwp( 5+ Y me@w) ) =1+ Plw)( 7+ Velw))
£=0

for some analytic function V. Hence, K. (w;) = ‘l‘ + Ve(w;) := W;. For distinct w;, the
polynomial K, is given by a Lagrange interpolation formula

Hence, we ask that

0 1 23 o zé‘
W1 1 w1 s w’]‘
W, 1 - k
k+1 Wk+1 Wy
1 w w
k
Lowepr o0 wiyy

Note that the conditions defining K, are analytic in . Hence, it is possible to
complexify ¢. The formula has a limit when two w; coalesce. The limit also exists
for the more degenerate cases by Hartogs’ theorem. Since the conditions are invariant
under permutations of w j, the polynomial K, depends analytically on & by the symmetric
function theorem. O

COROLLARY 2.14. When k is odd, the canonical parameter of the prepared f. is unique.
When k is even, conjugating f. with L_1(z) = —z yields a second prepared form
3 = L_1 o fz o L_1 with canonical parameter

é = (ek—ls —Ek—25 ..., €1, _80)' (2'9)
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3. Modulus of analytic classification
We now consider a germ of a generic antiholomorphic family unfolding a parabolic point
of codimension k in prepared form

fe@) =7+ P.@(3 + 0:(@) + P:@R:(2)), 3.1)

as described in Theorem 2.13. As in Lemma 2.8, we complexify the parameter ¢ in ((Ck, 0),
we ask that f, depends antiholomorphically on &, and we define the second iterate as in
(2.3). Germs of generic analytic unfoldings of a holomorphic parabolic point of codimen-
sion k have been studied in [Ro15], and we will see that two prepared germs of antiholo-
morphic families f;, and f>, are conjugate under a conjugacy tangent to the identity
depending real-analytically on & € (R¥, 0) if and only if the corresponding homolorphic
families g1 = fizo fie and g2 = faz o f2, With complex analytic dependence on
& € (C, 0), are analytically conjugate under a conjugacy tangent to the identity.

For real ¢, the formal normal form of f; is given by 0 o v, = vg/ 26 o, where vé is
the time ¢ of the vector field

P, 0
Ve = _P@ —, (3.2)
1+ b(e)zFk 9z
and
k—1
Pe(z) =21+ g2, (33)
j=0
For complex values of ¢, we have to think of the formal normal form meaning that
heo feohe)y ' =ao0v}? =000 (3.4)

for some formal map he.

We want to describe the dynamics of the germ of a family. In practice, this means
describing the dynamics for z in a disk D, of radius r for all values of the parameter in
some polydisk |e| < p. The general spirit is that if p is taken sufficiently small so that
the fixed points stay bounded away from dID,, for instance, in D, />, then the dynamics
is structurally stable in the neighborhood of d),, and this dynamics organizes the whole
dynamics inside the disk. The modulus of analytic classification measures the obstruction
to transforming analytically the family into the formal normal form. To construct the
modulus, we transform the family almost uniquely to the normal form on (generalized)
sectors in z-space. (Note that f, sends one sector to a different sector.) In accordance
with the general spirit just mentioned, these generalized sectors are constructed from the
behavior around 0D, and then following the dynamics inwards. Then, the modulus is given
by the mismatch of the normalizing transformations. In the construction, 2k generalized
sectors are needed, if we add the additional constraint that the generalized sectors have a
limit when ¢ — 0.

In practice, it is more natural to change the coordinate to the time coordinate of the
vector field v,, given by

k
Zgz/ 1+o@
P:(2)
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In this new coordinate, f; is transformed to F; = Zg o fy 0 Z ! and the normal form to
Ti/2 o X, where X is a complex conjugation defined in the Riemann surface of the time
coordinate by lifting o (see Definition 3.1 below) and T is the translation by % (see
Notation 2.1). Then, in the Z.-coordinate, the sectors will correspond to the saturation by
the dynamics of strips transversal to the horizontal direction, and we need to consider pairs
of sectors for Z, and Zz.

3.1. The time coordinate Z,. The time coordinate Z, is multivalued over the disk
punctured at the fixed points and the image Z.(D, \ {P;(z) = 0}) is a complicated
Riemann surface. In practice, we work with 2k charts defined from 0D, and going inwards.
For j =0, 1, ... % k (with indices (mod 2k)), we define

[ 1+ b(e)Z
ZE,](Z) = /;j W dz,

where ¢y = r and, for j = +1, , xk, ¢; close to 9D, is defined by f (1 +be)%))
P:(z) dz =2mib(e)/k with y; an arc from ¢;_; to ¢; located in the neighborhood
of 0ID,. The chart for Z, ; contains the arc (ret? |0 € (wj/k — )2k, mj )k + 7 /2k)}.
In particular,

2mib(e)
k 9

Zej(2) = Zej—1(2) — (3.5)
where the indices are (mod 2k).

Each simple singular point zg; of v, has a non-zero period given by 2mi
Res((1 + b(a)zk) /Ps(2), z5). Moreover, the fixed points of f, are sent at infinity in
directions which rotate when the parameter varies. Note that the periods of points are
unbounded and have an infinite limit when two singular points merge together.

What is important is that the whole dynamics is organized by the structurally stable
behavior in the neighborhood of 9D, (see Figure 1). For sufficiently small ¢, the image
of 3D, is, roughly speaking, a k-covering of a curve close to a circle of radius R = 1/krk
(there is an extra discrepancy of 2wib(¢), which is small compared with the radius R) and
the interior of the disk is sent to a k-sheeted surface on the exterior of the image circle (but
there is again an extra discrepancy of 2wib(¢)). The interior of the image circle is often
called a hole. Because of the periods, there are sequences of holes on the Riemann surface
of Z,. In the limit ¢ = 0, only one hole remains, the principal hole, while the others have
disappeared at infinity.

Definition 3.1. The complex conjugation o is lifted in the time coordinate to X. For
real ¢, ¥ is the usual complex conjugation in the coordinate Zp, and is extended
antiholomorphically over the Riemann surface of the time. It is then antiholomorphically
extended in non-real ¢. If U, ; is the image of Z; ;, then X : U, ; — Uz _; satisfies

EOZE’]' =Zg,,jod.
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(a) In z-space (b) In Zc-space

FIGURE 1. The 2k sectors near D, and the corresponding sectors in time space (colour online).

FIGURE 2. The four sectors for P (z) = z° + ((2 +)/20)z + ((1 + 6i)/30)e'™/* (colour online).

3.2. The 2k sectors in z-space. The 2k sectors in z-space will be attached to 9D, as in

Figure 1. In the generic case of simple singular points, their boundary will be given by (see

Figure 2):

e one arc y along 9D, containing {re'’ |0 e (wj/k — )2k, wj/k + m/2k)} for
some j, as in Figure 1;

e one arc from one end of y to one singular point;

e asecond arc from the other end y to a second singular point;

e an arc between the two singular points.

The last three arcs will often be spiralling when approaching the singular points. All

together, the 2k sectors provide a covering of D, \ {P:(z) = 0}. Note the shape of the

intersection of the four sectors in Figure 3.

Because the singular points move around inside the disk, the 2k sectors cannot be
defined depending continuously on the parameters in a uniform way in the parameter space.
Hence, we will need to use a covering of the parameter space minus the discriminant set
(where multiple fixed points occur) by C (k) = (Zkk)/ (k + 1) simply connected sectoral
domains. To describe these sectoral domains, we need to consider the dynamics of
we = iv,. However, in practice, it suffices to work with the polynomial vector field
i P;(2)(0/0z), which has the same fixed points as w, and whose real-time trajectories
inside ID, are close to those of w,.
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FIGURE 3. The intersections of the four sectors of Figure 2: four intersection parts link a fixed point to the
boundary and have a limit when the fixed points merge together. The two other parts (called gate sectors) link
two fixed points and disappear when the two points merge together (colour online).

The ‘generic’ polynomial vector fields have been described by Douady, Estrada, and
Sentenac [DES05] (see §3.3 below). The sectoral domains are enlargements of the C (k)
generic strata of Douady, Estrada, and Sentenac [DES05] and cover the parameter space
minus the discriminant set. The discriminant set has complex codimension 1. Hence, to
secure conjugacy of the families over the full parameter space, it will be sufficient to
describe a modulus outside the discriminant set, thus guaranteeing that two families with
same modulus are conjugate over the complement of the discriminant set, and then to
check that the conjugacy remains bounded when approaching the discriminant set.

3.3. The work of Douady, Estrada, and Sentenac. The paper [DES05] classifies
‘generic’ monic polynomial vector fields P,(z)(d/0z) up to affine transformations by
means of an invariant composed of two parts: a combinatorial part and an analytic part
given by a vector of HF. (The corresponding description for i Py (z)(9/dz) follows through
2> tzfor ik = —i)

The dynamics of P.(z)(9/0dz) is governed by the pole at infinity and its 2k separatrices
alternately stable and unstable (see Figure 4). Douady, Estrada, and Sentenac have studied
the generic case where the singular points are simple and there is no homoclinic loop
through infinity, which we call DES-generic. Under the DES-generic hypothesis, the
separatrices land at the k + 1 singular points, which are foci or nodes (the eigenvalue
has a non-zero real part). Moreover, the singular points are linked by trajectories. Two
trajectories joining two singular points are called equivalent if they have the same «-limit
and w-limit points. The equivalence classes of trajectories can be considered as the edges
of a tree graph with k 4 1 vertices located at the fixed points. The combinatorial part of
the Douady—Estrada—Sentenac invariant is given by the tree graph and the way to attach
it to the separatrices (see Figure 5). There are C (k) different combinatorial parts, yielding
C (k) generic DES strata. Each DES stratum is parameterized by HF.

Exceptionally, some separatrices can merge by pairs, one stable, one unstable, in
homoclinic loops through oco. A necessary condition for this to occur is that the sum of
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I
sy

FIGURE 4. The pole at infinity of P (z)(d/0z) and its separatrices organizing the dynamics in the neighborhood
of 9D, as in Figure 1.

FIGURE 5. The tree graph and its attachment to the separatrices (colour online). (The figure is topological and
the trajectories and separatrices could spiral when approaching the singular points.)

the periods of the singular points surrounded by the homoclinic loop is a real number.
Generically, this occurs on hypersurfaces of real codimension 1, which separate the strata
of DES-generic vector fields.

Apart from the multiple singular points, the homoclinic loops are the only bifurcations.
In particular, there are no limit cycles and any singular point with a pure imaginary
eigenvalue is a center surrounded by a homoclinic loop through infinity.

In the DES-generic case, the separatrices split the plane into k£ connected regions, each
adherent to two fixed points, one attracting, one repelling (see Figure 6(a)). It is these
connected regions for the vector field i P.(z)(d/0z) that will be used to define the 2k
sectors.

3.4. The sectoral domains in parameter space. ~We want to describe the orbit space of a
germ f, and that of g. = fs o fe. Since g, is close to the time-one map of P.(z)(3/0dz2), it

https://doi.org/10.1017/etds.2025.10242 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2025.10242

16 C. Rousseau

(a) Two connected re- (b) The corresponding (c) The enlarged half-
gions half-regions regions

FIGURE 6. Two connected regions determined by the separatrix graph i P (z)(9/9dz) (colour online).

FIGURE 7. A separatrix of a polynomial vector field making wide meandering before landing at a singular point
and cutting the disk into parts (colour online).

is natural, to capture the orbits, to look at a transversal direction to the flow of P, (z)(d/9z),
and the most natural direction is the perpendicular direction.

We consider the intersection of the regions bounded by the separatrices of i P;(z)(9/9z)
with the disk D,. The easy situation is when each intersection is connected.

In that case, any change of coordinate to the normal form on one of these regions of the
disk in the sense of (3.4) will be unique up to post-composition with some map v’ for some
t € R. However, these connected regions will have a disconnected limit when the two fixed
points merge together. Hence, to have good limit properties, we cut these regions into two
(see Figure 6(b)), using a trajectory linking the two singular points. The regions can be
sectorially enlarged near the singular points to provide an open cover of D, \ {P(z) = 0}
(see Figure 6(c)).

The construction needs to be adapted when some intersections of the regions with D,
are disconnected. This occurs, for instance, when an eigenvalue at a singular point has a
very small real part. Then, some separatrix makes wide meandering before landing at a
singular point (see Figure 7). In that case, we need to adapt the construction by taking the
boundaries of the regions given by piecewise trajectories of vector fields ¢/® P, (z)(3/9z)
for a finite number of real values of @ bounded away from mZ. In practice, this is done
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@ @

FIGURE 8. Two strips on different sides of the fundamental hole. When there is a transition map, the slopes
should be the same (bottom in the figure).

by changing to the time coordinate ¢ = f (dz/P:(2)) of the vector field dz/dt = P.(z).
The regions will be infinite strips with piecewise linear boundaries. The bonus of this
construction is that it can be extended for all non-DES-generic parameter values as long as
the fixed points are simple. Then, we will be able to perform the construction everywhere
on the complement of the discriminant set, that is, on a region of complex codimension 1.

Definition 3.2. A sectoral domain is a simply connected domain in parameter space, which
is an enlargement of a DES-stratum of the vector field i P;(z)(d/dz), on which it is possible
to construct 2k sectors depending continuously on the parameter.

3.5. Sectors and translation domains.

Definition 3.3. Let Fj.:=Z jzo fco Zj_g1 (respectively G, :=Zj.0g:0 Z;;) be
the lifts of f, (respectively g.) in the charts in time coordinate.

Let €2, be a sectoral domain. We denote by S; .5, j =0, £1, ..., £k, where indices
are (mod 2k), the 2k sectors associated to 2, to be constructed. They are inverse images of
translation domains Uj ¢, j = 0, £1, ..., £k in the time coordinate, which are defined
as follows. We first consider the particular values of €25 for which all singular points of
i P;(z) are nodes. For these values, the holes in time space are all horizontal. Let & € Q. It
is known that G ; is close to the translation by 1, T (see for instance [Ro15, Proposition
4.1]). Let us take any vertical line £, to the left or right of the principal hole in the chart
Zj ¢ such that:

(1) there are no other holes between £, and the principal hole;

(2) the strip By, bounded by £, and G ¢ (£.) is included in the chart.

Then, the translation domain U . s associated to the chart Z; . is the saturation of the
strip By, by G ¢ inside the chart. For the other values of ¢ € 2, we may take for £, any
bi-infinite piecewise linear curve such that £ and G . (£¢) do not intersect, conditions (1)
and (2) above are satisfied, and £, depends continuously on ¢ (see Figure 8).
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The sectors in z-space are simply S; . ¢ = Z;;(Uj,w),j =0, 1, ..., £k withindices
(mod 2k).

3.5.1. Pairing sectoral domains.

PROPOSITION 3.4. It is possible to cover the complement of the discriminant set in
parameter space with C (k) sectoral domains. The size of sectoral domains can be chosen
so that the image of a sectoral domain under ¢ +— € is again a sectoral domain. Then,
sectoral domains can be either:

e invariant under € — €;

e or grouped by symmetric pairs.

Proof. The proof can be found in [Ro15]. The last property comes from the fact that the
coefficients of P.(z) are real for real €. O

If Q; is a sectoral domain, then we denote by Q5 := Q; its symmetric image. This yields
an involution on the set of indices, which we denote by s +— .

3.6. The Fatou coordinates.

PROPOSITION 3.5. (Definition of Fatou coordinates) Let f. be a prepared germ of
type (3.1). Let F;j. be the lift of f. in the time coordinate Z; .. Then, for all sectoral
domains Qs, if

Qjs= U {e} x Ujes,

£€82,U{0}
J =0, %1, ..., £k, then there exists families {®j ¢ s}ce,ui0) of Fatou coordinates of f
defined on Q s such that:
[ ]
®_jz50Fj0(@j.5) ' =ZTo0 Ty: (3.6)

o &, is holomorphic on int(Q/+*) with continuous limit at ¢ = 0 independent of s, i.e.

lim CDJ"E’X = (Dj’(),
e—0
£€Qy

where the convergence is uniform on compact sets and ®; ¢ is a Fatou coordinate of

foonUjp;
e the families are uniquely determined by

D jz5(X_jz5) + Pjes(Xjes) =Cjes, 3.7

where Xj o5 € Ujesand X_jz5 are base points, o o Cj o5 = C_jz5 and both X j ¢
and Cj ¢ s are holomorphic in € € Qg with continuous limit at ¢ = 0.

Proof. We take 5]-,5,5 as a Fatou coordinate for G ¢ satisfying 5]38,& 0Gje=To0 EIJ)]-,M
and depending analytically on ¢ with continuous limit at ¢ = 0. These are known to exist
(see [Ro15]). One way to achieve the required dependence on ¢ is to take a base point
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FIGURE 9. The transition functions (colour online).

X j ¢,s depending analytically on ¢ with continuous limit at ¢ = 0 independent of s (a base
point constant in & and s would work) and to ask that @ ; jesXjes) =0.

Let K] £s = CD_j g50Fj¢o0 (<I>, H)’ Then, K],s,s is a diffeomorphism, which
commutes with T7j. Quotienting by 77, yields that K; jes=Xo0 TA/ .- Moreover,
K_] 550 Kj e,s = 11, which yields A + A_] 55 = 1. The result follows by letting
Dies=T_ A3/ oCDJH and ®_jz5=1T_ Aea/2) © CILJH (details as in [GR23]).

Moreover, other Fatou coordinates satisfying (3.6) must have the form Tp;, o ®; ¢
with Bj.s = m This changes Cj.s:=P_;z5(X_j55) + Pjes(Xjes) tO
Cj,g’s + ZBj’g’S. O]

3.7. Defining the modulus.

Definition 3.6. Let f, be a prepared germ of type (3.1), let €25 be a sectoral domain, and let
{®jesteen,uioy, J =0, £1, ..., Lk be associated Fatou coordinates. The 2k associated
transition functions are the functions (see Figure 9)

(3.8)

W q)f,s,s o T—sgn({)(inb(a)/k) o (q>€—1,£,s)_1s £ odd,
Les —
Dy 0 Tsgneyinb(e)/k) © (Pres) ™', Leven,

£==1,..., £k

PROPOSITION 3.7. Let f. be a prepared germ of type (3.1), let Qs be a sectoral domain,
and let {Wy, sleeq,uiop € = %1, ..., £k, be associated transition functions. Then, we
have the following:

(D TroWees=VyesoTi;

2

Yo T1/2 oWpes =V yzs50X0 T1/2. (3.9

In particular, all transition functions are determined by the ones for £ > 0.
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(3) It is possible to choose Fatou coordinates so that the constant terms in the Fourier
expansion of (W e s }eeq,uioy are given by

Cres = sen()(—1)t inz(g). (3.10)

Such Fatou coordinates are called normalized and the corresponding transition
functions are also called normalized.

@ I {\nﬂg,g,s}gegxu{o}, L ==1,...,xk, are other transition functions associated to
other normalized Fatou coordinates, then there exist Bgs satisfying Bes = E
analytic in € € Qg with continuous limit at ¢ = 0 such that

Wees =T p,, 0WVees0Tp,,. (3.11)

We say that the collections of normalized transition functions {Vies, ...,
Wi esteequioy and (Wi, . . ., Wi e sleeq,uio) are equivalent and we write

(Wiess s Yeesteeauo) = (Wless - - - » Yresleen,u0)- (3.12)

(5) When k is even, if f. is in prepared form and L_(z) = —z, then fg =L_jo0feo
L_1 is also in prepared form for the canonical parameter & defined in (2.9). Let ;
be the image of Qs under the map & — &. If {Wy ¢ s}ecn, U0} e=1
transition functions for f, and

r are normalized

,,,,,

Vyes=ZoTipoWiti—resoXoT 1),

then {Wyz5, ..., Wiesteequuioy are normalized transition functions for f;. We
write

(Wies - s Wiesteer,uo) = (Prgs. - - - Uz sheea.uiop)- (3.13)

Remark 3.8. Note that the constant terms ¢y ¢ s in (3.10) coincide precisely with the change
of time coordinates Z; . between the corresponding sectors in (3.5).

Definition 3.9. Let f; be a prepared germ of type (3.1).
(1) For k odd, the modulus of f; is given by the (kC (k) + 3)-tuple

M(fe) = (k, &, bs, (Wi, - - -, Ykesteeq,uiops/ =), (3.14)

where {Wy ¢ s }ce,ujo are the associated normalized transition functions to a sectoral
domain €2;. This is also the modulus of f; for k even under conjugacy tangent to the
identity.

(2) For k even, the modulus of f; is given by the quotient of M(f;) by =:

N(fe) = (k, &, b, ({qjl,s,Sa cees \Ijk,E,S}EEQSU{O})S/ =)/ =, (3.15)

where

(k, &, be, ({\I’l,e,s’ FE \Ijk,s,s}serU{O})s/ =)
= (k, &, bg, ((Wia5, - - - Wrasteeq upo)s/ =)-
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3.8. The classification theorem.

THEOREM 3.10. Two prepared unfoldings of antiholomorphic parabolic germs of
type (3.1) are analytically conjugate if and only if they have the same modulus.

Proof. If two families are analytically conjugate, then they obviously have the same
modulus. Conversely, suppose that two prepared families f; and f:; have the same modulus.
In the case where k is odd, then ¢ = & by Corollary 2.14, and it is of course possible

to suppose that their normalized transition functions are equal: W, ., = \Tlg,g,s. When k

is even, the same is true, possibly after conjugating fz by L_;, in which case, the new

canonical parameter becomes E=c.
Moreover, the Fatou coordinates have been chosen so that W, o ¢ are independent of s.

For ¢ € 4, a conjugacy is defined by

Hey(z) = Z;gl 0o(@je) o s0Zje j=0,%1,.. ., +k,

where ®; . ¢ and o j.e,s are the normalized Fatou coordinates of f, and fg respectively.

We claim that H, ; is well defined over ;.. Since the conjugacy we are constructing is also

a conjugacy between g, = fzo f; and g, = fg o f~€, and since full details have been given

for the latter case in [Ro15], we explain the ideas and skip some details. The intersection

of two sectors has connected components of two forms (see Figure 2):

e subsectors from one fixed point of g, to the boundary: on such a subsector the result
follows from (3.9);

e subsectors joining two singular points, sometimes called gate sectors (the name comes
from [099]). The transition map between Fatou coordinates over a gate sector is a
translation. The normalization of a transition map is such that this translation depends
only on the normal form. Indeed, crossing a gate sector like along the blue thick line
in Figure 10 is the same as turning around the singular points on one side of the blue
thick line or on the other side (of course, in the appropriate direction) and taking into
account the changes of time (3.5) from one sector to the next. Additionally, the period
of a singular point z,, is 27i /g.(z,) = 2mi/g.(zs). Hence, the translation given by the
transition over of a gate sector is the same for f, and for f.

Now, suppose that Q3 N Qy # @. Then, H;gl, o H; s commutes with g, and is equal to
the identity for ¢ = 0. If the modulus is non-trivial (that is, not all transition functions are
identically translations), then HSTSI, oHgs = g;””/ " for some non-zero n independent of &

by Proposition 3.11 below. Since H(; Sl, o Hps = id because the Wy o ; are independent of s,
then m = 0, and the H;; are analytic extensions of each other when s varies and yield
a uniform bounded conjugacy H, outside the parameter values in the discriminant set.
Hence, the conjugacy can be analytically extended to the discriminant set.

If the modulus is trivial, then the H,; need to be corrected before being glued in a
uniform way. Indeed, Hs_’sl, oH.s = g "® for some real t (&), which has the property that
t(0) = 0. We want to modify the normalized Fatou coordinates so as to force that 7 (¢) = 0.
This is done by choosing normalized Fatou coordinates with one fixed base point, for
instance, z = r (respectively z = r’) for ®¢ . (respectively 50,8,3). Then, g?’(s) ry=r,
which yields ¢ (¢) = 0 since ¢ is continuous and 7(0) = 0. O
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FIGURE 10. The change of time of the crossing of a gate sector (in gray) from top to bottom along the blue thick

line is the same as the change of time when turning around the singular points on the left in the positive direction,

or turning around the singular points on the right in the negative direction and, in both cases, taking also into
account the changes of time (3.5) from one sector to the next (colour online).

The following proposition is well known (see for instance [Ro15]).

PROPOSITION 3.11. Let g, be an unfolding of a holomorphic parabolic germ. Then:

(1) either g is conjugate to the normal form v; and any holomorphic family of
diffeomorphisms h, commuting with g, has the form h, = gg""‘*’) for a(e) analytic;

(2) or there exists q € Nx such that any holomorphic family of diffeomorphisms hg
commuting with g, has the form h, = g‘;"/" for some p € Z. In particular, if
limg_0 he = id, then h, = id.

Proof. In each Fatou coordinate of g., then h, commutes with 77, that is, is of the
form Ty ). For hg to be uniformly defined over D,, then T, () must commute with the
transition functions. In case (1), the transition functions are translations and any translation
commutes with them. In case (2), there is a maximum ¢ € N such 77/, commutes with the
transition functions. Then, «(¢) = p/q is constant in €. [

COROLLARY 3.12. Two prepared families of type (3.1) are analytically conjugate under
a conjugacy tangent to the identity if and only if their second iterates g. and g. are
analytically conjugate under a conjugacy tangent to the identity.

Proof. One direction is obvious. For the other direction, it is important to use that g,
and g, have representatives of the modulus satisfying (3.9). Then, an equivalence between
them constructed as in the proof of Theorem 3.10 (and hence tangent to the identity) yields
an equivalence between f; and fe. O

COROLLARY 3.13. A prepared family of type (3.1) is analytically conjugate to its normal
form o, vel/ 2 if and only if all the transition maps V; . s are translations.
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4. Antiholomorphic parabolic unfolding with an invariant real analytic curve

4.1. The case ¢ =0. This case has been studied in [GR21]. Suppose that an
antiholomorphic parabolic germ fy keeps invariant a germ of a real analytic curve. This
property is invariant under holomorphic conjugacy and can be read on the modulus.
Indeed, modulo a conjugacy, we can suppose that fy preserves the real axis, and hence
commutes with o. This in turn implies that the transition maps satisfy

YoWy=W_,0X. “.1)
Together with (3.9), this yields that for all £,
TijpoWy =W 0Tipp, 4.2)

which is precisely the condition for gop = fo o fp to have a holomorphic square root (see
for instance [193]). Indeed, this is natural since (4.1) yields that fy commutes with ¢ and
then that o o fj is a holomorphic square root of go.

The converse is also true.

THEOREM 4.1. [GR21] Let fy be an antiholomorphic parabolic germ. We have the
equivalences:

(1) fo keeps invariant a germ of a real analytic curve;

(2)  fo is analytically conjugate to a germ with real coefficients;

(3)  the modulus of fy satisfies (4.1);

(4)  the modulus of fy satisfies (4.2).

4.2. The unfolding. We now consider a prepared generic unfolding f; of fy. If we limit
ourselves to real values of &, then it makes sense to have f; preserving a germ of a real
analytic curve, which is tangent to the real axis since f, is prepared. If z = x + iy, this
germ of a real analytic curve has the form y = a(x, ) = O(P:(x)), since the fixed points
are real for real ¢ and belong to the invariant curve. This yields a local holomorphic
diffeomorphism z — B.(z) = z + i« (z, €), which preserves the prepared character. Let
us now consider f; = By U'o f. o Be. Then, for real ¢, f, sends a neighborhood of 0 on the

real axis to the real axis. For complex ¢, this yields f(Z) = f(z), which in turn yields that

2:(2) = fro fe(@) = fe(fe(2)) = (00 f) 0 (00 fe) (2), that s, & has the holomorphic
square root o, f.. Therefore, g. = fz o f. also has a holomorphic square root.
Hence, we have the following theorem.

THEOREM 4.2. Let f. be a prepared germ of an antiholomorphic parabolic unfolding. We
have the following equivalences.

(1)  For real values of €, f. preserves a germ of a real analytic curve depending real
analytically on e.

(2) The square g. = fg o fe has a holomorphic square root tangent to the identity.

(3) The modulus of f. satisfies

TijpoWyes =Wes 0Ty 4.3)
(4)  The modulus of f. satisfies
YoWp,s =W_yz50X. 4.4)
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Proof. (1) = (2) is shown above.

(2) = (3). Let h, be a holomorphic square root of g tangent to the identity. In
particular, /. sends (approximately) a sector S; . ¢ to the same sector. Then, ® .50 Z;, o
he o Z; 81 o @;;’S = Ti,2, and since h, is globally defined, then 77/, must commute with
the Wy ., yielding (4.3).

(3) & (4) because of (3.9).

4) = (1). Let

Cjes = Z:}E o @:.}.m 0T o®j, 07Zje.
First, note that ¢; ¢ s is well defined independently of the freedom on Fatou coordinates
because of (3.7). Note that ¢, is independent of j, yielding a well-defined ;5 on
D, \ {P:(2) = 0} for ¢ € Q. This follows from (4.4) on the intersection sectors to the
boundary. On the gate sectors, joining two singular points, it follows from the proof of
Theorem 3.10 that the translations 7y s along gate sectors (crossed in symmetric directions
with respect to the real axis for (g, s) and (¢, 5)) satisty Tpes 0 £ = Z o T_¢55.

Because ¢, is bounded in the neighborhood of P.(z) = 0, it can be extended to this
set. Moreover, ¢, ; depends antiholomorphically on ¢ and {z5 0 {e s = id.

Since T1/2 and X commute, it follows from (4.4) and (3.9) that £ 5 o f is a holomorphic
square root of g, over €2;, whose limit is tangent to the identity when ¢ — 0. On the
intersection 24 0 Qy, {e5 0 f and ¢, ¢ o fe are two holomorphic square roots of g,
whose limit is tangent to the identity when ¢ — 0. By uniqueness of such square roots, we
have ¢ ¢ = ¢, . Hence, ¢, is uniformly defined outside the discriminant set and bounded
there, yielding that it can be extended antiholomorphically to this set.

Now, restricting to real values of ¢, ¢ is an antiholomorphic involution depending
real-analytically on ¢. Let us look at the equation of fixed points ¢.(z) = z. Since
y(0) =1, then letting z = x + iy, by the implicit function theorem, the equation
for the imaginary parts yields y —¢g(e, x) =0, with ¢ real-analytic in & and x. Let
V(x, y, €) = 0be the equation for the real parts. Since {; is an involution, it has no isolated
fixed points. Hence, y — g(e, x) divides V(x, y,¢). Let he(z) = z+iq(z, ). Then,
Xe = h;l o ¢ o h; fixes the real axis. By the identity principle, o o x; = id, yielding that
Xe = o and that ¢, is the Schwarz reflection with respect to the analytic curve y = g (e, x).
Let z be any fixed point of ¢,. Since ¢, and f, commute, then . (f:(z)) = fe(z), that is,
fe(2) is also a fixed point of .. Hence, the curve y = g(g, x) is invariant by f;. O

5. Antiholomorphic square root of a germ of holomorphic parabolic unfolding

The formal normal form of a holomorphic parabolic germ is invariant under rotations of
order k (modulo a reparameterization), while that of an antiholomorphic germ in prepared
form has the real axis as a symmetry axis. Each invariance requires a quotient in the
definition of the modulus of the corresponding parabolic germ or its unfoldings. For these
respective quotients, we will need to use actions of the rotation group Ry of order k and of
the symmetry with respect to an axis ¢/ /O on the set of indices {£1, . . . , 2k} of the
transition maps. We start by defining these actions.
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FIGURE 11. For k = 3, the symmetry condition on the indices with respect to the symmetry axis e27‘/3R is given
by the involution & (1) = —3, £2(2) = 3, &2(—1) = —2 (colour online).

5.1. Actions on the set of indices.

Definition 5.1.

e Lete:{£l,...,+k} — {1,...2k}be defined as
. Js j>0,
u(j) = .
2k+14+j, j<O.
e The rotation group Ry = {ro, 72, ..., r2¢k—1y} with rp,(w) = e mm/B)qy acts on the
setof indices 1, . .., Xk asry, (j) = L_l(q(L(j) +2m)), where g(s) € {1, ..., 2k}

and ¢(s) is congruent to s (mod 2k). (By abuse of notation, r,, denotes both the
rotation and its action on the set of indices.)

o The symmetry &y with respect to R on the set of indices {%1, . .., +k} is defined as
£0(j) = —J. .

e The symmetry &, with respect to the line ¢/™/OR on the set of indices
{£1, ..., Ek}isdefinedas &, =r, o &yo rnjl form =0,...,k—1(seeFigure 11).

5.2. The case ¢ = 0. This case has been studied in [GR21]. A holomorphic parabolic
germ

g(2) =z 4+ o (5.1

has k formal antiholomorphic square roots of the form

f(z) — ei(2nm/k)z+ %ei(an/k)Zk+1 +0(zk+])’ (52)
m=0,...,k—1.Denoting ¥; =W, j ==xI1,..., £k, defined as in Definition 3.6,
the analytic part of the modulus of g is composed of the 2k-tuple of normalized transition
functions (W1, . .., ¥, U4, ..., W_1) quotiented by:

o the action of C corresponding to conjugating all W; by translations T;
e the action of the rotation group R; of order k. The action of ry, is given by
Wi, oo s W, Vo YD) = (W (s e v Y () Wi (=k) -+ -5 Wiy (—=1))-
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THEOREM 5.2. [GR21] The formal square root (5.2) is antiholomorphic if and only if
the modulus satisfies a symmetry condition with respect to the symmetry axis ¢!@"/ PR,
If&,(j) is the symmetric index of j with respect to ¢ "™/ OR, then this symmetry condition
takes the form

E OTl/zO\Ijj = \Ilésm(J) (¢] E o T1/2

for some representative of the modulus.

5.3. The unfolding case. ~Generic holomorphic unfoldings of a parabolic germ (5.1) have
been studied in [Ro15]. They can also be put in a prepared form with canonical parameters

8s(2) = 2+ Pe(2)(1 + M (2) + Pe(2)Ne(2)), (5.3)

where P; is defined in (3.3) and M, is a polynomial in z of degree at most k.
Sectoral domains can be defined as in Definition 3.2 and transition functions for each
sectoral domain as in Definition 3.6.

Definition 5.3. Let g, be a prepared germ of type (5.3). The modulus of g, is given by the
equivalence class of (3 + 2kC (k))-tuples (see Figure 9),

M(fe) = (k, &, be, ((Vt1e,s, - - -5 Yikesleequuio)/ =)s)/ =, (5.4)

where {Wy, s}eeq,u0) are the associated normalized transition functions to a sectoral
domain €2 and the equivalence definitions are defined as follows.

D) {Waies, - s Yaiesteeq,uio) = (Waiess - - -5 Yakesteeq,uioy if there exists Be s
analytic in € € 2 with continuous limit at ¢ = 0 such that

\Ije,&s = T*Bs,s o \Ij&e»y o TBs,s'

(2) Letryy e Ry, £=0,...,k—1,acton e by
120 (Ek—1s + - -+ 81, 80) = (gp_1e T CTEE=D ol gpel PR,
Let ,,,(s) := 12¢(S2). Then,
(k, &, bey ((Whe,ss Wotoss - - o s Wierss Wore,steeq,uio))s)

= (ks 120(8)s Droy(e)s (Wrap (1), (00,720 (5)> Wag (rap(D)rae €)r2e (55 + - + 5
Wi (00,720 (00,720 (5)> Weag (rag (k)7 ()20 (5) Yo, U(0})5)-
THEOREM 5.4. Let g. be a prepared generic unfolding of a holomorphic parabolic
germ of type (5.3). Then, g. has an antiholomorphic square root f. (that is satisfying

feo fe = ge), with fo of the form (5.2), if and only if a representative of the modulus (5.4)
satisfies

Yo T1/2 oWypes = \IJsm(g),g’g oXo T1/2. (5.5)

Moreover, this antiholomorphic square root is unique unless the modulus is trivial, that is,
ge IS conjugate to vgl. In the latter case, there exist an infinite number of square roots which
are the conjugates of r, o o o v1/21¥(E) ¢ r,;l, with y(e) analytic and y(€) = y(¢).
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Proof. When the modulus is trivial, we can suppose that g, = vé}. Moreover,
(rm)*(ve) = (=1)™v,. Hence, for m odd, rnjl 0ge Oty = vs_1
consider square roots of g, . 1t therefore suffices to consider antiholomorphic square
roots tangent to the identity. In the time coordinate (the Z;-coordinate), vg is given
by Ti, and in the coordinate w = Exp(—2miZ), it is given by the identity on CP'. For
real €, square roots in the w-coordinate must satisfy «. o k. = id. Moreover, x exchanges
0 and oo. Hence, k =8 o L for §(w) = 1/w and L some linear transformation. Then,
square roots in the Z j-coordinates are of the form X o Tj(), with a(e) + a(e) = 1, that s,
a(e) = 1/2 +iy(e) for some real function y depending real-analytically on . Hence, for
real ¢, the square roots are given by r,, o & o v1/27V(E) o -1 with y(e) real-analytic. The
result follows by extending holomorphically y(e) to the complex domain (thus yielding
that the square root depends antiholomorphically on ¢).

Let us now suppose that the modulus is not trivial. As a first reduction, let us
rather consider g1, =r,, LS ge © Iy, Then, we can limit ourselves to the case m = 0 and
& (j) = —j. However, for m odd, then g/l o) =z— Z¥1 4+ ... and a second reduction
is needed. When £ is odd, it suffices to conjugate with z = —z. When k is even, the second
reduction is to work with g2 = g[;, which is in prepared form (5.3). Hence, we can limit
ourselves to prove the theorem when m = 0.

Let 2, be a sectoral domain and let @ ., j = 0, £1, . . ., &k (with indices (mod 2k))
be corresponding normalized Fatou coordinates for which the transition functions satisfy
(5.5). We define

and in this case, we

fos = ng_j ° cbj}m 0T oTipo®jes0Ze; OnSjes. (5.6)
Note that Fatou coordinates such that (5.5) is satisfied are determined up to left composi-
tion with 7j () such that az(€) = ay (¢). Hence, the definition of fe.s 1s intrinsic and does
not depend on the choice of Fatou coordinates. Moreover, the function f; ¢ is well defined
on D, \ {P:(z) = 0}. Indeed, (5.5) guarantees that it is well defined when crossing an
intersection sector touching the boundary of the disk because of (5.5). Over a gate sector,
it follows from the proofs of Theorems 3.10 and 4.2 that the translations 7Ty, satisty
773,” oX=2Xo 7-—(Z,§,§~

The map f; s is bounded in the neighborhood of P;(z) = 0 and hence can be extended
to that set.

We now need to show that different f; ; glue into a global f. defined for ¢ outside the
discriminant set in e-space.

It is of course possible to choose the Fatou coordinates respecting (3.7) so that
limeso ®pe s = Py is independent of s.

£€Qy
Let us now consider Q; N Q, and let h, = fg_sl, o fes. It commutes with g.. Because

the modulus is non-trivial and in view of Proposition 3.11, this means that h, = g/ /4

for some p/q € Z independent of . Moreover, because of the limit property, then
lim .0, he=1d. Hence, p/q =0and fo s = fo .

€€QSHQS/
Finally, f. is bounded in the neighborhood of the discriminant set in e-space and can
be extended antiholomorphically there. O
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=)

FIGURE 12. The chessboard associated to the Fatou set of g(z) = z + z2. The critical point is the red square, the
parabolic point is the green star. The orange disks show a representative of the critical point in the orbit space
and its preimages under the transition maps ¥+ (colour online). (Figure courtesy of Arnaud Chéritat).

COROLLARY 5.5. Let g¢ be a prepared unfolding of a holomorphic parabolic germ of type
(5.3) for which a representative of the modulus satisfies (5.5). Then, g, has a holomorphic
square root and only g, has an invariant germ of a real analytic curve.

Proof. By Theorem 5.4, g. has a square root f; and then the result follows from
Theorem 4.2. O

5.4. Application to holomorphic quadratic germs.

THEOREM 5.6. The holomorphic quadratic parabolic germ g(z) = z + z> has no anti-
holomorphic square root, nor does any of the g, (z) = z + z> — & for small ¢.

Proof. By Theorem 5.4 and Corollary 5.5, since the real axis is invariant, g has a
holomorphic square root g1 if and only if g has an antiholomorphic square root f = o o g.
Suppose that g has a local holomorphic square root g;. This means that the transition maps
W, satisfy (4.3). The global dynamics of g has been thoroughly studied in the literature
and its Fatou set is well known: see for instance [D94] and Figure 12. This dynamics
is governed by the critical point at z, = —%. Any face of the chessboard in Figure 12
is biholomophic to the upper half-plane, any corner belongs to either some g~"(z.) or
g7 (0) for some n € N, and the union of the infinite set of corners and edges is the union
of the g7"([—1, 0]) for n € N. What we are really interested in is the space of orbits, that
is, C/g. Quotienting by the dynamics in z-space is the same as first quotienting by 7} in
each Fatou coordinate and then quotienting by the transition maps. Quotienting by 77 is the
same as composing the Fatou coordinate with the change of coordinate w = exp(—2n7iZ).
This transforms each codomain of a Fatou coordinate in CP' \ {0, 0o}. The transition map
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W_ (respectively W1) is transformed into a germ of a holomorphic diffeomorphism ¥_
(respectively y1) with a fixed point at the origin (respectively at co). The invariant real
axis is transformed into the equator of CP'. It follows from the special geometry of g
that the image of the extension of {_; (respectively 11) contains the lower (respectively
upper) hemisphere. Moreover, the equator contains a unique representative of the orbit
of the critical point: this point is a critical value of both 11 on the boundary of their
domain of univalence. Because of (4.4), it suffices to consider ¥ _;. Now, g has a local
holomorphic square root g if and only if ¥+ are odd functions, and moreover, this square
root can be extended to the full domain covered by the Fatou coordinates. This means
that ¢” , is an even function with a non-vanishing constant term. We know that it has
at least one critical point. Hence, it has at least two non-zero critical points of the form
Fw, # 0. Then, V¥_1(£w.) = £¥_1(w,), that is, ¥_1 has two distinct critical values if
¥_1(we) # 0. This condition is satisfied, since geometrically, w = 0 corresponds to the
parabolic point and no preimages of the critical point are sent by g to the parabolic point,
which is a contradiction. Hence, g has no local holomorphic square root g;.

If follows that the transition maps of g do not satisfy (4.3). Since the transition maps of
8¢ depend continuously on &, they do not satisfy (4.3), which is a necessary condition for
g¢ to have a holomorphic square root. O

6. The multicorn families

It is shown in [HS14] that all parabolic points of the multicorn family f.(z) = z¢ + ¢ have
multiplicity 1 or 2. We give a second proof and add that the family is a generic unfolding
around these points.

PROPOSITION 6.1. For d > 2, the multicorn family f.(z) = 74 + ¢ has d + 1 values
of ¢ given by ¢; = (d + 1)d=4/@=Del@/@+D) 1 ywhere T4+ = 1, for which the point
2 = d V' @=Dei /@) 1 s an antiholomorphic parabolic point of codimension 2. The
family is generic around these points when considering the real and imaginary parts of
¢ as parameters. The parabolic fixed points occurring for other parameter values of ¢
have codimension 1 and the 2-parameter family contains a generic unfolding around these
points.

Proof. We letd = k 4 1 to use the same notation as in the rest of the paper. A parabolic
point of codimension greater than 1 is one for which, under the form fi(z1) =71 +
aﬁ% + O(H3), then a, € iR. We look for a parabolic point z, that is, a fixed point satis-
tying fo,(z0) = 2’5“ + co = zo and | f/ (z0)| = |(k + D)zg| = 1 for some co € C. Then,
720 = (k + 1)~ Yk¢i? for some 6 € [0, 2], from which ¢g = zo — ZSH. We localize at z
by the change of variable Z = z — z¢. In the new variable, the function becomes

o k(k 1 2/(k+1) . .
Fey(Z) = e M7 4 ker DT 2) emitk=1o 7
k(k — 1D (k 1 3/(k+1) .
4 HEZDEHD 607 07,
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We let Z; = ¢/*9/2) 7 This transforms F¢, into

_ k(k + 1)2/(k+1) . —
Fiep(Z1) = Z) + —————/+2/207]

k(k — 1) (k 4 1)3/*+D
+
6
Then, Z; = 0 has codimension 1 if ¢/ ((k+2)/2)¢ ¢ iR (see for instance [GR21]), and at
least 2 if ¢! (K+2/2)0 ¢ R thatis, & = 7/(k + 2) + 2mm /(k + 2) form € Zj4>. In the lat-
ter case, ZS'H is opposite to zg and ¢y = zg — ZS'H = (k4 2)(k + 1)~ k+D/kgi(r/(k+2) ¢
for some 7 satisfying t¢12 = 1.

Note that Fi o, (Z1) = Z1 + a2 Z; + a3 Z, + O(Z}), with a> € iR and a3 € R<. To
check that the codimension is exactly 2, we get rid of the coefficient in 7? by means
of the change of coordinate Z| = Z, + (az2/ 2)Z§. This transforms F ¢, into F> . (Z2) =
Zr+ (a3 — a%)?i + 0(73). Then,

7 L 0Z)).

k(k+ 1)3/(k+1)
12
We now consider the family in the neighborhood of cg, by taking ¢ = cg + €. Then,
F(Z)=F,(Z)+¢ and F|(Z1) = Fi ¢ + gelk0/2), Finally, the change Z; = Z, +
(a2/2)Z3 brings it to

a3 — a? Gk(k + HY*D _ 2k — 1)) > 0.

= =2 =3 =4
Frc(Zy)=no+ A +n)Z2+0mZ;y+ (a3 — a% +0m)Z, + 0(Zy),

where ng = ¢!*®?/2¢ + o(¢) and 11 = —axny + o(no). A further scaling Z, — rZ; for
some r € R.¢ would change F,, exactly to the form (2.2). The change of parameter
(Re(e), Im(e)) — (Re(no), Re(n1)) is invertible, since a> € iR, from which the genericity
of the family follows.

In the codimension 1 case, the corresponding change Z1 = Z, + i(Im(az)/2) Z% brings
the family to the form

Fre(Zy) = no + (Re(az) + n1)Za + O Z; + (a3 — iaxIm(az) + O()Zs + O(Zy).

which is a 2-parameter unfolding containing a generic unfolding. O
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