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In one of the leading theories for the origin of the solar wind, photospheric motions
launch Alfvén waves (AWs) that propagate along open magnetic-field lines through
the solar atmosphere and into the solar wind. The radial variation in the Alfvén speed
causes some of the AWs to reflect, and counter-propagating AWs subsequently interact
to produce Alfveńic turbulence, in which AW energy cascades from long wavelengths
to short wavelengths and dissipates, heating the plasma. In this paper we develop a
one-dimensional two-fluid solar-wind model that includes Alfvénic turbulence, proton
temperature anisotropy and a novel method for apportioning the turbulent heating rate
between parallel proton heating, perpendicular proton heating and electron heating. We
employ a turbulence model that accounts for recent observations from NASA’s Parker
Solar Probe, which find that AW fluctuations in the near-Sun solar wind are intermit-
tent and less anisotropic than in previous models of anisotropic magnetohydrodynamic
turbulence. Our solar-wind model reproduces a wide range of remote observations of
the corona and in-situ measurements of the solar wind, and our turbulent heating model
consists of analytic equations that could be usefully incorporated into other solar-wind
models and numerical models of more distant astrophysical plasmas.

Key words: astrophysical plasmas, space plasma physics, plasma nonlinear phenomena

https://doi.org/10.1017/S0022377825100640 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0022377825100640
https://orcid.org/0000-0003-4177-3328
https://orcid.org/0000-0001-5028-8047
https://orcid.org/0000-0002-5013-7705
https://orcid.org/0000-0001-6038-1923
https://orcid.org/0000-0002-8327-5848
https://orcid.org/0000-0002-8841-6443
https://orcid.org/0000-0001-8479-962X
https://orcid.org/0000-0002-9348-1290
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377825100640&domain=pdf
https://doi.org/10.1017/S0022377825100640


2 B.D.G. Chandran and others

1. Introduction

Heating causes the Sun’s outer corona to become gravitationally unbound and
expand, forming the solar wind, whose structure has been characterised in detail
by numerous in-situ measurements over the past six decades (Verscharen et al.
2019; Raouafi et al. 2023). The distribution of solar-wind speeds measured far
from the Sun is bimodal, with one peak in the distribution at speeds in the
range of 300−500 km s−1 (slow solar wind) and another peak in the range of
700−800 km s−1 (fast solar wind) (see, e.g. Neugebauer & Snyder 1966; Gosling
et al. 1976). Near solar minimum (the period of the solar cycle in which there
are the fewest sunspots), most of the heliosphere is filled with fast solar wind that
emanates from the Sun’s polar coronal holes,

1
and slow solar wind is concentrated

at low heliolatitudes, near the ecliptic (the plane of Earth’s orbit) (Goldstein et al.
1996; McComas et al. 2000). Near solar maximum, the solar wind is much more
disordered, and fast wind and slow wind can be found at virtually all heliolatitudes
(McComas et al. 2003).

Early work on the solar wind’s origin found that fast solar wind could only arise
in the presence of significant extended heating out to heliocentric distances r of
tens of solar radii, leading Eugene Parker to conjecture that the corona and solar
wind are heated by the dissipation of waves (Parker 1965, p. 686). The experimental
detection of turbulence in the interplanetary medium led to a modification of this
conjecture, that the solar wind is heated by turbulence (Coleman 1968). Shortly
thereafter, Belcher & Davis (1971) analysed in-situ measurements from the Mariner
5 spacecraft and showed that the solar wind is permeated by broad-band, Alfvén-
wave (AW)-like fluctuations that propagate away from the Sun in the plasma frame.
Their work provided substantial early support for the idea that the solar wind is
strongly heated by Alfvénic turbulence, by which we mean fluctuations in the velocity
and magnetic field, δv and δB, that have comparable energies and are only weakly
compressive, meaning that the fractional density fluctuations δn/n0 and magnetic-
field-strength fluctuations δB/B0 are small compared with |δB|/B0. This type of
turbulence can be viewed as the nonlinear development of interacting AWs.

More recently, remote observations from the Solar Optical Telescope on the
Hinode spacecraft (De Pontieu et al. 2007) and in-situ measurements from the
Parker Solar Probe (PSP) and Solar Orbiter (Halekas et al. 2023; Rivera et al.
2024) have shown that volume-filling AW-like fluctuations carry sufficient energy to
power the fast solar wind. These observations have helped to solidify Alfvénic turbu-
lence as the leading candidate to explain the majority of the energisation of the fast
solar wind. Alfvénic turbulence may also be an important energetic driver of slow
solar wind that emerges from small coronal holes or the boundaries of large coronal
holes (e.g. Cranmer, van Ballegooijen & Edgar 2007; Chen et al. 2020; Chandran
2021), as well as the heating of regions of the solar corona with closed magnetic-field
lines (Rappazzo et al. 2007, 2017; Downs et al. 2016; Mikić et al. 2018; Boe et al.
2021, 2022).

The generation of the solar wind by Alfvénic turbulence has been explored in
detail in a number of numerical solar-wind models (e.g. Suzuki & Inutsuka 2005;

1Coronal holes are regions of the corona with open magnetic-field lines that connect the coronal base to the
distant heliosphere.
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Suzuki 2006; Cranmer et al. 2007; Verdini et al. 2010; van der Holst et al. 2014;
Lionello et al. 2014a, b; Usmanov, Goldstein & Matthaeus 2014; Shoda et al. 2019;
Réville et al. 2020). An important ingredient in these models is the reflection of
AWs that arises because the Alfvén speed vA varies with r (Heinemann & Olbert
1980; Velli 1993). The Sun launches only outward-propagating waves, but reflection
leads to a mixture of counter-propagating AWs at all r .

2
Counter-propagating AWs

interact nonlinearly to produce Alfvénic turbulence, causing fluctuation energy to
cascade from large scales (wavelengths) to small scales (Kraichnan 1965). Although
AWs are virtually undamped at the large wavelengths that characterise the bulk of
the AW energy launched by the Sun, the fluctuation energy in Alfvénic turbulence
dissipates rapidly after it cascades to sufficiently small scales. The rate of plasma
heating by turbulence thus becomes insensitive to the linear damping rate of large-
scale AWs and is determined instead by the rate at which AW energy cascades from
large scales to small scales. This energy-cascade rate is, in turn, influenced by the
rate of AW reflection, which is proportional to the Alfvén-speed gradient.

Although there is broad agreement that Alfvénic turbulence is energetically impor-
tant in the corona and solar wind, the way that such turbulence heats the plasma
is not well understood. A long-standing puzzle concerns the way that the turbulent
heating power is partitioned between particle species and between parallel and per-
pendicular heating (see, e.g. Quataert 1998; Leamon et al. 1998; Howes 2024), where
perpendicular (parallel) heating increases the speed of thermal motions perpendic-
ular (parallel) to the magnetic field. The Ultraviolet Coronagraph Spectrometer
(UVCS) and Solar Ultraviolet Measurements of Emitted Radiation (SUMER)
instruments on the Solar and Heliospheric Observatory have provided important
constraints on this partitioning. In particular, UVCS and SUMER measurements
show that T⊥p > T‖p, T⊥p > Te and T⊥O+5� T⊥p in coronal holes, where T⊥p and T‖p
are the perpendicular and parallel proton temperatures, Te is the electron tempera-
ture and TO+5 is the temperature of O+5 ions (Kohl et al. 1998; Landi 2008). These
inequalities suggest that ion cyclotron heating plays a dominant role in dissipat-
ing the turbulence (e.g. Hollweg & Isenberg 2002). However, in theoretical models
and numerical simulations, the fluctuation energy in Alfvénic turbulence cascades
anisotropically, resulting in small-scale fluctuations that are elongated along the mag-
netic field B (Shebalin, Matthaeus & Montgomery 1983; Goldreich & Sridhar 1995;
Cho & Vishniac 2000; Mallet, Schekochihin & Chandran 2015). Such fluctuations
have smaller wavenumber components k‖ in the B direction than would be expected
in isotropic turbulence. As the AW frequency is k‖vA, this reduction in k‖ reduces
the frequencies of the small-scale fluctuations, preventing them from reaching the
ion cyclotron frequency (e.g. Cranmer & van Ballegooijen 2003). Explaining the
observed perpendicular ion temperatures thus remains an important challenge for
solar-wind models based on Alfvénic turbulence.

More generally, it remains challenging to predict the time-dependent structure of
the three-dimensional (3-D) solar wind and solar corona using numerical models of
any kind. The premise of this paper is that an improved, physics-based description
of turbulent heating will increase the accuracy of 3-D solar-wind models, which in
turn will contribute to our ability to model and predict space weather. With this
long-term goal in mind, we aim to show how recent advances in modelling solar-
wind turbulence can be incorporated into a one-dimensional (1-D) solar-wind model

2Parametric decay also generates inward-propagating AWs, but we do not consider this process in this paper.
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and to test this 1-D model using a wide range of solar-wind observations. We note
that our method for describing turbulence and turbulent heating is based on analytic
expressions that could be included straightforwardly in 3-D models.

The remainder of this paper is organised as follows. We present the main equations
of our model in § 2 and the details of our turbulent heating model in § 3. In § 4 we
present numerical examples based on the axisymmetric solar-minimum magnetic-
field model of Banaszkiewicz, Axford & McKenzie (1998) and Hackenberg, Marsch
& Mann (2000) and compare our model with observations. We summarise our
findings and conclude in § 5.

2. The principal equations of the model

Our model is very similar to the two-fluid solar-wind model with proton tempera-
ture anisotropy that was developed by Chandran et al. (2011), but we use a different
prescription for the turbulent heating rate (§ 3) and include radiative cooling. We
describe our approach in detail in the following subsections.

2.1. Magnetic geometry and numerical domain

We limit our model to heliocentric distances less than
3

rmax = 72R�. (2.1)

This enables us to neglect the effects of solar rotation on the direction of the back-
ground magnetic field B and to treat B as approximately radial. We then analyse the
solar-wind outflow within a narrow magnetic flux tube centred on a radial magnetic-
field line. We take the solar-wind outflow velocity U to be everywhere parallel to the
magnetic field B, setting

U =U b̂, (2.2)

where b̂= B/B. The magnetic-field-strength profile B(r) is arbitrary, but fixed
in time. Although we allow the magnetic field to undergo super-radial expansion
(Kopp & Holzer 1976), the radially oriented magnetic flux tube that we consider is
sufficiently narrow that we may approximate

B · ∇→ B
∂

∂r
. (2.3)

The cross-sectional area of the flow a(r) is related to B(r) by magnetic flux
conservation,

a(r)

a(rb)
= B(rb)

B(r)
, (2.4)

where rb is the minimum heliocentric distance in the model, which we take to lie
somewhere in the upper transition region, just beneath the corona.

3Although we solve the equations of our model only at r � rmax, energy conservation allows us to predict
the asymptotic solar-wind outflow velocity U∞ of a solar-wind stream at r � rmax based on the properties of the
solar-wind stream at r � rmax, as we discuss further in § 4.3, where we compare our model with measurements from
the Ulysses spacecraft.
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2.2. Moments of the Vlasov equation
Following a number of authors (e.g. Kulsrud 1983; Snyder, Hammett & Dorland

1997; Sharma et al. 2006), we take moments of the Vlasov equation for a proton–
electron plasma in the limit in which the plasma frequency and cyclotron frequency
are much larger than any other frequency of interest. In this limit, the plasma is
quasi-neutral, and the proton and electron distribution functions are gyrotropic. We
view all moments of these distribution functions (e.g. the proton density n, which
equals the electron density) as the sum of a background value and a fluctuation,
where the background value of a quantity is its average over the cross-section of the
flux tube at fixed r . The background values are thus functions of r and t alone.

The resulting equations allow for proton temperature anisotropy, but we assume
an isotropic electron temperature Te and determine the radial component of the
electron heat flux qe using a simple closure (§ 2.4). In contrast, q⊥p and q‖p, the radial
components of the perpendicular and parallel proton heat fluxes, respectively, evolve
dynamically in a way that depends upon three different types of fourth velocity
moments of the proton distribution function. To close the proton fluid equations,
we take these fourth velocity moments to have the same values that they would
have in a bi-Maxwellian plasma with the same T⊥p and T‖p as the actual plasma.
We incorporate reflection-driven AW turbulence by treating the dominant, outward-
propagating AWs as a separate fluid with energy density Ew that interacts with the
plasma via a wave-pressure force and turbulent heating.

The eight dependent variables in our model (n, U , Te, T⊥p, T‖p, q⊥p, q‖p and Ew)
satisfy the following eight equations (Chandran et al. 2011):

dn

dt
= − n

a

∂

∂r
(aU ), (2.5)

dU

dt
= − kB

ρ

∂

∂r

[
n(Te + T‖p)

]+ kB(T⊥p − T‖p)
mpa

∂a

∂r
− G M�

r 2
− 1

2ρ

∂Ew

∂r
, (2.6)

3
2

n5/3kB
d
dt

(
Te

n2/3

)
= Qe − 1

a

∂

∂r
(aqe)+ 3νpenkB(Tp − Te)− n2Λrad(Te), (2.7)

BnkB
d
dt

(
T⊥p

B

)
= Q⊥p − 1

a2

∂

∂r

(
a2q⊥p

)
+ 1

3
νpnkB(T‖p − T⊥p)+ 2νpenkB(Te − T⊥p), (2.8)

n3kB

2B2

d
dt

(
B2T‖p

n2

)
= Q‖p − 1

a

∂

∂r
(aq‖p)

+ q⊥p

a

∂a

∂r
+ 1

3
νpnkB(T⊥p − T‖p)+ νpenkB(Te − T‖p), (2.9)

n2 d
dt

(q⊥p

n2

)
= − nk2

BT‖p
mp

∂T⊥p

∂r
+ nk2

BT⊥p(T⊥p − T‖p)
mpa

∂a

∂r
− νpq⊥p, (2.10)

n4

B3

d
dt

(
B3q‖p

n4

)
= −3nk2

BT‖p
2mp

∂T‖p
∂r
− νpq‖p (2.11)
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and (Dewar 1970)

∂Ew

∂t
+ 1

a

∂

∂r
[a(U + vA)Ew]+ Ew

2a

∂

∂r
(aU )=−Q. (2.12)

Here vA = B/
√

4πρ, ρ =mpn is the mass density, M� is the mass of the Sun and

d
dt
= ∂

∂t
+U

∂

∂r
(2.13)

is the time derivative in the plasma frame. The quantities Qe, Q⊥p and Q‖p are,
respectively, the electron heating rate, the perpendicular proton heating rate and the
parallel proton heating rate resulting from the dissipation of AW turbulence (see
§ 3), and

Q = Qe + Q⊥p + Q‖p (2.14)

is the total turbulent heating rate. The quantity

νpe = 4
√

2πme e4n ln Λ

3mp(kBTe)3/2
(2.15)

is the Coulomb collision frequency for the exchange of energy between protons and
electrons (Schunk 1975), where mp and me are the proton and electron masses,
respectively, and ln Λ is the Coulomb logarithm, which we set equal to 23. The
proton–proton collision frequency in our model is given by

νp = νpp,C + νinst, (2.16)

where

νpp,C = 4
√

π e4n ln Λ

3
√

mp(kBTp)3/2
(2.17)

is the proton–proton Coulomb collision frequency (Schunk 1975),

Tp = 2T⊥p + T‖p
3

, (2.18)

and νinst is a model temperature-isotropisation rate resulting from small-scale plasma
fluctuations that grow when the proton temperature anisotropy exceeds the threshold
of the oblique firehose or mirror instability (see § 2.5).

The quantity Λrad(Te) on the right-hand side of (2.7) is the optically thin radia-
tive loss function, which we take to have the same value as the quantity Λ(T ) in
the single-fluid model of Cranmer et al. (2007). To determine this latter function, we
read off the value of Λ(T ) from figure 1 of Cranmer et al. (2007) at 35 evenly spaced
values of log10[T/(1 K)] ranging from 3.6 to 7.0. We then approximate log10 Λ(T )
as a continuous and piecewise linear function of log10 T that passes through these
35 ordered pairs of (T, Λ(T )) values. We plot the resulting value of Λrad(Te)
in figure 1.

2.3. Total energy equation
Multiplying (2.6) by ρU and adding the resulting equation to the sum of

(2.7)–(2.9) and (2.12) yields

∂Etot

∂t
+ 1

a

∂

∂r
(aFtot)=−n2Λrad(Te), (2.19)
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FIGURE 1. The optically thin radiative loss function appearing in (2.7) and (2.19).

where

Etot = ρU 2

2
− G M�ρ

r
+ nkB

(
3Te

2
+ T⊥p + T‖p

2

)
+ Ew (2.20)

is the total energy density and

Ftot = ρU 3

2
− U G M�ρ

r
+UnkB

(
5Te

2
+ T⊥p + 3T‖p

2

)
,

+ qe + q⊥p + q‖p +
(

3U

2
+ vA

)
Ew (2.21)

is the total energy flux. In steady state, and at heights � 0.1R� above the photosphere
where radiative cooling is negligible, aFtot becomes independent of r .

2.4. Electron heat flux
In the low corona, the Coulomb mean free path is much smaller than the tem-

perature scale height, and the radial component of the electron heat flux is well
approximated by the Spitzer formula (Spitzer & Härm 1953)

qe,S =−αST 5/2
e

∂Te

∂r
, (2.22)

where

αS = 1.84× 10−5

ln Λ
erg s−1 K−7/2 cm−1. (2.23)

We approximate the radial component of the electron heat flux far outside the
corona using Hollweg’s collisionless heat-flux formula (Hollweg 1974, 1976)

qe,H = 3
2
αHUnkBTe, (2.24)

where αH is a dimensionless constant that we treat as a free parameter. To obtain a
continuous transition between these two heat-flux regimes, we set

qe = (r/rH)4 qe,H

1+ (r/rH)4 +
qe,S

1+ (r/rH)4 , (2.25)

where rH is a free parameter.
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2.5. Temperature isotropisation from firehose and mirror instabilities
The proton temperature-anisotropy ratio R = T⊥p/T‖p in the solar wind is observed

to be limited from above by the mirror instability threshold

Rm = 1+ 0.77(β‖p + 0.016)−0.76 (2.26)

and from below by the oblique firehose instability threshold

Rf = 1− 1.4(β‖p + 0.11)−1 (2.27)

(Kasper, Lazarus & Gary 2002; Hellinger et al. 2006; Bale et al. 2009),
4

where

β‖p = 8πnkBT‖p
B2

. (2.28)

This suggests that when the plasma crosses one of these thresholds, short-wavelength
fluctuations grow and cause pitch-angle scattering that drives the plasma back into
the stable region of parameter space. We incorporate such instability-induced pitch-
angle scattering into our model through the term νinst in (2.16), where

νinst = ν0 exp
[

12(R − Rm)

Rm

]
+ ν0 exp

[
12(Rf − R)

Rf

]
, (2.29)

ν0 = 0.02
√

G M�/R3� and Rf =max(Rf, 10−6) (cf. Sharma et al. 2006; Chandran
et al. 2011).

3. Alfvénic turbulence and turbulent heating

In this section we present our model of reflection-driven Alfvénic turbulence and
turbulent heating. We describe how we determine the radial profiles of the fluc-
tuation amplitudes, correlation lengths and energy-cascade rate in § § 3.1 and 3.2.
Sections 3.3 and 3.4 describe how we model the scale dependence of the fluctuation
amplitudes within the inertial range. The inertial range is the range of scales that is
smaller than the outer scale but larger than the dissipation scale, below which dis-
sipation becomes important. We take the dissipation scale (measured perpendicular
to the magnetic field) to be the proton gyroradius

ρp = v⊥th,p


p
, (3.1)

where v⊥th,p =
(
2kBT⊥p/mp

)1/2
is the proton perpendicular thermal speed. In some

cases, a finite interval of scales at the large-scale end of the inertial range is in the
weak-turbulence regime. Section 3.3 describes how we model such weakly turbu-
lent fluctuations when they arise. In general, for coronal holes and the near-Sun
solar wind, the majority of the inertial range is in the strong-turbulence regime, and
§ 3.4 describes how we model strong reflection-driven Alfvénic turbulence. We then
discuss how we model dissipation and turbulent heating in § 3.5.

4Equations (2.26) and (2.27) are the values of R at which the linear growth rates for the instabilities in a
bi-Maxwellian plasma are 10−3
p, where 
p is the proton cyclotron frequency (Hellinger et al. 2006).
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3.1. The root-mean-square amplitudes of the turbulent fluctuations
We describe the turbulent fluctuations using the Elsasser variables (Elsasser 1950)

δz± = δv ± δB√
4πmpn

. (3.2)

We take the background magnetic field B to point toward the Sun, and therefore,
δz+ (δz−) represents Alfvénic fluctuations propagating away from (toward) the Sun
in the plasma frame. We define the perpendicular and parallel outer scales L⊥(r) and
L±‖ (r) to be the length scales that make the dominant contribution to the fluctuation
energy.

5
Although L⊥ can be different (and evolve with r differently) for δz+ and

δz− (Meyrand et al. 2025), for simplicity, we take it to be the same.
The energy density of outward-propagating AWs is Ew =mpn

(
δz+rms

)2
/4, where

δz±rms is the root-mean-square (r.m.s.) amplitude of δz±. Equivalently,

δz+rms = 2
( Ew

mpn

)1/2

. (3.3)

At r � 20R�, where most of the heating and acceleration of the solar wind take place,
the turbulence is highly imbalanced (e.g. Verdini & Velli 2007; Perez & Chandran
2013; Chen et al. 2020; McIntyre et al. 2024), meaning that

δz−rms	 δz+rms. (3.4)

We derive our turbulent heating model in this highly imbalanced limit. Equations
(3.2) and (3.4) imply that the r.m.s. fluctuating velocity is approximately

δvrms = 1
2
δz+rms. (3.5)

We estimate δz−rms by balancing the rate at which δz− is produced by reflection
against the rate at which δz− cascades and dissipates, which yields

δz−rms =
L⊥(U + vA)

vA

∣∣∣∣∂vA

∂r

∣∣∣∣ . (3.6)

Equation (3.6) was originally derived in the strong-turbulence regime by Dmitruk
et al. (2002) for the case without background flow and by Chandran & Hollweg
(2009) for the case with background flow. Subsequently, Chandran & Perez (2019)
showed that (3.6) is also approximately valid when δz− fluctuations are in the weak-
turbulence regime. We discuss the weak- and strong-turbulence regimes further in
§ § 3.3 and 3.4

In the numerical examples that we present in § 4, vA varies so rapidly near r = rb

(the minimum heliocentric distance in the model, approximately 2000 km above the
photosphere) that the value of δz−rms in (3.6) can exceed δz+rms, violating the assump-
tions under which (3.6) was derived. To avoid this, we replace |∂vA/∂r | in (3.6) with∣∣∣∣∂vA

∂r

∣∣∣∣
eff

=min
(∣∣∣∣∂vA

∂r

∣∣∣∣
eff

,
creflδz+rms

L⊥

)
, (3.7)

5Often in the solar wind the magnetic power spectrum is ∝ 1/ f at small frequencies f (but see Davis et al.
2023; Huang et al. 2023) . For such cases, we identify the outer scale with the break between the 1/ f range and the
inertial range.
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where the constant crefl is an adjustable free parameter. Equation (3.7), in
combination with (3.6), prevents δz−rms/δz+rms from exceeding crefl(U + vA)/vA.

For simplicity, we make the approximation that L−1
⊥ and

(
L+‖
)−1

scale with
radius in the same way as the perpendicular and parallel wavenumbers of outward-
propagating AWs in the WKB (Wentzel–Kramers–Brillouin) approximation in a
steady-state solar wind with a radial magnetic field. This yields

L⊥(r)= L⊥kG

[
1 kG
B(r)

]1/2

L+‖ (r, t)= [U (r, t)+ vA(r, t)] τb, (3.8)

where L⊥kG is a free parameter and

τb = L⊥(rb)

δvrms(rb)
(3.9)

is the approximate correlation time of the fluctuations at r = rb.

3.2. The energy cascade in magnetohydrodynamics
We view the fluctuations as a collection of δz± wave packets with length scales λ

and l±λ measured perpendicular and parallel to the magnetic field, respectively, and
amplitudes δz±λ . We take outer-scale wave packets to satisfy the equations

δz±L⊥ = δz±rms, l±L⊥ = L±‖ . (3.10)

Each δz± wave packet propagates at velocity ∓vA b̂ while being distorted by nonlin-
ear interactions with counter-propagating wave packets. As pointed out by Lithwick,
Goldreich & Sridhar (2007), it is useful to consider the evolution of a ‘slice’ of a δz±
wave packet at perpendicular scale λ, that is, a cross-section of the δz± wave packet
in the plane perpendicular to B. The time required for this slice to propagate through
a counter-propagating δz∓ wave packet of perpendicular scale λ is approximately

τ±lin,λ =
l∓λ
vA

. (3.11)

The time scale associated with the shearing of the δz± wave packet by a δz∓ wave
packet at scale λ is

τ±nl,λ =
λ

δz∓λ
. (3.12)

The critical-balance parameter is (Goldreich & Sridhar 1995)

χ±λ =
τ∓lin,λ

τ∓nl,λ

= δz±λ l±λ
λvA

, (3.13)

where we have adopted the ± labelling convention of Lithwick et al. (2007) (here-
after LGS07) for χ±λ . When χ+λ � 1, a δz− wave packet at scale λ is strongly sheared
and distorted before it can propagate through a δz+ wave packet at scale λ. In this
strong-turbulence regime, the time required for a δz− wave packet at perpendicular
scale λ to pass its energy on to smaller scales is approximately

τ−casc,λ =
λ

δz+λ
(if χ+λ � 1). (3.14)
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On the other hand, when χ+λ 	 1, each slice of a δz− wave packet at scale λ passes
through a counter-propagating δz+ wave packet at scale λ before the slice is strongly
distorted. In this weak-turbulence regime, the effects on the δz− wave packet of
consecutive ‘collisions’ with δz+ wave packets at scale λ add incoherently, like the
steps in a random walk. A δz− wave packet undergoes a fractional distortion �χ+λ
during a single collision and is thus strongly distorted after ∼ (χ+λ )−2

collisions. As
the duration of a single collision is ∼ l+λ /vA, the energy of a δz− wave packet at scale
λ cascades to smaller scales on the time scale (Kraichnan 1965; Ng & Bhattacharjee
1996, 1997; Goldreich & Sridhar 1997)

τ−casc,λ =
(
χ+λ
)−2 l+λ

vA
= (χ+λ )−1 λ

δz+λ
(if χ+λ < 1). (3.15)

The rate at which δz± energy cascades to smaller scales at scale λ is

ε±λ =
mpn

(
δz±λ

)2
4τ±casc,λ

. (3.16)

We take ε±λ to be independent of λ for ρp � λ� L⊥, and we use the abbreviated
notation ε± to denote the value of ε±λ anywhere in this scale range. Applying (3.10)
and (3.14) through (3.16) to the outer-scale δz− fluctuations, we find that

ε− = mpn(δz−rms)
2δz+rms

4L⊥
×min

(
χ+L⊥, 1

)
. (3.17)

Equations (3.6), (3.13) and (3.17) imply that ε− ∝ L⊥ when χ+L⊥ � 1 and ε− ∝ L0
⊥

when χ+L⊥ < 1. In both cases, doubling L⊥ doubles δz−rms in (3.6), and in the strong-
turbulence limit this doubles ε− in (3.17). However, in the weak-turbulence limit,
doubling L⊥ without changing δz+rms, vA or L+‖ cuts χ+L⊥ in half and leaves ε− in
(3.17) unchanged.

Because δz− fluctuations are generated by the reflection of δz+ fluctuations and
are also sheared by δz+ fluctuations, δz− fluctuations are highly coherent in the
‘δz+ reference frame,’ which propagates away from the Sun at the group velocity
of the δz+ fluctuations (Velli, Grappin & Mangeney 1989). In particular, in the δz+
reference frame, the δz− fluctuations at scale λ remain coherent until the δz+ fluc-
tuations at scale λ evolve appreciably (LGS07). Lithwick et al. (2007) made this last
argument for the strong-turbulence regime in which χ+λ ∼ 1, but the essence of their
argument applies equally well to the weak-turbulence regime of reflection-driven tur-
bulence, in which χ+λ < 1. In both regimes, if δz− is infinitesimal so that δz+ does not
evolve via nonlinear interactions, then (neglecting the radial inhomogeneity of the
background) δz+ is constant in the δz+ frame. As a consequence, δz− is constant in
the δz+ frame, because δz− is both generated by δz+ (via reflection) and cascaded by
δz+. If, in a thought experiment, one now increases the amplitude of δz− so that δz+
evolves via nonlinear interactions, the question arises: How long does one have to
wait before the changes in δz+ give rise to changes in δz− in the δz+ frame? Noting
that the nonlinear evolution time of δz+ fluctuations is an increasing function of λ,
LGS07 argued that the δz− fluctuations at scale λ do not evolve in the δz+ frame
until the δz+ fluctuations at comparable scales have evolved. Prior to such a time,
δz+ fluctuations at scales 	λ will have changed appreciably, but such changes will
have little effect upon the δz− fluctuations at scale λ, which are sensitive primarily
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to the reflection of δz+ fluctuations at scales � λ and the way that such δz+ fluctu-
ations cause δz− fluctuations at scales � λ to cascade. Therefore, a δz+ fluctuation
at scale λ is sheared coherently by δz− fluctuations at scale λ throughout the life-
time of the δz+ fluctuation, and the energy-cascade time scale of δz+λ fluctuations is
approximately

τ+casc,λ =
λ

δz−λ
, (3.18)

regardless of the value of χ−λ . We refer the reader to LGS07 for a more detailed
discussion of this turbulence phenomenology as it plays out in the strong-turbulence
regime.

Applying (3.16) and (3.18) to fluctuations at the outer scale, and making use of
(3.6) and (3.7), we find the magnetohydrodynamic (MHD) prediction for the rate at
which δz+ energy cascades to smaller scales (cf. Dmitruk et al. 2002; Chandran &
Hollweg 2009):

ε+ = mpn

4

(
U + vA

vA

) ∣∣∣∣∂vA

∂r

∣∣∣∣
eff

(
δz+rms

)2
. (3.19)

Just as ε− is independent of L⊥ when χ+L⊥ < 1 in the sense described following (3.17),
ε+ is independent of L⊥ for fixed U , vA, ∂vA/∂r and δz+rms.

3.3. The possibility of weak turbulence at the large-scale end of the inertial range
When χ+L⊥ < 1, δz− fluctuations with λ∼ L⊥ are weakly turbulent. In this subsec-

tion we describe how we model weak turbulence at the large-scale end of the inertial
range when it arises. In the numerical examples in § 4, weak turbulence is limited
to regions outside the low corona and to a comparatively narrow range of scales
near L⊥ for reasons that are explained towards the end of this subsection. As a
consequence, the weak-turbulence scalings that we derive here do not have a large
impact on our numerical solutions in § 4. Nevertheless, we include this discussion
for completeness and because, to our knowledge, there are no existing models for
the scale dependence of δz±λ and l±λ in weak anisotropic reflection-driven turbulence.

To obtain weak-turbulence scalings, we consider the asymptotic weak-turbulence
limit, in which

χ+λ 	 1, (3.20)
and we take l−λ to be the distance a δz− wave packet at perpendicular scale λ can
propagate along the magnetic field during its cascade time scale. It then follows from
(3.15) that

l−λ = l+λ
(
χ+λ
)−2

. (3.21)

(Setting λ= L⊥ in (3.21) implies, via (3.10), that L−‖ = L+‖
(
χ+L⊥

)−2
when χ+L⊥ 	 1.)

Because l−λ � l+λ , the shearing of δz+ wave packets at perpendicular scale λ by δz−λ
wave packets at perpendicular scale λ does not reduce the parallel correlation length
of the δz+ wave packets at scale λ, and thus, we set

l+λ ∝ λ0. (3.22)

As mentioned following (3.16), in the inertial range, the energy-cascade rate
is independent of λ. Upon substituting (3.15) into (3.16) and taking ε−λ to be
independent of λ, we find that

ε−λ =
(mpn

4

) (δz−λ
)2 (

δz+λ
)2

l+λ
λ2vA

∝ λ0. (3.23)
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Likewise, after substituting (3.18) into (3.16)
6

and taking ε+ to be independent of λ,
we obtain

ε+λ =
(mpn

4

) (δz+λ
)2

δz−λ
λ

∝ λ0. (3.24)

Dividing (3.23) by (3.24) and making use of (3.22) yields

δz−λ ∝ λ, (3.25)

which corresponds to a perpendicular z− power spectrum E−(k⊥)∝ k−3
⊥ . Upon

substituting (3.25) into either (3.23) or (3.24), we find that

δz+λ ∝ λ0, (3.26)

which corresponds to a perpendicular z+ power spectrum E+(k⊥)∝ k−1
⊥ . It then

follows from (3.13), (3.22) and (3.26) that

χ+λ ∝ λ−1. (3.27)

Equation (3.27) implies that if the turbulence starts out in the weak-turbulence
regime at the outer scale with χ+L⊥ < 1, then the turbulence transitions to the
strong-turbulence regime at λ= χ+L⊥L⊥. For arbitrary values of χ+L⊥ , the scale

λstr = L⊥ ×min
(
χ+L⊥, 1

)
(3.28)

then marks the large-scale end of the strongly turbulent part of the inertial range.

3.4. Intermittent, strong MHD turbulence at ρp < λ < λstr

Parker Solar Probe observations reveal that strong turbulence in the near-Sun solar
wind is intermittent (Sioulas et al. 2024). In intermittent turbulence, the majority of
the fluctuation energy at scale λ is concentrated into a fraction of the volume that
decreases as λ decreases. Equivalently, as λ decreases, the probability distribution
function (PDF) of the fluctuation amplitudes at scale λ broadens, and the tail of
this distribution accounts for an increasing fraction of the fluctuation energy at scale
λ. Accounting for intermittency is important in solar-wind models because it affects
how the turbulent heating power is apportioned between protons and electrons, and
between parallel and perpendicular proton heating (Mallet et al. 2019), as we will
describe in detail in § 3.5.

To model intermittent turbulence, we need a mathematical model for the PDF and
how it varies with λ. For this, we adopt the model of Chandran et al. (2025), which
agrees with a number of PSP observations. In the remainder of this subsection, we
summarise the key ideas of this model and the equations from the model that we use
in § 3.5 to evaluate the turbulent heating rate.

Chandran et al. (2025) considered the Elsasser increments of scale λ at position x
and time t ,

�z±λ
(
x, ŝ, t

)= z±
(
x + 0.5λŝ, t

)− z±
(
x − 0.5λŝ, t

)
, (3.29)

6One might expect that a weakly cascaded δz−λ would ensure that δz+λ is also weakly cascaded given that
δz+rms� δz−rms. However, we argue that this is not the case in the discussion leading up to (3.18).
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where ŝ is a unit vector perpendicular to B. They then defined the characteristic
amplitude of the δz± structure of perpendicular scale λ at position x and time t to
be

δz±λ (x, t)= 1
2π

∫ 2π

0
dθ

∣∣�z±λ
(
x, ŝ, t

)∣∣ , (3.30)

where the angle θ specifies the direction of ŝ within the plane perpendicular to B.
Rather than considering the detailed x and t dependence of δz±λ (x, t), Chandran
et al. (2025) viewed the fluctuations at each λ as a statistical ensemble and treated
δz±λ (x, t) (henceforth simply δz±λ ) as a random variable given by

δz±λ = z±βq, (3.31)

where β is a constant ∈ (0, 1), q is a random integer with a Poisson distribution

P(q)= e−μμq

q! (3.32)

and μ is the scale-dependent mean of q. Chandran et al. (2025) treated z± in (3.31)
as a scale-independent random number with an arbitrary distribution, and we simply
set

z± = δz±rms. (3.33)

As in previous studies (Grauer, Krug & Marliani 1994; Politano & Pouquet 1995;
Mallet & Schekochihin 2017), Chandran et al. (2025) determined μ by assuming that
the most intense fluctuations (those with q = 0) are sheet-like with a volume-filling
factor P(0)∝ λ, obtaining

μ= A+ ln
(

λstr

λ

)
, (3.34)

where A is a constant that determines the breadth of the amplitude distribution at
the largest strongly turbulent scale. We set A= 0, which, in conjunction with (3.33),
amounts to taking the turbulence to be characterised by a single amplitude (rather
than a broad distribution) at scale λstr. Qualitatively, as λ decreases, μ increases,
causing the distribution of q to broaden, which in turn broadens the PDF of the
fluctuation amplitudes.

Chandran et al. (2025) solved for β by taking the average δz+ cascade rate to be
independent of λ, obtaining

β = 2W0(1/2)= 0.7035, (3.35)

where W0 is the Lambert W function. To obtain (3.35), Chandran et al. (2025)
assumed that ε+ is dominated by the δz+λ fluctuations in the tail of the distribution
(small q values), for which δz+λ > w+λ , where

w±λ = z±βμ = z±
(

λ

λstr

)− ln β

(3.36)

is the approximate median value of δz±λ . They further argued that, where δz+λ > w+λ ,
δz−λ can be reasonably approximated as

δz−λ =
w−λ w+λ
δz+λ

. (3.37)
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In (3.37), δz−λ is inversely proportional to δz+λ in the tail of the δz+λ distribution
because of the strong shearing (and rapid cascading) experienced by δz−λ where δz+λ
is large. The average δz+ cascade power at scale λ is then approximately

〈
ε+λ
〉= ∞∑

q=0

P(q)
mpn

(
δz+λ

)2
δz−λ

4λ
=
∞∑

q=0

P(q)ε+λ,q, (3.38)

where

ε+λ,q =
mpn

(
z+
)2

z−

4λ

(
λ

λstr

)−2 ln β

βq . (3.39)

Equations (3.38) and (3.39) quantify how much each part of the PDF of δz+λ con-
tributes to

〈
ε+λ
〉
. To determine the parallel length scales of the AW packets, Chandran

et al. (2025) applied the arguments of LGS07 to intermittent turbulence, setting

l+λ = l−λ =
vAλ

δz+λ
(3.40)

throughout the δz+λ distribution.

3.5. The turbulent heating rate
We make the simplifying assumption that all dissipation takes place either at

λ∼ ρp (proton-gyroscale dissipation) or at λ	 ρp (sub-proton-scale dissipation). We
note that τ−casc,λ	 τ+casc,λ and assume that τ−casc,λ is much smaller than the dissipa-
tion time scale of δz− fluctuations at λ∼ ρp. Given this assumption, ε− cascades
past λ∼ ρp and dissipates almost entirely at λ	 ρp, heating only the electrons. We
take the perpendicular proton heating rate Q⊥p to be the rate at which stochastic
proton heating (e.g. McChesney, Stern & Bellan 1987) removes energy from δz+
fluctuations at λ∼ ρp, and we equate Q‖p with the rate at which proton Landau
damping (LD) and transit-time damping (TTD) remove energy from δz+ fluctua-
tions at λ∼ ρp. We define Qe1 to be the rate at which electron LD and TTD remove
energy from δz+ fluctuations at λ∼ ρp and take the total electron heating rate to be

Qe = Qe1 + Qe,sub−proton, (3.41)

where
Qe,sub−proton = ε− + ε+ − Q⊥p − Q‖p − Qe1 (3.42)

is the rate at which energy cascades past the proton gyroradius scale to λ	 ρp.
As a preliminary step towards evaluating Q⊥p, Q‖p and Qe1, we relate λ and l+λ

to characteristic perpendicular and parallel wavenumbers, k⊥ and k‖(k⊥), using the
relations suggested by figure 1 of Huang et al. (2023):

k⊥ = π

λ
, k‖(k⊥)= π

l±λ
. (3.43)

As described further in the following, we evaluate the proton-gyroscale heating rates
using the properties of the turbulence at

k⊥ρp = 1 ←→ λ= πρp. (3.44)
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Equation (3.43) and the critical-balance relation (3.40) imply that

k‖(ρ−1
p )vA = πvA

lπρp

= πδz+p
πρp
= δz+p

ρp
, (3.45)

where δz+p is the value of δz+λ at λ= πρp. Although fluctuations at k⊥ρp = 1 are at the
transition between MHD scales and kinetic scales, we approximate these fluctuations
using results from MHD. In particular, we assume that the PDF of δz+p is given by
(3.31), (3.32) and (3.34) with λ= πρp, that the energy density of these fluctuations
is mpn

(
δz+p

)2
/4, and that the amplitude of the fluctuating electron fluid velocity (or

E × B velocity) associated with the δz+p fluctuations at k⊥ρp = 1 is given by

δvp = 1
2
δz+p . (3.46)

We define γp(k⊥) and γe(k⊥) to be the rates at which (kinetic) AWs at per-
pendicular wavenumber k⊥ and parallel wavenumber k‖(k⊥) lose energy to linear
LD/TTD via interactions with protons and electrons, respectively. We adopt the
analytic expressions for γp(k⊥) and γe(k⊥) derived by Howes et al. (2006) within the
gyrokinetics approximation for the case in which meTp/(mpTe)	 βp	 1, simplified
to the limit in which k⊥ρe	 1, where ρe is the electron gyroradius:

γe(k⊥)= π 1/2

2

(
α2

pmeTe

mpTpβp

)1/2 ∣∣k‖(k⊥)∣∣ vA (3.47)

and

γp(k⊥)= π 1/2

2
αpT 2

e

β
1/2
p T 2

p

e−αp−ω2β−1
p I0(αp)

∣∣k‖(k⊥)∣∣ vA, (3.48)

where

αp = 1
2

(
k⊥ρp

)2
, βp = 8πnkBTp

B2
, (3.49)

Tp is defined in (2.18), I0(x) is the modified Bessel function of the first kind of order
0 and ω=ω/(k‖vA). Like δz+p , γe(ρ

−1
p ) and γ‖p(ρ−1

p ) are functions of q via (3.45).
Using these linear damping rates, we define hypothetical rates �e,q and �‖p,q at

which electrons and protons, respectively, would drain energy from δz+λ fluctuations
at λ= πρp (i.e. δz+p fluctuations) with a given value of q in (3.31) via LD and TTD
if the fluctuation amplitudes were unaffected by this energy transfer:

�e,q = cLD

2
γe

(
ρ−1

p

)
mpn

(
δz+p

)2
(3.50)

and

�‖p,q = 1
2
γ‖p

(
ρ−1

p

)
mpn

(
δz+p

)2
, (3.51)

where the constant cLD is a free parameter that enables us to modify the effective
electron LD rate.

7
In writing (3.50) and (3.51), we have accounted for the fact that

7We have not included such a parameter in (3.51) because parallel proton heating is negligible in the numerical
examples presented in § 4.
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the energy damping rate is twice the amplitude damping rate. For perpendicular
proton heating, we define �⊥p,q to be the hypothetical rate at which δz+p fluctuations
would cause stochastic perpendicular proton heating if there were no reduction of
δz+p by dissipation at k⊥ρp ∼ 1. Following Chandran et al. (2010), we set

�⊥p,q =
mpn δv3

p

ρp
exp

(
−c2v⊥th,p

δvp

)
, (3.52)

where c2 is an adjustable parameter, and we have set c1 = 1 in equation (25) of
Chandran et al. (2010) to reduce the number of free parameters in our model.

8

To go beyond the hypothetical heating rates in (3.50) through (3.52), we need to
account for the feedback of the damping/dissipation process on the proton-gyroscale
fluctuations, which prevents the proton-gyroscale turbulent heating rate from exceed-
ing the rate at which energy cascades through the inertial range. We do so by taking
the contribution of the δz+λ fluctuations at λ= πρp with a given value of q in (3.31)
to Q⊥p, Q‖p and Qe1 to be, respectively,

Q⊥p,q =
�⊥p,qε

+
p,q

ε+p,q + �⊥p,q + �‖p,q + �e,q
, (3.53)

Q‖p,q =
�‖p,qε

+
p,q

ε+p,q + �⊥p,q + �‖p,q + �e,q
(3.54)

and

Qe1,q =
�e,qε

+
p,q

ε+p,q + �⊥p,q + �‖p,q + �e,q
, (3.55)

where ε+p,q is the value of ε+λ,q in (3.39) with λ= πρp, which is the rate at which
the energy cascade replenishes the energy of the fluctuations with a given value
of q at λ= πρp. If �⊥p,q + �‖p,q + �e,q is 	 ε+p,q , then the energy drained from
fluctuations at k⊥ρp ∼ 1 has a negligible effect on their amplitudes, and (3.53)
through (3.55) imply that Q⊥p,q � �⊥p,q , Q‖p,q � �‖p,q and Qe1,q � �e,q . Conversely,
if �⊥p,q + �‖p,q + �e,q� ε+p,q then the energy drained from the proton-gyroscale fluc-
tuations strongly modifies their amplitudes and Q⊥p,q	 �⊥p,q , Q‖p,q	 �‖p,q and
Qe1,q	 �e,q . In this regime, (3.53) through (3.55) imply that Q⊥p,q + Q‖p,q + Qe1 �
ε+q , Q⊥p,q/Q‖p,q = �⊥p,q/�‖p,q and Q⊥p,q/Qe,q = �⊥p,q/�e,q . The total heating rates
from the full distribution of proton-gyroscale fluctuations are

Q⊥p =
∞∑

q=0

P(q)Q⊥p,q, Q‖p =
∞∑

q=0

P(q)Q‖p,q, Qe1 =
∞∑

q=0

P(q)Qe1,q . (3.56)

We emphasise that the turbulent heating described by (3.50) through (3.56) results
entirely from fluctuations at λ= πρp. We neglect turbulent heating from larger-
scale fluctuations and model the turbulent heating from smaller-scale fluctuations
via (3.42).

8The constant c1 is an overall normalisation factor on the right-hand side of (3.52). For reference, Chandran
et al. (2010) fit their (25) to test-particle simulations of proton stochastic heating by randomly phased AWs and
KAWs and obtained c1 = 0.75.
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4. Numerical examples

In this section we present numerical solutions to (2.5) through (2.12). We use
the implicit algorithm of Hu, Esser & Habbal (2000) with an adaptive time step to
advance the equations forward in time until a steady state is reached. All the plots in
this section illustrate steady-state solutions. The innermost grid point, r = rb, in these
solutions is approximately 2000 km above the photosphere. At the inner boundary,
we take the three temperatures T⊥p(rb), T‖p(rb) and Te(rb) to equal

T (rb)= 105 K, (4.1)

and we fix the proton number density and AW energy density at the values

n(rb)= 109 cm−3, Ew(rb)= 5.74× 10−3 erg cm−3. (4.2)

Our choice of T (rb) is somewhat arbitrary. We find that the precise value of T (rb)
does not significantly alter the solutions provided that T (rb)	 106 K and that we
vary T (rb) and n(rb) together, keeping n(rb)T (rb) constant. We choose the value of
n(rb)T (rb) to approximately match observational constraints on the density in the
low corona from Allen (1973), which are plotted in figure 4. Our choice of Ew(rb)
leads to reasonable agreement with the observational constraint on δvrms in the low
corona from the Hinode spacecraft (De Pontieu et al. 2007), which is shown in
figure 4. We determine U (rb), q⊥p(rb), q‖p(rb) and all the variables at the outermost
grid point by linear extrapolation from the nearest two grid points.

4.1. Magnetic-field model and radial grid
All the examples presented in this section are based on the same axisymmetric

magnetic-field model, which is designed to emulate the solar and heliospheric mag-
netic field near the minimum of the solar cycle. Following Cranmer et al. (2007),
we start with the dipole-plus-quadrupole-plus-current-sheet model of Banaszkiewicz
et al. (1998), adopting the latter authors’ favoured parameters of K = 1, M = 1.789,
a1 = 1.538 and Q = 1.5. We then add to this model the low-solar-atmosphere
magnetic-field model of Hackenberg et al. (2000) using the parameters from their
figure 1: L = 3× 109 cm, d = 3.4× 107 cm and Bmax = 1.5 kG. We illustrate the
magnetic-field lines in this Banaszkiewicz–Hackenberg (B-H) model in figure 2(a).

Our solar-wind model applies to narrow magnetic flux tubes directed radially out-
wards from the Sun and does not take into account the curvature of magnetic-field
lines. In order to approximate the B–H magnetic-field structure with our radial mag-
netic flux tubes, we compute B as a function of arc length s in the B-H model along a
number of magnetic-field lines that intersect the Sun at spherical polar angles θ� and
that reach heliolatitudes �60R� at a heliocentric distance r = 60R�, where the helio-
latitude is 90◦ minus the spherical polar angle. For example, θ� = 0 and �60R� = 90◦
both correspond to the radial magnetic-field line connected to the Sun’s north pole.
We also compute the function r(s), the heliocentric distance as a function of arc
length, along these field lines as well as the inverse of this function, s(r). We then
compose the function B(r)= B(s(r)) for each of these field lines and solve (2.5)
through (2.12) within radial magnetic flux tubes that have the same B(r) profiles.
Figure 2(b) shows the B(r) profiles for three different values of θ�, which corre-
spond to the three values of �60R� listed in the figure. In the figures to follow, we
label our model solutions by the �60R� value of the B–H magnetic-field line that our
model attempts to emulate, but we omit the 60R� subscript to simplify the figure
legends.
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FIGURE 2. (a) Magnetic-field lines in the axisymmetric, solar-minimum, B-H magnetic-field
model (Banaszkiewicz et al. 1998; Hackenberg et al. 2000). (b) The magnetic-field strength B as
a function of heliocentric distance r along three different B–H magnetic-field lines that intersect
the Sun at spherical polar angle θ� and that connect to heliolatitudes �60R� at r = 60R�. We
use these B(r) profiles for the radial magnetic flux tubes in our 1-D solar-wind model to emulate
magnetic-field lines in the 2-D B–H model. The vertical line shows the minimum radius rb in
our solar-wind model.

To construct our numerical grid of r values, we first take N = 1002 points that
are evenly spaced in the variable ln((s − R�)/R�) between a minimum value of
ln(2000 km/R�) and a maximum value of ln(71). These N points correspond to N
arclengths s j , with j ranging from 1 to N , which we convert into N heliocentric
distances r j by setting r j = r(s j). The resulting r j values range from approximately
R� + 2000 km to 72R�. The spacing between neighbouring grid points increases
from �20 km near the inner edge of the grid to �5× 105 km near the outer edge of
the grid.

4.2. Parameter values
We focus on the set of parameters listed in table 1. We follow van Ballegooijen

& Asgari-Targhi (2016) in viewing the open magnetic flux in the heliosphere as
originating primarily in magnetic flux tubes that, at the photosphere, have diameters
�100 km and magnetic-field strengths �1 kG. These flux tubes cover approximately
1 % of the photosphere but expand and merge in the low corona, where B � 10 G
and the flux tubes fill most of the volume. By flux conservation, the diameters of
the flux tubes are �103 km in the low corona. Photospheric motions at the base of
these flux tubes launch waves that propagate outwards through the chromosphere
and into the corona. Because the motions of different flux tubes are uncorrelated at
the photosphere, the motions of different flux tubes are largely uncorrelated in the
corona. We therefore set L⊥kG = 100 km. It follows from (3.8) that this choice of
L⊥kG corresponds to a perpendicular correlation length L⊥(r) that is 103 km in the
low corona where B � 10 G. We note that a very similar value of L⊥kG (90.9 km)
in the AW-driven solar-wind model of Cranmer et al. (2007) led to good agreement
with measurements of the Faraday rotation of linearly polarised radio transmissions
from the Helios spacecraft (Hollweg, Cranmer & Chandran 2010).

We determine the remaining parameters approximately as follows. We choose
crefl to match observations of Te in the low corona, and we then adjust cLD and c2
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Parameter Value Physical significance
L⊥kG 100 km ⊥ correlation length of turbulence where B = 1 kG
crefl 0.15 Upper limit on δz−rms/δz+rms in the low corona
cLD 0.2 Reduction factor in the electron LD rate
c2 0.15 Coefficient in the exponent of the stochastic-heating rate
αH 0.2 Coefficient in Hollweg’s collisionless-heat-flux formula
rH 4R� Radius of transition from Spitzer to Hollweg heat flux

TABLE 1. Parameter Values.

together to match observational constraints on U (r) at large r and large � from
the Ulysses spacecraft (see § 4.3), as well as observational constraints on T⊥p at
large r from PSP’s tenth perihelion encounter (E10) from 18 November 2021 until
21 November 2021 (see § 4.4). We then adjust αH and rH to improve slightly the
agreement between the model and observational constraints on Te from PSP during
E10 (see § 4.4).

Although it is our variation of the parameters crefl, cLD, c2, αH and rH that enables
our model to match the observations described in the previous paragraph, our
model agrees with other observations without the need for further parameter adjust-
ment. These observations include the latitudinal dependence of U at large r and the
radial profiles of n, δvrms and T‖p seen by PSP during E10, as we discuss in § § 4.3
and 4.4.

4.3. Comparison with Ulysses measurements of U∞(�) near solar minimum
Because the radiative cooling rate is ∝ n2, radiative cooling is only important in

our model in the low corona.
9

In steady state outside the low corona, both a(r)Ftot(r)
and a(r)ρ(r)U (r) are independent of r , and thus, Ftot(r)/[ρ(r)U (r)] is independent
of r , where Ftot is the total energy flux defined in (2.21). Asymptotically far from
the Sun, almost all of the solar-wind energy flux is in the form of bulk-flow kinetic
energy, and the wind speed is approximately

U∞ =
[

2Ftot(r)

ρ(r)U (r)

]1/2

, (4.3)

where the right-hand side of (4.3) can be evaluated at any r far outside the low
corona. In figure 3(a) we plot U∞ as a function of heliolatitude � in our model as
well as measurements of U from the first polar orbit of the Ulysses spacecraft in
1994–1995, near the minimum of the solar cycle. Notably, our model reproduces
the observed decrease in the outflow velocity as |�| drops to �20◦. The reason
for this reduction is that, at |�|� 20◦, there is a large drop in B as r increases
from �1.2R� to �1.6R�, as illustrated in figure 2. This drop in B leads to a large
Alfvén-speed gradient, which enhances the turbulent heating rata via (3.19). This
enhanced heating rate increases the temperature, which increases the density scale
height, causing more mass to be loaded into the corona out to the sonic critical
point (at a heliocentric distance of a few R�). This, in turn, increases the mass

9This statement is quantified in figures 5(b) and 8(f ).
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FIGURE 3. (a) The asymptotic solar-wind speed U∞ defined in (4.3) as a function of heliolati-
tude � and the solar-wind speed measured by the Ulysses spacecraft during its first polar orbit
in 1994 and 1995 (Goldstein et al. 1996). (b) The transverse pressure at r = 68R� in our model
as a function of �.

loss rate of the solar wind (Hansteen & Velli 2012), causing the total energy bud-
get to be shared by more particles, which reduces U∞ (cf. Leer & Holzer 1980;
Chandran 2021).

Cranmer et al. (2007) and Lionello et al. (2014a) developed 1-D AW-driven solar-
wind models and used the same Banaszkiewicz et al. (1998) magnetic-field model
that we have used to model solar-wind streams at different heliolatitudes. In the
study by Lionello et al. (2014a), the drop in U∞(�) and increase in thermal pressure
near the ecliptic were more sharply peaked at small � than in figure 3. In the
study by Cranmer et al. (2007), the drop in U∞(�) and change in thermal pressure
were likewise more sharply peaked at small � than in figure 3, but the thermal
pressure decreased at small �. Lionello et al. (2014a) pointed out that pressure
differentials across the magnetic field lead to a loss of transverse force balance,
and that, in a more realistic two-dimensional (2-D) or 3-D model, the high-pressure
region would expand into the low-pressure region, thereby modifying the magnetic-
field profiles. To obtain an order-of-magnitude estimate of the importance of this
effect, we note that the increment in � through which a high-pressure region can
expand during the time ∼ r/U it takes the wind to reach heliocentric distance r is
approximately ��= (r/U )× (�cs/r)=�cs/U radians, where �cs is the change in
sound speed over the heliolatitude interval ��. An upper limit on �� is obtained
by setting �cs = cs, in which case ��= cs/U = 1/M , where M is the sonic Mach
number. As M � 10 at large r , this upper limit on �� is � 5.7◦. However, the
pressure differential over 5.7◦ in figure 3 is only a fraction of the full pressure, and
so the actual value of �� is significantly less than 5.7◦. We thus conjecture that
the meridional expansion of the slow-wind region that would arise in a 2-D or 3-D
version of our model would be comparatively modest.

4.4. Comparison with PSP E10 observations
During the approach phase of PSP’s tenth perihelion encounter with the Sun

(E10), the spacecraft travelled approximately radially in the Sun’s rotating frame
for �20R�, remaining within a single solar-wind stream that was magnetically con-
nected to a small low-latitude coronal hole (Davis et al. 2023). This ‘fast radial scan’
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provided a good opportunity to measure the radial variation of the solar-wind prop-
erties within the same magnetic flux tube, and we therefore compare our model
results with PSP E10 data. A problem with doing so, however, is that the low-
latitude coronal hole from which this wind stream emerged was a non-axisymmetric
structure that is not captured by the axisymmetric B–H magnetic-field model. To
compare our model with PSP E10 observations, we assume that the B(r) profile
along the magnetic flux tube encountered by PSP is similar to the B(r) profile along
the magnetic-field lines in our model along which U∞ � 550 km s−1 (a value slightly
above the proton outflow velocity measured by PSP during E10). We then compare
PSP E10 observations with our model solution along one of these field lines: the one
that reaches heliolatitude �= 20.9◦ at large r , for which U∞ = 541 km s−1.

In figure 4 we plot our numerical solutions for n, U , T⊥p, T‖p, Te, β‖p, χ+L⊥ and the
ratio of the electron Coulomb mean free path

λmfp ≡
√

kBTe/me

νe
(4.4)

to r , where

νe = 2.9× 10−6
( n

1 cm−3

) ( kBTe

1 eV

)−3/2

ln Λ s−1 (4.5)

is the electron collision frequency and ln Λ is the Coulomb logarithm defined fol-
lowing (2.15) (Book 1983). The vertical dotted line in figure 4(b) indicates the radius
inside of which the Alfvén-speed gradient is so large that δz−rms is limited to the
value crefl(U + vA)/vA via (3.6) and (3.7). The PSP n and Te data in figure 4 are
taken from the SPAN-E instrument (Whittlesey et al. 2020) of the Solar Wind
Electrons, Alphas and Protons (SWEAP) instrument suite (Kasper et al. 2016), and
the velocity and proton-temperature data are taken from SWEAP’s SPAN-I instru-
ment (Livi et al. 2022). The overall calibration of the SPAN-E density measurements
is obtained by comparing with quasithermal-noise measurements of the electron den-
sity (Moncuquet et al. 2020) from the PSP FIELDS instrument suite (Bale et al.
2016). We also plot in figure 4 remote observations of T⊥p from UVCS (Esser et al.
1999), Te from SUMER (Landi 2008), δvrms from Hinode (De Pontieu et al. 2007)
and n from white-light scattering in coronal holes (Allen 1973). We note, however,
that the UVCS, SUMER and white-light-scattering observations are for large polar
coronal holes (the source regions of fast solar wind with U∞ � 750 km s−1), which
may differ from the small low-latitude coronal hole that produced the wind stream
observed by PSP during E10.

Our model solution is in broad, but not complete, agreement with these observa-
tions. The most notable differences are that (1) T⊥p in the model is smaller than the
(polar-coronal-hole) value observed by UVCS at 1.3R� < r < 1.8R�; and (2) Te in
the model is higher than in the PSP observations, particularly near r = 15R�.

Beyond the comparison with observations, figure 4(f ) shows that (1) δz− fluctua-
tions transition out of the strong-turbulence regime as r increases past �2R�; (2) the
low corona is highly collisional, with λmfp	 r , whereas the outer corona and solar
wind are only weakly collisional, with λmfp � r ; and (3) β‖p is � 0.1 at r < 20R� but
increases with increasing r , reaching a value �1 by r = 50R�.

Figure 5 shows several diagnostics of the heating and energy flow in this solution.
Figure 5(a) shows that electron LD at λ∼ ρp is the dominant heating mecha-
nism at r � 2R�, that stochastic proton heating is the dominant heating mechanism
at r � 2R�, and that dissipation at sub-proton scales and parallel proton heating
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FIGURE 4. Radial profiles of several quantities in our model solution that reaches heliolatitude
�= 20.9◦ at large r : n is the proton number density, U is the solar-wind outflow velocity, vA
is the Alfvén speed, δvrms is the r.m.s. fluctuating velocity, T⊥p and T‖p are the perpendicular
and parallel proton temperatures, Te is the electron temperature, χ+L⊥ is the outer-scale critical-
balance parameter defined in (3.13), β‖p is the parallel proton beta and λmfp is the electron
Coulomb mean free path. The vertical dotted line in panel (b) is described in the text.

are subdominant at all r . The reason that parallel proton heating is negligible
at r � 15R� is that it requires a Landau resonance between the waves and the ions,
in which the parallel ion velocity (along B) matches the parallel wave phase velocity.
However, the parallel thermal speed is β

1/2
‖p vA, and β‖p < 0.1 at r � 15R�, as shown

in figure 4(f ), implying that the large majority of the protons are much slower
than the AWs and kinetic Alfvén waves (KAWs), whose parallel phase velocities
are � vA. The reason that the stochastic proton heating rate Q⊥p becomes relatively
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FIGURE 5. (a) Heating and cascade rates divided by the mass density ρ: Q is the total heating
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heating rate. (b) The total energy flux Ftot(r) defined in (2.21) multiplied by the cross-sectional
area of the flow a(r) normalised to the value of this product at the inner radius of the model rb.

more important in comparison to the parallel electron heating rate as r increases
above �2R� is that Q⊥p is a rapidly increasing function of δvrms/vA because of the
exponential in (3.52). As illustrated in figure 4(b), δvrms/vA increases monotonically
from < 10−2 in the low corona to �1/4 at r = 10R�.

A comparison between figure 5(a) and figure 4(b) shows that the heating rate
vanishes at the local extrema of vA(r). This feature of our model results from the fact
that we have estimated δz−rms in (3.6) using only the local value of |∂vA/∂r |, which
determines the local rate of reflection. In coronal holes and the solar wind, after
δz− fluctuations are produced by reflection, they propagate some distance before
cascading and dissipating, and δz−rms should not vanish anywhere. It would be possible
to smooth out the δz−rms and Q profiles, but we have opted not to do so, as the
vanishing of Q at these locations does not lead to sharp features in the temperature
profiles and because smoothing would introduce an additional free parameter (the
smoothing length).

In figure 5(b) we plot the product of the total energy flux Ftot(r) and the area
of the flow a(r). This product should be constant in steady state in the absence of
radiative cooling, as per (2.19). The fact that a(r)Ftot(r) is approximately constant at
r � 1.2R� in figure 5 shows that radiative cooling plays a role only in the low solar
corona. The sharp drop in a(r)Ftot(r) at the left of the plot represents a decrease in
the total energy flux of �3% over a distance of �130 km. Although this abrupt drop
has the appearance of a possible artefact associated with the boundary condition
and the neighbouring grid cell, the drop is in fact resolved across �7 grid cells and
coincides with the large drop in the density (by a factor of �2.5) over this same
radial interval. We interpret this abrupt drop as an approximation of the physical
cooling that occurs near the top of the transition region.

Figure 6(a) shows the PDF of the integer q in (3.31), evaulated for δz+λ at λ= πρp

(i.e., the PDF of logβ(δz+p /z+)). Figure 6(b) shows the contributions of the different
parts of the δz+p distribution to Q⊥p and Qe1 (which are, respectively, the stochas-
tic proton heating rate and the rate at which electrons are heated by LD/TTD of
Alfvénic fluctuations at the proton gyroscale). As these panels show, stochastic pro-
ton heating results mainly from the large-amplitude end of the distribution, whereas
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as a function of q . Both panels correspond to r = 2R� along the model magnetic-field line that
reaches heliolatitude �= 20.9◦ at large r .

Qe1 is spread out more evenly across the δz+p distribution. Figure 6(b) also shows
that Q⊥p,q + Qe1,q � ε+q at q � 7, which indicates that almost all of the cascade power
going into the strongest fluctuations at λ� ρp is dissipated by stochastic heating and
electron LD. Damping at λ∼ ρp thus truncates the tail of the δz+p distribution,
reducing the degree of intermittency at λ� ρp.

4.5. Energy flux ratios
In figure 7 we plot the individual components of the total energy flux Ftot divided

by Ftot, where Ftot is defined in (2.21). To label these components, we have rewritten
(2.21) as

Ftot = FU + Fg + Fenth,e + Fenth,p + qe + qp + Fw, (4.6)
where

FU = ρU 3

2
(4.7)

is the bulk-flow kinetic energy flux,

Fg =−G M�ρU

r
(4.8)

is the gravitational potential-energy flux,

Fenth,e = 5
2

nkBTeU (4.9)

is the electron enthalpy flux,

Fenth,p = nkB

(
T⊥p + 3

2
T‖p

)
U (4.10)
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FIGURE 7. The individual energy fluxes defined in (4.7) through (4.12) expressed as fractions of
the total energy flux Ftot defined in (4.6). Each panel corresponds to a different heliolatitude �,
asymptotic wind speed U∞ and energy per proton E .

is the proton enthalpy flux, qe is the electron heat flux,

qp = q⊥p + q‖p (4.11)

is the proton heat flux and

Fw =
(

3
2

U + vA

)
Ew (4.12)

is the AW enthalpy flux.
As mentioned in § 2.3, outside the low solar corona, radiation can be neglected,

and hence, (2.19) implies that

a(r)Ftotal(r)= constant (4.13)

in steady state. As the solar wind flows from the corona out into the distant interplan-
etary medium, power a(r)Ftotal(r) is converted from one form to another without
loss. At large r , Ftot is dominated by FU , but in the corona FU is negligible, and
thus, FU/Ftot increases with r . Likewise, Fg is large and negative in the corona but
negligible at large r , and thus, Fg/Ftot increases with r . As (FU + Fg)/Ftot increases
with r , other fractional energy fluxes, such as Fw/Ftot, must decrease to maintain
total energy conservation, and the fractional energy flux that decreases the most cor-
responds to the mechanism that is doing the most to accelerate the wind and lift it
out of the Sun’s gravitational potential well.
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Figure 7(a) illustrates a slow-wind stream with asymptotic wind speed U∞ =
306 km s−1, where U∞ is defined in (4.3). This value of U∞ corresponds to an
energy per proton

E = 1
2

mpU 2
∞ (4.14)

of 487 eV, as indicated in the figure legend. As can be seen in the figure, the primary
mechanism that powers the wind is the AW enthalpy flux at r � 1.5R�, the electron
heat flux between ∼ 1.5R� and ∼ 4R�, and the electron enthalpy flux at r � 4R�.

Figure 7(b,c,d) illustrates wind streams with larger values of U∞ and E . In these
plots the AW enthalpy flux is the dominant driver of the wind out to r ∼ 20−30R�,
beyond which some form of enthalpy flux becomes dominant: either a roughly equal
mix of Fenth,p and Fenth,e in figure 7(b) or mostly Fp in figures 7(c) and 7(d).

Halekas et al. (2023) constructed similar plots using PSP data, but included the
electric-potential-energy flux F�E = e�E nU , which does not appear in our total
energy equation. The significance of F�E can be understood by considering single-
species versions of the total energy equation, as in equation (23) of Lemaire &
Scherer (1973),

a(r)

{
qe + nU

[
1
2

meU
2 + kB

(
3
2

T‖e + T⊥e

)
+me�g − e�E

]}
= a(r)Ftot,e = constant, (4.15)

a(r)

{
qp + nU

[
1
2

mpU 2 + kB

(
3
2

T‖p + T⊥p

)
+mp�g + e�E

]}
= a(r)Ftot,p = constant, (4.16)

where T‖e and T⊥e are the parallel and perpendicular electron temperatures, and
�g =−G M�/r is the gravitational potential. Equations (4.15) and (4.16) do not
account for AWs, a point that will come up again following (4.17). When (4.15) and
(4.16) are added, the �E terms cancel, which is why �E does not appear in our (4.6)
for the total energy flux. Fundamentally, this is because the electric field does no
work on a neutral proton–electron plasma, although it does do work on the protons
and equal and opposite work on the electrons. Far from the Sun, almost all of the
solar-wind energy flux is in the form of the bulk-flow kinetic energy of the protons,
which implies that Ftot,e	 Ftot,p at all r . As the proton bulk-flow kinetic energy flux
and gravitational potential-energy flux are at most comparable to Ftot,p, the electron
bulk-flow kinetic energy flux and gravitational potential-energy flux are everywhere
at least a factor of �me/mp smaller than Ftot,p, and hence, negligible. After dividing
(4.15) by a(r), we are left with three terms that are everywhere	Ftot,p, namely Ftot,e,
nmeU 3/2 and nmeU�g, and three terms that can, at least at some locations, be of
the same order of magnitude as Ftot,p: qe, nUe�E and 5nkBTe/2, where we have set
T‖e = T⊥e = Te. After dropping the three negligible terms, we can rewrite (4.15) as

F�E ≡ nUe�E = qe + 5
2

nUkBTe. (4.17)

In other words, the electric-potential-energy flux F�E is approximately the sum of
the electron heat flux and electron enthalpy flux. The AW enthalpy flux can lead to
violations of (4.17) if the AWs dissipate and heat the electrons. However, we expect
(4.17) to be accurate when F�E is large compared with Fw and of the same order of
magnitude as Ftot,p.
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The PSP measurements reported in figure 3 of Halekas et al. (2023) show that
in the fastest wind streams observed in the study, in which 2000 eV < E < 2500 eV,
AWs were the dominant energisation mechanism over the comparatively narrow
radial interval 13R� < r < 23R�. On the other hand, in the slowest wind streams
with E < 500 eV, F�E was the dominant energisation mechanism at 13R� < r <
48R�, with qe significantly smaller than F�E . This latter point implies via (4.17) that
Fenth,e was the dominant energisation mechanism in these low-speed streams at these
radii. Taken on their own, these observations are consistent with a long-standing
conjecture that the fast solar wind is driven primarily by an AW energy flux, while
the slow solar wind is driven by some other mechanism.

However, our results, which provide a model for what is happening interior to
the orbit of PSP, paint a different picture. Although the energy flux ratios shown
in figure 7 agree with the results from Halekas et al. (2023) described in the pre-
vious paragraph, in our model Fw is the dominant outward (i.e. positive) energy
flux close to the Sun for all values of E . As mentioned previously, for the wind
stream modelled in figure 7(a), the dominant energy flux powering the wind is Fw

at r < 1.5R�, qe between 1.5R� and 4R�, and Fenth,e at r � 4R�. Our results show
that the observation that Fenth,e or qe dominates at large r does not mean that one
of these mechanisms dominates near the Sun. Indeed, it would not make sense for
Fenth,e to be the dominant mechanism powering the solar wind between the coronal
base and r � 10R�, for if it were then the divergence of the electron enthalpy flux
would be large compared with both the turbulent heating rate and the divergence of
the electron heat flux. This would cause the electrons to cool approximately adiabat-
ically over this range of radii, which is ruled out by observational constraints on Te.
Nor would it make sense for qe to be the dominant energy flux powering the solar
wind at r � 1.5R�, because in this region λmfpT −1

e dTe/dr 	 1 and dTe/dr > 0 (see
figures 4 and 8), implying that the electron heat flux is well approximated by the
Spitzer–Harm formula (2.22) and directed in towards the Sun. In other words, in
the low corona, qe is an energy sink, not an energy source, and therefore, cannot
be the dominant energy flux that powers the solar wind. Instead, some non-thermal
energy source, such as AWs, is required to power the corona and solar wind (cf.
Parker 1965).

Figure 8 provides more detailed information about the solar-wind stream illus-
trated in figure 7(a), which reaches a heliolatitude of �= 1.1◦ at large r . As
illustrated in figure 2(b), in this wind stream |B| drops rapidly between r = 1.2R�
and r = 1.6R�, causing vA to drop by a factor of almost 10 over this same range of
radii, as illustrated in figure 8(b). The resulting large Alfvén-speed gradient leads to
strong AW reflection and intense AW dissipation and turbulent heating via (3.19),
most of which goes into electron heating because δvrms/vA is still small enough at
these radii (figure 8b) that stochastic ion heating is weaker than electron heating,
as shown in figure 8(d). At 1.2R� < r � 2R�, this strong electron heating causes Te

in this slow-wind stream to exceed the value of Te in the moderately fast solar-wind
stream illustrated in figure 4. As the Spitzer–Harm heat flux in (2.22) is ∝ T 7/2

e , the
increase in Te leads to a large increase in qe, which causes qe to become the domi-
nant outward energy flux at 1.5R� � r � 4R�, as shown in figure 7. The reason that
the intense heating inside 2R� decreases U∞ relative to the model solution shown
in figure 4 is explained following (4.3). Finally, we note that radiative losses are
somewhat larger in figure 8(f ) than in figure 5(b).
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FIGURE 8. Our model solution that reaches heliolatitude �= 1.1◦ at large r . The various
quantities plotted are defined in the captions to figures 4 and 5 and the text following (4.5).

5. Discussion and conclusion

This paper describes a new two-fluid solar-wind model that divides the turbulent
heating rate between protons and electrons using a recently developed model of
intermittent, reflection-driven Alfvénic turbulence. Intermittency plays an important
role in our solar-wind model because it enhances the rate of stochastic ion heating
(Mallet et al. 2019), which helps to solve the puzzle mentioned in § 1 concerning
the origin of the large perpendicular ion temperatures in coronal holes. As shown in
§ 4, numerical solutions of our model equations agree reasonably well with Ulysses
measurements of U∞(�), PSP measurements of the radial profiles of n, U , δvrms,
T⊥p, T‖p and Te, and remote observations of n, δvrms, T⊥p and Te in coronal holes.
We note that explaining the Ulysses measurements of U∞(�), and in particular the
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latitudinal breadth of the slow wind near solar minimum, has been very challeng-
ing for previous AW-driven solar-wind models (cf. Cranmer et al. 2007). In part
because of this agreement, and in part because the turbulence model that we use
(Chandran et al. 2025) agrees with PSP observations of solar-wind turbulence near
the Sun (Sioulas et al. 2024), we believe that our results are a useful step forward
in the modelling of turbulent heating in the solar wind. As our treatment of turbu-
lent heating is based entirely on analytic equations, it would be straightforward to
incorporate it into other solar-wind models or even models of other astrophysical
outflows.

As in the pioneering study by Leer & Holzer (1980), and as discussed in § § 4.3 and
4.5, the fundamental difference between fast solar wind and slow solar wind in our
model lies in the fraction of the AW energy flux that is dissipated close to the Sun.
For the axisymmetric solar-minimum magnetic-field model that we adopt in § 4, slow
wind arises along the magnetic flux tubes that connect to low heliographic latitudes at
large r , and these flux tubes experience very rapid super-radial expansion at 1.2R� <
r < 1.6R�. This super-radial expansion leads to a large Alfvén-speed gradient in this
region, which increases the rate of AW reflection and turbulent heating via (3.19).
This rapid heating increases the temperature at r � 2R�, which increases the density
scale height and loads more mass into the corona out to the sonic critical point,
where the plasma becomes gravitationally unbound. The rapid heating at r � 2R�
thus increases the mass flux in the solar wind, causing the total energy budget (which
is fixed at the coronal base) to be divided up between more particles, leading to a
smaller asymptotic wind velocity U∞.

Figure 7 shows that U∞ and the proton heating fraction are positively correlated
in our model. In particular, the electron enthalpy flux is larger than the proton
enthalpy flux at r = 10R� in the slowest wind streams, whereas the reverse is true
in the fastest wind streams. This correlation is a natural consequence of stochastic
heating and the physics of AW propagation in a stratified atmosphere. The stochas-
tic heating rate (3.52) is a strongly increasing function of δvrms, which is, overall,
an increasing function of r inside the Alfvén critical point rA ∼ 10−20R� (at which
U = vA), as can be seen in figures 4(b) and 8(b). The reason that δvrms increases
with r at r < rA is that, as the AWs propagate away from the Sun into a lower-
density plasma, they behave like waves propagating along a tapered string: the AW
amplitudes increase, much like a whip cracking. This behaviour is described math-
ematically by the conservation of AW action, which reduces to conservation of
energy when U 	 vA (see, e.g. Dewar 1970; Heinemann & Olbert 1980).

10
Thus,

when the turbulent heating is concentrated close to the Sun, not only is U∞ smaller
as described in the previous paragraph, but Tp is also smaller because the fluc-
tuation amplitudes are smaller where most of the heating occurs, and electrons
therefore receive a larger fraction of the heating rate. Conversely, when the tur-
bulent heating is more extended, the wind is faster and the ions are hotter. Further
reinforcing the correlation between Tp and U∞ is the fact that strong dissipation of
the AW energy flux near the Sun (which reduces U∞) reduces the fluctuation ampli-
tudes farther out in the wind, which decreases the rate of stochastic heating and
reduces Tp.

10In contrast, at r � rA, the wave amplitudes decrease with increasing r in part because of the work done by
the waves on the moving plasma and in part because of turbulent dissipation.
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Although our model is successful in some ways, it has two main weaknesses
that should be remedied in future work. First, we use a model of reflection-
driven turbulence that assumes that Sunward-propagating Alfvén waves are much
weaker than anti-Sunward-propagating Alfvén waves, i.e. δz−rms	 δz+rms. However,
this assumption becomes inconsistent with the results of this model in the
low corona, where |dvA/dr | is very large. We avoid unphysically large val-
ues of δz−rms/δz+rms by simply capping δz−rms/δz+rms at the value crefl(U + vA)/vA,
where crefl is a free parameter. However, a more rigorous treatment of wave
reflection is needed (see, e.g. Lionello et al. 2014a; Shoda, Yokoyama &
Suzuki 2018).

The other aspect of our model that needs improvement concerns the turbulent
heating rate Q. As described in § 3.5, we account for two contributions to Q: heat-
ing from fluctuations at λ∼ ρp, and heating from fluctuations at λ	 ρp. To compute
the heating rate from fluctuations at λ∼ ρp, we first extrapolate the inertial-range
scalings of the fluctuation amplitudes all the way to λ∼ ρp, and then we evalu-
ate previously published analytic formulas for the rates at which the fluctuations at
λ∼ ρp lose energy to LD and stochastic heating. We then limit the heating rate
at λ∼ ρp so that it cannot exceed the rate at which δz+ energy cascades from
large scales to small scales through the inertial range (see (3.53) through (3.55)).
However, in order for our solar-wind model to match the solar-wind and coronal-
hole observations in figures 3 and 4, we must multiply the electron LD rate at
λ∼ ρp by a factor of cLD = 0.2. We conjecture that this is a sign of the helicity
barrier, which causes the turbulent power spectrum to steepen at a perpendicular
wavenumber k∗⊥ that is smaller than ρ−1

p (Meyrand et al. 2021; Squire et al. 2022,
2023). Further work, however, is needed to investigate this point and to incorpo-
rate the helicity barrier more rigorously into a model of turbulent heating in the
solar wind.
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