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In the rapidly rotating limit, we derive a balanced set of reduced equations governing
the strongly nonlinear development of the convective wall-mode instability in the interior
of a general container. The model illustrates that wall-mode convection is a multiscale
phenomenon where the dynamics of the bulk interior diagnostically determine the small-
scale dynamics within Stewartson boundary layers at the sidewalls. The sidewall boundary
layers feedback on the interior via a nonlinear lateral heat-flux boundary condition,
providing a closed system. Outside the asymptotically thin boundary layer, the convective
modes connect to a dynamical interior that maintains scales set by the domain geometry. In
many ways, the final system of equations resembles boundary-forced planetary geostrophic
baroclinic dynamics coupled with barotropic quasi-geostrophic vorticity. The reduced
system contains the results from previous linear instability theory but captured in an
elementary fashion, providing a new avenue for investigating wall-mode convection in
the strongly nonlinear regime. We also derive the dominant Ekman-flux correction to the
onset Rayleigh number for large Taylor number, Ra ~ 31.8 Ta'/? — 4.43 Ta®/'? 4+ O(Ta'/?)
for no-slip boundaries. However, we find that the linear onset in a finite cylinder differs
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noticeably compared with a Cartesian channel. We demonstrate some of the reduced
model’s nonlinear dynamics with numerical simulations in a cylindrical container.

Key words: Bénard convection, rotating flows, boundary layer structure

1. Introduction

After more than a century of vigorous investigation, Rayleigh—Bénard convection remains
a quintessential distilled model for convective instability, pattern formation and turbulence
in buoyancy-driven flows (Chassignet, Cenedese & Verron 2012). Likewise, rotationally
influenced Rayleigh—Bénard convection serves a similar classic role in modelling many
natural environments such as oceanic, stellar and planetary systems (Ecke & Shishkina
2023).

Four non-dimensional control parameters characterise Rayleigh-Bénard convection in a
closed rotating vessel. Historically, the Rayleigh number, Taylor number, Prandtl number
and aspect ratio provide the most common choice,

ga ATH? 492°H* v L
a=————, Ta= , o=—, I'=—.
VK v2 K H

(1.1)

These measure the strength of the characteristic buoyancy force, the strength of rotation,
the fluid’s dissipative properties and the geometry. Here, g gives the gravitational
acceleration, « = —p~1(9p/ 0T)|1, p, is the thermal expansion coefficient, AT is the
vertical temperature contrast, v represents the kinematic viscosity, « represents the thermal
diffusivity, £2 gives the background rotation rate, H represents the container depth and
L gives a characteristic lateral extent (or diameter) of the container. The Ekman and
convective Rossby numbers also provide useful equivalents to 7a and Ra. That is,

12 v Ra  /gaAT/H
E=Ta "= ——, =/—="—"—"—"—,
2QH? ola 282

where E measures the size of viscous boundary layers, and Ro measures the relative
influence of buoyancy and rotation. In rapidly rotating systems, both £ < 1 and Ro < 1.

A significant partition in Rayleigh-Bénard convection modelling exists between
large-aspect-ratio and finite-aspect-ratio systems. In large-aspect-ratio systems, sidewall
boundaries play no significant role in the dynamics. Theoretical efforts in this area
focus on linear stability analyses and numerical simulations with periodic boundary
conditions, a useful simplification in many instances. Chandrasekhar (1953) first solved
the linear stability theory for large-aspect-ratio rotating Rayleigh—-Bénard convection;
Chandrasekhar (1961) discusses the subject in thorough detail.

For moderate Prandtl number, Niiler & Bisshopp (1965) further clarified the influence
of flow boundary conditions on the top and bottom plates in the rapidly rotating limit. For
the present discussion, the most relevant result of these efforts is that in the rapidly rotating
limit (large 7a) with no-slip boundary conditions, the critical onset Rayleigh number
scales as

Racpur =870 x Ta*? —9.63 x Ta "> + O(Ta'/?) as Ta— oo, (1.3)

(1.2)

assuming o = O(1) (see Clune & Knobloch 1993; Dawes 2001). The O(Ta’/!?) term
in (1.3) arises because of Ekman pumping effects correlating with leading-order
convective modes (Zhang & Roberts 1998). Buell & Catton (1983) first attempted to
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solve the linear stability problem in a closed cylinder, finding notable decreases in
the critical Rayleigh number compared with the extended-layer modes considered by
Chandrasekhar (1953). They also pointed out the presence of a wall-localised mode,
implying a tendency for instability at a reduced Rayleigh number for any aspect ratio.
However, their analysis only considered steady onset, precluding the preferred types of
propagating modes discovered later. The laboratory work of Nakagawa & Frenzen (1955)
gave the first qualitative stability agreement and flow visualisation for rotating convection.

Pioneering experimental studies, with an approximately 2:1 aspect ratio, found
interesting discrepancies from the large-aspect ratio theory (Rossby 1969). Without a
means to visualise the interior flow, heat transport data was the primary quantitative
outcome of these experiments. In discussing the convective onset in water, Rossby noted

We find excellent agreement between theory and experiment for the critical Rayleigh
number at all Taylor numbers less than 5 x 10%; beyond this, the fluid becomes
unstable at lower Rayleigh numbers. At a Taylor number = 108, for example, the
measured critical Rayleigh number is about one-third the expected value. We do
not understand why this should be. It is quite reproducible; i.e. if one changes the
depth of the fluid, the instability will occur at the same Rayleigh number for a given
Taylor number (Rossby 1969, p. 322-323).

Motivated by the theory of Veronis (1968) for subcritical phenomena, Rossby
conjectured at the possibility of finite-amplitude effects and speculated about the possible
modes for the ‘subcritical’ instability. Pfotenhauer, Niemela & Donnelly (1987) found
similar onset phenomena in cryogenic helium and speculated that the lower onset state
was related to linear stability calculations of the static wall mode from Buell & Catton
(1983). Inspired by precision laboratory work in the 1990s (Zhong, Ecke & Steinberg
1991; Ecke, Zhong & Knobloch 1992; Ning & Ecke 1993; Zhong, Ecke & Steinberg
1993), several almost simultaneous efforts helped clarify our theoretical understanding of
Rossby’s paradox: sidewalls lead to distinct modes of linear instability at lower Rayleigh
numbers than in a large-aspect-ratio system.

Goldstein et al. (1993, 1994) conducted the first comprehensive linear stability analysis
for a cylindrical vessel with a range of Ra, Ta, o, I'. This work demonstrated that in a
rapidly rotating finite-aspect ratio system, the onset of convection occurs via two distinct
mode sets. The first type comprises non-propagating modes supported within the bulk
and corresponds to the periodic modes in Chandrasekhar’s large-aspect-ratio analyses
and Buell’s and Catton’s finite-domain modes. These solutions remain stationary in the
rotating coordinate frame.

Goldstein et al. (1993) also found a second type of instability that proceeds via a set of
faster precessing modes (retrograde with respect to system rotation). In contrast to the
bulk dynamics, these waves exist in a thin boundary layer attached to the container’s
sidewall. For large enough background rotation rates, the wall-localised modes emerge
as the preferred pattern of instability in a regime subcritical to the bulk-mode instability.
In the rapidly rotating limit,

Racwan ~31.8 x Tu'? —4.43 x Ta®'? + O(Ta'®) as  Ta— . (1.4)

Herrmann & Busse (1993) derived the leading-order term in this expression. Assuming
stress-free top and bottom boundary conditions, Liao, Zhang & Chang (2006) computed
an O(Ta'/3) correction distinguishing between different sidewall velocity boundary
conditions. The O(Ta>/1?) correction term also arises from no-slip top and bottom
boundary conditions. As far as we know, this term is absent from the literature. In § 5.2,
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Figure 1. Approximate stability regions and experimental parameters. The respective sources are all laboratory
experiments: R69 (Rossby 1969) ZES93 (Zhong et al. 1993); LEI1 (Liu & Ecke 2011); KSNHA09 (King et al.
2009); KSOSHC11 (Kunnen et al. 2011); ABGHV18 (Aurnou et al. 2018). In each case, the current author
gathered the information from the respective sources by hand. All values are approximate and intended to
get an idea of the relative ranges of data. The cross-hatched region shows the wall-mode regime between
the asymptotic stability scalings Ra p,x = 8.7 Ta*? and Ra wall ~31.8 Ta'/?. The 31.8 coefficient is roughly
an upper bound; the actual value somewhat lower in a finite-aspect-ratio cylinder (see figure 5). Except for
ABGHV 8, all experiments use moderate Prandtl numbers, approximately between 4 and 7. The steep dashed
line shows the convective Rossby number threshold Ro ~ 1 for Prandtl ~ 7. The ABGHVIS experiment used
gallium with Prandtl ~ 0.025 with markedly different onset behaviour, but still well below Ro = 1.

we account for Ekman pumping (similar to Zhang & Roberts 1998) to calculate this term,
along with the other associated corrections.

Along with the linear stability theory, the advent of practical optical shadowgraph
techniques allowed much more detailed studies of the flow structures contained in
experiments (Boubnov & Golitsyn 1986; Kuo & Cross 1993; Zhong et al. 1993).
A large number of studies — for example, Rossby (1969), Boubnov & Golitsyn (1990),
Ning & Ecke (1993), Julien et al. (1996), Sakai (1997), Liu & Ecke (1997), Hart, Kittelman
& Ohlsen (2002), Ahlers, Grossmann & Lohse (2009), King et al. (2009), Kunnen, Geurts
& Clercx (2009), Zhan et al. (2009), Niemela, Babuin & Sreenivasan (2010), Zhong
& Ahlers (2010), Weiss & Ahlers (2011), Liu & Ecke (2011), Stevens et al. (2011) —
examine the heat-transport and flow properties in rotating Rayleigh-Bénard systems
significantly above the onset of bulk convection (see figure 1 for a sample of experiment
parameter ranges). Alternatively, we focus on the parameter range below onset for bulk
convection, where wall-mode convection exists in isolation. Most recently, Aurnou et al.
(2018) investigated the regime before bulk onset for 7a ~ 10'°. We point out that in the
limit 7a — oo, wall-mode convection can reach values of Ra/Rac wai = (’)(Tal/ 6) before
exciting the bulk mode. This indicates the potential development of strongly nonlinear
dynamics in the cross-hashed region of figure 1.

More recently, several studies have examined the cross-hatched region and its vicinity
with direct numerical simulations (Kunnen ez al. 2011; Horn & Schmid 2017; Zhang et al.
2020; Favier & Knobloch 2020; Ecke, Zhang & Shishkina 2022; de Wit et al. 2023;
Ravichandran & Wettlaufer 2023; Zhang et al. 2024). One significant result from these
efforts is that wall mode dynamics can undergo various degrees of wall separation and
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even generate interior turbulence below the threshold for bulk convection onset (Albaiz
& Hart 1990; Zhong et al. 1991; Marques & Lopez 2008; Li et al. 2008; Rubio, Lopez &
Marques 2009; Favier & Knobloch 2020; Zhang et al. 2024). The generation of boundary
zonal flows has also been an area of interest (Zhang et al. 2020; de Wit et al. 2020; Zhang,
Ecke & Shishkina 2021; Wedi et al. 2022; Ecke et al. 2022). With the rich interplay of wall-
localised and interior dynamics, many questions remain. What is genuinely wall-generated
behaviour versus what is wall-catalysed bulk dynamics? Without getting into a regime of
Ta far exceeding current simulations and experiments, there is not enough dynamic range
to disentangle various phenomena.

Within the wall-dominated cross-hatch region, the convective Rossby number satisfies
Ro = O(E'/?) indicating strong rotational influence. Sprague et al. (2006) and Julien
& Knobloch (2007) show that regimes of low E, Ro exhibit balanced dynamics for
bulk convection and are prime candidates for dynamical reductions capturing nonlinear
evolution through the application of multiple-scale perturbation theory. In this paper, we
derive a systematic dynamical reduction for wall-mode convection.

1.1. Outline

We organise the paper as follows:

§ 2 outlines the parameter choices and model equation set-up;

§ 3 derives the fundamental equations, including:
§ 3.1 interior balances;
§ 3.2 sidewall thermal Stewartson layers;
§ 3.3 Ekman layer effects;

§ 4 gives a concise summary of all derived results in (4.5)—(4.10);

§ 5 describes linear theory, including:
§ 5.1 for Cartesian coordinates near a semi-infinite domain;
§ 5.2 the leading-order correction to the critical Rayleigh number;
§ 5.3 direct numerical validation of critical parameters;
§ 5.4 within a closed finite cylinder, including the tall-aspect-ratio limit;
§ 5.5 alocal baroclinic instability;

§ 6 reports on nonlinear results in cylindrical geometry, including:
§ 6.1 set-up of numerical implementation of reduced equations;
§ 6.2 weakly nonlinear theory determining key diagnostic parameters;
§ 6.3 results of fully nonlinear simulations;

§ 7 gives conclusions and discusses generalisations, including:
§ 7.1 double diffusion;
§ 7.2 magnetism.

2. Model set-up

We start our multiscale asymptotic analysis from the Boussinesq equations (Spiegel &
Veronis 1960). We pose and analyse the system in a local Cartesian coordinate system
(x, y, z) along a flat vertical wall, with x increasing into the wall at x = I, the coordinate
y tangential along the wall and z vertical. We choose this coordinate system to easily
translate to more general situations, e.g. an upright cylinder, (x, y, z) — (7, 6, 2).

We pick our non-dimensionalisation to agree mostly with the standard thermal diffusion
scaling. For box depth, H, and thermal diffusivity, x, we scale length ~ H, velocity ~
«/H and time ~ H? /k.

For the temperature and pressure, the known properties of wall-mode dynamical
balances (Herrmann & Busse 1993) imply a slightly non-standard normalisation.
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We define a linear reference temperature profile,
Tref(Z):Ttop+AT (1 _Z/H)v (21)

where the domain comprises 0 <z/H <1, and T;,p and Tpo; = Typ + AT are the fixed
temperatures at the top and bottom boundary. We use the temperature perturbation,
® =T — Tyef(z), as a dynamical variable. Similarly, we evolve the kinematic pressure
perturbation, p = P/p, where P is the dynamic pressure and p is the mass density. We
also subtract the hydrostatic reference profile balancing buoyancy from the background
Tyer(z). From now on, we refer to p simply as ‘pressure’.

It is common to scale p ~ vk /H? and ® ~ AT. However, we pick

282 k

~22«Kk, G~ ,
P gaH

(2.2)

which allow the pressure to balance buoyancy and rotation; the temperature maintains
thermal wind balance.

These scalings naturally introduce a ‘reduced’ Rayleigh number as the buoyancy control
parameter,

Ro? gaATH
R=RiE=0c—="—7""7——=0(1) as E—0O. 2.3)
E 282«
Our non-dimensional system takes the form,
1Du  Odyp—v 9
- =V-u, 24
o Dt + E ! 24)
1D 0y
1Dv, Gptu_ oy 2.5)
o Dr E
1D a,p— 0O
2w %p=Y Viw, (2.6)
o Dt E
Oxut + 0yv + d,w =0, 2.7
D® 2
— —Rw=V-0O, (2.8)
Dt
where
b _ 2_ a2 a2 a2
=0 +ud+vdy+wd,, V- =09;+09;+9;. 2.9)

Dt

The system models the dynamics of a weakly compressible fluid in an upright container
with uniform height 0 < z <1 and arbitrary horizontal geometry. The system rotates at a
fixed rate about an axis anti-aligned with gravity; see, e.g. figure 2. The triplet (u, v, w)
represents the fluid velocities in the (x, y, z) directions, respectively. The quantity &
represents the temperature departure from a constant reference value and p gives the
dynamic pressure.

In this simplified geometry, we address both no-slip (NS) and stress-free (SF) boundary
conditions on all walls:

Z—=—NS:u=v=w=0, atz=0,1, (2.10)
(z—SF):0,u=0,v=w=0, atz=0,1, (2.11)
x=NS):u=v=w=0, atx=1T, (2.12)
x—=—SF):u=0v=0,w=0, atx=1I. (2.13)
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Figure 2. Schematic diagram of the basic domain. Each region, I-III, comprises different length, time and
amplitude scalings in terms of powers of & = E /3. The asymptotic analysis considers each region separately
and connects each through a series of matching conditions, eventually being left entirely with O (1) dynamics in
the bulk (Region I). We refer to region II as the Stewartson sidewall layer and region III as the Ekman layer (at
both the top and bottom of the domain). We conduct the asymptotic analysis in Cartesian coordinates (x, y, z)
without loss of generality. After obtaining the final results, it is straightforward to use general coordinates and
re-pose the system in cylindrical polar coordinates with x — r, y — ¢ and z — z.

Differences between no-slip and stress-free conditions on the sidewalls produce no
leading-order effect on the final result, while the top/bottom boundaries show important
differences.

Given that @ is the perturbation from the reference profile, 7,.r(z), the thermal
boundary conditions on both plates are

Ol;=0=0|;=1 =0. (2.14)

The thermal sidewall condition influences the dynamics more than any other. We use
perfectly insulating sidewalls,

0xO|x=r =0. (2.15)

Relaxing the insulating condition to include finite conduction stabilises the wall mode
because of heat losses. In the infinite conductivity limit, the container walls short-circuit
the instability. In that case, the critical Ra ~ O(E ~%/3) along with the bulk convection.
This regime nonetheless contains rich wall-mode dynamics with investigation ongoing
(e.g. Ravichandran & Wettlaufer 2023; Ecke, Zhang & Shishkina 2024). It is also possible
to match the final asymptotic equations to external thermal field with arbitrary heat
capacity and conductivity. A large conductivity will increase the critical Rayleigh number.

3. Multiscale asymptotic analysis

We aim to find reduced equations capturing the leading-order nonlinear behaviour of
the wall-mode instability in the limit of an infinitesimal Ekman number, £ < 1. We
have already discussed the relevant pressure amplitude and Rayleigh number scaling. We
now describe the a priori known properties of the boundary layer thicknesses and flow
amplitudes.

(i) A thermally forced side-wall Stewartson boundary layer (Stewartson 1957; Barcilon &
Pedlosky 1967a, b; Hashimoto 1976; Fein 1978; Albaiz & Hart 1990; Pedlosky 2009;
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Kunnen, Clercx & van Heijst 2013) drives the dynamics from within a characteristic
layer thickness

dx~E'/3. 3.1)

(i1) For no-slip boundary conditions, top and bottom Ekman layers (Greenspan 1969;
Pedlosky 1987) influence the dynamics from within a characteristic layer thickness

dz~E'? (3.2)

(iii) Relative to the thermal diffusion velocity normalisation « / H, the fluid velocities near
the wall carry a large amplitude

u, v, w)y~E~3, (3.3)
while the interior velocities remain (O(1) in these units.

Throughout this paper, the Prandtl number remains a fixed order-unity number and does
not scale with E in any way. Allowing o to scale with E can lead to several interesting
possibilities (Dawes 2001; Zhang, Liao & Busse 2007; Zhang & Liao 2009), but this
remains beyond our current scope.

Assumptions (i) and (if) introduce multiple scales, where all variables depend on both
small and large length scales. For example, with the pressure

X Z
p:p(ET/B,, X, y, ET/Z’ Z, t) . (34)

For the duration of the asymptotic derivation, we use capital-letter variables to denote
coordinates varying on the bulk-interior scale, i.e. (X, Y, Z) = (x*, y*, z*)/H, where
e.g. x* is a physical coordinate. Also, for the duration of the asymptotic analysis, the
lower-case variables represent boundary layers. In the horizontal directions, (x, y) =
E~'3 (x*, y*)/H and z = E~'/22* /H. After establishing the final asymptotic equations,
all remaining coordinates will revert to bulk-only. We will, therefore, restore all coordinates
to simply (x, y, z) only, representing bulk physical scales.

Multiple-scale theory dictates (Kevorkian & Cole 1981) that each argument
varies independently of the others. This assumption allows redefining the derivative
operators

1 1
8x_>ET/38X+3X7 dy — dy, 3z—>m3z+32- (3.5)

The capital-letter coordinates (X, Y, Z) now label position within the ‘large-scale’ interior
(outside boundary layers). The small-letter coordinates (x, z) label position within the
Stewartson and Ekman boundary layers, respectively. We exclude asymptotically small-
scale dynamics in the Y-direction along the sidewall. In the bulk-convection regime (i.e.
R ~ E~'/3), both horizontal directions adopt O(E '/3) length scales (Julien & Knobloch
2007).

The O(E!/3) length scale controls the overall system, suggesting the expansion
parameter,

e=E'S. 3.6)
The Ekman layers on the top and bottom thus require half-integer powers E /2 = ¢3/2,
1017 A37-8
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Equation (3.6) and the above mentioned scalings of pressure and velocity with E imply
the following asymptotic series for the dynamical variables:

w="" 2 b 0E ), (3.7)
P 81/2

v 2L 2 L 0, (3.8)
P 81/2

w= 2L L B2+ 0E), (3.9)
P 81/2

p=po+e'?pijp+tep +0E?, (3.10)

O =00+¢? 010+ 0 +0@E?). (3.11)

Defining pure interior variables aids in the following analysis. Capital-letter variables
(e.g. U, V, W, P) denote quantities depending only on large-scale interior coordinates
(X, Y, Z). These connect to the boundary layer variables via a matching principle. For
example, with the leading-order pressure,

Py(X,Y,Z)= lim po(x,X,Y,z, 2), (3.12)

|x.1z|—>o00

and so on. The analysis in §§ 3.1-3.3 shows that the temperature is an interior variable,
removing the need to start with a lowercase variable.

The three following subsections determine the leading-order dynamics. We examine
each region shown in figure 2 and connect each through appropriate matching conditions.

We comment on a key aspect to keep in mind throughout the derivation. In our
final equation, the only explicit time dependence comes from interior temperature and
barotropic vorticity evolution; the full system contains many more time derivatives in the
momentum equation.

In many systems, it is common for time-dependence to be subdominant in some part
of the domain. In particular, it is common for boundary layers to have direct diagnostic
constraints (compared with prognostic evolution). In boundary-layer theory, the idea is
often that the time-evolving interior provides the boundary layer with a state that does
not satisfy boundary conditions at the physical wall. The thinness of the boundary layer
implies that diffusion time scales are extremely fast and can relax an arbitrary far-field to
the required balance virtually instantaneously, which obviates the need for explicit 9;.

3.1. Region-I (Interior)

Given the scaling of (2.4)—(2.7), we can read off the leading-order interior dynamical
equations by inspection. That is, for the bulk interior, all variables retain their original
amplitude scalings, and the Coriolis and hydrostatic terms are the only remaining in (2.4)—
(2.7) as E — 0. The bulk dynamics then only contains O(¢”) amplitudes and the only time
derivative occurs in the temperature equation (2.8). It is possible to derive this explicitly
by considering the leading-order balances of the full asymptotic expansion. From the
momentum equations and continuity,

Up=—-0y Py, Vo=o0xPy, Wyp=0, O¢g=0zP. (3.13)

The pressure gives the horizontal velocities and temperature in a thermal-wind balance
(i.e. a joint hydrostatic and geostrophic balance).

1017 A37-9
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The temperature equation retains its original nonlinear form (except for vertical
advection),

(8 + Uodx + Vody) @ = (8 + 03 +03) @x. (3.14)

The combined (3.13) and (3.14) almost form a closed system, with two important caveats.

The first major caveat is that the temperature evolution equation contains no obvious
sources. Defining the horizontal velocity vector, U = (Up, Vy), the available thermal
energy evolution,

d (' o ! CH )
—//—dXdeZ+// — U] — &gV 0y |-ndedZ
dr Jo Ja 2 0o Jaa| 2

1
:—//[|VL@0|2+|az@o|2]dXdeZ<0, (3.15)
0JA

where d¢ is the integration measure along the boundary, 3.4, and 7 is the outward unit
normal vector. Equation (3.15) shows that the boundary terms must force the system
strongly enough to overcome persistent dissipation. Without the boundary terms (like
in conventional bulk convection), the available thermal energy would monotonically
decrease. Driving (3.14) requires forcing from the sidewall boundary layers, which we
explain in § 3.2.

The second caveat is that (3.14) determines the evolution only for the temperature.
Obtaining the velocities requires the pressure and obtaining the pressure requires solving
hydrostatic balance (3.13). The difficulty comes from not knowing the depth-independent,
or barotropic, component of the pressure,

1
(Py) = / PydZ. (3.16)
0

We derive an equation for(Pp) by considering the top and bottom boundaries together with
their velocity boundary conditions in § 3.3.

3.2. Region-II (thermal Stewartson layer)

In the Stewartson sidewall layers, focusing on X =1I" and —oo < x <0, the physical
container boundary corresponds to x =0 and X = I, while the boundary of the interior
corresponds to X = I" and x — —oo. The leading-order momentum equation (2.4) in the
X-direction gives

u_1=u_1,2=0. (3.17)
The leading-order diffusion of temperature from (2.8) gives
3269 =0, (3.18)

which implies a constant leading-order temperature across the boundary layer. Strictly
speaking, (3.18) contains a linearly growing solution in x. The possibility of unbounded
amplitudes as |x| — oo preclude this solution. Therefore, the leading-order temperature
exists as a pure interior dynamical variable,

O)=0(X,Y, Z). (3.19)

While (3.19) implies that ®y does not vary across the boundary layer, there exist
temperature fluctuations in the directions along the wall both in Y and Z. The interior
thermally forces the boundary layer via tangential gradients.
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Given a temperature field in the interior, the leading-order momentum and continuity
equations follow:

dxpo —v—1 =0, (3.20)

dy po +uo — 92v_1 =0, (3.21)
dzpo — w_1 =6, (3.22)
dxug + dyv_1 +dzw_1 =0. (3.23)

The system is similar to the Stewartson layer balances derived in other work (Stewartson
1957; van Heijst 1983; Kunnen et al. 2013). The main difference is that (3.20)—(3.23) have
enough derivatives to satisfy all velocity boundary conditions at the physical wall and
thermal anomalies force the whole boundary layer from the interior. There is no need
for the classical E!/# exterior layer typically required to satisfy all velocity boundary
conditions.

The interior forces the vertical velocity via (3.22). Leading-order balances also imply
8%@1 ,2=0. To see how the boundary layer feeds back to the interior, the next-order
temperature equation for @1,

v_19yOy+w_1 (3700 — R) = 80). (3.24)

The crucial connection between the interior and boundary layer comes from the full
form of the insulating thermal boundary condition at the physical sidewall,

0x®p+ 09,01 =0 at x=0, X=1T. (3.25)

This couples @y, from the interior, with ®1, from (3.24). Integrating (3.24) over boundary
layer coordinate,

x€e(—o0,0]=R", (3.26)
gives
qy 0y®o+qz (07800 — R) = 0, O1],—0 = —0xOo|x—r, (3.27)

where the 0,01],_, _,, term vanishes because v_; and w_; decay exponentially away
from x = 0 (see later), and there is no linearly growing homogeneous solution in x with
bounded amplitude as x — —oo. Equation (3.27) expresses energy conservation between
the boundary layer and the interior.

The total momentum fluxes within the sidewall layers are

qy:/ v_ dx, qz=/ w_p dx. (3.28)

These purely surface quantities depend on the tangent directions, (Y, Z). They couple to
the O(&") dynamics because while v_;, w_; ~ O(¢~1), the boundary layer width, dx ~
O(e). The tangential velocities act exactly like Dirac-§ distributions at the boundary of the
bulk, X =1T".

To further constrain gy and gz, we integrate the continuity equation

Oyqy +0zqz =uoly=—0o = Uolx=r- (3.29)

The integration limit ug|,_o =0 because of impenetrability at the physical container
wall. Equation (3.29) expresses mass conservation between the boundary layer and the
interior.
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To close the system, we need another relation between gy and gz, which comes from
directly solving (3.20)—(3.23). We represent the horizontal velocities strictly in terms of
the pressure

ug = —dy po + 9 po, (3.30)
v_1 = 0y Po- (3.31)

The following coupled system relates the pressure and vertical velocity:

dzw_1 + 3¢ po =0, (3.32)
—d7w_1 + dzpo = Oy, (3.33)

which collapses into a single system for the vertical velocity,

(a% + af) w_1 =0. (3.34)

3.2.1. Bulk onset comparison

Equation (3.34) should look familiar; it is half of the traditional asymptotic stability
condition in the rapidly rotating regime when Ra~ E*?3. In terms of the R and ¢
parameters, the full bulk leading-order balance,

(9% +08) woy =2 Ro2w-. (3.35)

If ¢ R~ O(1), the left-hand side balances with 97 — —k?, 32 — —n> and we have the
traditional stability condition for rotating convection (Chandrasekhar 1961),

2 6 4/3 1/3
b4 k 3n b4
Bulk onset: & R, ~ + > most unstable at k. = 2176

2 o (3.36)

Here, R, is the critical reduced Rayleigh number and k. is the critical wavenumber for
instability.

Equation (3.36) represents a triple balance between vortex stretching (i.e. 8%) and
diffusion (i.e. 8%) on the left, with buoyancy on the right. However, if R ~ O(1), the right-
hand side of (3.35) drops out and the bulk no longer supports harmonic x dependence. In
that case, the only possible solutions happen with exponential x dependence, which can
only remain bounded near a wall.

3.2.2. Boundary layer solutions
We solve the system for no-slip physical sidewall boundary conditions,

up=v_1=w_; =0 atx=0. (3.37)

We could alternatively use stress-free conditions; however, doing so gives exactly the same
final relationship between gy and gz. We also impose w_1 =0at Z =0, 1.

Solving (3.32) and (3.33) requires Fourier decomposing the velocities, pressure and
temperature in the Z direction,
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Oy = Z 6,(X,Y) sin(nrZ), (3.38)
n>1

Po=)_ pulx, X, Y) cos(nr 2), (3.39)
n>0

Uy = Z i (x, X, Y) cos(nm Z), (3.40)
n>0

v_| = Z Op(x, X,Y) cos(nmZ), (3.41)
n>0

wop =Y (. X, Y) sin(nr 2). (3.42)
n>1

Solving for the Fourier coefficients, which decay as x — —oo and satisfy either no-slip or
stress-free boundary conditions at x = 0, gives

Pn=Pu+ On X(anx), (3.43)
fiy = Uy (1 — X(ax)) , (3.44)
Uy = oty én X/(Olnx), (3.45)
Dy =y O X' (@), (3.46)
where a,, = (n7)!/3. The boundary layer profile function,
x 3
€2 cos (% + 8)

X(x)= , 3.47
(x) c0s(®) (3.47)
where the phase 6 = £ /6 depends on the tangential boundary conditions. In both cases,
X'(x)—X'(x)+X(x)=0, X(0)=1, (3.48)

which satisfies the normal velocity, i, = 0 at x = 0. For the tangential velocities,
No-slip: fp =ty =0 <= &= +%, X'(0) =0, (3.49)
Stress-free: 0y = deihy =0 = 6= —%, X7(0) =0. (3.50)

Figure 3 shows the velocity amplitudes for the no-slip case.
The capital-letter variables, U,, P, and ®@, are the Fourier transforms of the interior
bulk quantities that satisfy thermal wind balance at X =TI,

~ o~

Uy=—03yP,, —nnP,=06,. (3.51)
The overall amplitude satisfies
@y +n7) On = Un. (3.52)

which is the Fourier-space version of mass conservation at the bulk boundary (3.29).

There are a couple of notable comments regarding (3.43)—(3.46). The first is that both v,
and W, exist strictly within the boundary layer and do not continue into the bulk interior.
The second comment is that p,, and i, both contain components that are independent of
x. These terms take precisely the same form as the interior geostrophic and hydrostatic
balance found in § 3.1.

1017 A37-13


https://doi.org/10.1017/jfm.2025.10449

https://doi.org/10.1017/jfm.2025.10449 Published online by Cambridge University Press

G.M. Vasil, K.J. Burns, D. Lecoanet, J.S. Oishi, B. Brown and K. Julien

1.2 4

1.0 1

0.8 1

0.6 == iy ,

Ok, mtl
0.4 4
0.2 1
0
10 5 -6 4 2 0

Figure 3. Thermal Stewartson boundary layer solutions for no-slip tangential velocities: the blue line shows
1 — X(x). The orange line shows X”(x). The orange line compares well with figure 2(b) from Buell & Catton
(1983) for Ta ~ 14002

The most important comment regarding (3.45) and (3.46) is that the coefficients of Uy ,
and wy , take identical form,

Up = W (3.53)

and
§n=/ D dx=f By dx. (3.54)

That is, the Qn amplitude gives the Fourier coefficients for both gy and gz, closing the
system of equations. However, we still need to collect all the relevant information and pose
the system in a local abstract form, not in Fourier space.

Finally, regarding the bulk, all relevant quantities do not depend on the value of § =
4 /6. This observation accords with the findings from Liao et al. (2006) that the leading-
order stability is independent of the sidewall velocity boundary conditions.

3.2.3. Hilbert transform

While the Fourier amplitudes of v_1, gy, w—_;1 and gz are all identical, the local functions
are not equal because v_; and gy are Fourier cosine series in Z, but w_; and gz are
Fourier sine series. We need an operator to transform between the different parities, which
naturally leads to the Hilbert transform, H, in the Z direction. For the present analysis,
the utility of the Hilbert transform lies in its action on a Fourier sine and cosine basis. For

n #0,
H[sin(nwrZ) |=—cos(nwZ), H[cos(nwtZ)]=+sin(nwZ2), (3.55)

which alters the parity of the basis elements in the same manner as a derivative, but without
the multiplication by the wavenumber, nw. Additionally, the Hilbert transform possesses
the following useful properties

Hfl=—f+(f). zH[f]=H[dzf]. (3.56)
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The Benjamin—Ono equation (Benjamin 1967; Ono 1975) for small-amplitude surface
gravity waves over an infinitely deep interior employs the Hilbert transform for reasons
similar to the current context. In particular, (3.56) implies

Hoz =10zl (3.57)
for trigonometric functions. Therefore, we may factor the Laplacian-like operator in (3.34)
(a§+aj§) _ <|3z| +a§) (—|az| +a§), (3.58)

which separates modes that decay as x — oo versus x — —o0.
Our final closure for the boundary momentum fluxes is

qy = —H[qz]. (3.59)

which means they share the same Fourier coefficients but with different vertical parity.

3.2.4. Barotropic mode
Finally, we derive properties of the barotropic mode in the Stewartson layer. We first take
the vertical average of the horizontal velocities

(v_1) = dx(po), (3.60)
(uo) = —dy (po) + 33 (po). (3.61)
3y (o) + dy (v_1) = 37 (po) =0. (3.62)

Therefore, ( po) =(Py) within the sidewall layer, with (#g) = —dy (Py). Impenetrability at
the physical container boundary, along with fixing the overall pressure gauge condition,
implies

(Po)=0 at x=0, X=T, (3.63)

which is the only sidewall boundary condition needed for no-slip top and bottom boundary
conditions.

Free-slip top and bottom boundaries also require the next-order barotropic momentum
balances and continuity in the sidewall layer,

(f) + 3y {p1) +(u1) = 82 (vo), (3.64)

dx(p1) + 9x(Po) —(vo) =0, (3.65)
dx (u1) + 9x (Uo) + dy (vo) =0, (3.66)
where
) _ dy{v_q1 v_
(f) = (o v 1)-1; y{v—1v 1)_ (3.67)
The tangential solution in the sidewall layer,
X
(o) =x () = [ =) (F0) d (3.68)
—00
A no-slip boundary condition, (vg) =0, at x =0, X = I" implies
o () = [ [Buluo v-r) 0y (oo v} ] d (3.69)
= (Uy qY)/ x 9y [(1 = X(x) X'(x)] dx +
R
2 (qy ayqy)/ x X' (x)? dx. (3.70)
R
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Computing the coefficients,

/ 1 / 2 3
.mda-xu»xuﬂm:-i ¥ X () de=—7. (3.71)
- R
Both coefficients are independent of § = /6. Putting everything together,
3 0 — dy P
By (Po) = — (qy YCIY)2 (qy dy Po) ot X—T 3.72)
o

3.3. Region-IIl (Ekman layers)

We still need to fix the barotropic pressure,{Pp), in the interior, which requires considering
the vertical vorticity along with the top and bottom boundary conditions. Geostrophic
balance relates the vertical vorticity and the pressure,

So=0x Vo — dyUp= (83 + 0} Po. (3.73)

Taking the horizontal curl of the momentum equations and using the continuity equation,

1
— (0 + Updx + Vody) &o — (35 + 07 ) S0 = 02 W3 + 934o. (3.74)
Notably, the leading-order rotational terms enforce
. 1 3 5
azW;=0 for i=0, 5 1, 5 2, X (3.75)

The first non-constant vertical velocity is W3.

3.3.1. Stress-free boundaries
For stress-free boundaries (2.11), applying the averaging operator to (3.74) gives

(z=SF): (o) +x (Vo o) + dy (Vo o) =0 (0} +03) (o). (376)

The 9z terms on the right-hand side vanish because of impenetrability and vanishing
stress,

W3(Z=0)=W3(Z=1)=0, (3.77)
9z80(Z =0) =9z50(Z=1) =0. (3.78)

Equation (3.76) determines the missing depth-independent pressure component needed
to obtain the velocities in (3.14). The depth-dependent pressure (hence temperature)
forces (3.76) through the nonlinear baroclinic interactions, e.g. (Ug¢o) —(Up){Zo), and
the two systems are coupled. We solve (3.76) together with boundary conditions (Pp) =0
and (3.72).

3.3.2. No-slip boundaries
For no-slip top and bottom boundaries, one expects an Ekman-pumping effect of the order
(Zhang & Roberts 1998)

Wekman ~ E'/? 50 = 4. (3.79)
Together, (3.75) and (3.79) imply a depth-independent Ekman velocity,
0zW3,2=0. (3.80)
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The Ekman layers determine the barotropic pressure.

Given an interior flow, the Ekman boundary layer response follows as a well-known
exercise (Greenspan 1969; Pedlosky 1987). Region-III lies beyond the sidewall Stewartson
layer, and hence 9, — 0. Within the top and bottom boundary layers,

3. Py =0, (3.81)

—vg + dx Py = 82 uo, (3.82)

uo + dy Py = 82 v, (3.83)

dxuo + dyvo + d.w32 =0, (3.84)

The solutions to (3.81)—(3.84) are well known for Z = 0 and the boundary layer coordinate
0 <z < o0, and for Z =1 and the boundary layer coordinate —oo < z < 0. In both cases,

uog | se(z) ce(z) dox Py
|: Vo ]_|: —ce(z) se(z) ] |: dy Po ]’ (3.85)
where Py is evaluated at Z=0 or Z =1 depending on the boundary layer and the
functions,

se(z) =e_|i\/12 sin (%) , ce()=1-— e_% cos (%) ) (3.86)

Both se(0) = ce(0) =0.
For the vertical velocity at either boundary,

. %o
w3/ =sign(z) — (ce(z) —se(z)) - (3.87)
/ V2
The Ekman pumping velocity must connect to the interior as |z| — oo,
. . %o
lim w3/ =sign(z)——. (3.88)
|z| > 00 3/2 £ ﬁ
However, in the interior, 3z W3, = 0. Therefore,
(X, Y, Z=0)+ (X, Y, Z=1)=0, (3.89)
which indirectly fixes the barotropic pressure. In terms of the local pressure,
Polz=0+ Polz=1=2P (X, Y), (3.90)

where @ (X, Y) represents a two-dimensional harmonic function (the factor of two
provides a later simplification). The Stewartson layer supports no barotropic pressure, and
@ ensures ( Py) vanishes at the sidewall.

Given hydrostatic balance, 3z Py(Z) = ©y(Z), the pressure decomposes into barotropic
and baroclinic components,

z 1
Py(Z) = (Py) +/0 Zy Oy(Zp) dZp — /Z(l — Zp) Oy(Zp) dZy. (3.91)

Applying (3.90), the barotropic pressure is

1
(Po) =@ (X, Y)—/ <Z—%) Oo(X,Y, Z)dZ. (3.92)
0

The Stewartson layer equations imply ( Pyp) = 0 within the side wall layer, thus fixing the
harmonic function, @ (X, Y), when applying (3.92) at X =1T".
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While the Ekman layers in the bulk dictate leading-order dynamics of the barotropic
mode, the Ekman layers within the sidewall Stewartson layers generate a lower-order
passive response. That is, it is possible to compute the effects of Ekman pumping after
the fact (e.g § 5.2), but we can press ahead with calculating the leading-order dynamics if
we are not interested in the correction terms.

There is, however, one notable aspect. The balances in the sidewall naturally produce
velocities ug, v—1, w—_;. That is, the tangential velocities are O(E -1/ 3) compared with
O(1) for the normal component. However, the normal component achieves its largest
amplitudes in the form of an Ekman response.

Like before, 9, po = 0. Now, the horizontal velocities are isotropic,

—v_i 40, po =07 u_1, (3.93)
u_y =97 v_y. (3.94)

The Ekman flux is now larger than within the bulk, but is still subdominant compared with

the w_ convection; i.e. dyu_1 + d,w—_1/2 =0,

33 Po
(ce(z) —se(2)) . (3.95)

V2

The w_1 /7 does not automatically satisfy the no-slip condition at x = 0, which requires
an O(E'/?) corner layer (Kerswell & Barenghi 1995) that remains passive with respect
to the leading-order dynamics. Solving the corner layer requires a somewhat technical
direct numerical calculation (Burns ef al. 2022). While the sidewall Ekman response
remains passive in the fully asymptotic regime, we should expect noticeable corrections
to heat transport as Rayleigh number transitions out of a strongly rotationally dominated
(asymptotic) regime (Stellmach et al. 2014; Julien et al. 2016).

w12 =sign(z)

4. System summary

To summarise our multiscale asymptotic analysis, we here report the final equations in
dimensional form, with all explicit parameter values restored. All equations and variables
are either purely bulk quantities or supported on the bulk boundary. All boundary layers
have been eliminated and act only backstage. We, therefore, drop the notation of lowercase
and capital letters distinguishing between different scales. All coordinates are lowercase
and all variables are in their dimensional physical form. The relevant physical variables
are velocity, u, temperature, T, vertical vorticity, { =Z - V x u, and wall fluxes, g¢, ¢,.

4.1. Geometry and operators

The container is now a general upright direct product of a z direction with a smooth but
otherwise arbitrary horizontal area,

V=Ax[0,H] 4.1)

with e.g. Cartesian horizontal coordinates (x, y) € A, and vertical coordinate z € [0, H],
with local unit vector, z. The boundary of the horizontal area is 3.4 with the local outward
normal vector, 7. In the case of a general smooth 3.4, the analysis in § 3.2 would follow
the same reasoning with x representing a local signed-distance coordinate (Hester &
Vasil 2023). We represent the coordinate along the tangential direction to 9.4 as £, with
local unit vector, £ =2 x 7, assuming a right-handed coordinate system. For short-hand,
we denote derivatives, 3, =2-V, d,=n-V and 9 = ¢-V. In the two most relevant
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cases,
Cartesian: 9, =0y, ¢ =0y, 4.2)
Cylindrical: 9, =9,, 0J¢= % 0. 4.3)
We define the respective barotropic average and Hilbert transform,
(p) = % /0 "o, H[q] @) =p.v.<q(z’> cot (¥)> (4.4)

where p.v. denotes the principle value in the Hilbert transform integral.

4.2. Dynamics

For (x, y) € A,
220u=gazxVT, 8T +u-VT=«VT, (4.5)
T|Z=0 = Tpot, T|Z:H = Ttop- (46)
For (x, y) € 0.A,
qe=—H[q:]. Ouqe+0g:=un. (qud+q:9)T=—x0T. (47
g.=0 for & z=0,H. 4.8)
For vertical no-slip,
§|z:0 + ;lz:H =0. (49)

For vertical stress-free,

WY+ V- e)=vV>C). =20 (uedlaa=(qe (4deqe+0:q:)) . (4.10)

4.3. Heat transport

Heat transport is an essential diagnostic in convection-dominated systems, with much work
for laboratory and natural systems still ongoing (Doering, Toppaladoddi & Wettlaufer
2019; Schumacher & Sreenivasan 2020; Vasil, Julien & Featherstone 2021; Lohse &
Shishkina 2024). Rapid rotation adds many additional nuances (Julien er al. 2012;
Stellmach et al. 2014; Julien et al. 2016). In studies of bulk convection, heat transport
from wall modes tends to confound measurements, and efforts have attempted to quantify
and/or limit their influence (Ecke et al. 2022; Terrien, Favier & Knobloch 2023; Zhang
et al. 2024).

At first glance, the reduced wall-mode equations do not appear to contain any means
for vertical heat transport; there is no bulk vertical velocity. The resolution occurs when
taking into account the sidewall heat fluxes. All the vertical heat transport happens in the
sidewall layer, which manifests within the bulk via g;.

Defining the horizontal average, T, the mean thermal equation,

_ 1 —
T + 9, [W ygAqZT dﬁ—fcazTi| =0. (4.11)

The integrated boundary term follows straightforwardly from integrating the bulk equation
and applying (4.7). When the system is in a statistically steady state, the Nusselt number
is a global constant with
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1 _
Nu:—f q.© dl —k 0,T, 4.12)
lAl Joa

where in this case, ® =T — T.
When considering the boundary terms in (3.15), we also now find the non-trivial wall-
modes ‘power integral’ (Howard 1963) that regulates overall input and dissipation,
1d— 1
__<@2> —_
2 dt Al Joa

In both cases, it is clear the vertical velocity behaves precisely as a Dirac-§ distribution
supported on the boundary; e.g. in local Cartesian coordinates with the wall at x =0,

w(x, y, 2) =4q:(y,2) 8(x), (4.14)

where the §-function replaces the detailed behaviour within the sidewall layer.

(g 0T ©) de —K<|V@|2>. 4.13)

5. Linear instability
From now on, we revert to the same non-dimensionalisation used throughout the
asymptotic analysis. However, we do not use mixtures of lowercase and capital letters
to distinguish between boundary layer and bulk quantities. All variables and coordinates
are bulk-only; hence, we use their standard nomenclature.

For the temperature perturbations linearised around a vertical gradient, T = R (1 — z) +
0(x, y, 2),

30 =V%0, 6=2a,p, (5.1)
Rq,=09,0, 0¢qe+0.9:=—0%p, qi= _H[QZ] . (5.2)

The linearised equations collapse into a single equation and set of boundary conditions for
the temperature perturbations,

39=V% in Ax[O0,1], (5.3)
(8¢ +19;0) 10,1 9,06 =R 30 on dAX[0,1], 5.4)

where |0;| = H 9,. For the top and bottom boundary conditions,
0l,—o=06l,—; =0. (5.5)

5.1. Semi-infinite channel

This section reproduces the final results of Herrmann & Busse (1993) with the advantage
that now, all aspects are physically apparent. We assume a semi-infinite domain with the
wall-normal coordinate, —oo < x <0, and harmonic dependence along the wall, ~ etky
with wavenumber k.

The following exponential profile satisfies the boundary condition at x = 0:

k(k+im)R

0 = e PXH ¥+ Gin(rz) + c.c.  where =
(w2) p T (k2 +712)

(5.6)
Assuming R > 0, the temperature perturbations decays as x — —oo. The bulk evolution
equation gives the dispersion relation for the complex-valued frequency

2k3R? K2(k? = 7HR? — (22 4+ k2)?

= - . 5.7
@ (2 +k2)? : 72(w? + k%)2 .7)
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The real-valued growth rate,

kZ(kZ - 7T2)R2 _ 7T2(7T2 4 k2)3

y = —Im(w) = Y B (5.8)
The growth rate is positive for
7 (k* +m%)3?
Rz Relb) = 3y = Relho) = w2\ 63/3 ~ 31.8167. (5.9)

Zhang et al. (2024) fit a quadratic curve through their stability data near the minimum of
the form

Rc(k)

_ 200 12 33
Rc(kc)_l—l_s (k — k) + Otk — ke)7). (5.10)

They find & ~ 0.18 for E = 10-°. Equation (5.9) implies & = /2 — +/3 /7 2~ 0.164769.
The respective critical wavenumber and frequency are

ke =72 +/3%6.0690, w.=272/32+/3)~66.0487. (5.11)

The sign convention for frequency means that @ > 0 moves retrograde to the background
rotation, §2. The respective phase and group speeds,

0
% =237 ~ 10.8828, £|kw,ﬂ_ —2(v/3 - 2)w ~ —1.68357, (5.12)
c
within ~ 20 % of the group velocity of —2.1 reported in the laboratory experiments of
Ning & Ecke (1993) for E = 1073. Notably, the group speed is always prograde above
onset.
Even though we remove the explicit Stewartson boundary layer, at onset, the temperature
perturbations remain quite localised near the wall (on the bulk scale, x), where

Be=m\3+2V3+in3V* ~ 7.9873 4+ 4.13451. (5.13)

In physical units, the critical wavelength along the wall is approximately A, ~ 1.04 H and
the e-folding length away from the wall is A, ~0.13 H.
For large R, the growth rate,

——+4+0{1) as R— oo. (5.14)
The fastest-growing wavenumber, k maximises the second term with k ~ 3'/4\/R leaving

R2
y~=—-2V3R+0(1) as R— co. (5.15)
T

The severe dependence of ¥ on R makes nonlinear simulations very stiff at high values
of criticality. For example, when R =5 R.(k.), y &~ 2500. Fast time scales exist for the
propagation as well. As R — 0o, the phase and group speeds are exactly opposite,

2R 4xm 2R
~ T g~ ——— — 47 (5.16)

c . c
P 3r 3 3T
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Reintroducing physical parameters implies the dimensional growth rate in the large-R
limit,

*

(gozAT)2

Cove (5.17)

which is notably independent of the container size.

5.2. Ekman-pumping correction

In § 1, we report the critical Rayleigh numbers, including the leading-order corrections due
to Ekman pumping effects in (1.3) and (1.4). The O(Ta'/'2) correction to the bulk Ra has
an interesting history. The O(Ta>/?) correction to the wall Ra has not, to our knowledge,
been calculated before.

In his famous book, Chandrasekhar (1961) calculated the leading-order contribution for
bulk modes (unaware of wall modes at the time) using sound asymptotic methods,

Ra~ 2Ix* /0B 14?3, as  Ta— oo. (5.18)

However, when comparing to numerical calculations up to 7a~ 10'%2, he noticed a
discrepancy for no-slip boundary conditions that appeared like an offset in the numerical
proportionality factor, commenting ‘.. .the discussion is not “fine” enough to account
for the differences in the constants of proportionality...” (Chandrasekhar 1961 §27d
“The origin of the 72/3-law’). The resolution of the issue is that the relative leading-
order correction is oc Ta~ /12, which produces a noticeable change for realistic numerical
and laboratory parameter values. Ekman pumping manifests especially clearly in heat-
transport enhancement (King et al. 2009; Stellmach et al. 2014; Julien et al. 2016). The
upshot is that Chandrasekhar’s discussion was ‘fine’ enough; it simply did not go far
enough.

The issue became fully resolved when Zhang & Roberts (1998) showed the leading-
order correction results from considering the Ekman pumping boundary conditions of the
form we use in § 3.3 (3.88), together with a leading-order interior equation of the form
as (3.35). The critical bulk Rayleigh number and wavenumber,

Ra~ 277* /03 10?3 — (8192 74 V/0107/12, (5.19)
k~ (22 /2)Y0T1a /6 — 2774 4) "1 P14/ 12, (5.20)

as Ta — o0o. We use analogous techniques to find the equivalent correction for wall modes.
The Ekman flux in the bulk is much too small to produce a significant correction.
However, in the sidewall,

Oxp12 —v-12=0, (5.21)
dy p1j2 +uryp — d2v_12=0, (5.22)
dzp12— 2w_1p =0, (5.23)
Oxu1/2 +0dyv_y12 +0dzw—_1,2=0. (5.24)
The boundary condition is the key difference from the leading order,
w1/2=¢i\/};0 at Z=0,1. (5.25)
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Projecting the system on to the relevant 2 cos(nm Z) and 2 sin(nm Z) functions,

0xPn,1/2 = Un,—12 =0, (5.26)

3y Pu1/2 + fin1/2 — 20n,—1/2 =0, (5.27)

—a P12 — 0212 = On.12, (5.28)

xlin.1/2 + dyDn 12 + @ ibn—1/2 = Z V22 0n X" (mx), (5.29)
m-+n=even

where recalling o, = (n7r)'/3. The right-hand side results from integrating by parts in Z
and using the Ekman boundary conditions,

1
2/ cos(nm Z) dzw(Z) dZ = nm W, + 2 [(=D"w(1) — w(0)], (5.30)
0
where by definition,
1
Wy, = 2/ sin(nwZ) w(Z)dZ. (5.31)
0

The solution to the system is straightforward but messy. However, we only need the
relationship between gy and gz to close the system.
The final result in general form (dropping the X, Y, Z bulk notation),

g +H[q:] =~ Elqe] where e =E'°. (5.32)

The right-hand side contains the highly non-local operator
o Zﬁ m
& =—— — - 5.33

We can now continue to find the O (g!/?) perturbation to R, w, k from the semi-infinite
stability problem:

3,012 + 3:00 = V201 2, (5.34)

0172 =0;p1/2, (5.35)

Ry gz 172 + R12 92,0 = 0x61 2, (5.36)

Ayqy.1/2 + 3zqz.1/2 = =3y P12, (5.37)
V2

qy.12+ MHlg-12] = ~ 550 (5.38)

The system has an extra Rj,> term along with an O(e'/?) time scale, 3. For a given
wavenumber along the wall, k,

VI Pk (1 = 372) VT 237k (R + 7%
e — n2)3/2 , W12 = (2 712)2 .

(5.39)

Rip=—
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Optimising the combined reduced Rayleigh number, R ~ Ry(k) + /¢ R} 2(k), over k
yields

Re~ 63372 — /e /43 — 6 1%3 ~ 31.8167 — 4.4329. /%, (5.40)

5(1+3
ke ~\2+31+ /e % w132 6.06909 + 3.33445./e,  (5.41)

23+ 134/3
we~20/3Q+V3) 72 + e %x“ ~ 66.0487 + 69.8097/c,  (5.42)

as ¢ — 0. The next section computes the critical onset parameters directly.

5.3. Direct numerical calculations

We validate the asymptotic correction from § 5.2 with high-precision direct numerical
calculations of the critical Rayleigh number, wave number and precession frequency over a
range of very small but finite Ekman numbers. We solve a linearised version of (2.4)—(2.8)
in a finite Cartesian channel assuming y-direction Fourier dependence with a complex-
valued growth rate, i.e.

1 Oxyp— 0

—(y+iwu+ = = @)+ 02—k, (5.43)

1 ik

;(y+iw)v+ﬂ=(a§+a§—k2)v, (5.44)

1 . d;p — 0 2 2 2

—(tiowt = — =@+ - w, (5.45)
et + ik v+ 0w =0, (5.46)
(y+iw)—Rw=02+3>—k>0, (5.47)

Nominally, the system has no-slip boundary conditions on all walls. For the top and sides
of the domain,

u=v=w=0 at z=1, and x=0, I. (5.48)

However, vertical reflection symmetry, z — 1 — z, implies we can save computational cost
by restricting to only the upper-half domain with mid-plane conditions,

u=v=p=09,0=0 at z:%. (5.49)
The perfectly insulating thermal boundary condition at x = I" implies 9,0 =0. We
impose perfectly conducting conditions at all other walls, § =0 at x =0 and z = 1. The
conducting condition at x =0 isolates the dynamics only to the x = I" boundary with
quasi-exponential decay into the interior.

We use Dedalus to implement a continuous Galerkin spectral-element solver for (5.43)—
(5.49) with a 3 x 3 array of elements scaled to capture the extreme boundary-layer
behaviour for £ <« 1. Each subdomain uses a tensor-product discretisation with between 20
and 120 polynomial modes in each direction, chosen so that the solutions in each element
are resolved to a truncation error of approximately 107,

We find the minimum onset value for R as a function of k at fixed E by solving the
simultaneous equations for the growth rate,

y(k, R) =8y (k, R) =0. (5.50)
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—log\y E R k w
6.0 31.7913 5.9922 63.905
6.5 31.7594 6.0634 65.652
7.0 31.7390 6.1051 66.673
7.5 31.7280 6.1271 67.211
8.0 31.7249 6.1362 67.440
8.5 31.7270 6.1375 67.483
9.0 31.7326 6.1345 67.427
9.5 31.7399 6.1290 67.314
10.0 31.7484 6.1227 67.179
10.5 31.7560 6.1160 67.036
11.0 31.7646 6.1091 66.904
00 31.8167. .. 6.0691. .. 66.049. ..

Table 1. Direct spectral element calculations of the stability threshold at various Ekman numbers. Values of R,
k and w have estimated respective uncertainties of 4 x 1074, 3 x 10~* and 3 x 1073, with asymptotic analytical
results reported to the same number of digits.

We solve these equations numerically by computing y (k, R) on a 3 x 3 grid of (k, R)
input values in the vicinity of the leading-order solution and interpolating with a local
polynomial approximation of the form

y (k. R) ~y0.,0+ y1.0k + 2.0k + 0,1 R. (5.51)
We update the approximate solution to (5.50) from the polynomial fit via

2
_N0 - p Yio Yo
220 4701720  Yo,1

The true solution need not lie exactly within the original 3 x 3 grid; the polynomial
approximation can extrapolate slightly outside the fitting range. We perform the procedure
with both Chebyshev and Legendre polynomial discretisations to estimate the numerical
uncertainty in the critical parameters, which are in the fourth digit or smaller. The
asymptotic results are independent of . We set the Prandtl number o =1 throughout.
We use both I" =2, 4 over the whole range of E. The results agree to within the other
uncertainties of the calculation.

We scan over a range of powers of Ekman number with — log, £ > 6. These go to 11.
Table 1 reports the onset critical parameters, (R, k, w), from the scans over E. We perform
five-term fits for the critical parameters in powers of ¢ = E /3 as

k=~ (5.52)

R(e)~Ro+ Rijpe'? + Rie+ Rype®? + Ry €2, (5.53)
k(e)~ko+kippe'? +kie+kspe’? +kye?, (5.54)
w(e) X wy+wipe? +w et wsp e+ w e, (5.55)

Figure 4 shows plots over the values covered along with the respective best-fit curves.
Table 2 shows the best-fit parameters. The Ry, Rj,2, ko, k12 and wy, w2 all agree with
the predictions in § 5.2 to the number of reported digits.

5.4. Finite cylinder

In the finite cylinder case, we use polar coordinates, (7, ¢, z), where the radius 0 <r <
I'/2 and azimuth angle 0 < ¢ < 27, where I" denotes the non-dimensional diameter or
aspect ratio.
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31.65 A 6.00 - o |
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Figure 4. Plots of critical parameters versus Ekman number for 6 < —log;, E < 11 from the spectral-element
calculations of (5.43)—(5.49). (a) Scaled Rayleigh number, R, (b) tangential wave number, k, and (c) precession
frequency, . Table 2 gives the coefficients of the best-fit expansions in powers of E!/6. The orange dashed
lines show the asymptotic predictions in (5.40)—(5.42).

O(eP) 0 12 1 312 2
R 31.817(2) —4.5(2) 65(8) ~253(102) 258(450)
k 6.067(2) 3.5(1) —42(5) —28(63) 290(276)
w 66.06(2) 69(2) —709(56) —3573(718) 16375(3168)

Table 2. Best-fit coefficients for critical parameters as a function of powers of ¢ = E /3, computed using
spectral-element calculations of (5.43)—(5.49) and plotted in figure 4.

In this case, we solve the bulk equation first and substitute the result into the boundary
condition. The radial dependence uses modified Bessel functions of the first kind, /,,,, with

integer wavenumber, m € Z, for = Vil +iow,
0(r, ¢, 2) = In(Br) "D sin(z) + c.c.. (5.56)

The dispersion relation follows from the boundary condition applied at the outer radius,

nr) B L/2) where Im(R) =0. (5.57)

k=P (1 T 2%im ) 1.6 T/2)

2im
Given m and I", we solve Im(R) = 0 using Newton’s method for real-valued w. We define
R, and w, as their respective values when minimising R over integer m values.

Figure 5 shows the dependence of R, and w. on aspect ratio, I". The cusp-like features
in both plots correspond to discrete changes in the optimal m value. At the lowest aspect
ratios, the optimal m =1 and scales approximately as m ~ | I" k./2]. Compared with
the various Ekman-number corrections, the finite cylinder has a much stronger, O(1),
influence on the onset Rayleigh number.

Figure 6 shows two critical mid-plane temperature perturbation profiles for respective
aspect ratios, I" = 1, 3. We report the solutions from applying Newton’s method to (5.56):

for I' =1, R, &~ 29.26899820255448, w, ~ 68.93822823201539 with m, = 3;
for I' =3, R, ~ 30.84620681276749, w. ~ 66.29068835812032 with m, =9.
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Figure 5. Critical parameters for a finite cylinder with aspect ratio, I". In each case, the dashed lines show the
value for the semi-infinite channel. The critical wavenumber is typically within one of m ~ | I" k./2], where
k¢ is the critical wavenumber from the semi-infinite case. Starting from m = 1, for low aspect ratio, each cusp
feature in R. indicates a unit increase in m. The overall minimum happens for I" ~ 0.366196 and m =1 with
R ~26.3789 and o ~ 82.9854.

0(r,¢,z=1/2)

Figure 6. Mid-plane linear temperature perturbations from two critical modes at aspect ratios 1 and 3,
respectively. The I = 1 case prefers m = 3 angular wavenumber, while I" = 3 prefers m = 9.

We also compare to finite E= 107 calculations of Zhang er al. (2024) with I' =1/2,
which find R, ~ 28 and w. ~ 73.5. For asymptotically low E, with I" =1/2, we find R, ~
27.100728659192075, w, =~ 73.83743415332742 with m, = 1.

5.4.1. Tall aspect ratio

In the past few years, multiple research groups (e.g. Julien et al. 2016; de Wit et al.
2020; Pandey & Sreenivasan 2024) have started using tall-aspect-ratio cylinders for
rapidly rotating convection experiments; the reason being rotation’s tendency to produce
elongated vertical structures. The linear stability result in (5.57) simplifies considerably as
I' - 0. Assuming w I ~ O(1),

2rm ol
( - 1)) + o), (5.58)
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Imposing Im(R) = 0 and minimising over m implies
R.I' ~2n, w.I' ~8t as I — 0, (5.59)

with m. = 1. Notably, the aspect ratio and scaled Rayleigh number exactly cancel the
cylinder depth dependence in the onset condition,

ATD
§¥2L Y _ on, (5.60)
282 k

where D is the cylindrical diameter. Furthermore, as I" ~ E!/3 the critical Rayleigh
number scales the same as for bulk onset, also with identical horizontal scales, O(E 1/ 3).

5.5. Local baroclinic instability

When assembled in one place, it becomes apparent that the wall-mode system is closely
akin to the well-known planetary geostrophy (PG) equations, which typically model
global-scale stratified ocean dynamics away from coastlines (Vallis 2017, Ch. 5). The
PG system has rich dynamical structure. However, a common puzzle is the lack of self-
consistent forcing and eventual rundown (Schonbek & Vallis 1999). Several works have
considered coupling to smaller-scale quasi-geostrophic (QG) dynamics as an intriguing
alternative (see Grooms, Julien & Fox-Kemper 2011).

This context clarifies that the wall-mode convection equations are a sideways forced
PG-QG system that relies on non-hydrostatic QG (similar to Sprague et al. 2006; Julien &
Knobloch 2007) near lateral boundaries and interacts with a barotropic QG system in the
stress-free case. However, we can also study the wall-mode equations without the lateral
boundary interactions.

In a highly reduced setting, the combined baroclinic temperature and barotropic vorticity
equations have a rudimentary form of baroclinic instability. To demonstrate, we neglect all
diffusion and boundary conditions. Hence,

000 + I, 0.0) =0, a(VEv)+ (1w, Vi) =o. (5.61)
The baroclinic equation has a family of exact nonlinear solutions,

Y =Po(z) +x Vo(2) + (c+ V(2)) A(y +ct) +c.c., (5.62)

where V(z) is an arbitrary y-direction velocity profile (without loss of generality, (V) =
0), Py(z) is and arbitrary hydrostatic pressure, A(y + c ) is an arbitrary complex-valued
amplitude function and c is a complex-valued phase speed.

The barotropic equation requires the solvability condition,

(c+ V) =0 = c==i]|Vl. (5.63)

For example, Vo =z —1/2, ¢ ==+i/+/12, or Vg =cos(nz), c = :I:i/ﬁ. When A(y) =
Ap €Y for wavenumber k, then the growth rate is k|| Vo .

6. Nonlinear simulations

Using Dedalus (Burns et al. 2020), we simulate the full nonlinear system of reduced
wall-mode equations summarised in § 4. We use a full cylinder with radius 0 <r < I'/2,
azimuth 0 < ¢ < 27 and height 0 < z < 1. We use a spectral basis of generalised Zernike
polynomials that naturally represent scalars, vectors and tensors in the full unit disk,
including r = 0 with no singularities; see Vasil et al. (2016) for details.
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6.1. Set-up for numerical implementation

Our Dedalus implementation corresponds to the following description. We use the same
non-dimensional form as the asymptotic analysis with control parameters R, o and I". We
use p(r, ¢, z) as the primary dynamical variable for the bulk. The respective thermal wind
relations follow:

@=0d,p, u,=J-Vip where T=¢pQF—FQ¢. 6.1)

We represent p(r,¢,z) in a vertical cosine series, cos(nmwz). The temperature
perturbations, @ (r, ¢, z), are naturally a sine series sin(nmz). For n > 1, the baroclinic
evolution equation

%O — (V£ +3)0 =—u, -V, O. (6.2)

We use a second-order accurate multi-stage, mixed implicit-explicit time-stepping scheme
(SBDF scheme from Wang & Ruuth 2008), with linear terms on the left-hand side treated
implicitly and the nonlinear right-hand side treated explicitly. The time-step size follows a
Courant—Friedrichs—Lewy criterion with a 0.2 safety factor. Because of the fine radial grid
spacing near the walls, normal flow through the outer boundary principally determines the
time-step size.

For the outer boundary conditions at r = I" /2, we use g, (¢, z) as an additional variable
and define g4 = —H|[q;]. The boundary conditions are

Vo qp+ 0.9, —7-ui =0, (6.3)
R q, _’A"VJ_@:(%PV(# +4;0;)0, (6.4)

where V, =q§ .V, =r71 0p. As before, all linear terms are time-implicit and nonlinear
terms are explicit.

The n = 0 barotropic pressure mode has different dynamics depending on the velocity
boundary conditions on the top and bottom. In both cases, we define the vorticity,
¢=Vip.

For stress-free, we evolve the n = 0 vorticity equation,

(L) —oVEEL) ==V - (uil), (6.5)

with, again, the usual linear—nonlinear implicit—explicit time splitting. For boundary
conditions at r = I"/2,

(p)=0, =207V (p)=3(q9Vsqs)—(asVs P). (6.6)

For no-slip, the n = 0 mode involves a bit of subtlety. The Ekman boundary condition
directly mixes barotropic and baroclinic variables, and parity mixes sine and cosine series.
Vasil, Brummell & Julien (2008a, b) discusses issues like this detail. The problem is that
we need to represent expressions like (3.92) spectrally using sine/cosine series. We fix the
barotropic pressure via

VI (p)=VI(KnO), (6.7)

with the boundary condition (p) =0 at r = I" /2. We use the finite spectral representation
of 1/2 —z,

N/2

sin(2n 1
KN(z)=Z% — E_Z as N — oo. (6.8)
n=1
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A sufficiently large resolution parameter, NV, captures the integral exactly. That is,

1 1
/ Kn(z) sin(nmz)dz =/ (% —z) sin(nmz) dz (exactly) (6.9)
0 0

for all n < N. The advantage is that K is a natural sine series having a natural inner
product with ©.

6.2. Weakly nonlinear theory

Weakly nonlinear theory (see, e.g. Hoyle 2006) is a useful diagnostic for validating
calculations slightly above onset. We define the perturbation parameter,

s = R 1 (6.10)
= x. . .

As 6 — 0, we expect pressure perturbations of the form,
p=A(@) Py1(r) e ") cos(nz)
+ (1AM Pao() + AW Paa(r) X000 (cos(2m2) — 1)

+ (|A(t>|2Pz,o<a) £ A Prot@ (5) e2f<m¢+wvf>) tee+0 (87,
‘ (6.11)
with a complex-valued amplitude varying on a slow time scale
A =067,  A@)=0E"). (6.12)

The pressure ansatz contains the leading-order convective modes derived from linear
theory and the next-order convective feedback. At a given aspect ratio, we pick the
most unstable wavenumber, m, defining the non-dimensional radius, a = I"/2. The radial
functions are normalised modified Bessel functions,

Pui(r) = %’3]” Bri=Jam + j /o, 6.13)

with the coefficients,
Ci1 = In(api), (6.14)
Cao = 2 (n2a2+m2n€2,01;n(a52,0)’ 615

dra(m —ima)Br21,,(af22) —2amR 1, (af2,2)
am(mwa +im) ’

(6.16)

Crp =

with P, _j(r)=P; j(r). The normalisations ensure the solution satisfies all horizontal

boundary conditions, along with the no-slip barotropic condition (6.7); the stress-free
barotropic condition would be considerably more complicated.
The weakly nonlinear amplitude satisfies a complex Ginzburg—Landau equation,

A1) =(co8 —c1 AP A®), (6.17)
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where
2irm (% +iw) (wra +im)R
=" ( ; ) L (6.18)
a?m?R2 + w2 (wa + im)? (m? + a? (n% + iw))
Py o(a)—=2im Py (@)+m [§ (4®2.2—10Py2)Im(Py P{ _)—5i P}, P ) dr

__m—ima
a p2
2f0 Pl’lr dr

1=

(6.19)

for @75 = Pg,z(a)(r/a)zm. Linear theory is sufficient to determine cg. The nonlinear

coefficient, ¢y, requires a messy perturbation series that closes at O(83/2). There is no
spatial modulation because of the discrete critical wavenumber, m.
The amplitude in (6.17) converges to a travelling wave,

At) — A1, (6.20)

with time-independent parameters,

AP = Re(co) 5. 0 — Im(co) Re(cy) — Im(cr) Re(cp) 5. ©.21)
Re(cr) Re(cr)
The weakly nonlinear solution also gives the Nusselt number near onset. In particular,
0,0,
Nu—1= -20l=0 _ s (6.22)
where we define the convective conductivity,
 _ 0logNu __ 2mm® Re(co) 623)

"~ dlogR R=R. 4 (7‘[2612 + m2) Re(cy)

As the aspect ratio I" — 0, the calculation simplifies considerably and K — 12/7. As the
aspect ratio, I" — 0o, we can use a derivation along a flat Cartesian wall such that

K 0.7018222861264536
r

Like the conductivity, we find similar behaviour for the nonlinear frequency, w = w, + 2.
We define the convective Doppler shift,

as I — oo. (6.24)

al
r= J08® . (6.25)
dlog R R=R.
As I' — 0,7 — 173/252. Likewise,
T — 1.5336344674049933 as I — oo. (6.26)

Figure 7 shows plots of K and 7" as a function of aspect ratio.

6.3. Fully nonlinear results

We first use the methods described previously to simulate the reduced wall-mode equations
with no-slip boundary conditions, R =2R., and I" =4/5. For this choice of I', the
most unstable mode at R = R, has an azimuthal wavenumber m =2 (figure 5). We
initialise the simulation with random low-amplitude noise, which triggers the wall-
mode instability. At R =2R., the modes m =2, 3,4,5,6 all have positive growth
rates, and m = 3, 4 have the largest growth rates with y/w.~ 2.3 and w/w. ~ 3.1, 2.7,
respectively.
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Figure 7. Nusselt number and relative frequency slopes as a function of aspect ratio in a finite cylinder. For the
Nusselt number, the horizontal dashed grey line indicates the analytical value of 12/7 as I — 0 and the dashed
grey curve shows the asymptotic scaling ~0.701822/1" as I — oo derived from a flat Cartesian wall bounding
an infinite bulk interior. For the relative frequency slope, the dashed grey curves indicate the analytical value
173/252 as I' — 0 and the Cartesian result ~1.533634 as I" — oo. The jagged behaviour in both plots results
from jumps in the critical mode number, m., as a function of aspect ratio.

The instability saturates nonlinearly, producing characteristic patterns which propagate
retrograde. In figure 8, we plot the temperature near the wall and at mid-height as a
function of ¢ and ¢. The downward propagation of the constant temperature stripes shows
the retrograde motion. Initially, the dominant mode has m =3, but a coarsening event
at t ~0.075 results in a steady m = 2 pattern that persists for the rest of the simulation.
Others have also found coarsening dynamics in similar systems (Ecke et al. 1992; Plaut
2003; Scheel et al. 2003; Choi et al. 2004; Lopez et al. 2007; Favier & Knobloch 2020). In
particular, Ning & Ecke (1993), Liu & Ecke (1997, 1999) study the coarsening dynamics
for wall modes in great detail. They find that increasing the Rayleigh number slowly (as
we do later) maintains m, but a rapid change in Rayleigh (e.g. starting a simulation with
R/R. =2 from noise) usually results in a decrease in m. We chose I"' =4/5 because
the simulations yield an m = 2 pattern, implying more azimuthal resolution elements per
wavelength than simulations with the same resolution but higher m.

Having found a steady propagating solution for no-slip boundary conditions and R =
2R, we bootstrap simulations to progressively higher and lower R, and simulations with
stress-free boundary conditions. We run each simulation until it reaches a statistically
steady state. Starting from the saturated state with a similar R means that our
subsequent simulations run much shorter than figure 8. In each case, we find the m =2
structure persists. Table 3 lists all simulations described in this paper and their spatial
resolution.

Figure 9 illustrates the sidewall temperature pattern for different boundary conditions
and R. In all cases, alternating hot/cold spots exist near the top/bottom of the domain.
These patterns extend towards the mid-plane of the cylinder as ¢ increases past the location
of the hot/cold spot. The height of these patterns is smaller for no-slip boundary conditions
than for stress-free boundary conditions. As R increases, the edges of the hot/cold
spots sharpen, producing front-like features that require increasingly higher azimuthal
resolution for increased R. The stress-free simulations have sharper, more vertically
aligned fronts. For this reason, we could only run simulations up to R =4R, for stress-
free boundary conditions, while we were able to reach higher values R = 6 R, in the no-slip
simulations.
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Figure 8. Temperature space—time propagation diagram as a function of azimuth, ¢, and time, . The pattern
shows the R/R. = 2, no-slip case. The simulation starts with low-amplitude noise. The modes m =2, 3,4, 5, 6
are all unstable, with m = 3, 4 having the largest growth rates. The pattern starts with approximately three full
wavelengths, undergoes a coarsening defect and settles into a consistent two-wave pattern.

R/R. BC N, Ny N, r o w/we Nu—1
1.01 NS 32 96 48 4/5 1.01 0.0081
1.02 NS 32 96 48 4/5 1.02 0.016
1.05 NS 32 96 48 4/5 1.05 0.041
1.1 NS 32 96 48 4/5 1.10 0.084
1.2 NS 32 96 48 4/5 1.19 0.18
1.5 NS 48 128 64 4/5 1.36 0.50
2 NS 64 128 64 4/5 1.39 1.1

3 NS 128 256 64 4/5 0.88 2.1

4 NS 192 384 96 4/5 0.41 2.6

5 NS 256 512 128 4/5 0.04 2.8

6 NS 192 384 96 4/5 —0.30 29

2 SF 64 128 64 4/5 1 1.58 0.79
3 SF 128 256 64 4/5 1 2.22 1.2

4 SF 192 512 96 4/5 1 3.12 1.5

Table 3. Summary of all simulation parameters. In every case, for I'=4/5, the critical scaled
Rayleigh number, R, = 28.237851887421087, and the critical frequency, w. = 69.02735982770973. For the
weakly nonlinear parameters, K = 0.8028404111646181, 7" =1.0933189545586768. By convention, @ > 0
corresponds to retrograde propagation, consistent with the linear instability calculation. For top/bottom
boundary conditions, NS is no-slip, and SF is stress-free. While R, I', o are input control parameters, figure 12
shows the output parameters, w and Nu. Note that the Prandtl number, o, drops out of the system in the no-slip
case.

To show the horizontal structure of the modes, we plot the pressure at the top of the
cylinder in figure 10. The pressure perturbations extend significantly into the cylinder,
although the features become increasingly localised to the walls at R increases. Recall that
these visualisations do not directly show the Stewartson layers, which are infinitely thin
in this analysis. For stress-free boundary conditions, the pressure fields do not change
substantially as R increases, other than becoming more localised near the boundary.
However, there are more interesting differences between different R for the no-slip
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Figure 9. Temperature patterns at the sidewall: (a) the no-slip case and () the stress-free case. The rows
show R/R. =2, 3, 4, respectively.

boundary conditions. For low R, the contours of constant pressure slope away from the
walls in the counter-clockwise direction, as for the stress-free simulations. However, for
higher R, the no-slip simulations have contours of constant pressure that slope away from
the walls in the clockwise direction. This change in morphology may be related to the
differences in propagation direction between the no-slip and stress-free simulations at
higher R.

Figure 11 visualises the momentum fluxes within the Stewartson layers by plotting V - ¢
and V x ¢. For the divergence, V - ¢ = u,, the normal velocity at the sidewall. For the curl,
V x g = 9¢q; — 9;qg¢. The temperature at the sidewalls shows sharper azimuthal features
in the stress-free simulations than in the no-slip simulations. In particular, V x g is very
sharp and vertically aligned in the stress-free simulation. In the no-slip simulation, V - ¢
and V x g are much wider and show the same types of sloped features near the top and
bottom of the cylinder as the temperature field.

Next, we focus on heat transport. In the reduced wall-mode equations, the bulk has
no vertical velocity. Within the asymptotic approximation, the diffusive heat transport
happens entirely in the bulk, while the convective heat transport happens entirely within
the Stewartson layer. In polar coordinates,

1

27 g
S 8. T rdrde, (6.27)
lAl Jo /o :

1 27
F.=— ®dp, F;=
c |.A|\/(‘) qz ¢ d
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(a) No-slip (b) Stress-free
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Figure 10. Pressure patterns at the top: (a) the no-slip case and () the stress-free case. The rows show
R/R. =2, 3, 4, respectively.

where |A|=nT?/4=47/25~0.502 and ® =T —T. These fluxes sum to the total
F; = F.+ F;. The dynamical equations (6.2)—(6.4) have the mean linear conduction
temperature profile subtracted out, i.e. —d,7y = R; therefore, the Nusselt number Nu =
F;/R.

Figure 12(a) shows Nu as a function of R/R. for both no-slip and stress-free
simulations. As R increases from R., we find that Nu also increases linearly, as Nu — 1 =
0.807 (R/R.; — 1), shown as a dashed line in the plot. Weakly nonlinear theory predicts
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Figure 11. Boundary-layer divergence and curl patterns at the sidewall: (a) the no-slip case and (b) the
stress-free case. Both cases correspond to R/R, = 4.

a coefficient ~ 0.8028404111646181; see § 6.2 and figure 7. As R increases further, Nu
appears to level off, although we have not been able to run at sufficiently high R/R, to
probe the asymptotic behaviour as R becomes large.

Figure 12(b) shows the different depth-dependent heat fluxes for the no-slip and
stress-free simulations with R =4R.. The convective heat flux is zero at the top and
bottom boundaries (g, =0), but becomes significant and roughly constant away from
the horizontal boundaries. The diffusive heat flux is large and positive in the top and
bottom thermal boundary layers, but intriguingly becomes negative near the mid-plane.
The (vertical) middle of the cylinder becomes stably stratified due to the wall modes. All
of our simulations are thermally equilibrated, where the total heat flux is constant with
height.

Figure 8 shows the instability of the wall modes saturates into nonlinear travelling
waves. At onset, we calculate the propagation rate via linear theory; for I =4/5, w. ~ 69
in the retrograde direction. Previous work has shown the propagation rate varies with R
as expected for a supercritical Hopf bifurcation (e.g. Zhong et al. 1991; Liu & Ecke 1999;
Favier & Knobloch 2020). Figure 13 shows the propagation rate as a function of R/R,
for no-slip and stress-free simulations. As R increases from R., the propagation rate w
also increases approximately linearly. At R =2R,, the propagation rates are similar for
no-slip and stress-free simulations. However, for larger R, the propagation rate increases
monotonically for stress-free simulations, whereas the propagation rate decreases for
simulations with no-slip boundary conditions. The experiments of Zhong et al. (1993) at
E =~ 10~* similarly found a maximum propagation rate for R/ R, ~ 2-3. At R ~ 5R,, there
is a steady nonlinear solution with no propagation and for higher R, the solution propagates
in the prograde direction. This switch in propagation direction may relate to the change in
the azimuthal structure of the pressure perturbations shown in figure 10. Horn & Schmid
(2017), Ravichandran & Wettlaufer (2023) and Zhang et al. (2024) all find mixtures of
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Figure 12. Diagrams of heat transport. (@) Nusselt number, Nu, versus the supercriticality, R/R.; by definition
Nu . =1 at onset. The dashed line shows the approximate linear dependence Nu — 1 ~ 0.807 (R/R. — 1) near
onset; weakly nonlinear predicts a slope of &~ 0.803 (an =~ 0.5 % difference). (b) Depth-dependent diffusive
(F4, blue) and convective fluxes (F,, red), along with their total (F; = F. + Fy, gold) for simulations with
R =4R.. The solid lines correspond to the no-slip case, and the dashed lines correspond to stress-free. The
independence of F; on depth, z, implies the systems are in statistically steady state with a well-defined Nu.
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Figure 13. Propagation rate, w/w. versus the supercriticality, R/R.. The dashed line shows the approximate
linear dependence w/w, — 1 ~ 1.05 (R/R. — 1) near onset; compared with a predicted slope of approximately
1.09. The rates continue to increase up to R/R.~ 2. At that point, the stress-free case continues the trend,
while the no-slip rate declines and eventually becomes prograde beyond R/R. & 5.

both prograde and retrograde propagation, depending on parameter values. Note that the
structure of the temperature perturbations at the boundary (e.g. shown up to R =4R, in
figure 9) does not change significantly as R increases, other than becoming increasingly
sharp.

Finally, figure 14 shows the mean zonal flow for no-slip and stress-free simulations
with R =4R,. At this R, the modes propagate retrograde in both simulations. However,
the mean zonal flow at the boundary is positive in the no-slip simulation, while it is (as
expected) negative in the stress-free simulation. The change in propagation direction for
simulations with no-slip boundary conditions may be related to the development of a
prograde mean zonal flow.
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Figure 14. Mean zonal flow in meridional planes: (a) no-slip case and (b) stress-free case. Both cases
correspond to R/R. =4.

7. Discussion and conclusions

This work derives a balanced set of reduced equations governing the nonlinear
development of convective wall-mode instabilities in rapidly rotating systems. Focusing
on the essential dynamics within the bulk interior and the Stewartson boundary layers at
the sidewalls captures the multiscale nature of wall-mode convection. The dynamics of
the bulk interior diagnostically determine the small-scale behaviour within the boundary
layers. In contrast, the sidewall layers feedback onto the interior through a nonlinear
lateral heat-flux boundary condition, providing a closed and self-consistent system. The
final reduced dynamics occupies the bulk interior and comprises geometrically prescribed
scales. All boundary layers exist behind the scenes, their presence felt via a series of
non-trivial boundary conditions that include nonlinear transport and non-local integral
transforms.

The bulk-boundary connection offers a clearer understanding of the interplay between
multiscale dynamics, often obscured in full models due to their complexity. Systematically
eliminating secondary effects isolates the dominant physical processes, enhancing
explanatory power and providing avenues for investigating wall-mode convection in the
strongly nonlinear regime. A key difference between our studies and previous high-
resolution wall-mode simulations is that we find no evidence for secondary instability
of the sharp propagating thermal structures. We do not know if this is because we have
not reached high enough supercriticality (other work found secondary instabilities for
R/R. Z 10; Favier & Knobloch 2020; de Wit et al. 2023; Zhang et al. 2024) or because
the equations filter baroclinic inertial dynamics. We imagine future work methodically
reintroducing dynamic ingredients that model various aspects of vortex separation, which

1017 A37-38


https://doi.org/10.1017/jfm.2025.10449

https://doi.org/10.1017/jfm.2025.10449 Published online by Cambridge University Press

Journal of Fluid Mechanics

can populate the interior with pseudo-convective structures. The first additional effect
worth including is the O(E 1/ 6) Ekman flux correction in (5.32).

We also reiterate that the final system of equations resembles boundary-forced planetary
geostrophic baroclinic dynamics coupled with barotropic quasi-geostrophic vorticity.
These connections point to ways systems can include more general effects, such as
container topography. We also expect to include centrifugal buoyancy effects in future
studies. We have also not considered the effect of a low Prandtl number, which would much
more strongly emphasise inertia. Furthermore, these equations can incorporate additional
physical effects, as described later.

7.1. Double diffusion

Given the simple physical principles involved, we can, in one way, generalise the thermal
wall-mode instability almost by inspection. In the case of thermal-solutal buoyancy, we
simply add an equation for the ‘salt’ concentration, s(z, x, y, z). The updated hydrostatic
balance,

0 —s=20,p. (7.1)
The relevant linear bulk equation and boundary condition,
ds=Le 'V%s, with —g.Rs=Le 'd,s|,—o. (7.2)

The total set of control parameters includes the solutal scaled Rayleigh number and the
Lewis number,

oar AT H as AS H K
R b LN PR et Ee R PP (13)

R
T K K A

where A is the solute diffusivity, ag is solutal the expansion coefficient and AS is the

total imposed concentration jump. As defined, Rr > 0 and Rg > 0 both typically imply

destabilising configurations. For a neutral-density background state, Rt + Rg=0. In
many common situations, Le > 1; e.g. for salt and water, Le ~ 103.

Carrying out a nearly identical analysis to the purely thermal case, the condition for

marginal stability is

Rt n RgsLe _ w(ik+m)

Vit n2+io V2 +n?+iole ik

where k is the y-direction Fourier wavenumber and w is the complex-valued frequency.

In this case, the dispersion relation shows similarities and differences with both the

fingering and oscillatory regimes of double-diffusive convection (Garaud 2018). We leave
the exploration of the critical R, Rg curve for later work.

(7.4)

7.2. Magnetism

Finally, we point out that magnetic wall modes have attracted significant recent attention
(Busse 2008; Liu, Krasnov & Schumacher 2018; Grannan et al. 2022; Xu, Horn & Aurnou
2023; McCormack et al. 2023; Teimurazov et al. 2024). There are many ways these
dynamics will interact with rapid rotational effects.

In magnetohydrodynamics (MHD), the Chandrasekhar number (Chandrasekhar 1961)
measures the influence of an imposed background magnetic field,

2152
_ BiH
10poVN

(7.5)
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where By is the vertical field strength, 1 is the permeability, pg is the average density and
n is the magnetic diffusivity. In the large- O limit, several interesting overlaps occur with
rapidly rotating parameters that point to extremely rich unexplored dynamics.

In particular, the equivalent MHD sidewall interactions will couple with the rotating
version, provided the boundary layers have the same scaling in the same Rayleigh number
regime. Indeed, Busse (2008) shows wall-mode convection exists when

Ra~ Q%% dx~Q V4, (7.6)

Ra~Ta'?, dx~Ta /0. (1.7)

In both cases, the velocity amplitudes in the boundary layers scale v, w~ dx~!.

Therefore, when Q ~ Ta*3, we expect interesting non-trivial interactions with O(1) bulk
dynamics coupled to the sidewall via nonlinear and non-local boundary conditions. We
should also expect magnetic double-diffusive effects (Silvers et al. 2009).

However, even more fascinating complications can occur in the ‘magnetostrophic’
regime (Horn & Aurnou 2022). In this case, convection can arise purely in the bulk on
O(1) length scales without reference to sidewalls. This regime requires a joint balance

Ra~ Q ~Ta'/?. (7.8)

Convection sets in when Q2 ~3Ta and RaTa '/? ~3/3 1% ~ 51.284, or R/R. ~ 1.6 in
terms of the wall modes. The implication is that magnetostrophic convection will interact
with the sidewall layers with a lower magnetic field strength than purely sidewall-catalysed
magnetoconvection. If the wall modes can drive a kinematic dynamo, this is likely the
regime in which the system would end up.
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